

1 Specific hydroxylation and glucuronidation of 2'-hydroxyflavanone by

2 *Streptomyces coeruleorubidus* NRRL B-2569

3

4

5 Jie Ren, Kyle Jackson, Caleb Don Barton, Yu Huang, Jixun Zhan*

6

7

8

9

10 *Department of Biological Engineering, Utah State University, 4105 Old Main Hill,*

11 *Logan, UT 84322-4105, USA*

12

13 Correspondence: jixun.zhan@usu.edu

14

15

16 Short title: Hydroxylation and glycosylation of 2'-hydroxyflavanone

17

18

19

20

21

22

23

24

25

26

27

28 **ABSTRACT**

29 Flavonoids constitute a class of natural compounds with varied bioactivities.

30 Nevertheless, the potential health benefits of flavonoids for humans are often

31 compromised by their low water solubility and limited bioavailability. In this study,

32 four derivatives, namely 2',5'-dihydroxyflavanone (**2**), 5'-dihydroxyflavone-2'-*O*- β -D-

33 glucuronide (**3**), and two isomers of hydroxyflavanone-2'-*O*- β -D-glucuronide (**4** and **5**),

34 were biosynthesized from substrate 2'-hydroxyflavanone (**1**) through the specific

35 hydroxylation and glucuronidation using *Streptomyces coeruleorubidus* NRRL B-2569.

36 Product **2** was identified as a known compound while **3-5** were structurally

37 characterized as new structures through extensive 1D and 2D NMR analysis. The water

38 solubility of obtained products **3-5** were enhanced by 36 to 340 times compared to the

39 substrate. Moreover, the antioxidant assay revealed that **3** exhibited improved 2,2-

40 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity compared to the

41 substrate, decreasing the logIC₅₀ from 10.77 ± 0.05 μ M to 9.55 ± 0.05 μ M. Compound

42 **3** also displayed significantly higher anticancer activity than the substrate 2'-

43 hydroxyflavanone against Glioblastoma 33 cancer stem cells (GSC33), decreasing the

44 IC₅₀ from 25.05 μ M to 7.07 μ M. Thus, *S. coeruleorubidus* NRRL B-2569 stands out as

45 an effective tool for modifying flavonoids, thereby enhancing their water solubility and

46 bioactivities.

47 **Key words:** 2'-Hydroxyflavanone; Antioxidant; Anticancer; Hydroxylation;

48 Glucuronidation

50 Dietary flavonoids showcase a wide array of biological activities, offering diverse
51 benefits to human health, including anti-inflammatory, anticancer, anti-obesity,
52 antioxidant, and antimicrobial effects (1). Nonetheless, the low water solubility of
53 flavonoids impedes their potential health benefits for humanity (2). In recent years,
54 researchers have been dedicating their efforts to exploring effective methods for
55 producing natural product glycosides for a variety of reasons (3, 4). Chief among these
56 reasons is the fact that glycosylation can diversify the chemical pool of natural products,
57 thereby offering numerous potential candidates for new drug development (5). Sugar
58 moieties generally improve water solubility of dietary flavonoids, with some glycosides
59 exhibiting improved bioavailability, stability, and bioactivity or reduced toxicity
60 relative to their aglycones (6, 7).

61 The extraction of flavonoid glycosides from plants is time-consuming and often
62 suffers from low yields, such as the isolation of quercetin-3-rutinoside from the fruits
63 of *Ficus sycomorus* (8). This is not only due to their naturally low abundance but also
64 because the yield is heavily influenced by various factors, including seasonal and
65 vegetation conditions (9-11). Similarly, the organic synthesis of target glycosides
66 presents challenges, as it necessitates the protection and deprotection of reactive groups
67 in substrates, exemplified by the chemical synthesis of quercetin-3-*O*-glucuronide (12).
68 Additionally, the utilization of costly catalysts and the generation of toxic wastes make
69 chemical synthesis an economically inefficient and environmentally unfriendly
70 approach for large-scale production of bioactive glycosides (13, 14).

71 Compared to the aforementioned methods, biotransformation is emerging as an

72 appealing alternative with significant potential to produce bioactive and novel
73 flavonoid derivatives. This process can enhance water solubility through various
74 reactions such as glycosylation and hydroxylation (15). Microbial biotransformation
75 can facilitate the biosynthesis of glycosides through an affordable, straightforward
76 process, conducted under mild conditions (16). *Streptomyces* are renowned for their
77 capacity to produce various bioactive molecules through diverse biosynthetic pathways
78 (17). In this work, we employed 2'-hydroxyflavanone, a natural compound abundant in
79 fruits and vegetables, known for its remarkable anticancer effects (18), as the substrate
80 to biosynthesize novel glycosides through microbial biotransformation using
81 *Streptomyces coeruleorubidus* NRRL B-2569. Four derivatives, namely 2',5'-
82 dihydroxyflavanone (**2**), 5'-dihydroxyflavone-2'-*O*- β -D-glucuronide (**3**), and two
83 isomers of hydroxyflavanone-2'-*O*- β -D-glucuronide (**4** and **5**) were synthesized, all
84 exhibiting varying degrees of enhanced water solubility. Additionally, compound **3**
85 demonstrated stronger radical scavenging and anticancer activities compared to the
86 substrate. The biotransformation products could serve as promising candidates for
87 further investigations as potentially active compounds, offering valuable insights into
88 structure-bioactivity relationships. *S. coeruleorubidus* NRRL B-2569 could be used as
89 an effective biocatalyst to structurally modify other flavonoids through specific
90 hydroxylation and glucuronidation.

91

92

MATERIALS AND METHODS

93

General experimental procedures The analysis and purification of the

94 products were performed using an Agilent 1200 HPLC instrument equipped with an
95 Agilent Eclipse Plus-C₁₈ column (5 μ m, 250 mm \times 4.6 mm). The samples were eluted
96 with a methanol-water gradient (35:65 to 95:5, v/v) over 30 minutes, containing 0.1%
97 formic acid, at a flow rate of 1 mL/min. Molecular weights of the compounds were
98 confirmed using an Agilent 6130 single quadrupole LC-MS.

99 NMR spectra were collected by dissolving the purified compounds in deuterated
100 dimethyl sulfoxide (DMSO-*d*₆) and analyzing them with a Bruker Avance III HD
101 Ascend-500 NMR instrument (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) at
102 the Department of Chemistry and Biochemistry, Utah State University. Chemical shift
103 (δ) values are reported in parts per million (ppm), and coupling constants (*J* values) are
104 reported in hertz (Hz).

105 Antioxidant assays were conducted using a SpectraMax® 190 microplate reader
106 (Molecular Devices, USA). Ascorbic acid (vitamin C) and 2'-hydroxyflavanone were
107 purchased from Sigma-Aldrich (USA) and Tokyo Chemical Industry (USA),
108 respectively. Compounds were purified by chromatography using Sephadex™ LH-20
109 (Cytiva, USA) and normal-phase silica gel (40-60 μ m, VWR® Agela Technologies,
110 USA). All solvents were obtained from Fisher Scientific, and Milli-Q water was used
111 throughout the study.

112 *S. coeruleorubidus* NRRL B-2569 was provided by the United States Department
113 of Agriculture-ARS Culture Collection (NRRL) and cultured in Yeast-Malt (YM)
114 medium, consisting of yeast extract (4 g/L), malt extract (10 g/L), and glucose (4 g/L)
115 at 28 °C. Glucose and yeast extract were obtained from Thermo Fisher Scientific, while

116 malt extract was acquired from Gibco™. For mammalian cell culture maintenance,
117 Dulbecco's Modified Eagle Medium (DMEM), Ham's F12 media, fetal bovine serum
118 (FBS), trypsin-EDTA (0.25%) (all from Gibco, MA, USA), and Accutase Cell
119 Dissociation Reagent (Millipore, MA, USA) were used. Tetrazolium MTT and 96-well
120 plates were purchased from Fisher Scientific. Absorbance in the cell viability assay was
121 measured using a BioTek Synergy HTX Multimode Reader. Additionally, 99.7%
122 DMSO was obtained from Sigma-Aldrich.

123 A Waters Acquity UPLC system equipped with an I-Class Binary Solvent Manager
124 and an H-Class Flow Through Needle autosampler hyphenated to a Waters Xevo-G2-
125 XS Quadrupole Time-of-Flight (QToF) mass spectrometer was used to acquire high
126 resolution mass spectra (HRMS). The UPLC was performed using a Waters Acquity
127 Premier HSS T3 C18 column (1.8 μ M, 2.1 mm \times 150 mm). The samples were eluted
128 with acetonitrile-water (2:98 to 95:5, v/v, over 12 minutes, containing 0.1% formic acid)
129 at a flow rate of 0.4 mL/min. The mass analysis was carried out in ESI negative mode
130 with the capillary voltage (1.0 kV), cone voltage (50 V), source temperature (100 °C),
131 desolvation gas temperature (450 °C), cone gas flow rate (50 L/h), and desolvation gas
132 flow rate (750 L/h) as the major parameters. The collision cell energy was set to 6V for
133 acquisition of MS1 spectra, and to 30 V for acquisition of MS2 spectra using Argon as
134 the collision gas.

135 **Cultivation of *S. coeruleorubidus* NRRL B-2569 for the biotransformation of**
136 **2'-hydroxyflavanone and its time-course analysis** To assess the
137 biotransformation capability of *S. coeruleorubidus* NRRL B-2569 for 2'-

138 hydroxyflavanone, the strain was cultured in 50 mL of YM medium on a rotary shaker
139 at 250 rpm and 28 °C for 3 days. Afterward, 4 mg of 2'-hydroxyflavanone, dissolved in
140 100 µL of DMSO, was introduced into the culture medium, which was then incubated
141 under the same conditions for an additional 3 days. Subsequently, 1 mL samples of the
142 cultures were collected and centrifuged at 15,000 ×g for 10 minutes. The supernatant
143 was analyzed using HPLC at 300 nm. For time-course analysis, the procedure was
144 repeated with 1 mL of cultivation broth sampled every 24 hours for 6 days post-
145 substrate addition, with 100 µL of the supernatant injected into the HPLC after
146 centrifugation.

147 **Product extraction and isolation** To isolate the biotransformation products of
148 2'-hydroxyflavanone for structural elucidation, *S. coeruleorubidus* NRRL B-2569 was
149 cultured in a 2-L Erlenmeyer flask containing 500 mL of YM medium. A total of 50 mg
150 of 2'-hydroxyflavanone was utilized for the biotransformation process. Following 6
151 days of cultivation at 250 rpm and 28 °C, the *S. coeruleorubidus* NRRL B-2569 culture
152 was centrifuged at 4,000 ×g for 20 minutes to collect the supernatant. The harvested
153 cultivation broth was then evaporated under reduced pressure at 38 °C, and the resulting
154 residue was dissolved in 15 mL of 50% methanol-water (v/v). Subsequently, the
155 dissolved residue was mixed with 20 g of silica gel. After drying, the crude sample was
156 subjected to normal phase silica gel column chromatography, using a chloroform-
157 methanol (5:2, v/v) elution to eliminate most of the endogenous metabolites of *S.*
158 *coeruleorubidus* NRRL B-2569. The samples were then filtered and subsequently
159 passed through a Sephadex LH-20 column chromatography, eluting with methanol-

160 water (1:1, v/v). Products-enriched fractions were pooled and subjected to further
161 separation via reverse-phase HPLC, employing a methanol-water gradient elution
162 system (35-95%, 0-15 min) containing 0.1% formic acid (v/v) to isolate the target
163 products. Subsequently, further purification was conducted using a gradient elution
164 method (32-32%, 0-20 min; 35-95%, 20-30 min), resulting in the isolation of product
165 **3** (2.6 mg). Similarly, reverse-phase HPLC employing an isocratic elution of methanol-
166 water (50-50%, 0-30 min) was utilized to isolate products **4** (2.9 mg) and **5** (2.4 mg).
167 To isolate compound **2** (1.5 mg), the cultivation process was terminated on day 3, and
168 a 150 mL of cultivation broth sample was subjected to the same isolation procedures as
169 mentioned earlier, excluding the HPLC purification steps. All purified products were
170 dissolved in DMSO-*d*₆ and subjected to NMR analysis, and their chemical structures
171 were characterized based on the NMR spectra. The co-injection sample of products **4**
172 and **5** were eluted with a methanol-water gradient (35:65 to 95:5, v/v) over 30 minutes,
173 containing 0.1% formic acid, at a flow rate of 1 mL/min.

174 **Determination of the water-solubility of products** The purified products were
175 evaluated for water solubility using a previously described method (19). Purified 2'-
176 hydroxyflavanone biotransformation products were used to create standard curves for
177 determining their water solubility. Briefly, the purified compounds and the substrate
178 were each mixed with 600 μ L of distilled water in Eppendorf tubes at 25 °C. Ultrasonic
179 agitation was applied to aid dissolution. After 60 minutes of sonication, the samples
180 were centrifuged at 13,000 \times g for 10 minutes. The supernatant from each sample was
181 analyzed using reverse-phase HPLC to determine compound concentrations, with a

182 methanol-water gradient elution system (35-95%, 0-15 min) containing 0.1% formic
183 acid (v/v). The substrate, 2'-hydroxyflavanone, was analyzed using a different elution
184 gradient (50-95%, 0-15 min). Each test was performed in triplicate, and the water
185 solubility of each sample is reported as the mean \pm standard deviation (SD).

186 **Antioxidant assay** Antioxidant assays were conducted following the
187 methodology outlined in our previous work (19). Due to the substrate's sub-detectable
188 DPPH radical scavenging activity, we adjusted the treatment concentration range to
189 8,000-500 μ M for the substrate and compounds **3**, **4**, and **5**. Conversely, the
190 concentration range for vitamin C was set from 1,000-62.5 μ M to remain within the
191 scavenging assay's dynamic range. To account for the significant intra-treatment
192 variance in IC_{50} values caused by the substrate's low activity, the data were
193 logarithmically transformed for more accurate comparisons between the substrate and
194 its derivatives. Log IC_{50} values were calculated in triplicate where applicable and
195 analyzed using one-way ANOVA. Pairwise comparisons among treatments were
196 conducted with the Tukey-Kramer adjustment to control the family-wise error rate.

197 **Procedures for cell culture maintenance** Glioblastoma 33 cells were cultured
198 as spheroids in T25 flasks using serum-free media composed of 70% DMEM and 30%
199 Ham's F12. The media was supplemented with B-27 (1:50), epidermal growth factor
200 (EGF) (1:5000), and fibroblast growth factor (bFGF) (1:5000). Spheroids were
201 dissociated and passaged with Accutase Cell Dissociation Reagent and were passaged
202 every 5-6 days to maintain their size at less than 1 mm. The media was refreshed every
203 48 hours.

204 Seeded cell monolayers were cultured in media containing 90% Ham's F12 and 10%
205 fetal bovine serum. The mouse fibroblast cell line L929 (ATCC, VA, US) was
206 maintained in media with 90% DMEM and 10% fetal bovine serum. Cells were
207 passaged using trypsin-EDTA (0.25%) and cultured at 37 °C with 5% CO₂ until
208 reaching 80% confluence. L929 cells were passaged at a seeding density of 1.5 × 10⁴
209 cells/cm².

210 **Cell viability assay** The effect of each compound on cell viability was assessed
211 using the MTT Assay (20). Glioblastoma 33 cancer stem cells (GSC33) and L929
212 fibroblast cells (L929) were seeded at a density of 10⁴ cells per well in clear, flat-
213 bottomed 96-well plates. Cells were allowed to adhere overnight for 12 hours at 37 °C
214 in a CO₂ incubator. After attachment, 200 µL of each treatment was added to the wells,
215 with each treatment group consisting of three wells. The compounds were initially
216 dissolved in DMSO and then diluted in cell culture media, resulting in final
217 concentrations ranging from 0 to 100 µM, with 1% DMSO as the delivery vehicle. Cells
218 were incubated with the treatments for 24 hours at 37 °C in a CO₂-buffered cell culture
219 incubator. Following incubation, the media was replaced with fresh media without
220 treatment. Next, 10 µL of MTT solution (5 mg/mL in PBS) was added to each well and
221 incubated for 4 hours at 37 °C. The media was then aspirated, leaving the formazan
222 crystals. To dissolve the crystals, 50 µL of DMSO was added to each well and incubated
223 for 30 minutes at 37 °C. Absorbance at 540 nm was measured using a
224 spectrophotometer to determine cell viability with the following equation:
225

226
$$Viability\% = \frac{OD540_{sample} - OD540_{blank}}{OD540_{control} - OD540_{blank}} * 100$$

227

228 The control wells, assumed to have 100% viability, contained cells incubated with
229 only 1% DMSO. Blank wells contained only 50 μ L of DMSO. IC₅₀ values were
230 calculated using GraphPad Prism 9 with a nonlinear regression curve fit [inhibitor] vs.
231 normalized response, and the data were plotted using the same software.

232

233 RESULTS

234 **Biotransformation of 2'-hydroxyflavanone by *S. coeruleorubidus* NRRL B-**
235 **2569** In our prior study, *S. coeruleorubidus* NRRL B-2569 was identified as a viable
236 biocatalyst capable of catalyzing the biotransformation of 2'-hydroxyflavone into its
237 glucuronidated derivative (19). We posited that this strain could potentially catalyze the
238 introduction of a glucuronic acid moiety to other bioactive flavonoids, such as 2'-
239 hydroxyflavanone. To test our hypothesis, 2'-hydroxyflavanone underwent incubation
240 with *S. coeruleorubidus* NRRL B-2569. Subsequent HPLC analysis unveiled the
241 biosynthesis of four additional polar metabolites, namely, product **2** (14.8 min), product
242 **3** (10.5 min), product **4** (18.6 min), and product **5** (19.0 min) from the incubation of 2'-
243 hydroxyflavanone (23.3 min) with *S. coeruleorubidus* NRRL B-2569 (Fig. 1A). The
244 UV absorption spectra of products **2-5** closely resembled that of 2'-hydroxyflavanone,
245 indicating that these four polar products are derivatives of the substrate (Figs. 1B-E).
246 Among them, the UV spectra of compounds **4** and **5** exhibit remarkable similarity,
247 implying a high degree of structural resemblance between products **4** and **5**. The ESI-

248 MS spectra of compounds **2-5** (Figs. 1F-I) display corresponding quasimolecular ions
249 [M-H]⁻ at *m/z* 254.9, 431.1, 414.9, and 415.1, respectively, indicating that the molecular
250 weights of these products are 256, 432, 416, and 416. These weights are 16, 192, 176,
251 and 176 mass units greater than that of the substrate (*m/z* 240), suggesting the potential
252 introduction of hydroxyl and/or glucuronic acid moieties to the substrate, resulting in
253 the formation of these four products.

254 **Structural characterization of the biotransformed products of 2'-**
255 **hydroxyflavanone by *S. coeruleorubidus* NRRL B-2569** Product **2** was isolated as
256 a brown, amorphous powder. Its molecular weight of 256 corresponds to a molecular
257 formula of C₁₅H₁₂O₄. Compound **2** harbors a hydroxyl group at B ring, which was
258 proved by the observation of an ABX spin system determined in the tri-substituted
259 aromatic ring B [$\delta_{\text{H}}/\delta_{\text{C}}$ 6.60 (dd, *J* = 8.6, 3.0 Hz)/115.7 (CH-4'), 6.69 (d, *J* = 8.6
260 Hz)/116.2 (CH-3'), and 6.89 (d, *J* = 2.9 Hz)/113.1 (CH-6')]. The HMBC spectrum
261 revealed a correlation between H-2 at δ_{H} 5.70 and C-6' at δ_{C} 113.1, confirming that the
262 hydroxyl group is attached at C-5'. This was further supported by the ¹³C NMR, which
263 showed a downfield carbon signal at 149.9 (C-5'). Based on the NMR analysis (Figs.
264 S1-S5), compound **2** was characterized as 2',5'-dihydroxyflavanone by comparing with
265 the NMR data from reported literature (21).

266 Product **3** was isolated as an orange, amorphous powder. The molecular formula of
267 product **3** was determined to be C₂₁H₂₀O₁₀, based on the [M-H]⁻ peak at *m/z* 431.0984
268 (calculated: 431.0984 for C₂₁H₁₉O₁₀) in the high-resolution electrospray ionization
269 mass spectrometry (HRESIMS) spectrum (Fig. S6), indicating the possible addition of

270 a hydroxyl group and a sugar moiety to the substrate. The NMR analysis (Figs. S7-S11)
271 was performed to further elucidate the chemical structure of **3**. Compound **3** is similar
272 to **2** except that an additional sugar moiety was observed. In addition to the 15 signals
273 belonging to the substrate, six extra carbon signals at δ_{C} 170.1, 102.4, 75.4, 75.4, 73.0,
274 and 71.3 were found in the spectra (Fig. S8), together with the additional proton signals
275 at δ_{H} 3.20-4.76 in the ^1H NMR spectrum (Fig. S7), suggesting that a sugar moiety has
276 been added to 2',5'-dihydroxyflavanone (product **2**). Unlike the common sugar glucose,
277 this sugar moiety has a quaternary carbon signal at δ_{C} 170.1, indicating the presence of
278 a carboxyl group in the sugar moiety. Therefore, both the ^1H and ^{13}C signals of this
279 sugar moiety are consistent with a glucuronic acid moiety (3). Moreover, the ^1H NMR
280 spectrum showed a doublet at δ_{H} 4.76, indicative of an anomeric proton with a coupling
281 constant of 7.6 Hz, and the chemical shift along with the *J*-coupling value were
282 consistent with that of β -D-glucuronic acid. The correlation of the anomeric H-1" signal
283 at δ_{H} 4.76 to C-2' signal at δ_{C} 146.2 in the HMBC spectrum (Fig. S11) revealed that the
284 glucuronic acid moiety was located at C-2'. Based on the above spectral evidence,
285 compound **3** was identified to be a new compound, namely, 5'-dihydroxyflavone-2'-*O*-
286 β -D-glucuronide and all signals were assigned accordingly (Fig. 2A and Table 1).

287 Product **4** was isolated as a white, amorphous powder. It has a molecular formula
288 of $\text{C}_{21}\text{H}_{20}\text{O}_9$, as indicated by the $[\text{M}-\text{H}]^-$ peak at *m/z* 415.1041 (calculated: 415.1035
289 for $\text{C}_{21}\text{H}_{19}\text{O}_9$) in the HRESIMS spectrum (Fig. S12), indicating that it also contains a
290 glucuronic acid moiety. The NMR analysis (Figs. S13-S17) was performed to further
291 elucidate the chemical structure of **4**. The NMR spectra of compounds **4** and **3** are very

292 similar, except that two sets of ABCD coupled methines were observed in the di-
293 substituted aromatic A and B rings by analyzing ^1H - ^1H COSY spectrum (Fig. S15).
294 Moreover, the glucuronic acid moiety was determined to be attached at C-2' by
295 observing the correlation between H-1" at δ_{H} 4.98 and C-2' at δ_{C} 153.4. Based on the
296 above spectral evidence, the compound was identified to be a new compound, namely
297 hydroxyflavanone-2'-*O*- β -D-glucuronide (Fig. 2A and Table 1).

298 Product **5** was also isolated as a white, amorphous powder. The $[\text{M}-\text{H}]^-$ peak at m/z
299 415.1042 (calculated: 415.1035 for $\text{C}_{21}\text{H}_{19}\text{O}_9$) in the HRESIMS spectrum (Fig .4D and
300 Fig. S18) confirms that product **5** (yellow, amorphous powder) also has the same
301 formula of $\text{C}_{21}\text{H}_{20}\text{O}_9$ as product **4** (Fig .4C and Fig. S12), indicating that they are two
302 isomers. The chemical shift values (Figs. S13, 14, 19, and 20) of carbons and protons
303 in products **4** and **5** align closely, with the exception of a few signals near the bond
304 between C-2 and C-1' and signals on the glucuronic acid moiety: [δ_{C} 74.0 for **4**/73.2 for
305 **5** (C-2), 43.2 for **4**/42.8 for **5** (C-3), 128.3 for **4**/127.9 for **5** (C-1'), 153.4 for **4**/153.8 for
306 **5** (C-2'), 114.8 for **4**/115.2 for **5** (C-3'), 129.4 for **4**/129.7 for **5** (C-4'), 126.6 for **4**/127.3
307 for **5** (C-5'), and δ_{H} 3.09 and 2.74 for **4**/3.18 and 2.81 for **5** (H-3)]. Therefore, the
308 different configurations (*R* and *S*) at the bond between C-2 and C-1' result in the
309 observed variations in chemical shifts for these signals. NMR data of **5** (Figs. S19-S23)
310 were assigned accordingly (Fig. 2A and Table 1). To further confirm that the isolated
311 products **4** and **5** are distinct compounds, we conducted a co-injection analysis of both
312 products on HPLC. The methanol-water gradient (35:65 to 95:5, v/v, 0-35 min) method
313 instead of the isocratic elution of methanol-water (50-50%, v/v, 0-30 min) was used to

314 obtain better HPLC profiles of products **4** and **5**. HPLC analysis unequivocally revealed
315 that product **4** elutes at 16.9 minutes, while product **5** elutes at 17.5 minutes, confirming
316 their differentiation as distinct biotransformed products with unique retention times
317 (Fig. 4A). Notably, both products exhibited nearly identical UV absorption spectra (Fig.
318 4B).

319 **Proposed biosynthetic pathways for biotransformed products** Based on the
320 chemical structures of these isolated products, we proposed potential biosynthetic
321 pathways for products **2-5**, which were biotransformed from 2'-hydroxyflavanone by *S.*
322 *coeruleorubidus* NRRL B-2569 (Fig. 2B). A dedicated hydroxylase or monooxygenase
323 from *S. coeruleorubidus* NRRL B-2569 can catalyze the hydroxylation of the substrate
324 2'-hydroxyflavanone to produce 2',5'-dihydroxyflavanone (**2**). This hydroxylation is
325 regio-specific and only occurs at C-5', indicating that the corresponding enzyme is
326 highly selective. In the meantime, the substrate 2'-hydroxyflavanone can undergo direct
327 glycosylation to form hydroxyflavanone-2'-*O*- β -D-glucuronide (**4** and/or **5**) facilitated
328 by a dedicated glucuronyltransferase from *S. coeruleorubidus* NRRL B-2569.
329 Regarding the biosynthesis of 5'-dihydroxyflavone-2'-*O*- β -D-glucuronide (**2**), two
330 potential pathways exist: either the hydroxylase of this strain utilizes
331 hydroxyflavanone-2'-*O*- β -D-glucuronide (**4** and/or **5**) as a substrate for hydroxylation;
332 or the intermediate **2** needs to be synthesized first and followed by the action of
333 glucuronyltransferase for the final production of **3**. Similarly, the glucuronyltransferase
334 is also regio-selective and only glycosylate the flavonoid at 2'-OH.

335 **Time-course analysis of the bioconversion of 2'-hydroxyflavanone into**

336 **products by *S. coeruleorubidus* NRRL B-2569** Despite the successful isolation of
337 all four products, we were surprised to observe that the color of compound **2** dissolved
338 in DMSO-*d*₆ turned pink during the recovery process using Sephadex LH-20.
339 Compound **2** is a hydroxylated product, unlike the other three products, which contain
340 a sugar moiety. Therefore, to test the hypothesis that compound **2** is an intermediate,
341 we conducted a time-course study on the bioconversion process of 2'-hydroxyflavanone
342 by *S. coeruleorubidus* NRRL B-2569 over 6 days. As depicted in Fig. 2C, this strain
343 initiated the biotransformation of 2'-hydroxyflavanone on the second day, achieving
344 near-complete conversion of the substrate into products after 5 days of cultivation. This
345 highlights the efficiency of *S. coeruleorubidus* NRRL B-2569 in catalyzing the
346 biotransformation of 2'-hydroxyflavanone. Regarding all the biotransformation
347 products, the content of each product varied daily. Products **4** and **5** steadily increased
348 from day 2 to day 4 and remained at a stable production level from day 4 to day 6.
349 Compound **3** was detected in the HPLC trace on day 3 and showed an increasing trend
350 through day 6. Instead, compound **2** initially increased from day 2 to day 3, followed
351 by a decrease from day 3 to day 4, and completely disappeared after day 5. This pattern
352 underscores the likelihood that compound **2** plays a role as an intermediate in the
353 biosynthesis of compound **3**.

354 **Water solubility of 2'-hydroxyflavanone and its biotransformed products**

355 Water solubility plays a crucial role in enhancing the beneficial effects of bioactive
356 compounds in the human body. Limited water solubility hinders the utility of numerous
357 natural products, including flavonoids (22). Thus, we determined the water solubility

358 of the three products with higher polarity using HPLC (The water solubility of substrate
359 **1** and product **2** were determined in previous study) (23). The water solubility of
360 compounds **3-5** were computed in triplicate (n = 3). The resulting pairwise comparison
361 analysis demonstrated that glucuronidation can significantly improve the water
362 solubility of natural product, increasing the water solubility of 2'-hydroxyflavanone
363 (substrate **1**) from $11.11 \pm 0.45 \mu\text{M}$ to $3.73 \pm 0.05 \text{ g/L}$ (product **3**), $436.52 \pm 3.16 \text{ mg/L}$
364 (product **4**), and $394.31 \pm 4.02 \text{ mg/L}$ (product **5**), respectively ($p < 0.001$) (Fig. 3A).
365 Moreover, the two-tailed *t* test analysis demonstrated that the water solubility between
366 products **4** and **5** are significantly different (Fig. 3B), indicating that different spatial
367 arrangement of atoms (such as *R/S* isomers in this study) may also show differences in
368 solubility due to their different interactions with water molecules. While isomers share
369 the same chemical structure, they often exhibit significant differences in pharmacology
370 and pharmacokinetics, particularly regarding solubility (24-26). These results
371 suggested that this microbial glycosylation process can convert 2'-hydroxyflavanone
372 into more water-soluble products. The identified glycosylating strain in this study could
373 serve as a valuable tool for glycosylating other bioactive flavonoids, potentially
374 yielding new derivatives with enhanced water solubility.

375 **Antioxidant activity of biotransformed products of 2'-hydroxyflavanone**
376 Recently, we demonstrated that hydroxylated and/or glycosylated 2'-hydroxyflavanone
377 can markedly enhance the radical scavenging activity of the non-scavenging substrate
378 2'-hydroxyflavone (23). These findings motivated us to investigate the scavenging
379 abilities of the 2'-hydroxyflavanone glycosides obtained in this study. Antioxidant

assays were performed on 2'-hydroxyflavanone, ascorbic acid, together with **3**, **4**, and **5**, as the antioxidant activity of **2** was determined in the previous study (23). The results were analyzed by fitting the data with one-way ANOVA, and the $\log IC_{50}$ value for each compound was computed in triplicate ($n=3$). Furthermore, 2'-hydroxyflavanone exhibited relatively low DPPH radical scavenging activity, leading to a weak correlation and notable variability among the IC_{50} replicate measurements. To compare 2'-hydroxyflavanone with its glycosidic derivatives, the data were logarithmically transformed. Consistent with findings from our previous research, compounds **4** and **5** showed no detectable radical scavenging activity, making it impossible to determine $\log IC_{50}$ values for these two compounds. The loss of scavenging activity is likely attributed to the removal of the free hydroxyl group through *O*-glycosylation. In contrast, compound **3** demonstrated significantly enhanced radical scavenging activity compared to the substrate, reducing the $\log IC_{50}$ value from $10.77 \pm 0.05 \mu\text{M}$ to $9.55 \pm 0.05 \mu\text{M}$ (Fig. 3B).

Anticancer activity of biotransformed products of 2'-hydroxyflavanone
Based on our prior research, glycosylated 2'-hydroxyflavanone demonstrates enhanced anticancer activity (23). This finding prompted us to investigate the anticancer activities of the novel products obtained in this study. Anticancer activity assays were performed on GSC 33 cells, and the data were analyzed using one-way ANOVA to compare the unmodified substrate with its glycosides (Figs. 3C and 3D). Pairwise comparison analysis indicated that compound **3** possesses significantly enhanced anticancer activity, reducing the mean IC_{50} from $25.05 \mu\text{M}$ to $7.07 \mu\text{M}$ ($p < 0.05$). Conversely, compounds

402 4 and 5 either showed reduced or comparable activity to the substrate. Due to the
403 increased impact of compound 3 on the cell viability of GSC33, we further examined
404 its selectivity effects on a normal cell line. The L929 mouse fibroblast cell line is
405 commonly used in cytotoxicity studies and serves as a valuable comparison to GSC33.
406 Compound 3 exhibited its greatest effect at a concentration of 50 μ M, with minimal
407 impact on cell viability at higher concentrations. Interestingly, the viability of the L929
408 cell line at this concentration was higher compared to GSC33. Specifically, the mean
409 viability of the L929 cell line was 57.8%, whereas it was 30.2% for GSC33 (Fig. 3E).

410

DISCUSSION

412 Biotransformation proves effective in structurally modifying bioactive natural
413 products to enhance their physicochemical properties and biological activities.
414 Alongside the structurally diverse biotransformed products, there is potential to
415 generate isomeric compounds as well. In this study, following six days of incubation of
416 2'-hydroxyflavanone with *S. coeruleorubidus* NRRL B-2569, we identified two
417 biotransformed products with nearly identical retention times on HPLC (compound 4
418 at 18.6 min and compound 5 at 19 min). However, through comprehensive 1D and 2D
419 NMR analysis (Table 1), we determined that these products are actually two isomeric
420 compounds. Both UV and ESI-MS spectra further confirmed the high structural
421 similarity of compounds 4 and 5. We hypothesized that this is due to the unspecified R
422 or S stereochemistry of 2'-hydroxyflavanone (CAS number: 17348-76-4) purchased
423 from Tokyo Chemical Industry. Despite the similar polarity of these two products, we

424 successfully isolated them using only the HPLC isocratic elution method, which offers
425 a viable approach for isolating similar compounds following biotransformation in
426 future studies. However, both antioxidant and anticancer bioactivities have been shown
427 to be either similar to or decreased compared to the substrate 2'-hydroxyflavanone.
428 Therefore, we believe it is unnecessary to further confirm the absolute structure of
429 compounds **4** and **5** obtained in this study.

430 Impurities are often inevitable during product isolation, particularly when isolating
431 isomers. In this study, the singlet at a chemical shift of approximately 4 ppm in the ¹H
432 NMR spectrum (Fig. S19) of product **5** correlates with a carbon signal at around 56
433 ppm in the HSQC spectrum (Fig. S22). However, both signals correspond to impurities.
434 A zoomed-in HMBC analysis reveals no correlation between the impurity proton at 4
435 ppm and any of the carbons associated with product **5** (Fig. S23). This impurity peak
436 was also observed in product **3**, indicating that these additional signals are indeed due
437 to impurities. We also obtained the MS2 spectra (Figs. S12 and S18) for both products
438 **4** and **5**. The butterfly comparison plot of the MS2 spectra (Fig. S24) shows that they
439 are indistinguishable in the MS2 space. Therefore, both the MS1 and MS2 high-
440 resolution mass spectra suggest that products **4** and **5** are isomers. The chemical
441 structure of biotransformed product **3** closely resembles that of 2'-dihydroxyflavanone-
442 5'-*O*-4"-*O*-methyl- β -D-glucoside from a previous study (23), both being hydroxylated
443 and glycosylated versions of the substrate 2'-hydroxyflavanone. However, product **3**
444 exhibited enhanced anticancer activity compared to 2'-hydroxyflavanone against
445 Glioblastoma 33 cancer stem cells, whereas 2'-dihydroxyflavanone-5'-*O*-4"-*O*-methyl-

446 β -D-glucoside from the previous study showed reduced anticancer activity. We
447 hypothesize that attaching the sugar moiety to the 2'-OH position of the substrate and/or
448 using glucuronic acid moiety instead of the 4"-O- β -D-methyl-glucose moiety may
449 enhance the drug's interaction with its cellular receptor. This modification likely
450 promotes a more favorable alignment between the modified 2'-hydroxyflavanone
451 derivative and the active site of the target receptor or enzyme, thereby increasing the
452 drug's binding capacity and inhibitory activity. Further supporting this hypothesis is the
453 widely recognized phenomenon known as the Warburg effect, which suggests that
454 cancer cells have an increased number of glucose transporters on their surface due to
455 their elevated rate of glycolysis. Therefore, glycosylation of natural products presents
456 a promising strategy for targeting cancer-specific cells in potential therapies. This
457 approach enhances the selectivity of cytotoxic compounds for cancer cells, which, due
458 to their higher expression of glucose transport proteins, are more likely to absorb the
459 glycosylated compounds. In contrast, normal cells, with fewer glucose transport
460 proteins, are less likely to take up these compounds. Regarding antioxidant bioactivity,
461 this study reaffirms that glycosylation typically reduces the antioxidant activity of
462 flavonoids but suggests that hydroxylation may enhance activity by introducing
463 additional phenolic groups. Further investigation is needed to explore the detailed
464 mechanisms of action.

465 In conclusion, diverse 2'-hydroxyflavanone derivatives were biosynthesized by *S.*
466 *coeruleorubidus* NRRL B-2569 with enhanced water solubility or biological activities.
467 All products have enhanced water solubility, and **3** possess stronger antioxidant activity

468 and improved anticancer activity than the substrate. **3** showed a selectivity towards
469 cancer cells. This study introduces an environmentally-friendly bioprocess as an
470 effective method for discovering medically relevant compounds (novel flavonoid
471 derivatives). The various derivatives of 2'-hydroxyflavanone produced could be utilized
472 for investigating structure-bioactivity relationships in both *in vitro* and *in vivo* research,
473 with potential applications in dietary supplement and pharmaceutical industries.

474

475 **ACKNOWLEDGEMENTS**

476 We thank Hassan Sher for his assistance with the co-injection analysis of the two
477 diastereoisomers on HPLC. This work was supported by the National Science
478 Foundation Award CBET-2044558. The Bruker Avance III HD Ascend-500 NMR
479 instrument utilized for structure elucidation in this research was funded by the National
480 Science Foundation Award CHE-1429195.

481

482

483 **References**

- 484 1. **Fidan, O., Ren, J., and Zhan, J.:** Engineered production of bioactive natural
485 products from medicinal plants, *World J. Tradit. Chin. Med.*, **8**, 59–76 (2022).
- 486 2. **Zhao, J., Yang, J., and Xie, Y.:** Improvement strategies for the oral
487 bioavailability of poorly water-soluble flavonoids: An overview, *Int. J. Pharm.*,
488 **570**, 118642 (2019).
- 489 3. **Ren, J., Barton, C. D., Sorenson, K. E., and Zhan, J.:** Identification of a novel
490 glucuronyltransferase from *Streptomyces chromofuscus* ATCC 49982 for
491 natural product glucuronidation, *Appl. Microbiol. Biotechnol.*, **106**, 1165–1183
492 (2022).
- 493 4. **Ren, J., Tang, W., Barton, C. D., Price, O. M., Mortensen, M. W., Phillips,**

494 **A., Wald, B., Hulme, S. E., Stanley, L. P., and Hevel, J.:** A highly versatile
495 fungal glucosyltransferase for specific production of quercetin-7- O - β -D-
496 glucoside and quercetin-3- O - β -D-glucoside in different hosts, *Appl. Microbiol.*
497 *Biotechnol.*, **106**, 227–245 (2022).

498 5. **Ren, J. and Zhan, J.:** Microbial glycosylation of antitubercular agent
499 chlorflavonin, *J. Biosci. Bioeng.*, **136**, 366–373 (2023).

500 6. **Kren, V. and Martíková, L.:** Glycosides in medicine: “The role of glycosidic
501 residue in biological activity”, *Curr. Med. Chem.*, **8**, 1303–1328 (2001).

502 7. **Ren, J., Barton, C. D., and Zhan, J.:** Engineered production of bioactive
503 polyphenolic O -glycosides, *Biotechnol. Adv.*, **65**, 108146 (2023).

504 8. **Al-Shabibi, M. H. S., Al-Toubi, S. S. J., and Hossain, M. A.:** Isolation,
505 characterization and prediction of biologically active glycoside compounds
506 quercetin-3-rutinoside from the fruits of *Ficus sycomorus*, *Carbohydr. Res.*, **511**,
507 108483 (2022).

508 9. **Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., and
509 Chemat, F.:** Ultrasound-assisted extraction of polyphenols (flavanone
510 glycosides) from orange (*Citrus sinensis* L.) peel, *Food Chem.*, **119**, 851–858
511 (2010).

512 10. **Cid-Ortega, S. and Monroy-Rivera, J. A.:** Extraction of kaempferol and its
513 glycosides using supercritical fluids from plant sources: A review, *Food Technol.*
514 *Biotech.*, **56**, 480–493 (2018).

515 11. **Elnour, A., Mirghani, M., Musa, K., Kabbashi, N., and Alam, M.:**
516 Challenges of extraction techniques of natural antioxidants and their potential
517 application opportunities as anti-cancer agents, *Health Sci. J.*, **12**, 596 (2018).

518 12. **Sun, J., Laval, S., and Yu, B.:** Glycosylation reactions in the synthesis of
519 flavonoid glycosides, *Synthesis*, **46**, 1030–1045 (2014).

520 13. **Christensen, H. M., Oscarson, S., and Jensen, H. H.:** Common side reactions
521 of the glycosyl donor in chemical glycosylation, *Carbohydr. Res.*, **408**, 51–95
522 (2015).

523 14. **Yang, Y. and Yu, B.:** Recent advances in the chemical synthesis of C -glycosides,

524 Chem. Rev., **117**, 12281–12356 (2017).

525 15. **Wang, J. F., Liu, S. S., Song, Z. Q., Xu, T. C., Liu, C. S., Hou, Y. G., Huang,**
526 **R., and Wu, S. H.**: Naturally occurring flavonoids and isoflavonoids and their
527 microbial transformation: A review, Molecules, **25**, 5112 (2020).

528 16. **Sordon, S., Popłoński, J., and Huszcza, E.**: Microbial glycosylation of
529 flavonoids, Pol. J. Microbiol., **65**, 137–151 (2016).

530 17. **Del Carratore, F., Hanko, E. K., Breitling, R., and Takano, E.**:
531 Biotechnological application of *Streptomyces* for the production of clinical
532 drugs and other bioactive molecules, Curr. Opin. Biotechnol., **77**, 102762
533 (2022).

534 18. **Cherian, J., Sehgal, A., Singh, S. K., Vamanu, E., and Singh, M. P.**: 2'-
535 Hydroxyflavanone: A bioactive compound that protects against cancers,
536 Appl. Sci., **12**, 9543 (2022).

537 19. **Ren, J., Barton, C. D., and Zhan, J.**: Creating diverse glycosides of 2'-
538 hydroxyflavone through microbial glycosylation, Fitoterapia, **161**, 105247
539 (2022).

540 20. **Bahuguna, A., Khan, I., Bajpai, V. K., and Kang, S. C.**: MTT assay to
541 evaluate the cytotoxic potential of a drug, Bangladesh J. Pharmacol., **12**,
542 115–118 (2017).

543 21. **Kitamura, E., Otomatsu, T., Maeda, C., Aoki, Y., Ota, C., Misawa, N., and**
544 **Shindo, K.**: Production of hydroxylated flavonoids with cytochrome P450 BM3
545 variant F87V and their antioxidative activities, Biosci. Biotechnol. Biochem.,
546 **77**, 1340–1343 (2013).

547 22. **Recharla, N., Riaz, M., Ko, S., and Park, S.**: Novel technologies to enhance
548 solubility of food-derived bioactive compounds: A review, J. Funct. Foods, **39**,
549 63–73 (2017).

550 23. **Ren, J., Jackson, K., Barton, C. D., Huang, Y., and Zhan, J.**: Enhancing the
551 physicochemical properties and bioactivities of 2'-hydroxyflavanone through
552 fungal biotransformation, J. Biosci. Bioeng., **138**, 144–152 (2024).

553 24. **Nguyen, L. A., He, H., and Pham-Huy, C.**: Chiral drugs: an overview,

554 International Int. J. Biomed. Sci., **2**, 85–100 (2006).

555 25. **Fink, C., Sun, D., Wagner, K., Schneider, M., Bauer, H., Dolgos, H., Mäder,**
556 **K., and Peters, S. A.:** Evaluating the role of solubility in oral absorption of
557 poorly water-soluble drugs using physiologically-based pharmacokinetic
558 modeling, Clin. Pharm. Therap., **107**, 650–661 (2020).

559 26. **Das, S., Lin, H.S., Ho, P. C., and Ng, K.Y.:** The impact of aqueous solubility
560 and dose on the pharmacokinetic profiles of resveratrol, Pharm. Res, **25**,
561 2593–2600 (2008).

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

TABLE 1. ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) data for compounds **2-5**.

Position	Compound 2		Compound 3		Compound 4		Compound 5	
	δ_{C} , type	δ_{H} (J in Hz)	δ_{C} , type	δ_{H} (J in Hz)	δ_{C} , type	δ_{H} (J in Hz)	δ_{C} , type	δ_{H} (J in Hz)
2	74.4, CH	5.70 (1H, dd, J =13.1, 2.7 Hz)	73.8, CH	5.99 (1H, dd, J =13.3, 2.6 Hz)	74.0, CH	6.06 (1H, dd, J =13.4, 2.6 Hz)	73.2, CH	6.05 (1H, dd, J =13.4, 2.8
3	42.6, CH ₂	3.11 (1H, dd, J =16.8, 13.2 Hz)	43.2, CH ₂	3.01 (1H, dd, J =16.8, 13.4 Hz)	43.2, CH ₂	3.09 (1H, dd, J =16.7, 13.5 Hz)	42.8, CH ₂	3.18 (1H, dd, J =16.8, 13.
		2.77 (1H, dd, J =16.8, 2.8 Hz)		2.74 (1H, dd, J =16.8, 2.7 Hz)		2.74 (1H, dd, J =16.8, 2.7 Hz)		2.81 (1H, dd, J =16.8, 2.9
4	192.0, C		191.6, C		191.7, C		191.8, C	
5	126.4, CH	7.79 (1H, dd, J =8.1, 1.7 Hz)	126.3, CH	7.81 (1H, dd, J =8.0, 1.6 Hz)	126.3, CH	7.82 (1H, dd, J =7.8, 1.6 Hz)	126.3, CH	7.82 (1H, dd, J =7.8, 1.5
6	121.4, CH	7.08-7.11 (2H, m, overlapped)	121.4, CH	7.10-7.13 (2H, m, overlapped)	121.4, CH	7.10-7.15 (4H, m, overlapped)	121.4, CH	7.09-7.13 (3H, m, overla
7	136.2, CH	7.60 (1H, m)	136.1, CH	7.60 (1H, m)	136.2, CH	7.60-7.63 (2H, m, overlapped)	136.2, CH	7.59 (1H, m)
8	118.0, CH	7.08-7.11 (2H, m, overlapped)	118.0, CH	7.10-7.13 (2H, m, overlapped)	118.1, CH	7.10-7.15 (4H, m, overlapped)	118.1, CH	7.09-7.13 (3H, m, overla
9	161.5, C		161.3, C		161.4, C		161.4, C	
10	120.6, C		120.7, C		120.7, C		120.7, C	
1'	125.6, C		129.7, C		128.3, C		127.9, C	
2'	146.3, C		146.2, C		153.4, C		153.8, C	
3'	116.2, CH	6.69 (1H, d, J =8.6 Hz)	117.1, CH	6.95 (1H, d, J =8.9 Hz)	114.8, CH	7.10-7.15 (4H, m, overlapped)	115.2, CH	7.16 (1H, d, J =8.7 Hz)
4'	115.7, CH	6.60 (1H, dd, J =8.6, 3.0 Hz)	115.4, CH	6.72 (1H, dd, J =8.8, 2.9 Hz)	129.4, CH	7.36 (1H, m)	129.7, CH	7.38 (1H, m)
5'	149.9, C		152.7, C		122.4, CH	7.10-7.15 (4H, m, overlapped)	122.4, CH	7.09-7.13 (3H, m, overla
6'	113.1, CH	6.89 (1H, d, J =2.9 Hz)	112.8, CH	7.01 (1H, d, J =2.9 Hz)	126.6, CH	7.60-7.63 (2H, m, overlapped)	127.3, CH	7.63 (1H, dd, J =7.6, 1.5
1"			102.4, CH	4.76 (1H, d, J =7.6 Hz)	101.0, CH	4.98 (1H, d, J =7.4 Hz)	100.9, CH	5.00 (1H, d, J =7.6 Hz)
2"			73.0, CH	3.20 (1H, d, J =7.7 Hz)	72.9, CH	3.22-3.29 (2H, m, overlapped)	73.0, CH	3.25 (1H, t, J =9.0 Hz)
3"			75.4, CH	3.24 (1H, t, J =8.9 Hz)	75.3, CH	3.22-3.29 (2H, m, overlapped)	75.4, CH	3.30 (1H, t, J =8.9 Hz)
4"			71.3, CH	3.39 (1H, t, J =9.2 Hz)	71.3, CH	3.41 (1H, t, J =9.1 Hz)	71.3, CH	3.39 (1H, t, J =9.2 Hz)
5"			75.4, CH	3.82 (1H, d, J =9.7 Hz)	75.4, CH	3.93 (1H, t, J =9.7 Hz)	75.4, CH	3.92 (1H, d, J =9.7 Hz)
6"			170.1, C		170.1, C		170.1, C	

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627 **Figure legends**

628 **FIG. 1.** Biotransformation of 2'-hydroxyflavanone into products **1-4** by *S.*
629 *coeruleorubidus* NRRL B-2569. (A) HPLC analysis (300 nm) of the biotransformation
630 of 2'-hydroxyflavanone by *S. coeruleorubidus* NRRL B-2569 after 3 days of
631 fermentation. (B) UV spectra comparison of 2'-hydroxyflavanone and compound **1**; (C)
632 UV spectra comparison of 2'-hydroxyflavanone and compound **2**; (D) UV spectra
633 comparison of 2'-hydroxyflavanone and compound **3**; (E) UV spectra comparison of 2'-
634 hydroxyflavanone and compound **4**; (F) ESI-MS (-) spectrum of compound **1**; (G) ESI-
635 MS (-) spectrum of compound **2**; (H) ESI-MS (-) spectrum of compound **3**; (I) ESI-MS
636 (-) spectrum of compound **4**.

637 **FIG. 2.** Chemical structures of **1-4** and their proposed biosynthetic pathways and the
638 time-course analysis. (A) Chemical structures of 2'-hydroxyflavanone and products **1-4**
639 with selected HMBC and ^1H - ^1H COSY correlations. (B) Proposed biosynthetic
640 pathways of **1-4**. Substrate (2'-hydroxyflavanone) is circled in red, and hydroxylated
641 and glycosylated derivatives of 2'-hydroxyflavanone are outlined with a dashed and
642 solid blue line, respectively. (C) Time-course analysis of the bioconversion of 2'-
643 hydroxyflavanone into products by *S. coeruleorubidus* NRRL B-2569. Samples were
644 taken from the biotransformation broth every 24 hours and analyzed by HPLC at 300
645 nm.

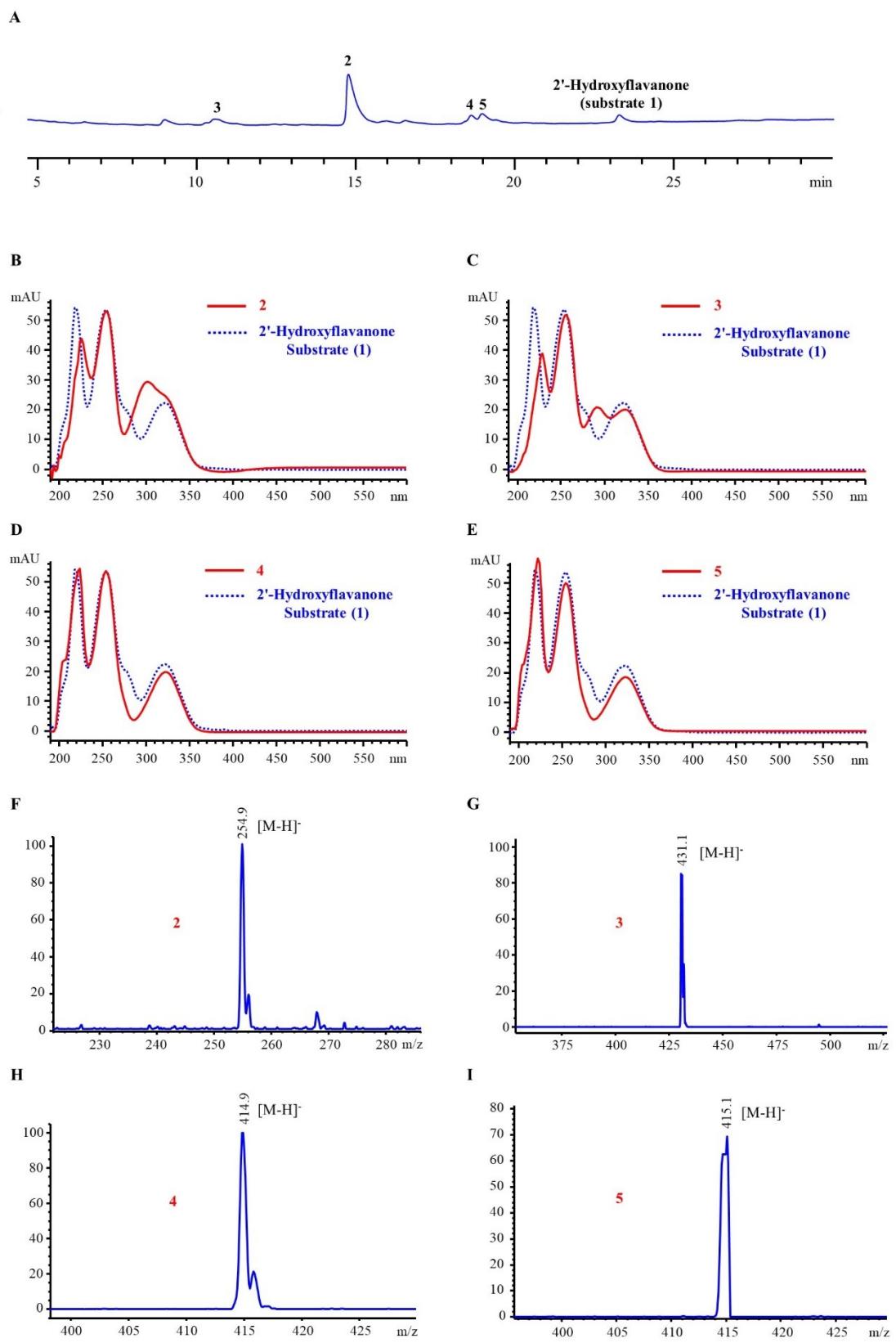
646 **FIG. 3.** Water solubility, antioxidant activity, and anticancer activity of biotransformed
647 products. All data are presented as mean \pm SD from three independent experiments. (A)
648 Water solubility of 2'-hydroxyflavanone and its selected biotransformed products. a)

649 One-way analysis of variance (ANOVA) results of the water solubility with pairwise
650 comparisons between 2'-hydroxyflavanone (substrate **1**) and glycosylated products **3-5**,
651 where *** indicates *p*-value < 0.001. b) Statistical analysis of the water solubility
652 between products **4** and **5** was performed by using two-tailed *t* test, where *** indicates
653 *p*-value < 0.001. Data are presented as the mean \pm SD from three independent
654 experiments. (B) One-way analysis of variance (ANOVA) results of the antioxidant
655 activity with pairwise comparisons between 2'-hydroxyflavanone (substrate) and its
656 selected biotransformed products. ****p* < 0.001. (C) MTT assay of GSC33 viability after
657 compound treatment. (D) IC₅₀ values of the tested compounds toward GSC33 cells. **p*
658 < 0.05; n.s., no significant difference (*p* > 0.05). (E) Comparison of the viability of
659 L929 and GSC33 at 50 μ M of product **5**. **p* < 0.05.

660 **FIG. 4.** Comparison of products **4** and **5**. (A) HPLC traces of product **4** (top), product
661 **5** (middle), and co-injection of products **4** and **5** (bottom). (B) UV spectra comparison
662 of products **4** and **5**. (C) HRMS spectrum of product **4** (Top) and HRMS spectrum of
663 product **5** (bottom).

664

665

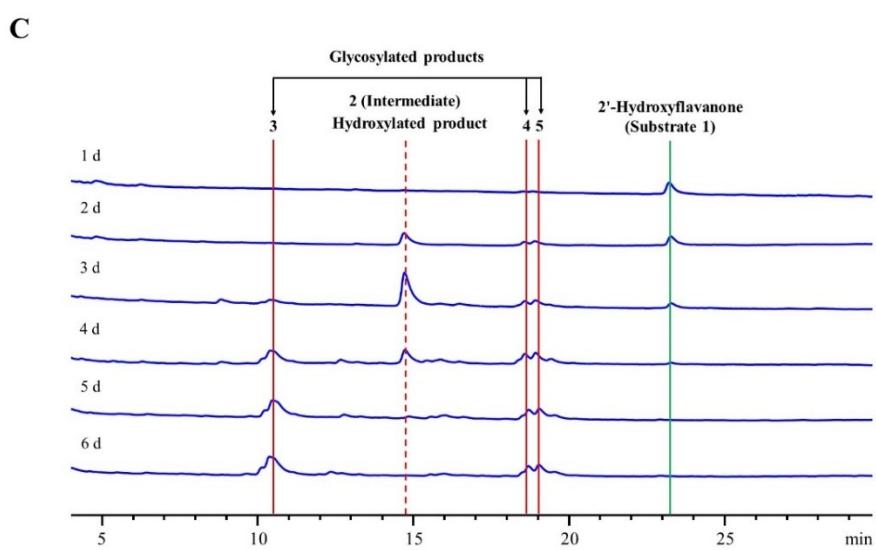
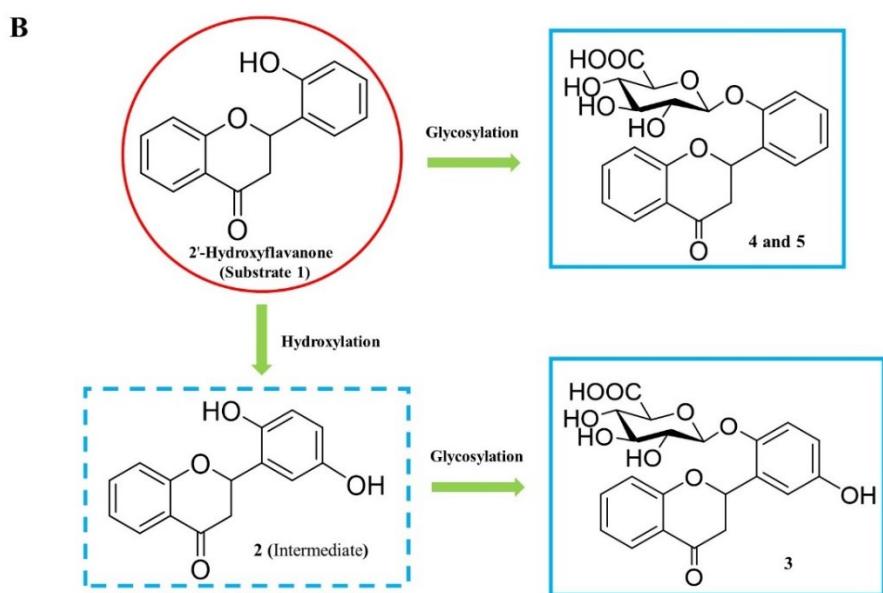
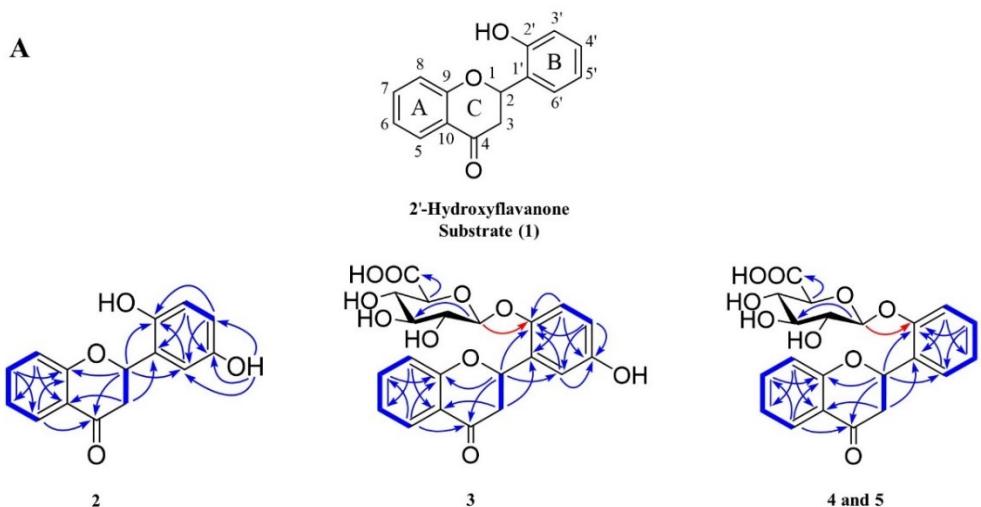

666

667

668

669

670

671

672

Fig. 1

673

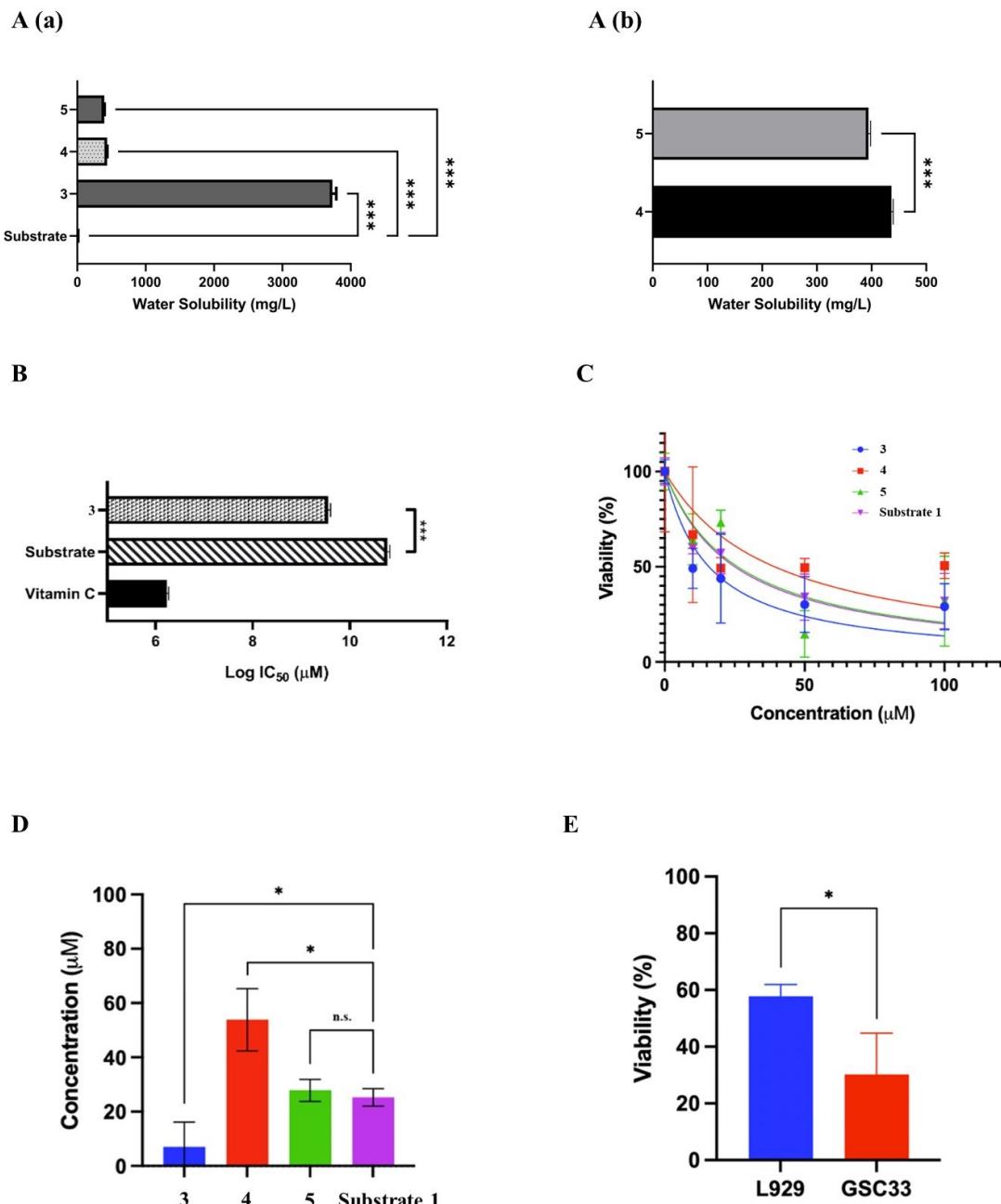
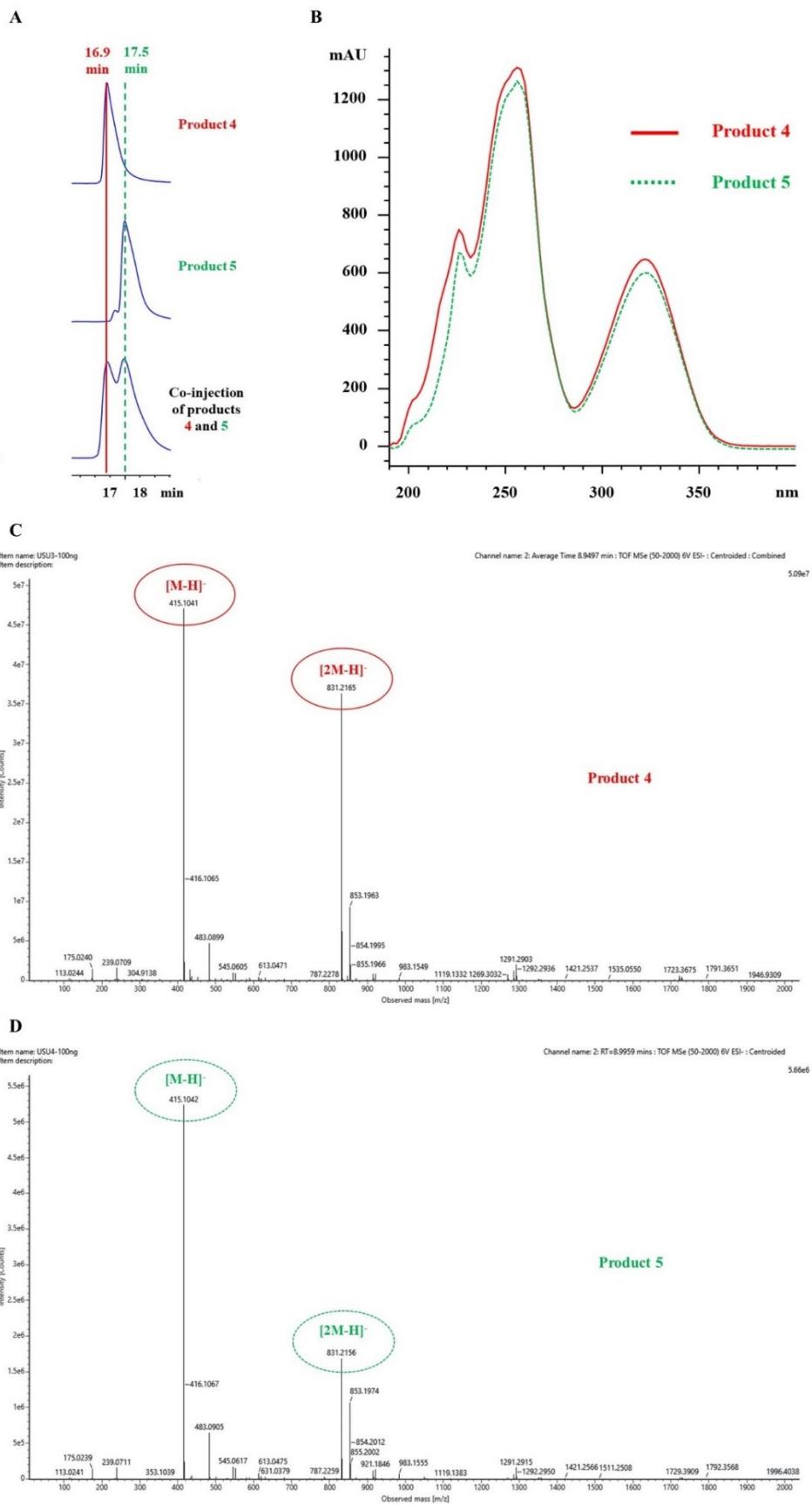



Fig. 3

