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A Case for Hardware Memoization in Server CPUs
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Abstract—Server applications exhibit a high degree of code repetition
because they handle many similar requests. In turn, repeated execution of

the same code, often with identical inputs, highlights an inefficiency in the
execution of server software and suggests memoization as a way to improve
performance. Memoization has been extensively explored in software, and

several hardware- and hardware-assisted memoization schemes have been
proposed in the literature. However, these works targeted memoization of
mathematical or algorithmic processing, whereas server applications call
for a different approach. We observe that the opportunity for memoization

in servers arises not from eliminating the repetition of complex computa-
tion, but from eliminating the repetition of software orchestration code. This
work studies hardware memoization in servers, ultimately focusing on one
pattern, instruction sequences starting with indirect jumps. We explore how

an out-of-order pipeline can be extended to support memoization of these in-
struction sequences, demonstrating the potential of hardware memoization
for servers. Using 26 applications to make our case (3 CloudSuite workloads
and 23 vSwarm serverless functions), we show how targeting just this one

pattern of instruction sequences can memoize over 10% (up to 15.6%) of
the dynamically executed instructions in these server applications.

Index Terms—Microarchitecture, hardware memoization.

I. INTRODUCTION

S
ERVERS may handle thousands of operations per second, com-
prising a continuous stream of independent user requests. Al-

though the behavior of the same server software varies drastically
across sites, the variety of requests that a given server handles is limited
by its environment. For example, while web servers at different sites
serve completely different mixes of requests and different content, any
particular web server receives a relatively small diversity of requests
to its popular pages. Similarly, database installations differ radically,
but a given database will handle only a small variety of SQL queries.
This behavior inevitably leads to high cross-request instruction stream
similarity, resulting in server processors repeatedly executing the same
instruction sequences, with exactly the same input register values (and
therefore exactly the same output register values).

Frequent repetition of the same instruction sequences presents an
opportunity to improve server performance through memoization. Pri-
marily a software technique, memoization has been applied at coarse
granularity for algorithmic efficiency (e.g., accelerating minimax with
alpha-beta pruning to avoid redundant evaluations of game positions)
and for system optimization (e.g., caching of path lookups in filesystem
code). At finer granularity, several hardware proposals for automated
memoization explored the possibility of freeing up functional units
by avoiding the re-execution of instructions with identical inputs [1],
[2]. These approaches retrieve register results computed by a previous
execution of the ALU operation on the same inputs, thereby freeing
resources (primarily ALUs) to work on other instructions.

In this work, we consider automated hardware memoization for
servers. Counterintuitively, although memoization has traditionally
been used to avoid repeated computation, we see that the dominant
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memoization opportunity in servers is not avoiding computation, but
rather in memoizing instructions responsible for software orchestration.
Server software is characterized by large complex code bases with a
high density of control-flow and non-arithmetic instructions, primarily
performing data lookups and copies. As such, memoization opportu-
nities in servers arise in the spaces between computation, avoiding
repeated execution of mundane instruction sequences that adapt (and
verify the validity of) parameter values as execution progresses through
deeply nested API hierarchies and software abstractions. Notably, such
spaces between computation comprise the bulk of the instructions that
modern servers execute.

To evaluate the potential of hardware memoization, we created
an infrastructure for studying full-system server applications, using a
network-connected RISC-V system with an out-of-order core running
on an FPGA, booting Linux and running off-the-shelf server software in
Docker containers. We use this system to collect a detailed instruction-
level trace of server applications while they service requests arriving
over the network interface.

Analysis of our server traces points to significant opportunity for
hardware memoization, but also highlights many challenges. To offer
some examples: Server applications are large and do not have dominant
patterns, suggesting that a generic mechanism to learn and memoize
sequences may be cost-prohibitive or even impossible. Compiler sup-
port may enable longer sequences to be memoized or provide hints
of where memoization opportunities occur, but will require work on
compilers and ISA extensions. Whereas system calls and floating point
instructions are poor memoization candidates, memoizing instruction
sequences with load instructions that access static data structures may
be profitable, but would incur significant hardware costs for value
tracking (e.g., through the on-chip coherence mechanisms).

Recognizing that a single work cannot cover all cases, we select one
example design point to make the case that hardware memoization in
servers deserves further research. Specifically, statistical analysis of our
traces finds that many memoization opportunities exist for sequences
of instructions that begin on an indirect jump, and that the cost of
memoizing these sequences is lower than executing them, suggesting
potential performance benefits. These candidate sequences comprise
almost 10% of the instructions executed by our server applications.
The mechanisms we envision extend the existing branch prediction
and branch resolution hardware to add support for: (1) speculatively
identifying when a memoization candidate sequence is encountered,
(2) performing memoization by substituting the previously recorded
values into the output registers, (3) validating the input register values,
and (4) rolling back in case input validation fails.

In the rest of this paper, we describe our hardware memoization
design for servers, compare it to prior work, and present an analysis of
26 server applications, projecting the behavior and approximate on-chip
storage costs of this technique.

II. HISTORY OF MEMOIZATION

The concept of memoization was proposed by Michie [3], recogniz-
ing that once a computer has executed a computation, the results can be
stored to avoid repeating the same computation. Since then, software
memoization was explored at various levels of granularity [4], [5],
[6], including hardware and ISA extensions to support finer-grained
memoization [7], [8], [9], [10]. These works rely on the observation
that computation frequently revisits the same sub-problems, creating
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an opportunity to store the sub-problem results and retrieve them when
the same sub-problems repeat.

Unlike complex computational workloads, server applications are
primarily tasked with accessing and moving data. Despite this, modern
server applications make heavy use of software memoization, although
it is typically referred to as caching. Servers cache filesystem objects
and database queries to avoid repeated traversal of large data structures,
especially when these data structures are kept in slower storage. In
all cases, whether for complex computation or for caching of simple
objects, the software developer, potentially assisted by development
tools, identifies potential opportunities and modifies the software to
memoize results instead of recomputing or reloading them.

When we examine the execution of optimized server applications
(which have caching applied by the software developers where ap-
propriate), we see that there still remains significant opportunity for
memoization. Server software is typically developed by many engineers
and comprises large code bases with many interworking components;
even if applications have a single developer, they rely heavily on
runtimes, libraries, and the operating system, developed by others.
In this environment, modularity and composability of components are
prioritized, with a large fraction of the execution time responsible for
the glue logic and wrappers between the various components. Some
of this glue logic is built automatically, such as the linkage tables
of dynamically linked libraries [11] and the dispatch tables of virtual
function calls and overloaded operators, while others are explicitly put
in by the developers, such as parameter shuffling where arguments to
a function or its return values are rearranged before being passed to
further function calls. These software constructs execute instruction
sequences that frequently repeat with the same register inputs, as they
are not dependent on any input from the requests being served.

Prior works in hardware memoization considered instruction-
level memoization [1] and the memoization of short instruction se-
quences [2], [12], but were primarily concerned with reducing the
pressure on the functional units in computational workloads, rather
than targeting memoization of sequences with control flow instructions.
However, memoizing repeating instruction sequences in servers poses
a different set of challenges compared to traditional memoization or
caching. First, because the repeating sequences are relatively short,
the number of instructions needed to look up and reuse stored values
may exceed the original sequence being memoized, suggesting the
need for hardware support. Second, the repeating sequences often
include control flow instructions that span function boundaries, where
a sequence may begin in the middle of one function and end in the
middle of another, necessitating memoization at the instruction level.
Performing memoization in hardware lends itself well to such cases,
as it enables the hardware to cost-effectively monitor the dynamic
instruction stream to identify and leverage the opportunities presented
by these instruction sequences.

III. HARDWARE MEMOIZATION IN SERVER CPUS

In this work, we study the instruction traces of a collection of server
applications to understand the available memoization opportunities.
For each application, we identify memoization candidates by finding
sequences of eligible consecutive instructions that repeat with identical
register input values. We classify syscalls, fences, atomics, and instruc-
tions manipulating control registers as ineligible for memoization, as
these instructions have complex side-effects. We treat floating point
instructions as ineligible for memoization because they are infrequent
in server software. Although load instructions can be memoized, for
our simple hardware design, we treat loads as ineligible, leaving mem-
oization of sequences containing loads for future work.

Due to the large size and variety of functionality of server software,
we found that no particular instruction sequence dominates in any
application. Unlike computationally-intensive software, where a small
number of tight loops could represent the vast majority of memoization
opportunities, even the most-frequently repeating instruction sequence
in servers comprises only a tiny fraction of execution. As a result,

instead of trying to determine which instruction sequences are good
memoization candidates, we analyze our traces to identify the most
common instruction sequence patterns that correspond to a significant
fraction of memoization candidates.

Each pattern corresponds to many repeating instruction sequences
in every server application that we studied. However, even when con-
sidering the most common patterns, no pattern stands out as being
dominant and contributing to the bulk of the memoization opportunities.
The patterns also differ significantly from one another, and research is
needed to develop hardware mechanisms that work for a large variety
of patterns. Recognizing the challenges in constructing a generalized
solution, in this preliminary study, we focus only on the most common
instruction sequence pattern that we found, which we refer to as ID-J
sequences, offering a case study of hardware memoization in servers
and motivating further exploration.

ID-J sequences begin with an indirect jump instruction and continue
until the first ineligible instruction. Although indirect jumps appear
in many scenarios in servers, the most common are function returns.
As a result, the most common ID-J instruction sequences start with a
function’s return instruction and continue at that function’s call site,
where the return values are either checked for errors or passed as
arguments to another function (after potentially being shuffled between
registers). ID-J sequences terminate either several instructions after
returning to the call site, or in the body of a subsequently called function.

To memoize ID-J sequences, the hardware should detect the start of a
previously observed sequence and automatically substitute the original
instruction sequence with a replacement sequence that has the same
register outputs and continues execution at the same location where
the original sequence ended. The process of substituting and executing
the replacement sequence must incur a lower cost than the original
sequence, by executing fewer instructions, producing the outputs earlier
to satisfy dependencies, using fewer micro-architectural resources, or a
combination of these benefits. Finally, an important goal for hardware
memoization should be to introduce minimal changes to the complex
out-of-order processor and to avoid introducing additional latency to
the operations on the critical path.

The constraints and needs of memoizing ID-J sequences lend them-
selves well to leveraging a number of existing micro-architectural com-
ponents. Specifically, we envision using the branch predictor, branch
recovery logic, and the memory hierarchy to implement hardware
memoization. By storing the replacement sequences in memory, we
are able to use the existing instruction fetch and cache infrastructure to
bring replacement sequences to the frontend and dispatch them into the
pipeline. Because our target sequences begin with an indirect jump, the
branch predictor is already expected to redirect the program counter to
the destination of the jump, which can be modified to instead redirect the
program counter to the address of the replacement sequence, essentially
“for free” relative to the traditional frontend organization. Injecting the
replacement instruction sequence in this way cleanly integrates with
the micro-architecture of a modern processor and enables speculative
elimination of the original sequence, from fetch to commit.1

Notably, this way of introducing hardware memoization into the
pipeline leaves the timing-critical fetch path unaffected. Only minor
modifications to the semantics of some replacement sequence instruc-
tions are needed to treat the commit of these instructions as correct-path
execution, or to detect mis-speculation when the input register values
do not match the values checked by the replacement sequence. For val-
idation, the replacement sequence reads the same register values as the
original sequence, ensuring that any not-yet-resolved values and bypass
paths are respected when validating the memoization. Moreover, the
most computationally complex mechanism of identifying memoization
candidates and writing replacement sequences into memory can operate

1We use the term speculative to denote fetching a replacement instruction
sequence (in place of the original sequence), where the replacement sequence
may be rolled back due to mis-speculation. This differs from prior work labeled
Reuse through Speculation on Traces, which performs value prediction, but still
always fetches and decodes the original instruction sequences [13].
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Fig. 1. Trace collection infrastructure.

after the retire stage, off of the critical path. Because server applications
execute memoization candidates countless times (sometimes for years
of continuous uptime), the training time for the memoization candidates
is irrelevant, allowing this operation to be done in hardware over many
observations of the candidate sequences, or may even allow future
implementations to run complex training algorithms in firmware or
software.

IV. METHODOLOGY AND EXPERIMENTAL SETUP

Studying memoization on servers requires analyzing very long
traces, which must be collected without perturbing the timing of the
server’s execution as it handles requests. Moreover, studying a realistic
server system requires support for complex functionality (such as the
Linux OS, Docker containers, high-speed NICs, etc.). To maximize
the fidelity of our traces, we use a hardware emulator to faithfully
model the system. We use Chipyard [14] to generate a full-system SoC
with RISC-V cores to run on an FPGA. Our system includes a 3-wide
superscalar out-of-order core with 32 KB 8-way set-associative L1-I
and L1-D caches, and a unified 512 KB 8-way set-associative L2.

To collect instruction traces, we implemented a hardware trace
collector buffer and a PCIe DMA engine. Fig. 1 shows a diagram of our
platform. For every instruction committed by the RISC-V core, a record
is appended to the buffer containing the program counter and register
input values. The trace is compacted in the buffer and transferred over
PCIe to the memory of a host computer, which then stores the data on
disk.

We trace and study a suite of server applications. We use Data
Caching, Media Streaming, and Web Serving from the latest CloudSuite
benchmarks, and 23 serverless functions from the vSwarm benchmark
suite [15].2 For ease of presentation, we aggregate the 23 serverless
functions according to their runtime language: Go, Node.js, or Python.

For each workload, the server runs on a RISC-V core, while a client
emulator runs on a separate high-end machine, which enables one
client machine to significantly load the server under test. The FPGA
and the client machine are connected with a high-speed Ethernet link,
mimicking a production environment where the clients connect to the
server over a network. For each workload, we launch the client and
wait for the server to reach a steady state before starting to capture the
records of committed instructions. We collect 10 billion instructions for
each application, comprising minutes of wall-clock time on the RISC-V
core and ensuring that the trace includes many complete server requests
for all workloads.

V. MEMOIZATION COST AND BENEFIT PROJECTIONS

In this section, we first quantify the opportunity of memoization
in servers by exploring the repetition of unique dynamic instructions,
highlighting the potential benefits of pursuing this direction in future
research. Then, as an initial step in this direction, we focus on just
one of the patterns that make up memoization opportunity and estimate
the performance gains that could be achieved by memoizing the ID-
J sequences. Finally, we perform an analysis of the number of ID-J
sequences that must be tracked to facilitate memoization, which serves
as a first-order cost estimate of the memoization hardware.

2We do not trace the other CloudSuite and vSwarm workloads because they
require Java, which is not well supported on RISC-V.

Fig. 2. Breakdown of dynamic instructions repetition.

To quantify memoization opportunity, we process our workload
traces to identify all unique dynamic instructions (determined by their
program counter and register inputs) that are eligible for memoization,
and count their number of repetitions. Fig. 2 shows the breakdown of the
instructions, where each bar represents an average across multiple ap-
plications written in the same programming language, and the rightmost
bar shows the average across all 26 applications. The combination of the
bottom three sections of each bar (green, blue, and purple) corresponds
to instructions that exactly repeat their execution, having the same
program counter, same register input values, and same register output
value.

We find that, on average, 93% of the instructions are candidates for
hardware memoization, indicating massive opportunity. The bottom
three sections of the bars correspond to instructions that are part of
ID-J sequences (green), other repeating ALU instructions (blue), and
memory loads which load exactly the same value from exactly the
same address on each execution (purple). Remarkably, only 1% of
the dynamic instructions correspond to the first time when repeating
instructions are observed (gray), suggesting that training an effective
memoization predictor requires observing only a small fraction of
instructions. Across our workloads, we find only 4% of non-repeating
instructions (red), characterized by different input register values (or
different values loaded from memory) across executions, making them
ineligible for memoization.

The bottom portion of the bars (green) demonstrates the opportunity
of memoizing just the ID-J sequences using the approach described
in Section III. On average, the repetition of ID-J sequences comprises
10% of the executed instructions. The lowest memoization opportunity
we see is 5.6% in the Geo service of the Hotel Reservation Suite
implemented in Go, while the highest memoization opportunity of
15.6% is in the Authentication workload implemented in Node.js. The
cost of memoization stems from executing the replacement sequence
instead of the original ID-J sequence. This replacement sequence serves
two purposes: (1) validating the current state of the register file against
the recorded register values for ongoing speculation, and (2) storing
the recorded output values of the original sequence to the register file.
We estimate that a typical replacement sequence will comprise 3-5
instructions. Analyzing our traces, we see that the average length of
ID-J sequences in our benchmarks is 7.2 instructions, ranging from a
minimum average of 6 instructions (for the Recommendation Service of
the Hotel Reservation Suite) to a maximum average of 9.1 instructions
(for Media Streaming). This result indicates that executing the replace-
ment sequence is likely less costly than executing the original sequence,
resulting in potential performance benefits. Although ID-J sequences
represent only a small subset of the repeating instructions in our
applications, their significant coverage already suggests that integrating
hardware memoization for just these sequences into future processor
designs could be beneficial. Furthermore, these results strongly support
pursuing memoization opportunities beyond ID-J sequences, as other
instruction sequence patterns may also be amenable to memoization
with incremental changes to the existing micro-architectural structures.

To estimate the hardware cost of storing memoization metadata, we
study the coverage achieved by memoizing ID-J sequences within a
constrained storage budget. We sort all ID-J sequences by their coverage
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Fig. 3. Hardware memoization coverage as a function of memoization table
size when memoizing only the ID-J sequences.

and calculate the total coverage of the top sequences for a range of table
sizes. Fig. 3 illustrates the average ID-J sequence memoization cover-
age, showing the mean and standard deviation across all 26 workloads
and highlighting the most and least sensitive applications (blue and red).
A table with 10,000 entries already accommodates (on average across
all workloads) 87% of the coverage of all repeating ID-J sequences. In
the Recommendation Service of the Hotel Reservation Suite, the 10,000
most-frequently repeating ID-J sequences achieve 97% of the oppor-
tunity, indicating that the same sequences repeat throughout the entire
execution of the application. Conversely, the 10,000 ID-J sequences
that are most-frequently repeating in AES-Node.js cover 73% of the
memoization opportunity, indicating that a fraction of the repeating
ID-J sequences in AES-Node.js are not always hot, and suggesting
that larger storage or better replacement policies are needed to capture
longer-range repetition in this workload.

VI. CONCLUSION

In this work, we analyzed the traces of 26 server applications to
show the prevalence of cross-request similarity in server workloads,
which makes them excellent candidates for instruction-level hardware
memoization. We found that 93% of the dynamically executed instruc-
tions exactly repeat a previous execution, making them candidates
for memoization. Although considerable work remains to develop
mechanisms that leverage these observations, we identified sequences
of repeating instructions starting with indirect jumps as a promising
focus for a preliminary study. Our analysis showed that over 8.7%
of instructions could be memoized using modest (on the order of
10,000 entry) hardware sequence tracking structures. We believe that
our results make a strong case for further exploration of hardware
memoization in future server processor designs.
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