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Infalling matter may destroy a black hole and expose the naked singularity. Thus, Penrose proposed the
weak cosmic censorship conjecture to avoid such a possibility. On the other hand, if the black hole is not
destroyed by infalling matter, from the second law of black hole thermodynamics, the black hole entropy
should increase due to the information carried by the infalling matter. In this work, we demonstrate by
examples of perturbative near-extremal black holes in higher derivative gravity theories that the second law
implies weak cosmic censorship. We also compare our proposal to the one developed by Sorce and Wald
based on the first law of black hole thermodynamics and show that the latter fails to yield weak cosmic
censorship in such cases. Finally, we give proof of our proposal for generic gravity theories.

DOI: 10.1103/PhysRevD.108.044025

I. INTRODUCTION

Black holes are the simplest objects predicted by general
relativity—with intriguing features. Even though black
holes have curvature singularities, around which tidal
gravity diverges and physical laws break down, in analytic
black hole solutions, these singularities are always shielded
by the event horizon [1]. Penrose further proposed [2] the
weak cosmic censorship conjecture (WCCC): the curvature
singularity will always be hidden behind the horizon for
generic black holes, i.e., no naked singularities. Another
intriguing feature is that the first and second laws of
thermodynamics govern black holes. Bekenstein’s conjec-
ture that a black hole’s entropy must be proportional to its
area [3,4] was substantiated by the theoretical discovery of
Hawking radiation, and the fact that this thermal radiation
has a temperature proportional to the black hole’s surface
gravity [5].
Naively, one shall expect the connection betweenWCCC

and the second law. As the second law requires, the entropy
of a black hole can never decrease. This prevents the

appearance of a naked singularity. The proof for the second
law for Einstein gravity given in [6–8] can imply WCCC,
later more direct connection is discussed in [9]. However, a
demonstration for modified gravities is nontrivial, since, in
this case, the entropy follows Wald’s entropy formula
[10,11] but not the area law. Thus, the second law may
not ensure the area increase, and the above connection is
unclear. To ensure WCCC is a universal physical principle,
in this paper, we demonstrate such a connection explicitly
for modified gravities by showing that the WCCC follows
as long as the second law holds.
Wald started the demonstration of WCCC by gedanken

experiments that attempt to destroy the horizon by over-
charging or overspinning a black hole with infalling matter
[9,12]. For simplicity, we shall focus on overcharging non-
spinning black holes. Assume a family of electrovacuum
solutions to the gravitational and electromagnetic field
equations, parametrized by massm and charge q to describe
the configurations before and after the matter “falls in”. We
denote the condition for the spacetime to be a black hole, i.e.,
with a horizon that covers the singularity, by

Wðm; qÞ ≥ 0: ð1Þ
The exact form of Wðm; qÞ depends on the underlying
theory. For example, the (outer) horizon of a Reissner-
Nordström black hole is rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, thus

Wðm; qÞ ¼ m2 − q2 so that (1) guarantees a positive and
real rþ, thus the existence of a horizon.
The demonstration of WCCC is to show Wðmþ

Δm; qþ ΔqÞ ≥ 0 given the initial mass m and charge q,
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for all the respective physically allowed changes Δm and
Δq due to the infalling matter. Values of Δm and Δq
depend on how the matter falls in and the underlying
gravity theory. Intuitively, the physical constraints on Δm
and Δq should come from the laws of black hole dynamics.
Indeed, in [13], we have demonstrated that the first law of
black hole dynamics is a universal condition to guarantee
WCCC for extremal black holes in generic gravity theories.
For near-extremal black holes, Sorce and Wald [9] gener-
alized the first-law constraint to second-order variations
and showed that this could guarantee WCCC in Einstein-
Maxwell theory.1

One will face some challenges when trying to generalize
the approach of [9] tomodified gravities. Themain challenge
is to unambiguously define the canonical energy of gravi-
tational waves for modified gravity and the respective energy
condition required to ensure WCCC. Without such energy
conditions, one can only consider the spherical collapsing
with no induced gravitational wave. Moreover, in [9], the
canonical energy is evaluated by relating it to the black hole
entropy by the first law. Still, such a substitution is unclear
due to the ambiguity of canonical energy inmodified gravity.
Indeed, we show that the approach of [9] fails to

demonstrate WCCC for the modified gravities. To bypass
the aforementioned challenges and remedy the resultant
failure, we propose demonstrating the WCCC with the
second law. Our proposal does not need canonical energy
or conditions for matter and gravity. All we need is Wald’s
formula for black hole entropy. In Einstein’s gravity, the
first law and energy condition can guarantee the second
law, but it is unclear for modified gravities. The result
obtained here may also shed some light on this issue.
Finally, before we proceed, we shall emphasize the dem-
onstration is not a tautology. Although the existence of
entropy is the premise of the second law, itself does not
guarantee the WCCC condition (1), since a decreasing
entropy would indicate naked singularity in general rela-
tivity according to [9]. Thus, our demonstration is a
consistency check in the same spirit of [9].

II. WCCC CONDITION IN HIGHER DERIVATIVE
GRAVITY THEORIES

We consider the general quartic-order corrections to
Einstein-Maxwell theory, which is given by the following
Lagrangian:

L ¼ 1

2κ
R −

1

4
FμνFμν þ c1R2 þ c2RμνRμν þ c3RμνρσRμνρσ

þ c4κRFμνFμν þ c5κRμνFμρFν
ρ þ c6κRμνρσFμνFρσ

þ c7κ2FμνFμνFρσFρσ þ c8κ2FμνFνρFρσFσμ; ð2Þ

where κ ¼ 8πGN , which will be set to 2 below, and ci’s are
dimensionless constants. From the point of view of
effective field theory, the above higher derivative theories
can arise naturally from quantum corrections. Thus, some
of these theories can be the genuine description of low-
energy black hole dynamics but remains experimentally
elusive due to smallness of ci ’s. If WCCC is a fundamental
principle for protecting the predictive power of theory, it
should also apply to generic effective field theories of
gravity.
To study WCCC, we first generalize the perturbative

method of [15] to solve the charged black hole solutions up
to OðcicjÞ with i; j ¼ 1; % % % 8.2 Based on these solutions,
we can find the following Wðm; qÞ for (1),

Wðm; qÞ ¼ m2 − q2
"
1 −

4c0
5q2

þ 128c24
21q4

þ % % %
#

2

ð3Þ

with c0 ≡ c2 þ 4c3 þ c5 þ c6 þ 4c7 þ 2c8, and % % %
denotes the other OðcicjÞ terms. For simplicity, below
we will only show the result for the case with nonzero c4 as
a demonstration. The other cases with nonzero ci≠4 can be
found in Appendix A. Besides, the black hole entropy can
be obtained by Wald’s formula [10,16], and it yields

Sðm; qÞ ¼ −2πAh

$
−
1

2
− 4c1R − 4c2Rrv þ 8c3Rrvrv

þ 4ð2c4 þ c5 þ 2c6ÞFrvFrv

%
; ð4Þ

where the area of the horizon Ah, the curvatures, and field
strengths are evaluated by the on shell solution.

III. CHECK WCCC IN WALD’S GEDANKEN
EXPERIMENT BY SECOND-LAW CONSTRAINTS

To follow Wald’s gedanken experiment, we consider
charged matter falling through the black hole’s horizon
within a finite time interval. Then, the black hole and the
infalling matter are settled to a final stationary state
belonging to the same family of solutions, either a new
black hole or a naked singularity. The scheme is shown
in Fig. 1.
As argued by Sorce and Wald [9], for a near-extremal

black hole WCCC might be violated from first-order con-
siderations [17], but in fact is preserved at second order.
Therefore, we need to consider the variations of m and q
caused by the infallingmatter up to the second order. Herewe
outline the steps of checkingWCCC upon the second law of
black hole (thermo)dynamics, which basically require that
the entropy difference between B and B& due to infalling
matter through H (see Fig. 1) is nondecreasing.1Christodoulou proved that naked singularity can occur in

Einstein-scalar system though is unstable, hence the cosmic
censorship is still preserved [14]. 2The detailed solutions can be found in Appendix A.
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Let us consider an initial black hole with ðm; qÞ, with a
one-parameter family of infalling matter, finally settling
down to a new solution with

mðλÞ ¼ mþ λδmþ λ2δ2m
2

; qðλÞ ¼ qþ λδqþ λ2δ2q
2

:

ð5Þ

Here we keep mass and charge increases up to second order
in λ. We shall also restrict ourselves to nearly extremal
black holes, and for the moment only consider c4. The
initial black hole is second order away from being extremal,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p "
m −

128c24
21m3

#
: ð6Þ

Similar to Sorce and Wald, we shall assume ϵ and λ to
be of the same order of smallness, and check whether
Wðm; qÞ > 0 is satisfied up to second order. More specifi-
cally, we need to check whether constraints on
ðδm; δq; δ2m; δ2qÞ, arising from

SðmðλÞ; qðλÞÞ ≥ Sðm; qÞ ð7Þ

will guarantee Wðmþ Δm; qþ ΔqÞ ≥ 0.
Since we will consider up to second-order variations, we

assume the first-order variation due to the infalling matter
to be optimally done with the second law being satisfied
marginally,

δS ¼ ∂S
∂m

δmþ ∂S
∂q

δq ¼ 0: ð8Þ

Solving this condition gives a relation between δm and δq.
For the c4 case that we show explicitly, it yields

δm ¼
$
1 − ϵ −

64ð2þ 1098ϵÞc24
7m4

%
δqþOðϵ2Þ: ð9Þ

For extremal black holes, we have ϵ ¼ 0, up toOðciÞ, we
can truncate the terms of Oðc2i Þ in the above to show that
the first law δS ≥ 0 gives

δm ≥
"
1þ 4c0

5q2

#
δq: ð10Þ

This is just the WCCC condition for the extremal black
holes, as demonstrated in [13] via Sorce-Wald.
Let us now consider second-order variations due to the

infalling matter such that the second law holds, i.e.,

δ2S ¼ ∂2S
∂m2

ðδmÞ2 þ 2
∂2S
∂m∂q

δmδqþ ∂2S
∂q2

ðδqÞ2

þ ∂S
∂m

δ2mþ ∂S
∂q

δ2q ≥ 0: ð11Þ

For the c4 case, combining this equation with (9), we obtain

δ2m ≥
$
1 − ϵ
m

þ 256ð1655 − 17372ϵþ 33099ϵ2Þc24
21m5

%
ðδqÞ2

þ
$
1 − ϵþ ϵ2

2
−
64ð2þ 1098ϵ − 8815ϵ2Þc24

7m4

%
δ2q:

ð12Þ

This leads to

WðλÞ ¼
"
ϵ

"
256c24
21m3

−m
#
þ λ

"
1þ 211072c24

21m4

#
δq
#

2

þOðc34; ϵ3; λ3Þ; ð13Þ

where the Oðc34; ϵ3; λ3Þ denotes the higher-order terms
which will be omitted later for simplicity. Thus, we can
conclude that WCCC is preserved by the second-law
constraints up to Oðc24Þ. If we consider WðλÞ only up to
OðciÞ, it takes a simple but not positive definite form

WðλÞ ¼ ðϵm − λδqÞ2 þ 8

5m2
ðϵm − λδqÞ

× ðc0ðϵmþ 3λδqÞ þ 10c6λδqÞ þOðcicjÞ: ð14Þ

Completing the square of (14) requiresOðcicjÞ terms. This is
whywe need to use the near-extremal black hole solutions up
to OðcicjÞ to check WCCC. This is in the same spirit as
invoking second-order variations in [9] to remedy the earlier
mistake of [17] in checkingWCCC. The check ofWCCC for
the other cases with ci≠4 and the case of c2 and c4 can be
found in Appendix A. All results are consistent with our
proposal that the second-law constraints imply WCCC.3

FIG. 1. Wald’s gedanken experiment by throwing the charged
matter into a black hole. The infalling matter crosses the horizon
H within a finite time interval.

3Especially, the Einstein-Maxwell-Gauss-Bonnet theory with
c1 ¼ c3 ¼ − 1

4 c2 gives no contribution to the OðciÞ term of (14),
thus preserving the WCCC. We demonstrate this by the spherical
thin-shell collapse in Appendix C.
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Finally, due to the complication of solving the rotating
charged black holes with ci corrections, we do not check
the WCCC for such cases. However, it is straightforward to
check WCCC by our second-law formalism for Kerr-
Newman black holes with its spin denoted by j in
Einstein-Maxwell theory and the result is

WðλÞ ¼
"
ðj2 −m4Þqδq − 2jm2δj

mðm4 þ j2Þ
λþmϵ

#
2

þOðϵ3; λ3Þ:

ð15Þ

The form of (15) is exactly the same as the one in [9]. This
shows that our second-law proposal yields the sameWCCC
result as ensured by the first-law one of Sorce-Wald.

IV. COMPARISON WITH SORCE-WALD
FORMALISM

For comparison, we will show that Sorce-Wald formal-
ism fails to yield WCCC for the modified gravities
considered above. Sorce-Wald formalism [9] uses the
first-law constraints to check WCCC. At the second-order
variations, one needs to take into account the energy
contribution from the induced gravitational and electro-
magnetic waves, which makes the problem technically
involved. For simplicity, we assume the infalling matter is
spherical symmetric so that no such waves will be induced.
Our steps outlined earlier to verify WCCC are inspired

by the Sorce-Wald formalism. The only difference is that
we shall replace the second-law constraints by the first-law
ones. The latter take the following general form [9,18]

δnmADM −ΦHðδnqH þ δnqBÞ − THδnSB

¼ δn;2EΣðϕ; δϕ;LξϕÞ −
Z

H
ξaϵebcdδnTa

e

≥ δn;2EΣðϕ; δϕ;LξϕÞ: ð16Þ

Here n ¼ 1, 2 is the order of variation, ξμ is the timelike
Killing vector of the background metric, and ΦH ¼
−ξμAμjr¼rþ is the chemical potential on the horizon. We
have used the energy condition on the stress tensor δnTab of
the infalling matter to arrive the last inequality. Sorce-Wald
assumed no matter around the bifurcation sphere B of Fig. 1
so that the variations of charge and Wald’s entropy vanish,
i.e., δnqB ¼ δnSB ¼ 0. On the other hand, when consider-
ing the standard first law without source perturbation, we
will instead set δnqH ¼ δnTab ¼ 0.4 The higher derivative
corrections to Einstein-Maxwell theory cannot affect the
Arnowitt-Deser-Misner (ADM) massmADM and the charge
qH of the black hole due to their higher powers of 1=r
suppression. This implies δnmADM ¼ δnm and δnqH ¼ δnq

as in Einstein-Maxwell theory. The gravitational energy EΣ
on the Cauchy surface Σ ¼ H ∪ Σ1 of Fig. 1 is the self-
gravitating effect, thus is absent for n ¼ 1. Moreover, since
no wave is induced around H, EΣ ¼ EΣ1

.
Assume the first-law constraint of n ¼ 1 is optimally

done, i.e., δm −ΦHδq ¼ 0, for the c4 case, it explicitly
gives

δm ¼
$
1 − ϵ −

64ð2 − 22ϵÞc24
7m4

%
δqþOðϵ2Þ ð17Þ

which is different from (9) atOðϵc24Þ. To evaluate EΣ1
when

considering the n ¼ 2 case, Sorce and Wald assumed that
the late-time perturbation δϕ approaches a stable linear on
shell configuration δϕlinear, and one can apply (16) of n ¼ 2
on Σ1 with δ2m ¼ δ2q ¼ 0 so that

EΣ1
ðϕ;δϕ;LξϕÞ¼ EΣ1

ðϕ;δϕlinear;LξϕÞ¼−THδ2S&; ð18Þ

where TH is the Hawking temperature5 of the initial black
hole, but the variation of Wald’s entropy δ2S& is evaluated
at B& of Fig. 1 with respect to ϕþ δϕlinear. By construction
δ2S& ¼ δ2S&ðδm; δqÞ, hence the n ¼ 2 first-law constraint
now takes a second-lawlike form

δ2S&ðδm; δqÞ þ 1

TH
ðδ2m −ΦHδ2qÞ ≥ 0: ð19Þ

With the help of (17), for the case c4 we show explicitly,
(19) gives

δ2m≥
$
1−ϵ
m

−
256ð1285−9088ϵþ33261ϵ2Þc24

21m5

%
ðδqÞ2

þ
$
1− ϵþ ϵ2

2
−
64ð2−22ϵþ145ϵ2Þc24

7m4

%
δ2q; ð20Þ

which is different from (12) at Oðc24Þ. Based on (17) and
(20), we can evaluateWðmðλÞ; qðλÞÞ for the case c4 and the
result is

WðλÞ ¼
"
ϵ

"
161024c24
21m3

þm
#
− λ

"
1 −

165248c24
21m4

#
δq
#

2

−
15360ϵ2c24

m2
ð21Þ

which cannot be completed the square at Oðc24Þ to protect
WCCC. Similar results for the others cases of ci≠4 and of c2
and c4 up to OðcicjÞ can be found in Appendix A.
To conclude our work, in the following we outline a

general proof of WCCC based on our second-law proposal.

4In Appendix B we check the first law for n ¼ 1 for the black
holes considered in this work.

5Due to our convention form and q by a scale factor 1=4π, here
TH is the scaled Hawking temperature by the same factor.
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V. PROOF OF WCCC IN GENERAL

Suppose we havem and qj, andm ¼ mexðqjÞ is the mass
of extremal black holes, with black holes given by
m ≥ mexðqjÞ. Let us define μ ¼ m −mexðqjÞ, which enc-
odes the (deviation from the) extremality condition. Let us
also denote rhðμ; qjÞ the horizon radius, with RðqjÞ ¼
rhð0; qjÞ the radius of extremal black holes as a function of
qj. In Appendix D, we argue that for μ inside an open
neighborhood of 0,

rhðμ; qjÞ ¼ RðqjÞ þ
ffiffiffi
μ

p
ρðqj;

ffiffiffi
μ

p Þ ð22Þ

with ρ a smooth function of its two arguments. Suppose
a quantity like the Wald entropy can still be defined in a
modified theory of gravity, and that it is expressed as a
smooth function of rh, m, and qj. Of course, we can also
express it in terms ofm andqj, but that expressionmay not be
infinitely smooth in an open neighborhood of the extremal
boundary. Let us write

S ¼ Sðrh; μ; qjÞ ð23Þ

with ∂S=∂rh ≠ 0. For example, the S defined in (4), is of this
form. Since A ¼ 4πr2h, and the correction terms are expected
to bemuch less than unity, ∂S=∂rh is nonzero. For a family of
solutions parametrized by λ, we require that Sðλ > 0Þ ≥
Sðλ ¼ 0Þ still holds, as a generalized second law of black
hole thermodynamics.
Let us now start from a configuration with ðμ; qjÞ ¼

ðϵ2; qj0Þ, with ϵ > 0 a small quantity, and deviate away
from it with

μ ¼ ϵ2 þ δμλþ δ2μ
λ2

2
; ð24Þ

qj ¼ qj0 þ δqjλþ δ2qj
λ2

2
: ð25Þ

Note that the deviation from the extremality is Oðϵ2Þ. We
will treat ϵ and λ as quantities with the same order of
smallness, and use the fact that dS=dλ and d2S=dλ2 should
be finite at λ ¼ 0, as ϵ → 0. For dS=dλ, we have a leading
contribution of

dS
dλ

&&&&
λ¼0

∼
∂S
∂rh

ρ
2ϵ

δμ; ð26Þ

where we have used μ ¼ ϵ2 for λ ¼ 0. Here in order for
dS=dλ to be finite, we will require δμ ∼ ϵ. Inserting this into
the second derivative, we obtain

d2S
dλ2

&&&&
λ¼0

∼
ρ
2ϵ3

"
ϵ2δ2μ −

1

2
δμ2

#
∂S
∂rh

: ð27Þ

From ∂S=∂rh ≠ 0 and since δμ ∼ ϵ, this term above is ∼1=ϵ
unless

δ2μ ¼ δμ2

2ϵ2
: ð28Þ

Inserting (28) back into (24), we obtain

μ ¼ ϵ2 þ δμλþ λ2δμ2

4ϵ2
¼

"
ϵþ δμλ

2ϵ

#
2

: ð29Þ

This ensures that μ stays positive and WCCC holds. Due to
lack of the explicit form ofS, in the above proofwe have only
considered the marginal case of the second law, i.e.,
δS ¼ δ2S ¼ 0. However, in the explicit examples considered
above, we do not need to require the regularity of δ2S, so that
we can consider the nonmarginal cases, i.e., δ2S ≥ 0.
The notion of black hole entropy S is well-defined only if

the event horizon exists, i.e., μ > 0. This is not assuming
what we want to show, as can be understood from the
following perspective: for sufficiently small perturbations
of a nonextremal black hole, the solution will certainly have
a horizon; we can calculate the change in the entropy to the
second order in this regime, and use this to show that at this
order in perturbation theory μ is positive. Moreover, the
second law should be manifested from the underlying
dynamical theory. The validity of our proposal implies that
WCCC is guaranteed dynamically. The nontrivial part of
the proof is that the variation δμ due to the infalling matter
is OðϵÞ but the initial deviation from the extremality bound
is Oðϵ2Þ. It seems that the WCCC can be easily violated,
but in fact it is not by requiring the second law. This is in the
same spirit of the first-law approach by Sorce-Wald, in
which the variation of entropy is assumed and used to
evaluate the canonical energy.

VI. DISCUSSION

WCCC is important to protect a gravity theory from the
pathology of naked singularity. In this work we propose
and show that the second law of black hole thermodynam-
ics ensures WCCC due to the peculiar dependence of the
entropy on the extremality condition, and we explicitly
demonstrate our proposal for a general class of quartic
theories of gravity and electromagnetism.
Naively, we expect to arrive the second law by the first

law along with the energy condition of the infalling matter
in Wald’s gedanken experiment, however we find that this
is not the case for our near-extremal charged black hole
solutions in higher derivative gravity. In Appendix B we
show that the n ¼ 1 first law is apparently violated at
Oðc2i Þ. This might be related to the gauge issue of Wald
formalism. For gravity theory with fields with internal
gauge freedom, one will expect the first law to be gauge
invariant, however the chemical potential ΦH depends
explicitly on the gauge choice. This ambiguity may cause
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subtlety when applying the Sorce-Wald formalism straight-
forwardly to higher derivative gravity. The framework
developed by Prabhu [19] using the principal bundle might
be helpful to clarify this issue. On the other hand, since the
entropy is gauge invariant, we can define the chemical
potential as well as the Hawking temperature in terms of the
variation of the entropy to derive a gauge invariant first law.
This is just what we have done in our second-law approach.
For general nonspherical collapsing case, the construc-

tion of the canonical energy would be quite involved in
higher derivative gravity, and is crucial to check the second-
order first law without source perturbation. Thorough
treatment on this issue is expected for future study.

ACKNOWLEDGMENTS

We thank Robert Wald for his helpful comments and
discussions. We also thank the anonymous referee for the
valuable insight. F. L. L. is supported by National Science
and Technology Council (Taiwan), Grant No. 109-2112-M-
003-007-MY3. B. N. is supported by the National Natural
Science Foundation of China with Grants No. 11975158
and No. 12247103. Y. C. acknowledges the support from
the Brinson Foundation, the Simons Foundation (Award
No. 568762), and the National Science Foundation, Grants
No. PHY-1708212 and No. PHY-1708213.

APPENDIX A: CHECKS OF WCCC FOR
QUARTIC DERIVATIVE THEORIES OF
GRAVITY AND ELECTROMAGNETISM

We show the explicit forms of the second-order pertur-
bative solutions to the higher derivative theories with only
one ci is turned on, as well as the corresponding details of

checking WCCC via both the second-law and the Sorce-
Wald formalism.

1. c1 case

The second-order solutions are solved by extending the
procedure in [15] to Oðci2Þ. For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c1R2; ðA1Þ

the solution is just the same as the one in Einstein-Maxwell
theory, since the Ricci scalar R of the unperturbed back-
ground is vanishing hence gives no contribution to the
higher-order corrections of energy-momentum tensor. The
check for WCCC is also the same as in Einstein-Maxwell
theory.

2. c2 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c2RμνRμν; ðA2Þ

the charged black hole solution turns out to be of the form

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ
þ r2dΩ ðA3Þ

in which

fðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c2

"
−
2κ2q2

r4
þ κ3mq2

r5
−
κ3q4

5r6

#

þ c22
"
48κ3q2

r6
−
80κ4mq2

r7
þ 32κ5m2q2

r8
þ 240κ4q4

7r8
−
51κ5mq4

2r9
þ 68κ5q6

15r10

#
; ðA4Þ

gðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c2

"
−
4κ2q2

r4
þ 3κ3mq2

r5
−
6κ3q4

5r6

#

þ c22
"
144κ3q2

r6
−
304κ4mq2

r7
þ 160κ5m2q2

r8
þ 1192κ4q4

7r8
−
351κ5mq4

2r9
þ 704κ5q6

15r10

#
ðA5Þ

with the gauge potential

At ¼ −
q
r
− c2

κ2q3

5r5
þ c22

"
48κ3q3

7r7
−
8κ4mq3

r8
þ 9κ4q5

2r9

#
: ðA6Þ

For simplicity we set κ ¼ 2 in the following. The existence of double root for either fðrÞ ¼ 0 or gðrÞ ¼ 0 determines the
extremal condition
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m ¼ jqj
"
1 −

4c2
5q2

−
8c22

21q4

#
; ðA7Þ

or

jqj ¼ m
"
1þ 4c2

5m2
−
136c22

525m4

#
: ðA8Þ

The location of the horizon is also modified compared to the black hole solution in Einstein-Maxwell theory,

rh ¼ r0 þ
4c2q2ðq2 − 5mr0 þ 5r20Þ

5r30ðmr0 − q2Þ

−
8c22q2

525r70ðmr0 − q2Þ3
ð4571q8 þ 5q6r0ð3306r0 − 6881mÞ þ 4200m2r40ð3r20 − 10mr0 þ 8m2Þ

− 75mq2r30ð294r20 − 1262mr0 þ 1197m2Þ þ 5q4r20ð1995r20 − 14004mr0 þ 17269m2ÞÞ; ðA9Þ

in which r0 ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
. The Hawking temperature could be obtained by the vanishing of the conical singularity for

the corresponding Euclidean black hole,

TH ¼ mr0 − q2

2πr30
−
2c2q2ð3q2 − 4mr0Þð6q2 − 10mr0 þ 5r20Þ

5πr70ðmr0 − q2Þ

þ 4c22q2

525πr110 ðmr0 − q2Þ3
ð245840q10 − 4q8r0ð392462m − 84765r0Þ

− 8400m3r50ð88m2 − 74mr0 þ 15r20Þ þ 150m2q2r40ð20104m2 − 14216mr0 þ 2275r20Þ
− 50mq4r30ð97916m2 − 54966mr0 þ 6195r20Þ þ q6r20ð3943072m2 − 1575720mr0 þ 93975r20ÞÞ: ðA10Þ

To obtain the Wald entropy, we first recall the Wald’s formula [10,11]

S ¼ −2πA
δL

δRμνρσ
ϵμνϵρσ

&&&&
rh

ðA11Þ

in which A ¼ 4πrh is the area of the horizon. For convenience we will introduce the null coordinate, i.e., define
dv ¼

ffiffiffiffiffiffiffiffi
f=g

p
dtþ dr=g, the metric (A3) then becomes

ds2 ¼ 2dvdr − gðrÞdv2 þ r2dΩ; ðA12Þ

and the gauge potential Ãμ in the null coordinates are

Ãv ¼
ffiffiffi
g
f

r
At; Ãr ¼ −

ffiffiffiffiffi
1

fg

s

At: ðA13Þ

The Wald’s formula then straightforwardly gives rise to

S ¼ −2πAh

"
−
1

κ
− 4c2Rrv

#
; ðA14Þ

which turns out to be
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S ¼ 4π2r20 þ
32c2π2q2ð6q2 − 10mr0 þ 5r20Þ

5r20ðmr0 − q2Þ

−
64c22π2q2

525r60ðmr0 − q2Þ3
ð41972q8 þ 32q6r0ð1245r0 − 6503mÞ þ 4200m2r40ð3r20 − 16mr0 þ 23m2Þ

− 75mq2r30ð301r20 − 2256mr0 þ 4200m2Þ þ 20q4r20ð525r20 − 7134mr0 þ 19243m2ÞÞ: ðA15Þ

For near-extremal black holes, we introduce a small parameter ϵ to characterize the solution in such a way

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
m
"
1þ 4c2

5m2
−
136c22

525m4

#
: ðA16Þ

Assuming that the first-order variation is optimally done, i.e., the second law is satisfied marginally

δS ¼ 0; ðA17Þ

we obtain the following relation

δm ¼ δq
"
1 − ϵþ ϵ2

2
þ 2c2
5m2

ð2þ 4ϵ − 27ϵ2Þ − 4c22

175m4
ð6þ 8936ϵ − 88661ϵ2Þ

#
: ðA18Þ

The second-order variation which satisfies the second law

δ2S ≥ 0 ðA19Þ

gives rise to the inequality

δ2m ≥
1

m
ðδqÞ2 þ δ2q −

4c2
5m3

ð8ðδqÞ2 −mδ2qÞ þ 8c22

525m5
ð27416ðδqÞ2 − 9mδ2qÞ; ðA20Þ

in which we have plugged in the relation (A18). From (A7) we know the WCCC is hold if

Wðm; qÞ≡m2 − q2
"
1 − 4c2

5q2
− 8c22

21q4

#
2

≥ 0: ðA21Þ

To check (A21), consider a one-parameter family of solutions with m ¼ mðλÞ, q ¼ qðλÞ. Expanding WðmðλÞ; qðλÞÞ to
Oðλ2Þ and using (A16), (A18), and (A20), we finally get

WðλÞ ≥ ðϵm − λδqÞ2 þ 8c2
5m2

ðϵm − λδqÞðϵmþ 3λδqÞ þ 64c22

525m4
ð2ϵ2m2 − 3351ϵλmδqþ 3433λ2ðδqÞ2Þ; ðA22Þ

which could be recast to a perfect square

WðλÞ ≥
$
ϵ

"
mþ 4c2

5m
−
104c22

525m3

#
− λ

"
1 −

12c2
5m2

þ 108344c22

525m4

#
δq
%
2

þOðc23Þ; ðA23Þ

hence WðλÞ ≥ 0 and WCCC is preserved up to Oðc22Þ by the second law.
On the other hand, according to the Sorce-Wald formalism [9], the first-order variation is optimally done when

δm ¼ Φhδq; ðA24Þ

from which we obtain the following relation

δm ¼ δq
"
1 − ϵþ ϵ2

2
þ 2c2
5m2

ð2þ 4ϵ − 27ϵ2Þ − 4c22

175m4
ð6þ 536ϵ − 4661ϵ2Þ

#
; ðA25Þ
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which is slightly different from (A18) at Oðc22Þ. The second-order variation inequality,

δ2m −Φhδ2q ≥ −
TH

4π
δ2S&; ðA26Þ

combined with (A25) gives raise to

δ2m ≥
1

m
ðδqÞ2 þ δ2q −

4c2
5m3

ð8ðδqÞ2 −mδ2qÞ − 8c22

525m5
ð10384ðδqÞ2 þ 9mδ2qÞ; ðA27Þ

which is also different from (A20). Then WðλÞ turns out to satisfy

WðλÞ ≥ ðϵm − λδqÞ2 þ 8c2
5m2

ðϵm − λδqÞðϵmþ 3λδqÞ þ 64c22

525m4
ð2ϵ2m2 − 201ϵλmδq − 1292λ2ðδqÞ2Þ: ðA28Þ

The above expression could not be rewritten as a perfect square up to Oðc22Þ, as could be checked by examine the
discriminant of the coefficients of λ as in a quadratic equation. The best we can arrive is

WðλÞ ≥
$
ϵ
"
mþ 4c2

5m
þ 50296c22

525m3

#
− λ

"
1 − 12c2

5m2
− 42856c22

525m4

#
δq
%
2

− 192ϵ2c22

m2
; ðA29Þ

hence WCCC is not guaranteed by the Sorce-Wald formalism.

3. c3 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c3RμνρσRμνρσ; ðA30Þ

the solution is

fðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c3

"
−
8κ2q2

r4
þ 4κ3mq2

r5
−
4κ3q4

5r6

#

þ c32
"
768κ3q2

r6
−
1280κ4mq2

r7
þ 512κ5m2q2

r8
þ 3840κ4q4

7r8
−
408κ5mq4

r9
þ 1088κ5q6

15r10

#
; ðA31Þ

gðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c3

"
−
16κ2q2

r4
þ 12κ3mq2

r5
−
24κ3q4

5r6

#

þ c32
"
2304κ3q2

r6
−
4864κ4mq2

r7
þ 2560κ5m2q2

r8
þ 19072κ4q4

7r8
−
2808κ5mq4

r9
þ 11264κ5q6

15r10

#
; ðA32Þ

At ¼ −
q
r
− c3

4κ2q3

5r5
þ c32

"
768κ3q3

7r7
−
128κ4mq3

r8
þ 72κ4q5

r9

#
: ðA33Þ

The check for WCCC condition is straightforward just like the previous case, hence we just give the final result. The second
law again gives raise to a perfect square

WðλÞ ≥
$
ϵ

"
mþ 16c3

5m
−
1664c32

525m3

#
− λ

"
1 −

48c3
5m2

þ 927104c32

525m4

#
δq
%
2

þOðc33Þ; ðA34Þ

while the Sorce-Wald formalism gives
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WðλÞ ≥
$
ϵ

"
mþ 16c3

5m
þ 401536c32

525m3

#
− λ

"
1 −

48c3
5m2

−
282496c32

525m4

#
δq
%
2

−
1536ϵ2c32

m2
þOðc33Þ: ðA35Þ

4. c4 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c4κRFμνFμν; ðA36Þ

the solution is

fðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c4

"
4κ2q2

r4
−
6κ3mq2

r5
þ 4κ3q4

r6

#
þ c42

"
−
32κ4q4

7r8
−
6κ5mq4

r9
þ 32κ5q6

3r10

#
; ðA37Þ

gðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c4

"
−
16κ2q2

r4
þ 14κ3mq2

r5
−
6κ3q4

r6

#
þ c42

"
1088κ4q4

7r8
−
126κ5mq4

r9
þ 152κ5q6

3r10

#
; ðA38Þ

At ¼ −
q
r
− c4

2κ2q3

r5
þ c42

"
576κ3q3

7r7
−
96κ4mq3

r8
þ 50κ4q5

r9

#
: ðA39Þ

The second law gives raise to a perfect square for the WCCC condition

WðλÞ ≥
$
ϵ

"
m −

256c42

21m3

#
− λ

"
1þ 211072c42

21m4

#
δq
%
2

þOðc43Þ; ðA40Þ

while the Sorce-Wald formalism gives

WðλÞ ≥
$
ϵ

"
mþ 161024c42

21m3

#
− λ

"
1 −

165248c42

21m4

#
δq
%
2

−
15360ϵ2c42

m2
þOðc43Þ: ðA41Þ

5. c5 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c5κRμνFμρFν

ρ; ðA42Þ

the solution is

fðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c5

"
−
κ3mq2

r5
þ 4κ3q4

5r6

#
þ c52

"
−
12κ4q4

7r8
þ 9κ5mq4

2r9
−
164κ5q6

45r10

#
; ðA43Þ

gðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c5

"
−
6κ2q2

r4
þ 5κ3mq2

r5
−
11κ3q4

5r6

#
þ c52

"
548κ4q4

7r8
−
139κ5mq4

2r9
þ 284κ5q6

9r10

#
; ðA44Þ

At ¼ −
q
r
− c5

κ2q3

5r5
þ c52

"
48κ3q3

7r7
−
8κ4mq3

r8
þ 43κ4q5

6r9

#
: ðA45Þ

The second law gives raise to a perfect square
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WðλÞ ≥
$
ϵ

"
mþ 4c5

5m
−
11512c52

1575m3

#
− λ

"
1 −

12c5
5m2

þ 2469832c52

1575m4

#
δq
%
2

þOðc53Þ; ðA46Þ

while the Sorce-Wald formalism gives

WðλÞ ≥
$
ϵ

"
mþ 4c5

5m
þ 1802888c52

1575m3

#
− λ

"
1 −

12c5
5m2

−
1763768c52

1575m4

#
δq
%
2

−
2304ϵ2c52

m2
þOðc53Þ: ðA47Þ

6. c6 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c6κRμνρσFμρFρσ; ðA48Þ

the solution is

fðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c6

"
−
2κ2q2

r4
þ κ3mq2

r5
−
κ3q4

5r6

#

þ c62
"
−
320κ4mq2

7r7
þ 128κ5m2q2

7r8
þ 530κ4q4

7r8
−
411κ5mq4

14r9
−
47κ5q6

15r10

#
; ðA49Þ

gðrÞ ¼ 1 −
κm
r

þ κq2

2r2
þ c6

"
−
8κ2q2

r4
þ 7κ3mq2

r5
−
16κ3q4

5r6

#

þ c62
"
−
320κ4mq2

r7
þ 2048κ5m2q2

7r8
þ 4352κ4q4

7r8
−
1413κ5mq4

2r9
þ 3976κ5q6

15r10

#
; ðA50Þ

At ¼ −
q
r
þ c6

"
−
2κ2mq
r4

þ 9κ2q3

5r5

#
þ c62

"
−
64κ4m2q

7r7
−
160κ3q3

7r7
þ 216κ4mq3

7r8
−
9κ4q5

10r9

#
: ðA51Þ

The second law gives raise to a perfect square

WðλÞ ≥
$
ϵ

"
mþ 4c6

5m
−
10504c62

525m3

#
− λ

"
1 −

52c6
5m2

þ 1850344c62

525m4

#
δq
%
2

þOðc63Þ; ðA52Þ

while the Sorce-Wald formalism gives

WðλÞ ≥
$
ϵ

"
mþ 4c6

5m
þ 1199096c62

525m3

#
− λ

"
1 −

52c6
5m2

−
972056c62

525m4

#
δq
%
2

−
4608ϵ2c62

m2
þOðc63Þ: ðA53Þ

7. c7 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c7κ2FμνFμνFρσFρσ; ðA54Þ

the solution is

fðrÞ ¼ gðrÞ ¼ 1 − κm
r

þ κq2

2r2
− 4c7κ3q4

5r6
þ 128c72κ5q6

9r10
; ðA55Þ
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At ¼ −
q
r
þ 16c7κ2q3

5r5
−
256c72κ4q5

3r9
: ðA56Þ

In this case, the second-law and the Sorce-Wald formalism
give rise to the same perfect square

WðλÞ ≥
$
ϵ

"
m þ 16c7

5m
−
48256c72

225m3

#

− λ

"
1 −

48c7
5m2

þ 236416c72

225m4

#
δq
%
2

þ Oðc73Þ:

ðA57Þ

8. c8 case

For the Lagrangian

L ¼ 1

2κ
R −

1

4
FμνFμν þ c8κ2FμνFνρFρσFσμ; ðA58Þ

the solution is

fðrÞ ¼ gðrÞ ¼ 1 −
κm
r

þ κq2

2r2
−
2c8κ3q4

5r6
þ 32c82κ5q6

9r10
;

ðA59Þ

At ¼ −
q
r
þ 8c8κ2q3

5r5
−
64c82κ4q5

3r9
: ðA60Þ

In this case, the second-law and the Sorce-Wald formalism
again give rise to the same perfect square

WðλÞ≥
$
ϵ

"
mþ8c8

5m
−
12064c82

225m3

#

−λ

"
1−

24c8
5m2

þ59104c82

225m4

#
δq
%
2

þOðc83Þ: ðA61Þ

9. c2 + c4 case

We also consider the case with both c2 and c4 terms are
turned on, i.e.,

L ¼ 1

2κ
R − 1

4
FμνFμν þ c2RμνRμν þ c4κRFμνFμν; ðA62Þ

the solution for which is a bit tedious, hence we just show
the final result for WCCC. The second law still gives a
perfect square

WðλÞ≥
$
ϵ

"
mþ4c2

5m
−
8× ð13c22þ800c42Þ

525m3

#
−λ

"
1−

12c2
5m2

þ8× ð13543c22þ193200c2c4þ659600c42Þ
525m4

#
δq
%
2

þOðci3Þ;

ðA63Þ

while the Sorce-Wald formalism gives

WðλÞ ≥
$
ϵ

"
mþ 4c2

5m
−
8 × ð6287c22 þ 113400c2c4 þ 503200c42Þ

525m3

#

− λ

"
1 −

12c2
5m2

þ 8 × ð5357c22 þ 113400c2c4 þ 516400c42Þ
525m4

#
δq
%
2

−
192ϵ2ðc22 þ 18c2c4 þ 80c42Þ

m2
þOðci3Þ: ðA64Þ

APPENDIX B: CHECK OF FIRST
LAW UP TO OðciÞ

The standard first law of black hole thermodynamics
without source perturbation is to set δnqH ¼ δnTab ¼ 0 in
Eq. (16) of the main text. That is,

δnmADM−ΦHδnqB−THδnSB ¼ δn;2EΣðϕ;δϕ;LξϕÞ: ðB1Þ

Since we do not have the explicit form of the canonical
energy EΣðϕ; δϕ;LξϕÞ, we will check only the n ¼ 1 first
law for the black hole solutions considered in this work. As

argued in the main text, the higher derivative corrections will
not affect the relation δmADM ¼ δnm due to the higher powers
of 1=r suppression at infinity. For δnqB ¼ δnð

R
B ϵabcdS

cdÞ
with Sab ¼ Fab þOðciÞ, we can either evaluate qB at the
bifurcation sphere B, i.e., qB ¼

ffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p
r2Srtjr¼rþ , or at

spatial infinity by adoptingGauss theorem and the no-source
assumption, it is then straightforward to see δnqB ¼ δnq.
Therefore, the n ¼ 1 first law implies

ΔI ≔
∂SB
∂q

þΦH
∂SB
∂m

¼ 0: ðB2Þ
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For all cases of black hole solutions up toOðc2i Þ considered
in the main text, we find that

ΔI ¼ 0þOðc2i Þ: ðB3Þ

TheOðc2i Þ terms are finite in extremal limit. For example, for
the c2 case,

Δðc2Þ
I ¼ 1536π2ð1 − 8ϵþOðϵ2ÞÞ

M3
c22 þOðc3i Þ; ðB4Þ

where ϵ is the small nonextremility parameter.
From the above, we can conclude that all the black hole

solutions considered in this work satisfy the n ¼ 1 first law
up toOðciÞ. This fact is crucial in [13] to prove theWCCCfor
the extremal black holes of generic gravity theories by the
Sorce-Wald formalism. The Oðc2i Þ violation for the n ¼ 1
first law should be responsible for the failure of the Sorce-
Wald formalism to yield the WCCC for near-extremal black
holes as discussed in the main text. The check of n ≥ 2
sourceless first law for modified gravity theories is beyond
the scope of this work because it needs the explicit con-
struction of the canonical energy.

APPENDIX C: IMPLICATION ON WCCC FROM
AFLOAT SPHERICAL THIN SHELL

Since we are considering the spherical collapsing to
avoid the complications due to the electromagnetic and
gravitational radiations, the simplest example is the spheri-
cal collapsing shell. To find the implication on WCCC
condition, we will consider the spherical thin-shell matter
afloat in the spacetime described by the metric (A3) with f
and g given in Sec. A up to OðciÞ.
The motion of the thin shell around a black hole obeys the

generalized Israel junction conditions [20], which can be
obtained from the Gauss-Codazzi equations. However, the
junction conditions for thin shell are in general highly
singular in the higher derivative gravity theories except for
the Gauss-Bonnet higher derivative term, see for example
[21–24] for discussions. To have the regular junction con-
ditions to yield sensible motion of thin shell, we need to
impose regularity conditions on the metric around the thin
shell. For more singular junction conditions, it means more
regularity conditions on themetric should be imposed so that
mostly it will yield only trivial solutions, i.e., no thin shell.
See Sec. C 1 for some discussion. Below we will only
consider the thin shell in Einstein and Einstein-Gauss-
Bonnet gravities.
The junction conditions for Einstein gravity are given by

[20] (set κ ¼ 2)

½Kμν − hμνK(J ¼ −Sμν; ðC1Þ

where Kμν is the extrinsic curvature, K ≡ Kμ
ν , hμν is the

induced metric on the thin shell, and Sab is the stress tensor
of the thin-shell matter. Here ½A(J denotes taking difference

of the quantity A on the both sides of the thin shell. Assume
the spherical thin shell is located at r ¼ rs with stress tensor
Sμν ¼ diagðρ; 0; p; pÞ, and evaluate the extrinsic curvature
with the metric (A3), the junction conditions give

½g(J ¼ −
rs
2
ρ; ðC2Þ

and

½ ffiffiffi
g

p ð2þ rf0=fÞ(J ¼ 2rsp; ðC3Þ

where f0 ≡ ∂rf. It turns out that the above junction
conditions involve only g, f, and f0. To have a finite jump
on the left sides of the above junction conditions, we only
need to impose the piecewise continuity of f at r ¼ rs to
yield sensible and nontrivial junction conditions. For this
purpose, we choose to rescale the coordinate time so that
the metrics on both sides of the thin shell are given by

fþðrÞ ¼ gþðrÞ ¼ 1 − 2
mþ
r

þ q2þ
r2

; ðC4Þ

but

1 − 2 m−
rs
þ q2−

r2s

1 − 2 mþ
rs
þ q2þ

r2s

f−ðrÞ ¼ g−ðrÞ ¼ 1 − 2
m−
r

þ q2−
r2

: ðC5Þ

Note that fþðrsÞ ¼ f−ðrsÞ. We assume the matter shell is
pressure-less, i.e., p ¼ 0, then the junction condition (C3)
can be turned into the following condition

m2
þ − q2þ ¼

"
rs −mþ
rs −m−

#
2

ðm2
− − q2−Þ: ðC6Þ

This condition implies that a sub-extremal black hole with
m2

− > q2− remains subextremal, i.e., m2
þ > q2þ even after

throwing a pressureless spherical thin shell. This is con-
sistent with WCCC.
Next we will show that the same condition also holds for

theEinstein-Gauss-Bonnet (EGB)gravity.Note that for EGB
gravity, we shall introduce the coupling cEGB of the Gauss-
Bonnet term,which is nothing but cEGB ¼ c1 ¼ c2 ¼ − 1

4 c2.
The junction condition for EGBgravity are different from the
one for Einstein gravity and are given by [21]

½Kμν − hμνK þ 2cEGBð3Jμν − hμνJ þ 2P̂μρλνKρλÞ(J ¼ −Sμν;

ðC7Þ

where

Jμν ¼
1

3
ð2KKμρK

ρ
ν þKρλKρλKμν − 2KμρKρλKλν −K2KμνÞ:

ðC8Þ

J ≡ Jμν and
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P̂μνρλ¼ R̂μνρλþ2R̂ν½ρhλ(μ−2R̂μ½ρhλ(νþ R̂ν½ρhλ(μþhμ½ρhλ(νR̂;

ðC9Þ

where the hatted quantities are the associated unhatted
quantities evaluated with respect to the induced metric
hμν. The novelty of the junction condition (C7) is only the
first derivatives of the metric are involved. Using the metric
(A3) and the induced metric for the spherical thin shell, we
can find that P̂μνρλ ¼ 0 and 3Jμν − hμνJ ¼ 0 even though Jμν
and J are nonzero.Based on the above, the junction condition
(C7) for EGB gravity is indeed reduced to (C1) for Einstein
gravity.Moreover, theGauss-Bonnet term is a total derivative
term so that it will not affect the field equation, and the black
hole solutions are the same as the one for Einstein-Maxwell
theory. In total, the junction conditionof theEGBgravitywill
still yield the same constraint (C6) for the spherical thin shell.
That is, the thin shell will not turn a subextremal black hole
into a naked singularity in the EGBgravity. This is consistent
with our result for EGB gravity as discussed in themain text.

1. No thin shell from a third-order junction condition

In [23] a set of third-order junction conditions for the
higher derivative gravity theories have been proposed. This
junction condition is obtained by collecting the singular
terms in the Gauss-Codazzi equations. For the quartic
action of gravity considered in the main text, the junction
conditions take the following form:

½Wμ
νρ(Jnρ ¼ 2Sμν ; ðC10Þ

where nμ is the normal vector of the thin shell, and

Wμ
νρ ¼ c1R;λð2δ

μ
νδλρ−gμλgνρ−δλνδ

μ
ρÞ

þc2ðR
μ
ν;ρþ

1

2
gμνR̂;ρ−Rμ

ρ;ν−R;μ
ρνÞ−4c3R

μλ
ρν;λ: ðC11Þ

After explicitly evaluating the left side of (C10) with
respect to the metric (A3), the result involves the terms
with g00 and f000. This implies that we need to impose the
continuity conditions ½f(J ¼ ½g(J ¼ ½f0(J ¼ ½g0(J ¼ ½f00(J ¼ 0
to yield a finite left side of (C10), thus a sensible junction
condition with finite Sμν. Since the junction condition
(C10) is already OðciÞ, thus the metric used to evaluate
the junction condition should be kept up to the leading
order only. Thus, the metrics on both sides of the thin shell
contain in total only four integration constants, i.e.,m) and
q). The above five continuity conditions are overcon-
strained on these integration constants and can be shown
only to yield trivial solutions, namely, mþ ¼ m− and
qþ ¼ q−. This implies no sensible thin shell for generic
quartic gravities.

APPENDIX D: DEPENDENCE OF rh ON m AND qj
NEAR THE EXTREMAL BOUNDARY

Suppose we havem and qj, andm ¼ mexðqjÞ is the mass
of extremal black holes, with black holes given by
m ≥ mexðqjÞ. Let us define μ ¼ m −mexðqjÞ. Let us also
denote rhðμ; qjÞ the horizon radius, with RðqjÞ ¼ rhð0; qjÞ
the radius of extremal black holes as a function of qj. Let us
first show that for μ inside an open neighborhood of 0,

rhðμ; qjÞ ¼ RðqjÞ þ
ffiffiffi
μ

p
ρðqj;

ffiffiffi
μ

p Þ ðD1Þ

with ρ a smooth function of its arguments. In GR, the
horizon radius is the greater real root of the quadratic
polynomial r2h − 2Mrh þQ2 ¼ 0,

r) ¼ M )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ðD2Þ

with extremal boundary given by the location of the
double root.
In modified GR, we can view the ðrh; μ; qjÞ relation in

two ways. We can directly write a condition of

Δðrh; μ; qjÞ ¼ 0 ðD3Þ

with extremal condition given by

∂rΔjRðqjÞ;0;qj ¼ 0: ðD4Þ

As we expand around μ ¼ 0, and write rh as an expansion,

rh ¼ RðqjÞ þ δrh; ðD5Þ

we have

0 ¼ ΔðRðqjÞ þ δrh; μ; qjÞ

¼ 1

2

∂2Δ
∂r2

&&&&
RðqjÞ;0;qj

ðδrhÞ2 þ
∂Δ
∂μ

&&&&
RðqjÞ;0;qj

μþ…: ðD6Þ

From this, we can reexpand δrh in terms of
ffiffiffi
μ

p
,

δrh ¼
ffiffiffi
μ

p Xþ∞

n¼0

αnðqjÞμn=2 ¼
ffiffiffi
μ

p
ρðqj;

ffiffiffi
μ

p Þ: ðD7Þ

Another way to write this, is to view Eq. (D3) as a
definition of μ in terms of rh and qj. In the GR case, we have

Mðrh; QÞ ¼ r2h þQ2

2rh
: ðD8Þ

For each Q, we generically have two values of rh that gives
rise to M—only the larger value correspond to the outer
horizon. Extremal black holes are whenM takes a minimum
at rh ¼ Q. In the modified gravity case, expecting the
structure of the problem to remain unchanged, namely the
fact that m is uniquely determined by rh and qj and the fact
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that m is a minimum when rhðqjÞ ¼ RðqjÞ. We need to
assume that when deviating away from the minimum, the
value of m depends quadratically on r − RðqjÞ,

μðr; qjÞ ¼ mðr; qjÞ −mðRðqjÞ; qjÞ ¼ ½r − RðqjÞ(2Fðr; qjÞ
ðD9Þ

with Fðr; qjÞ a smooth, nonzero function in an open
neighborhood of ðRðqjÞ; qjÞ. We can then write

r ¼ RðqjÞ þ
ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; qjÞ

p : ðD10Þ

This can be solved iteratively to yield Eq. (D1).
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