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Infalling matter may destroy a black hole and expose the naked singularity. Thus, Penrose proposed the
weak cosmic censorship conjecture to avoid such a possibility. On the other hand, if the black hole is not
destroyed by infalling matter, from the second law of black hole thermodynamics, the black hole entropy
should increase due to the information carried by the infalling matter. In this work, we demonstrate by
examples of perturbative near-extremal black holes in higher derivative gravity theories that the second law
implies weak cosmic censorship. We also compare our proposal to the one developed by Sorce and Wald
based on the first law of black hole thermodynamics and show that the latter fails to yield weak cosmic
censorship in such cases. Finally, we give proof of our proposal for generic gravity theories.
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I. INTRODUCTION

Black holes are the simplest objects predicted by general
relativity—with intriguing features. Even though black
holes have curvature singularities, around which tidal
gravity diverges and physical laws break down, in analytic
black hole solutions, these singularities are always shielded
by the event horizon [1]. Penrose further proposed [2] the
weak cosmic censorship conjecture (WCCC): the curvature
singularity will always be hidden behind the horizon for
generic black holes, i.e., no naked singularities. Another
intriguing feature is that the first and second laws of
thermodynamics govern black holes. Bekenstein’s conjec-
ture that a black hole’s entropy must be proportional to its
area [3,4] was substantiated by the theoretical discovery of
Hawking radiation, and the fact that this thermal radiation
has a temperature proportional to the black hole’s surface
gravity [5].

Naively, one shall expect the connection between WCCC
and the second law. As the second law requires, the entropy
of a black hole can never decrease. This prevents the

*Corresponding author: ningbo@scu.edu.cn
"fengli.lin@gmail.com
*yanbei@caltech.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023/108(4)/044025(15)

044025-1

appearance of a naked singularity. The proof for the second
law for Einstein gravity given in [6-8] can imply WCCC,
later more direct connection is discussed in [9]. However, a
demonstration for modified gravities is nontrivial, since, in
this case, the entropy follows Wald’s entropy formula
[10,11] but not the area law. Thus, the second law may
not ensure the area increase, and the above connection is
unclear. To ensure WCCC is a universal physical principle,
in this paper, we demonstrate such a connection explicitly
for modified gravities by showing that the WCCC follows
as long as the second law holds.

Wald started the demonstration of WCCC by gedanken
experiments that attempt to destroy the horizon by over-
charging or overspinning a black hole with infalling matter
[9,12]. For simplicity, we shall focus on overcharging non-
spinning black holes. Assume a family of electrovacuum
solutions to the gravitational and electromagnetic field
equations, parametrized by mass m and charge ¢ to describe
the configurations before and after the matter “falls in”. We
denote the condition for the spacetime to be a black hole, i.e.,
with a horizon that covers the singularity, by

W(m,q) > 0. (1)
The exact form of W(m,q) depends on the underlying
theory. For example, the (outer) horizon of a Reissner-
Nordstrém black hole is r, = m + +/m? —g*, thus
W(m, q) = m* — ¢* so that (1) guarantees a positive and
real r, thus the existence of a horizon.
The demonstration of WCCC is to show W(m +
Am, g+ Aq) > 0 given the initial mass m and charge g,
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for all the respective physically allowed changes Am and
Ag due to the infalling matter. Values of Am and Agq
depend on how the matter falls in and the underlying
gravity theory. Intuitively, the physical constraints on Am
and Ag should come from the laws of black hole dynamics.
Indeed, in [13], we have demonstrated that the first law of
black hole dynamics is a universal condition to guarantee
WCCC for extremal black holes in generic gravity theories.
For near-extremal black holes, Sorce and Wald [9] gener-
alized the first-law constraint to second-order variations
and showed that this could guarantee WCCC in Einstein-
Maxwell theory.1

One will face some challenges when trying to generalize
the approach of [9] to modified gravities. The main challenge
is to unambiguously define the canonical energy of gravi-
tational waves for modified gravity and the respective energy
condition required to ensure WCCC. Without such energy
conditions, one can only consider the spherical collapsing
with no induced gravitational wave. Moreover, in [9], the
canonical energy is evaluated by relating it to the black hole
entropy by the first law. Still, such a substitution is unclear
due to the ambiguity of canonical energy in modified gravity.

Indeed, we show that the approach of [9] fails to
demonstrate WCCC for the modified gravities. To bypass
the aforementioned challenges and remedy the resultant
failure, we propose demonstrating the WCCC with the
second law. Our proposal does not need canonical energy
or conditions for matter and gravity. All we need is Wald’s
formula for black hole entropy. In Einstein’s gravity, the
first law and energy condition can guarantee the second
law, but it is unclear for modified gravities. The result
obtained here may also shed some light on this issue.
Finally, before we proceed, we shall emphasize the dem-
onstration is not a tautology. Although the existence of
entropy is the premise of the second law, itself does not
guarantee the WCCC condition (1), since a decreasing
entropy would indicate naked singularity in general rela-
tivity according to [9]. Thus, our demonstration is a
consistency check in the same spirit of [9].

II. WCCC CONDITION IN HIGHER DERIVATIVE
GRAVITY THEORIES

We consider the general quartic-order corrections to
Einstein-Maxwell theory, which is given by the following
Lagrangian:

1

L:Z(R_ uvpe

+ c4kRF, F" + ¢skR, F*PFY ) + c6kR,,, s F* FP°
+ 7K F  F*F ) FP° + cgk*F, FF , F¥, (2)

1
1 FuF" + 1R 4 R R™ + ¢3RRI

'Christodoulou proved that naked singularity can occur in
Einstein-scalar system though is unstable, hence the cosmic
censorship is still preserved [14].

where k = 8zGy, which will be set to 2 below, and ¢;’s are
dimensionless constants. From the point of view of
effective field theory, the above higher derivative theories
can arise naturally from quantum corrections. Thus, some
of these theories can be the genuine description of low-
energy black hole dynamics but remains experimentally
elusive due to smallness of ¢;’s. If WCCC is a fundamental
principle for protecting the predictive power of theory, it
should also apply to generic effective field theories of
gravity.

To study WCCC, we first generalize the perturbative
method of [15] to solve the charged black hole solutions up
to O(c;c;) with i, j=1,--- 8.2 Based on these solutions,
we can find the following W(m, q) for (1),

4 128¢2 2
_ o C4+...> (3)

5¢>  214*
with co=cy, +4c3+c5+cg+4c7+2¢c3, and -
denotes the other O(c;c;) terms. For simplicity, below
we will only show the result for the case with nonzero ¢, as
a demonstration. The other cases with nonzero c;4 can be
found in Appendix A. Besides, the black hole entropy can

be obtained by Wald’s formula [10,16], and it yields

W(m,q) = m*> — ¢* (1

1
S(m, Q) = —271'14;, —5 — 4ClR — 462R”' + 8C3Rrvrv
+4(2¢4 + ¢5 4 2¢)F™F™ |, (4)

where the area of the horizon A, the curvatures, and field
strengths are evaluated by the on shell solution.

ITII. CHECK WCCC IN WALD’S GEDANKEN
EXPERIMENT BY SECOND-LAW CONSTRAINTS

To follow Wald’s gedanken experiment, we consider
charged matter falling through the black hole’s horizon
within a finite time interval. Then, the black hole and the
infalling matter are settled to a final stationary state
belonging to the same family of solutions, either a new
black hole or a naked singularity. The scheme is shown
in Fig. 1.

As argued by Sorce and Wald [9], for a near-extremal
black hole WCCC might be violated from first-order con-
siderations [17], but in fact is preserved at second order.
Therefore, we need to consider the variations of m and ¢
caused by the infalling matter up to the second order. Here we
outline the steps of checking WCCC upon the second law of
black hole (thermo)dynamics, which basically require that
the entropy difference between B and B* due to infalling
matter through H (see Fig. 1) is nondecreasing.

*The detailed solutions can be found in Appendix A.
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FIG. 1. Wald’s gedanken experiment by throwing the charged
matter into a black hole. The infalling matter crosses the horizon
‘H within a finite time interval.

Let us consider an initial black hole with (m, g), with a
one-parameter family of infalling matter, finally settling
down to a new solution with

282 252
m(A) = m+ Aém + 2m’ q(A) = g+ A6q + R

(5)

Here we keep mass and charge increases up to second order
in A. We shall also restrict ourselves to nearly extremal
black holes, and for the moment only consider c4. The
initial black hole is second order away from being extremal,

128¢3
q= l—ez(m—zlmgl). (6)

Similar to Sorce and Wald, we shall assume ¢ and A to
be of the same order of smallness, and check whether
W(m, q) > 0 is satisfied up to second order. More specifi-
callyy, we need to check whether constraints on
(6m, 8q, 6*m, 5°q), arising from

§(m(4),q(4)) = S(m. q) (7)

will guarantee W(m + Am, g + Ag) > 0.

Since we will consider up to second-order variations, we
assume the first-order variation due to the infalling matter
to be optimally done with the second law being satisfied
marginally,

oS oS
8S = ——6m +—8q = 0. 8
om "t 5% (8)

Solving this condition gives a relation between dm and 6q.
For the ¢4 case that we show explicitly, it yields

64(2 + 1098€)ci
Tm*

om=|l—¢e— 5q+ O(e*). (9)

For extremal black holes, we have € = 0, up to O(c;), we
can truncate the terms of O(c?) in the above to show that
the first law 6S > 0 gives

4
sm > (1 +"g>5q. (10)
5q

This is just the WCCC condition for the extremal black
holes, as demonstrated in [13] via Sorce-Wald.

Let us now consider second-order variations due to the
infalling matter such that the second law holds, i.e.,

S *S S
88 = —— (6m)* 42 ombq + — (8q)>
o2 O+ omog " q+aq2( q)
S S
—&m +—086%q > 0. 11
Fomdm 5,702 (11)

For the ¢4 case, combining this equation with (9), we obtain

1- 256(1655 — 17372¢ + 33099¢?)c2
Em > [ €y ( €+ € )04] (59)>

m 21m?

2 64(2 + 1098¢ — 8815¢2)c2
—l—[l—e—l—%— 2+ < 6)04]5251.

Tm

(12)

This leads to

256¢2 211072¢2 2
W(A) = 4 _ Al1+=—4)s
@ (e(zlnﬁ ’">+ < TP >q>

+0(c3, €%, 23), (13)

where the O(cj, e, 4%) denotes the higher-order terms
which will be omitted later for simplicity. Thus, we can
conclude that WCCC is preserved by the second-law
constraints up to O(c?). If we consider W(4) only up to
O(c;), it takes a simple but not positive definite form

8
W(A) = (em — 15q)* + s (em — 26q)
X (co(em +346q) + 10ccAdq) + O(cic;).  (14)

Completing the square of (14) requires O(c;c;) terms. This is
why we need to use the near-extremal black hole solutions up
to O(c;c;) to check WCCC. This is in the same spirit as
invoking second-order variations in [9] to remedy the earlier
mistake of [17] in checking WCCC. The check of WCCC for
the other cases with c;z4 and the case of ¢, and c4 can be
found in Appendix A. All results are consistent with our
proposal that the second-law constraints imply wcec?

3Especially, the Einstein-Maxwell-Gauss-Bonnet theory with
¢ = ¢3 = — ¢, gives no contribution to the O(c;) term of (14),
thus preserving the WCCC. We demonstrate this by the spherical
thin-shell collapse in Appendix C.
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Finally, due to the complication of solving the rotating
charged black holes with ¢; corrections, we do not check
the WCCC for such cases. However, it is straightforward to
check WCCC by our second-law formalism for Kerr-
Newman black holes with its spin denoted by j in
Einstein-Maxwell theory and the result is

(j* — m*)qdq — 2jm*§j
m(m* + j?)

W(A) = < /1+m€>2—|—(9(€3,/13).

(15)

The form of (15) is exactly the same as the one in [9]. This
shows that our second-law proposal yields the same WCCC
result as ensured by the first-law one of Sorce-Wald.

IV. COMPARISON WITH SORCE-WALD
FORMALISM

For comparison, we will show that Sorce-Wald formal-
ism fails to yield WCCC for the modified gravities
considered above. Sorce-Wald formalism [9] uses the
first-law constraints to check WCCC. At the second-order
variations, one needs to take into account the energy
contribution from the induced gravitational and electro-
magnetic waves, which makes the problem technically
involved. For simplicity, we assume the infalling matter is
spherical symmetric so that no such waves will be induced.

Our steps outlined earlier to verify WCCC are inspired
by the Sorce-Wald formalism. The only difference is that
we shall replace the second-law constraints by the first-law
ones. The latter take the following general form [9,18]

8"mapm — Py (8" qu + 6"qp) — Tyd"Sp
— 5,Ex (30, Loth) - A £ upead T,
> 6,285 (s 66, L). (16)

Here n = 1, 2 is the order of variation, & is the timelike
Killing vector of the background metric, and ®y =

—&"A,|,—, is the chemical potential on the horizon. We
+

have used the energy condition on the stress tensor 6" 7', of
the infalling matter to arrive the last inequality. Sorce-Wald
assumed no matter around the bifurcation sphere B of Fig. 1
so that the variations of charge and Wald’s entropy vanish,
i.e., 0"gp = 0"Sp = 0. On the other hand, when consider-
ing the standard first law without source perturbation, we
will instead set 0"qy = 0"T,, = 0.* The higher derivative
corrections to Einstein-Maxwell theory cannot affect the
Arnowitt-Deser-Misner (ADM) mass mpy; and the charge
gy of the black hole due to their higher powers of 1/r
suppression. This implies §"mapy = 0"m and 8" gy = 5"¢q

“In Appendix B we check the first law for n = 1 for the black
holes considered in this work.

as in Einstein-Maxwell theory. The gravitational energy s
on the Cauchy surface ¥ = H U XZ; of Fig. 1 is the self-
gravitating effect, thus is absent for n = 1. Moreover, since
no wave is induced around H, & = &y, .

Assume the first-law constraint of n = 1 is optimally
done, i.e., om — ®yog = 0, for the ¢, case, it explicitly
gives

64(2 — 22¢)c2

om=|1—¢e— 1 oq+ 0O (17)

Tm

which is different from (9) at O(ec3). To evaluate £y, when
considering the n = 2 case, Sorce and Wald assumed that
the late-time perturbation d¢ approaches a stable linear on
shell configuration §¢'""**, and one can apply (16) of n = 2
on X, with 8*>m = 6*g = 0 so that

52, (60, £§¢) = 52, (¢§5¢Imearv £§¢) = —TH52S*, (18)

where T, is the Hawking temperature’ of the initial black
hole, but the variation of Wald’s entropy §°S* is evaluated
at B* of Fig. 1 with respect to ¢ + 8¢, By construction
828* = 5°5*(6m, 5q), hence the n = 2 first-law constraint
now takes a second-lawlike form

1
528" (6m.8q) + = (m — d’q) 0. (19)
H

With the help of (17), for the case ¢, we show explicitly,
(19) gives

1—e 256(1285-9088¢+33261€%)c?
Sm> { € 256( €+ € >C4] (59)?

m 21m
€2 64(2—=22¢+ 145622
+ [1—e+3— ( o ) 4} 8q, (20)

which is different from (12) at O(c2?). Based on (17) and
(20), we can evaluate W(m(4), g(4)) for the case ¢, and the

result is
161024¢2 1652482 2
W) = — 4 “A1-——2)s
() (6( 20m? +m) < 20m? >q>
15360622
- 4 (21)

which cannot be completed the square at O(c3) to protect
WCCC. Similar results for the others cases of ¢; .4 and of ¢,
and ¢4 up to O(c;c;) can be found in Appendix A.

To conclude our work, in the following we outline a
general proof of WCCC based on our second-law proposal.

>Due to our convention for m and q by a scale factor 1 /47, here
Ty is the scaled Hawking temperature by the same factor.

044025-4



WEAK COSMIC CENSORSHIP AND THE SECOND LAW OF ...

PHYS. REV. D 108, 044025 (2023)

V. PROOF OF WCCC IN GENERAL

Suppose we have m and g;, and m = me(q;) is the mass
of extremal black holes, with black holes given by
m > mey(q;). Let us define yu = m — me(q;), which enc-
odes the (deviation from the) extremality condition. Let us
also denote r,(u,q;) the horizon radius, with R(q;) =
r1,(0, g;) the radius of extremal black holes as a function of
gj- In Appendix D, we argue that for x inside an open
neighborhood of 0,

(ks q;) = R(q;) + /ip(q;, /1) (22)

with p a smooth function of its two arguments. Suppose
a quantity like the Wald entropy can still be defined in a
modified theory of gravity, and that it is expressed as a
smooth function of r;, m, and qj- Of course, we can also
express itin terms of m and g, but that expression may not be
infinitely smooth in an open neighborhood of the extremal
boundary. Let us write

S:S("mﬂ,%) (23)

with dS/0r;, # 0. For example, the S defined in (4), is of this
form. Since A = 4zr7, and the correction terms are expected
to be much less than unity, 0S/0r;, is nonzero. For a family of
solutions parametrized by 4, we require that S(1 > 0) >
S(42 = 0) still holds, as a generalized second law of black
hole thermodynamics.

Let us now start from a configuration with (u,q;) =
(€2.450), with ¢ > 0 a small quantity, and deviate away
from it with

12
=€ —|—5,uﬂ+52,u3, (24)

/12
QjZCIjO+5Qj/1+62QjE' (25)

Note that the deviation from the extremality is O(e?). We
will treat ¢ and 1 as quantities with the same order of
smallness, and use the fact that dS/dA and d*>S/dA* should
be finite at 1 = 0, as ¢ — 0. For dS/dA, we have a leading
contribution of

ds
dA

as p

~——5yu, 26
1=0 drh 26 H ( )

where we have used u = € for A = 0. Here in order for
dS/dA to be finite, we will require Sy ~ €. Inserting this into
the second derivative, we obtain

P25 Lo5)0S
~— o u—=0 —_—. 27
1=0 263 (6 K 2 K ) ()rh ( )

os
d)?

From 0S/0r;, # 0 and since Su ~ e, this term above is ~1 /¢
unless

p==. (28)

Inserting (28) back into (24), we obtain

22ou? SuA\ 2
p=eran+ 0= (ex 20 )

This ensures that y stays positive and WCCC holds. Due to
lack of the explicit form of S, in the above proof we have only
considered the marginal case of the second law, i.e.,
8S = %S = 0. However, in the explicit examples considered
above, we do not need to require the regularity of 6>, so that
we can consider the nonmarginal cases, i.e., 8>S > 0.

The notion of black hole entropy S is well-defined only if
the event horizon exists, i.e., y > 0. This is not assuming
what we want to show, as can be understood from the
following perspective: for sufficiently small perturbations
of a nonextremal black hole, the solution will certainly have
a horizon; we can calculate the change in the entropy to the
second order in this regime, and use this to show that at this
order in perturbation theory u is positive. Moreover, the
second law should be manifested from the underlying
dynamical theory. The validity of our proposal implies that
WCCC is guaranteed dynamically. The nontrivial part of
the proof is that the variation oy due to the infalling matter
is O(e) but the initial deviation from the extremality bound
is O(e?). It seems that the WCCC can be easily violated,
but in fact it is not by requiring the second law. This is in the
same spirit of the first-law approach by Sorce-Wald, in
which the variation of entropy is assumed and used to
evaluate the canonical energy.

VI. DISCUSSION

WCCC is important to protect a gravity theory from the
pathology of naked singularity. In this work we propose
and show that the second law of black hole thermodynam-
ics ensures WCCC due to the peculiar dependence of the
entropy on the extremality condition, and we explicitly
demonstrate our proposal for a general class of quartic
theories of gravity and electromagnetism.

Naively, we expect to arrive the second law by the first
law along with the energy condition of the infalling matter
in Wald’s gedanken experiment, however we find that this
is not the case for our near-extremal charged black hole
solutions in higher derivative gravity. In Appendix B we
show that the n =1 first law is apparently violated at
O(c?). This might be related to the gauge issue of Wald
formalism. For gravity theory with fields with internal
gauge freedom, one will expect the first law to be gauge
invariant, however the chemical potential ®5 depends
explicitly on the gauge choice. This ambiguity may cause

044025-5
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subtlety when applying the Sorce-Wald formalism straight-
forwardly to higher derivative gravity. The framework
developed by Prabhu [19] using the principal bundle might
be helpful to clarify this issue. On the other hand, since the
entropy is gauge invariant, we can define the chemical
potential as well as the Hawking temperature in terms of the
variation of the entropy to derive a gauge invariant first law.
This is just what we have done in our second-law approach.
For general nonspherical collapsing case, the construc-
tion of the canonical energy would be quite involved in
higher derivative gravity, and is crucial to check the second-
order first law without source perturbation. Thorough
treatment on this issue is expected for future study.
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APPENDIX A: CHECKS OF WCCC FOR
QUARTIC DERIVATIVE THEORIES OF

checking WCCC via both the second-law and the Sorce-
Wald formalism.

1. ¢; case

The second-order solutions are solved by extending the
procedure in [15] to O(c;?). For the Lagrangian

1
L=—R-

= (A1)

1
1w+ cR?,

the solution is just the same as the one in Einstein-Maxwell
theory, since the Ricci scalar R of the unperturbed back-
ground is vanishing hence gives no contribution to the
higher-order corrections of energy-momentum tensor. The
check for WCCC is also the same as in Einstein-Maxwell
theory.

2. ¢, case
For the Lagrangian
1 1 » "
L = 2—KR - ZF”UF + CZR/M/R . (A2)

the charged black hole solution turns out to be of the form

2
GRAVITY AND ELECTROMAGNETISM ds® = —f(r)d* + % +2dQ (A3)
r
We show the explicit forms of the second-order pertur- g
bative solutions to the higher derivative theories with only
one c¢; is turned on, as well as the corresponding details of  in which
|
2 2.2 3,2 3.4
Km  kq 2k°q°  K’mq- Kq
B T i 2 _ _
) Pt 2r? + C2< r + r 5r° >
48i3q>  80k*mg*  32kK°m’q>  240k*q*  51Kmgt 68K7¢°
+eo? 6q_ 7q+ 8q+ sq_ 9q 16(1) ; (A4)
r r r r 2r 15r
2 2.2 3,2 3 4
Km  kq 4kcq= 3x’mq- 6K q
= 1 —— —_— - -
9(r) + 22 CZ( rt + r 570 )
14413 q>  304x*mq®>  160°m?>q>  1192k*q*  351°mqg* 704k q°
+ e 6q_ 7q+ g ! sq_ 9q 1(? (AS)
r r r Tr 2r 15r
with the gauge potential
2.3 33 4,3 4.5
_q K°q , (48’q”  8k'mq’  9x'q
A= T te < w8 + 2r0 )" (A6)

For simplicity we set k = 2 in the following. The existence of double root for either f(r) = 0 or g(r) = 0 determines the

extremal condition
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4c 8c,2
m=lgl(1-—=>-2). (A7)
5q¢- 2lq

or

4C2 1366'22
= 1+—=- . A8
i m( T 502 T 525w (A8)
The location of the horizon is also modified compared to the black hole solution in Einstein-Maxwell theory,
dcrg*(q? = Smry + 512
o 2t (q3 0~ o)
5ri(mrg — q*)
___ 8a'd (4571¢° + 5¢°r (33067, — 6881m) + 4200m>ri(3r2 — 10mry + 8m?)
525r)(mry — ¢*)? 0 0 0370 0
(A9)

—75mq*r3(294r3 — 1262mry + 1197m?) + 5¢*r3(1995r3 — 14004mry + 17269m?)),

in which ry = m + \/m?* — ¢*>. The Hawking temperature could be obtained by the vanishing of the conical singularity for

the corresponding Euclidean black hole,

mry — q* B 2¢,q%(3¢* — 4mry) (6> — 10mry + 5r(2))
Sxrl(mry — g°)

T p—
1 2rry

4c22q2
2458404¢'° — 4¢%r,(392462m — 84765
525zt (mry — ¢%)? ( 4 970 n o)

2q%r}(20104m? — 14216mr, + 2275r3)

— 8400m*r}(88m? — Tdmry + 15r3) + 150m>q°r}
— 50mq*r3(97916m* — 54966mry + 6195r3) + ¢°r3(3943072m* — 1575720mry + 93975r3)).  (A10)
To obtain the Wald entropy, we first recall the Wald’s formula [10,11]
oL
S = —ZT[Amé‘”DEpD. . (All)

in which A =4zr), is the area of the horizon. For convenience we will introduce the null coordinate, i.e., define

dv = +\/f/gdt + dr/g, the metric (A3) then becomes
ds* = 2dvdr — g(r)dv* + r*dQ, (A12)

and the gauge potential Aﬂ in the null coordinates are

~ ~ 1
Ay = %Alv Ar = - EAI (A13)
The Wald’s formula then straightforwardly gives rise to
(A14)

1
S = —ZﬂAh <—— - 4C2Rry> .
K

which turns out to be
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32c,7%q* (64 — 10mry + 5r3)

S = 4a’r}
TSR e - )

64 2 2 2
2T (419728 + 3240ry(1245r, — 6503m) + 4200m2r4(312 — 16mry + 23m?)
525r8(mry — ¢*)?
— 75mg?r3 (30172 — 2256mry + 4200m?) + 20g*r2(525r2 — 7134mry + 19243m?)). (A15)

For near-extremal black holes, we introduce a small parameter ¢ to characterize the solution in such a way

lq] = 1—€2m<1 +§% ;2;{?) (A16)
Assuming that the first-order variation is optimally done, i.e., the second law is satisfied marginally
0S =0, (A17)
we obtain the following relation
om = 5q(1 —€e+ 22 + 52022 (2 +4e—27€%) — 175 7} (6 + 8936¢ — 88661¢ )) (A18)
The second-order variation which satisfies the second law
#S>0 (A19)
gives rise to the inequality
&*m > L (6q)* + &°q — de 7 (8(8g)* — mé*q) + 8¢)” (27416(5g)* — 9Ims*q), (A20)
m 5m? 525m>
in which we have plugged in the relation (A18). From (A7) we know the WCCC is hold if
W(m,q) = m? _q2<1 —:—;;—z:i)z > 0. (A21)

To check (A21), consider a one-parameter family of solutions with m = m(1), ¢ = ¢(1). Expanding W(m(4), ¢(4)) to
0(22) and using (A16), (A18), and (A20), we finally get

8
W(A) > (em — 18q)* + 5—022 (em — 18q) (em + 315q) + (2 2m? — 3351eAmdq + 343312(59)),  (A22)
m

4c,
525m*

which could be recast to a perfect square

W) >

4cy  104c,> 12¢,  108344c,2
€ —All

2
- 5q| + 0(cr?), A23
" S T Sme Sm2 | 525m° )q] +0(e) (A23)

hence W(4) > 0 and WCCC is preserved up to O(c,?) by the second law.
On the other hand, according to the Sorce-Wald formalism [9], the first-order variation is optimally done when

sm = ®,5q, (A24)
from which we obtain the following relation

2 2C2
ém =6q| 1 e+ +F(2+4€_27€)

75 4(6—|—536e—4661€ )> (A25)
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which is slightly different from (A18) at O(c,?). The second-order variation inequality,
2 2 TH o o
o'm—®,6°q > ——5°5%, (A26)
4r
combined with (A25) gives raise to

1 4¢ 8¢,2
Fm > —(8q)* + 8q — —5 (8(59)> — m&*q) — —2
m_m(q) +6%q 5m3((‘1) mé*q) 55

— (10384(59)* + 9ms*q), (A27)

which is also different from (A20). Then W(4) turns out to satisfy
2
2

8 64
W(A) > (em — 16q)* + % (em — 25q)(em + 348q) + c
Sm 525

7 (2¢?m* — 201eAmédq — 12922%(5¢)*).  (A28)
m

The above expression could not be rewritten as a perfect square up to O(c,?), as could be checked by examine the
discriminant of the coefficients of A as in a quadratic equation. The best we can arrive is

4 50296¢,> 12 42856¢,> 2 192¢%c,?
W(/I)Z[€<m+ﬁ+ﬂ>—/l<l ﬁ_icz>5q] ot (A29)

Sm ' 525m? T sm?> 525mt m?

hence WCCC is not guaranteed by the Sorce-Wald formalism.

3. ¢3 case
For the Lagrangian

11
L =3 R= FuF*" + 3Ry R, (A30)

the solution is

2 2.2 3,2 3 4
km  Kq 8k“q~ | 4x’mg”  4Kkq
= 1 _—— -5 - -
f(r) +2r2+ 3( A + 5 5,0 )
b 768k q? 3 1280x*mq> n 512K°m?q? n 3840kt g* 3 408> mg* 1088k ¢° , (A31)
; 0 r’ 8 7r8 r 15710
P 2,2 3, 2 3 4
km  Kkq 16x*q*>  126°mqg*  24k3q
= 1 _—— - - -
9(r) toete ( R 5r°
(B 4864 mg® | 25606 Mg | 19072 g 2808c mg* | 11264x°¢” (A32)
C3 70 r! re 78 P 15710 ’
g q 768K°g’ _128k'mg’ | T2k’
A =-9_ - 4 32< T + 5 ) (A33)

The check for WCCC condition is straightforward just like the previous case, hence we just give the final result. The second
law again gives raise to a perfect square

16¢;  1664cs2 48¢;  927104¢,?\ _ 12 \
W(A) > oG —af1- 5q| +0(cs?), A34
@)z [€<’"+ S5m 525m3> < sn2 T sasm® )%4] O (A34)

while the Sorce-Wald formalism gives
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W) 2 +0(cs?).

16c; 401536¢52 il 48c; 282496¢52 2 1536€%c;?
el m - - - -
Sm 525m? 5m? 525m* m?

4. ¢4 case

For the Lagrangian

11
L =3 R= FF* + ckRF,, F*.

the solution is

fr)=1-—+5+c A 5 /6 7,8 9 3,10

km kg (4K2q2 6K>mq? n 43 q4> b ( 32tgt 6dmgt 323 q6>
- il - ;
r

km  Kq* N (_ 16x%g? N 1413 mg? B 6K36q4) Lol <1088K4q4 126> mg* 152](‘56]6)’

r P 78 P 3710

2k g3 576K3¢°  96k*mq®  50k*g°
At:—z—C4—5q+C42 7q - 3 9 + 9q .
r r Tr r r

The second law gives raise to a perfect square for the WCCC condition

256¢,2 211072¢42 2
s =255 4+

while the Sorce-Wald formalism gives

161024c,> 165248¢,> 2 15360€%c,?

5. ¢5 case

For the Lagrangian

11
L= R=F,F" + cskR, PP F",,

the solution is

km  kq> Kmq®  43qt 4ol 12K4q4+91c5mq4 164> q°
S5 ) TS\ TS TS T a0 )

r I 5r°

km  Kkq* 6K2q>  5K3mg*  11k3q* , (548k*q*  139°mg* 284k ¢°
o R i +cs + ,

7 27 9,10

A==1-06 5r T 7r7 r 6r°

q K*q’ 5 (481<3 g 8k*mg’ N 43K4q5)
. )

The second law gives raise to a perfect square
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dcs  11512¢52 12c5  2469832c¢5> 2
W(2) > ) = 1- b) 0(cs?), A46
@)z [€<m+ Sm . 1575m3 s T Tas7snr)%4| +OLes) (A46)

while the Sorce-Wald formalism gives

W(2) >

+ 0(cs?). (A47)

Sm 1575m3

4cs  1802888cs? 12¢5  1763768¢5> 2 2304€%cs?
e\m+—+—_—c= |- ANl-F—5- 1 -
Sm 1575m m

6. c¢ case

For the Lagrangian

11
L=—R—-F,F" + cekR

2 4w FHPFPe, (A43)
K

HUpo

the solution is

2 2.2 3,2 3.4
Kkm  kq 2k°q°  K’mqc K°q
f<”>—1‘7+ﬁ+"6(‘ AT T sr6>
L2 - 320x*mq? n 128> m? > + 530k q* : 411 mg* 3 4713 g8 (A49)
‘ 7r7 7 7 1477 15710 )
2 2.2 3,2 3 4
Km  kq 8k-q* Tx’mq- 16K°q
9 =1 ‘7*?”@(‘ e
e 320x*mq? N 2048k m>q> N 43524 q* B 1413 mg* N 3976k ¢° (A50)
‘ rl 7 7 2r° 15710 )
q 2Pmg 9% q? 5 64i*m?q  160°q>  216*mq®  9x*qd
A =—= - - - - . A51
! r + c6< rt * 5 < 7r 7r + 7r8 107° ( )
The second law gives raise to a perfect square
dcg 10504c¢4> 52¢cq  1850344c4? 2
w2 [e <m T Tmf) - /1<1 - sz‘6 LT : )661] +0les’) (432
while the Sorce-Wald formalism gives
dcg  1199096¢> 52¢  972056¢> 2 4608’ cq> 3
> BAL Tl ) - - - 3.
W) = €<m+ 5m T 525m] L= ™ " 505m? T Ools) (AS3)
7. ¢ case
For the Lagrangian
1 1 uy 2 uv po
L:ﬂR_ZF/“’F + ek F FM"F , FP7, (A54)
the solution is
2 4 3 4 128 2..5,6
fr=gn=1-242 20" 4 T (A55)

ro 212 5r6 9r10
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16¢,k2g>  256¢:%k*q°
At:_ng 7SQ_ 79‘1‘
r 5r 3r

(A56)

In this case, the second-law and the Sorce-Wald formalism
give rise to the same perfect square

16 48256¢,>
W(1) > [e(m Ty & )

S5m o 225m’
48¢c;  236416¢;> 2
-al1- 12 O(c7%).
< st T 2asme)%) T O
(A57)
8. cg case
For the Lagrangian
1 1 " 2 vp o
L= ﬂR _ZFMUF + esk"F FPE o FoF, (AS8)
the solution is
2 3 4 25,6
- B @ ﬂ 2C8K q 3268 K q
f(r)=g(r) = ’ + 2,2 576 + 9rl0 7
(A59)

q 8cgk’q®  64cg’ktgd

A= r 5 3/

(A60)

In this case, the second-law and the Sorce-Wald formalism
again give rise to the same perfect square

808 120646’82

W(A) > . P i
)z [e(m+5m 225m3

24cg  59104c4>

2
Al 11— 3. A61
/1< 5m2+ 25 >5q] +0(cg’). (A61)

9. ¢, +c¢4 case

We also consider the case with both ¢, and ¢, terms are
turned on, i.e.,

11
L=—R--F

5 R =3 FuF" + ;R R™ + cikRF, P,

(A62)

the solution for which is a bit tedious, hence we just show
the final result for WCCC. The second law still gives a
perfect square

dcy, 8% (13¢,% +800cy?) 12¢, 8 x(13543¢,2 +193200c, ¢, +659600c,2) 2
W) > —=— A 1= S5 O(c?),
()2 €<m+5m 525m3 smZ 525m° 9| +0(cr)
(A63)
while the Sorce-Wald formalism gives
W) s |e(m s 4ey 8 x (6287¢)" + 1134003c2c4 + 503200¢,42)
m 525m
Y 12c22 N 8 x (5357¢,% + 1134005204 + 516400¢,2) 50 2
Sm 525m
192¢2(cy2 + 18 80c,?
_192eT(er” + a4 T 0 ) 06, (A64)

m

APPENDIX B: CHECK OF FIRST
LAW UP TO O(c;)

The standard first law of black hole thermodynamics
without source perturbation is to set 8"qy = 6"T,, = 0 in
Eq. (16) of the main text. That is,
8"mapm — Pud"qp —Tpd"Sp = 0,,E5 (64, Lep).  (B1)
Since we do not have the explicit form of the canonical

energy Ex(¢; 6, Le¢p), we will check only the n = 1 first
law for the black hole solutions considered in this work. As

argued in the main text, the higher derivative corrections will
not affect the relation 6\, = 0" m due to the higher powers
of 1/r suppression at infinity. For 8"qz = 6" ([} €apcaS?)
with §% = F 4+ O(c;), we can either evaluate g, at the
bifurcation sphere B, i.e., g5 = /¢"g"r*S,l,_, , or at
spatial infinity by adopting Gauss theorem and the no-source
assumption, it is then straightforward to see 6"¢qp = 0"q.
Therefore, the n = 1 first law implies

0
o, %8 _

= 0. B2
()q+ HS (B2)
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For all cases of black hole solutions up to O(c?) considered
in the main text, we find that

A1 =0+ O(c}). (B3)
The O(c?) terms are finite in extremal limit. For example, for
the ¢, case,

) 15367%(1 — 8¢ + O(e?)) ,

A§02 M3 C2 + O(C?)’

(B4)

where € is the small nonextremility parameter.

From the above, we can conclude that all the black hole
solutions considered in this work satisfy the n = 1 first law
upto O(c;). This factis crucial in [ 13] to prove the WCCC for
the extremal black holes of generic gravity theories by the
Sorce-Wald formalism. The O(c?) violation for the n = 1
first law should be responsible for the failure of the Sorce-
Wald formalism to yield the WCCC for near-extremal black
holes as discussed in the main text. The check of n > 2
sourceless first law for modified gravity theories is beyond
the scope of this work because it needs the explicit con-
struction of the canonical energy.

APPENDIX C: IMPLICATION ON WCCC FROM
AFLOAT SPHERICAL THIN SHELL

Since we are considering the spherical collapsing to
avoid the complications due to the electromagnetic and
gravitational radiations, the simplest example is the spheri-
cal collapsing shell. To find the implication on WCCC
condition, we will consider the spherical thin-shell matter
afloat in the spacetime described by the metric (A3) with f
and g given in Sec. A up to O(c;).

The motion of the thin shell around a black hole obeys the
generalized Israel junction conditions [20], which can be
obtained from the Gauss-Codazzi equations. However, the
junction conditions for thin shell are in general highly
singular in the higher derivative gravity theories except for
the Gauss-Bonnet higher derivative term, see for example
[21-24] for discussions. To have the regular junction con-
ditions to yield sensible motion of thin shell, we need to
impose regularity conditions on the metric around the thin
shell. For more singular junction conditions, it means more
regularity conditions on the metric should be imposed so that
mostly it will yield only trivial solutions, i.e., no thin shell.
See Sec. C1 for some discussion. Below we will only
consider the thin shell in Einstein and Einstein-Gauss-
Bonnet gravities.

The junction conditions for Einstein gravity are given by
[20] (set k = 2)

K

/w_h

/wK]J - _SMU’ (Cl)
where K w is the extrinsic curvature, K = K%, hﬂ,, is the
induced metric on the thin shell, and S, is the stress tensor
of the thin-shell matter. Here [A], denotes taking difference

of the quantity A on the both sides of the thin shell. Assume
the spherical thin shell is located at r = r, with stress tensor
Sy = diag(p,0, p, p), and evaluate the extrinsic curvature
with the metric (A3), the junction conditions give

ol = =50, (&)
and
(Va2 +rf'/f)]; = 2r,p. (C3)

where f'=a,f. It turns out that the above junction
conditions involve only g, f, and f’. To have a finite jump
on the left sides of the above junction conditions, we only
need to impose the piecewise continuity of f at r = r, to
yield sensible and nontrivial junction conditions. For this
purpose, we choose to rescale the coordinate time so that
the metrics on both sides of the thin shell are given by

2
m q
fin =g n=1-224L (c4)
but
1-2m 4 & m P
T r2 -, 4=
=9 =1 -2t (C5)
-2+ r
Note that f (r,) = f_(r,). We assume the matter shell is
pressure-less, i.e., p = 0, then the junction condition (C3)
can be turned into the following condition

re—mg\?2
mi—qi = (rs_m+> (m2 —q2).
s — MM

(Co)

This condition implies that a sub-extremal black hole with
m% > g% remains subextremal, i.e., m% > g% even after
throwing a pressureless spherical thin shell. This is con-
sistent with WCCC.

Next we will show that the same condition also holds for
the Einstein-Gauss-Bonnet (EGB) gravity. Note that for EGB
gravity, we shall introduce the coupling cggg of the Gauss-
Bonnet term, which is nothing but cggg = ¢ = ¢, = — % c.
The junction condition for EGB gravity are different from the

one for Einstein gravity and are given by [21]

(K, — K + 2568 (37, — hyd + 2P, KP9)], = =S

HpAv Hy»
(C7)
where
1
S = 3 (ZKKﬂﬂKﬁ + Kplle/lKﬂu - 2KM,0K/MK/1’/ - KZKW)'
(C8)
J=J! and
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p Hepd = kﬂvpﬂ + 2IA?DL,,h,1],, - 2RﬂLf)h/l]v + kv[ﬂh/ﬂﬂ + hﬂ[ph/ﬂvk’
(C9)

where the hatted quantities are the associated unhatted
quantities evaluated with respect to the induced metric
h,,,. The novelty of the junction condition (C7) is only the
first derivatives of the metric are involved. Using the metric
(A3) and the induced metric for the spherical thin shell, we
can find that PWM =0and3J,, — h,,J = OeventhoughJ,,
and J are nonzero. Based on the above, the junction condition
(C7) for EGB gravity is indeed reduced to (C1) for Einstein
gravity. Moreover, the Gauss-Bonnet term is a total derivative
term so that it will not affect the field equation, and the black
hole solutions are the same as the one for Einstein-Maxwell
theory. In total, the junction condition of the EGB gravity will
still yield the same constraint (C6) for the spherical thin shell.
That is, the thin shell will not turn a subextremal black hole
into a naked singularity in the EGB gravity. This is consistent
with our result for EGB gravity as discussed in the main text.

1. No thin shell from a third-order junction condition

In [23] a set of third-order junction conditions for the
higher derivative gravity theories have been proposed. This
junction condition is obtained by collecting the singular
terms in the Gauss-Codazzi equations. For the quartic
action of gravity considered in the main text, the junction
conditions take the following form:

[W,],ne = 28, (C10)

where n* is the normal vector of the thin shell, and

va =c|R (25”5’1 gwgzzp - 51/}5%)

+ ¢ (R, +E¢R;p_Rz;v Rj)— 4C%R (C11)

pUL”

After explicitly evaluating the left side of (C10) with
respect to the metric (A3), the result involves the terms
with ¢” and f”’. This implies that we need to impose the
continuity conditions [f], =[g], =[f"],=[d],=[f"],=0
to yield a finite left side of (C10), thus a sensible junction
condition with finite S#*. Since the junction condition
(C10) is already O(c;), thus the metric used to evaluate
the junction condition should be kept up to the leading
order only. Thus, the metrics on both sides of the thin shell
contain in total only four integration constants, i.e., m.. and
q+. The above five continuity conditions are overcon-
strained on these integration constants and can be shown
only to yield trivial solutions, namely, m, = m_ and
q, = q_. This implies no sensible thin shell for generic
quartic gravities.

APPENDIX D: DEPENDENCE OF r;, ON m AND g;
NEAR THE EXTREMAL BOUNDARY

Suppose we have m and g;, and m = me(q;) is the mass
of extremal black holes, with black holes given by
m > mey(q;). Let us define u = m — mey(q;). Let us also
denote (i, g;) the horizon radius, with R(q;) = r4(0, q;)
the radius of extremal black holes as a function of g;. Let us
first show that for y inside an open neighborhood of 0,

(. q;) = R(q;) + Vup(q;, V1)

with p a smooth function of its arguments. In GR, the
horizon radius is the greater real root of the quadratic
polynomial 2 —2Mr;, + Q* = 0,

(D1)

ry =M+ \/M?*-Q? (D2)
with extremal boundary given by the location of the
double root.

In modified GR, we can view the (ry,, 4, q;) relation in
two ways. We can directly write a condition of

A(rhﬂu7Qj) =0 (D3)
with extremal condition given by
0 A|R ()04, = =0. (D4)

As we expand around u = 0, and write r;, as an expansion,

r, = R(q;) + o1y, (Ds)
we have
0= A(R(q;) + dry.p. ;)
:%a;_é (5”’)2_'_% u+.... (D6)
" IR(g)).0.9; M k(400
From this, we can reexpand ory, in terms of /,
Sy — \/_Za apu"’* = Jup(a;./u). (D7)

Another way to write this, is to view Eq. (D3) as a
definition of x in terms of r;, and g;. In the GR case, we have

r%lJer
2rh ’

M(rh’ Q) = (DS)

For each Q, we generically have two values of r;, that gives

horizon. Extremal black holes are when M takes a minimum
at r, = Q. In the modified gravity case, expecting the
structure of the problem to remain unchanged, namely the
fact that m is uniquely determined by r;, and g; and the fact
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that m is a minimum when r,(q;) = R(q;). We need to
assume that when deviating away from the minimum, the
value of m depends quadratically on r — R(q;),

[”—R(Qj)]zF(r’ ‘Ij)
(D9)

u(r, C]j) = m(r, qj) - m(R(Qj)vqj) =

with F(r,q;) a smooth, nonzero function in an open
neighborhood of (R(g;). g;). We can then write

\/%. (D10)

This can be solved iteratively to yield Eq. (D1).

r=R(q;) +
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