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Abstract: In this paper, we present a game-theoretic analysis of ransomware. To this end, we provide

theoretical and empirical analysis of a two-player Attacker-Defender (A-D) game, as well as a

Defender-Insurer (D-I) game; in the latter, the attacker is assumed to be a non-strategic third party.

Our model assumes that the defender can invest in two types of protection against ransomware

attacks: (1) general protection through a deterrence effort, making attacks less likely to succeed, and

(2) a backup effort serving the purpose of recourse, allowing the defender to recover from successful

attacks. The attacker then decides on a ransom amount in the event of a successful attack, with the

defender choosing to pay ransom immediately, or to try to recover their data first while bearing a

recovery cost for this recovery attempt. Note that recovery is not guaranteed to be successful, which

may eventually lead to the defender paying the demanded ransom. Our analysis of the A-D game

shows that the equilibrium falls into one of three scenarios: (1) the defender will pay the ransom

immediately without having invested any effort in backup, (2) the defender will pay the ransom

while leveraging backups as a credible threat to force a lower ransom demand, and (3) the defender

will try to recover data, only paying the ransom when recovery fails. We observe that the backup

effort will be entirely abandoned when recovery is too expensive, leading to the (worst-case) first

scenario which rules out recovery. Furthermore, our analysis of the D-I game suggests that the

introduction of insurance leads to moral hazard as expected, with the defender reducing their efforts;

less obvious is the interesting observation that this reduction is mostly in their backup effort.

Keywords: cyber insurance; game theory; ransomware

1. Introduction

Ransomware is a major type of cybercrime that organizations face today. It is a form of
malicious software, or malware, that encrypts files and documents on a computer system,
which can be a single PC or an entire network, including servers. Victims are often left with
little choice: to regain access to their encrypted data without a decryption key, they have
to either pay a ransom to the criminals behind the ransomware or try to restore from data
backup (or rebuild the system in the absence of backup). Various real-world examples of
these scenarios are given in the next section when describing our models. It is more than a
mere nuisance for companies, even small ones, if vital files and documents, networks, or
servers are suddenly encrypted and inaccessible. Even worse, a successful ransomware
attack is often publicly and brazenly announced by the criminal, making it known that
one’s corporate data is being held hostage, adding pressure on the victim to resolve it
quickly, which almost always means swift payment.

The recent two years of a global pandemic saw a sharp increase in ransomware
attacks. In the first half of 2022, there were 236.1 million ransomware attacks worldwide.
Through 2021, there were 623.3 million ransomware attacks globally, an increase of 105%
over 2020 [1]. According to astra [2], 2123 cyber insurance claims in 2022 were due to
ransomware attacks.
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This increase in threats has also accelerated discussion by the insurance industry on
whether and how to provide ransomware coverage. The court ruling on G&G Oil Co v.
Continental Western Insurance Co. by the Indiana Supreme Court [3] further brings into
sharp focus the importance of much-needed clarity in insurance coverage pertaining to

ransomware payment and will likely spur more development on this front.1

In this study, we are interested in understanding what firms can do to reduce damages
from potential ransomware attacks and the role that ransomware insurance can play. We
do so by modeling and analyzing the strategic decision making in a ransomware attacker-
defender-insurer ecosystem. Specifically, we introduce two sequential games.

The first, attacker-defender (A-D) game models the interactions between an attacker
(their action being ransom demand) and a (risk-averse) defender (their actions including

protection, backup, pay or not pay, as detailed below).2 This is formulated as a complete
information game, where the attacker is assumed to know the defender’s data value, risk
attitude, cost of general protection, cost of data backup, and cost of data recovery. This
puts the attacker in a rather strong position, and allows us to examine their best possible
strategy in terms of ransom demand; it also serves as a worst-case scenario for the defender.

The second, defender-insurer (D-I) game models the interactions between a (risk-
averse) defender who is seeking ransomware insurance and a risk-neutral insurer who
determines the policy terms of the insurance. This is formulated as a complete information
game between the defender and insurer, with the attacker being a non-strategic third party
(whose ransom demand is input to the game model). This model treats the ransomware
attack as a constant existence much like ambient noise; this is justified by the fact that many
such attacks are not targeted and the ransom amount is set based on empirical knowledge

of past successes rather than on individual victims’ specific information.3 This modeling
choice also allows us to focus on the contractual relationship between the defender and
insurer and better understand the impact of insurance.

Since both are sequential, multi-stage games, the solution concept we employ is the
subgame perfect equilibrium [5]. The equilibrium outcome of the A-D game (ransom
demand) is used as input to the D-I game as the defender’s outside option, since insurance
purchase is assumed to be voluntary. However, this setup is in general not equivalent to
a three-way, attacker-defender-insurer game, which remains an interesting direction of
future research.

There is a very rich literature on game theoretic attacker-defender models for generic
attack types, see e.g., [6–8], and an emerging literature of game theoretic analysis of
ransomware attacks [9–11]. Laszka et al. [9] propose a two-stage model that considers
backup effort on the defender’s part, but without the possibility of recovery failure or
deterrence effort. Baksi and Upadhyaya [10] demonstrate the conditions the defender is
in a position of advantage to successfully neutralize the attack, but neither backup nor
deterrence effort is considered. Li and Liao [11] propose a different model that the attacker
may sell the stolen data rather than publish the data for free. Researchers also draw heavily
from game-theoretic literature on the more traditional form of kidnapping for ransom
to obtain insights into its digital parallel, ransomware. Examples include [12,13] which
invoke the use of a negotiation model, which is critical to the successful recovery of a
kidnapping victim in the traditional form of ransom, and [14], which examines the impact
of cooperative (negotiate or pay) vs. competitive (avoid payment) strategies on the attacker
and the victim.

Research on ransomware insurance is much more limited, despite an increasing
literature on ransomware and its economic, vendor, and consumer impact, see e.g., [15],
and an increasing literature on cyber insurance in general, see e.g., [16–19]. In particular, [16]
presents a network model where the insurer is attack aware, but the insurance contracts
are not designed specifically for ransomware coverage. We will further discuss points that
distinguish our study from prior works in the next section.

The remainder of the paper is organized as follows. In Section 2 we provide a general
overview of our models and summarize the main findings. In Section 3, we introduce the
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A-D game and analyze the properties of the subgame perfect equilibrium. In Section 4,
we introduce the D-I game and study its equilibrium and solution methods. In Section 5,
we use numerical experiments to visualize equilibrium strategies for both the A-D and
D-I games and summarize empirical findings. We conclude and discuss future work in
Section 7.

2. Model Overview and Main Findings

We will assume that the attacker is financially driven, and the objective behind the
attack is monetary gain. This rules out the case where the attacker simply seeks to destroy
data without any real intention of releasing the decryption key, as was the case in the
NotPetya malware attack in June 2017 [20], masquerading as ransomware but designed to
cause maximum damage.

We will assume that the cost of launching a ransomware attack is negligible, which
eliminates “attack or not attack” as a decision for the attacker: if it costs nothing, then the
attacker will always launch an attack. In reality, many ransomware attacks are indeed
very low cost, such as through the attachment in a spam email, see e.g., CryptoLocker [21],
Avaddon [22], and can be easily automated to target a large population. Since our focus is
on the interaction between a single attacker and a single defender (one of a large number
of defenders or would-be victims), it seems reasonable to assume that the attacker does not
dwell on this decision for each individual target.

We will also assume there is no negotiation post-attack; in other words, once an attack
is successful, a ransom demand is issued, which is either paid in full or turned down.
Post-attack negotiation is a crucial part of kidnapping for ransom and arguably the most
important mechanism in the successful recovery of the kidnapping victim [23]. Ransom
negotiation has been modeled in the case of ransomware attacks in the literature, see
e.g., [12]; however, this so far seems to be rare in practice. One possible reason is again
that a typical attacker targets a large number of entities at the same time, which makes
negotiation impractical. At the same time, ransom demands are typically not as high as in
real kidnappings (e.g., $189 in the AIDS Trojan case [24], $750 in the CtyptoLocker case [21],
$500–$1500 in the Hermes case [25], or $35K for an oil and gas company such as G&G [3]),
which encourages payment in full or signals lack of room for negotiation.

It is worth noting that the more recent Colonial Pipeline case [4], where the victim
promptly made $4.4M in ransom payment, may be ushering in a new era in ransomware
attacks: we may start to see increasingly targeted, costly attacks demanding much higher
ransom payment; we may also start to see more involvement of law enforcement agencies
in the payment decisions.

There are a few key elements in our model.

1. The first is the separation of data backup effort from general protection measures.
This separation is consistent with defenses generally recommended to protect against
ransomware attacks [26], and gives the defender two types of actions or efforts to
invest in prior to an attack. General protection measures (e.g., employee training
against social engineering, software upgrades, and vulnerability patching, etc.) serve
the purpose of deterrence , and make an attacker’s effort less likely to succeed. Data
backup serves the purpose of recourse, in the event a ransomware attack is successful,
so that the defender may have the ability to recover their data (but recovery is not
guaranteed so there is a residual risk) without having to pay the ransom. As an
example, Fujifilm recovered from a ransomware attack by restoring their network
from backups [27].

2. The second is a recovery cost to capture the cost that the defender incurs in delaying
ransom payment while trying to recover their data. This models the cost of business
interruption following an attack until the crisis is resolved. This combined with
the previous feature gives the defender an additional decision point after an attack
succeeds: they can decide to pay right away or try to recover their data, knowing that
the recovery may ultimately fail, in which case they may be forced to pay the ransom,
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or rebuild the system in the absence of backup. As an example, after refusing to pay a
ransom demand of $52,000, the city of Atlanta eventually spent $2.6M to rebuild their
system [28]. In another example, the malware Jigsaw deletes files gradually as time
passes, effectively increasing the victim’s cost when delaying payment [29].

Our main results are summarized below.

2.1. Main Findings from the Attacker-Defender (A-D) Game

Since the attacker is strategic in this game, they will seek to achieve a higher expected
monetary gain. It seems obvious to assume that the attacker will prefer a higher ransom.
However, a high ransom will push the defender to invest in backup and attempt to recover
data first instead of paying ransom immediately. If so, the attacker is then faced with an
increased likelihood of receiving nothing (if data recovery is successful). On the other hand,
a lower ransom may persuade the defender to pay without trying to recover data, which
removes the recovery cost associated with data recovery as well as the possibility of failure.
Our analysis of the A-D game suggests that the equilibrium point is one of three types
summarized below.

1. The attacker demands a ransom equal to the data value in case of a successful attack.
The defender pays immediately without having invested anything in data backup.
Paying ransom immediately is a common case in the real world. For example, the
Colonial Pipeline CEO Joseph Blount agreed to pay a $4.4 million ransom to DarkSide
after the company was attacked [4]; the report reveals that Blount decided to pay
ransom almost immediately.

2. The defender invests zero4 or positive effort in data backup, but nevertheless pays
ransom immediately. In response, the attacker’s ransom demand is lower than the
data value, incentivizing the defender to not attempt data recovery. In this case,
data backup serves as a credible threat so as to lower the ransom demand, but is not
actually used.

3. The defender invests zero or positive effort in backup and attempts data recovery,
paying the ransom only if recovery fails; at the same time, the attacker charges a
ransom equal to the data value. This case occurs far less often than the other two cases
and only happens when the defender has low risk-aversion and has a relatively low
cost of recovering data.

Note that the first case is a worst-case scenario for the defender, allowing the attacker
to charge the highest possible ransom knowing that the defender will have no choice but
to pay. This case occurs when the recovery cost is relatively large. In comparison, in the
other two cases, the defender uses data backup to lower the attacker’s profit and their own
expected loss, either using backup as leverage to force the attacker to charge a lower ransom,
or to leave them empty-handed by recovering from backup. The second case occurs when
the recovery cost is in the middle range, and the third case is when the recovery cost is low.
We observe that a more risk-averse defender is more likely to rule out recovery, due to fear
of recovery failure, which makes them bear both the recovery cost and the ransom demand.
It is noteworthy that the highest backup effort occurs in the second case, which is only
leveraged as a threat but never used. Our numerical results show that a more risk-averse
defender is more likely to fall into the second case, i.e., making a compromise by paying a
lower ransom directly to the attacker, while lower risk-aversion means one is willing to
pay the highest ransom (either immediately or after a failed recovery attempt).

2.2. Main Findings from the Defender-Insurer (D-I) Game

In this game, the attacker is a non-strategic third party but serves as the defender’s
outside option (outside the insurance contract) to ensure that the defender’s utility is not
lower after purchasing insurance. The non-strategic assumption comes from our belief
that whether the defender is insured or not is generally not public knowledge. Our main
findings in this game are:
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1. The introduction of insurance causes the defender to invest less in efforts overall. This
manifestation of moral hazard has been observed in other insurance models, where
the insureds lower their effort once they have transferred all or part of their risk to
the insurer. The more interesting observation, however, is that this effort reduction
is much more concentrated on backup than on deterrence. In particular, we observe
that numerically, the backup effort is almost completely abandoned under insurance,
while some investment in deterrence remains, albeit at a reduced level. This is despite
the fact that the insurer (under an optimal policy) covers almost the entire effort cost
by the defender (in the form of a premium discount) and covers all losses upon a
successful attack.

2. The defender’s utility remains the same inside or outside insurance, and the attacker’s
utility increases, due to lower levels of backup and deterrence efforts. The insurer’s
profit (whenever it is positive) is essentially drawn from taking advantage of the
defender’s risk-aversion. Our numerical results support this claim by showing that
the insurer’s profits increase as the defender becomes more risk-averse.

3. The introduction of insurance does not significantly alter the defender’s decision
making in dealing with the attacker (in terms of paying vs. recovering), but only their
effort amount.

3. The Attacker-Defender (A-D) Game: Model, Analysis, and Results

In this section, we introduce and analyze the attacker-defender (A-D) game. This game
involves two players, an attacker and a risk-averse defender, making sequential moves over
multiple stages. A diagram illustrating this multi-stage game and all its possible outcomes
is given in Figure 1, where the two players’ utilities, denoted by Ua and Ud, are written out
and explained in more detail below.

Defender

Attack

( fγ(W + Y), 0) Attacker

Defender

Recovery( fγ(W + Y + R), R) ( fγ(W + Y + I), 0)

( fγ(W + Y + C), 0)Defender

( fγ(W + Y + C + R), R) ( fγ(W + Y + C + I), 0)

Choose W, Y

Failure (1 − θ(W)) Success (θ(W))

Choose R

RecoverPay Destroy

Success (1 − ε(Y))Failure (ε(Y))

Pay Destroy

Figure 1. The Attacker-Defender (A-D) game tree, with corresponding utilities (Ud, Ua) under each

possible game outcome. Rounded corners indicate the player whose turn it is to move; ovals indicate

stochastic events (with probabilities written next to each outcome). The argument in fγ() is the

defender’s total cost, whose expression changes depending on the different realizations of the game.
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The defender’s utility Ud takes the form Ud = fγ(x), where x is the total cost borne
by the defender and γ > 0 represents the risk attitude of the defender, with a larger γ

indicating more risk-aversion.
The defender holds data of value I > 0. The sequential game consists of the following

four stages.

Stage I

The defender chooses a deterrence effort W ≥ 0 (such as investing in an effective
firewall, employee education against phishing campaigns, etc.), as well as a data backup
effort Y ≥ 0.

Stage II

The attacker launches an attack with a success probability of θ(W), a non-increasing
and convex function of the defender’s deterrence effort W.

We will denote by θo = θ(0) the attack success probability under zero protection effort,
and by θ∞ = limW→∞

θ(W) the minimum achievable attack success probability.

• If the attack fails, then the game ends with Ua = 0 and Ud = fγ(W + Y).
• If the attack succeeds, then the attacker gains access to and encrypts the defender’s

data, and demands a ransom in the amount R (this is the attacker’s main decision and
we will derive its equilibrium value below); the game then processes to stage III.

Stage III

The defender chooses between (1) paying ransom R immediately, (2) not paying
the ransom, allowing data to be destroyed, or (3) trying to recover data first. Define
A1 ∈ {Pay, Destroy, Recover} to be the defender’s action in this stage.

• If A1 = Pay, the game ends with Ua = R and Ud = fγ(W + Y + R).
• If A1 = Destroy, the game ends with Ua = 0 and Ud = fγ(W + Y + I).
• If A1 = Recover, the defender incurs recovery cost C > 0 to try to recover data, and

the game proceeds to stage IV. The introduction of C captures the cost the defender
incurs in delaying ransom payment while trying to recover their data, such as the cost
of business interruption following an attack until the crisis is resolved.

Stage IV

In this stage the defender attempts to recover data, with a failure probability of ε(Y), a
non-increasing and convex function of the backup effort Y. We will similarly use εo = ε(0)
and ε∞ = limY→∞

ε(Y) to denote the failure probability under zero backup effort and the
minimum achievable failure probability, respectively.

• If recovery succeeds, the game ends with Ua = 0 and Ud = fγ(W + Y + C).
• If recovery fails, then the defender can choose to pay the ransom or allow data to be

destroyed, with A2 ∈ {Pay, Destroy} denoting said action.

– If A2 = Pay, the game ends with Ua = R and Ud = fγ(W + Y + C + R).
– If A2 = Destroy, the game ends with Ua = 0 and Ud = fγ(W + Y + C + I).

3.1. Subgame Perfect Equilibrium

Due to the sequential-move nature of the A-D game, our solution concept is the
subgame perfect equilibrium, simply referred to as the equilibrium for short below. Denote
by (W∗, Y∗, A∗

1 , A∗
2) the defender’s equilibrium strategy, and R∗ the equilibrium ransom

demand. Similarly, we will use the notation θ∗ = θ(W∗) and ε∗ = ε(Y∗). Below we analyze
the existence, uniqueness, and expression of the equilibrium solution using backward
induction. While the technique is conceptually well established, its application in this game
is quite involved due to the number of stages we need to consider. We will assume an
exponential utility function, i.e., fγ(x) = −eγx, where x represents the total sum cost of
effort, backup, recovery, ransom payment, and data loss. What subset of these appears in
the total cost depends on the scenario; these possibilities are shown in Figure 1 in the many
different fr() expressions and analyzed below.
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Consider the last two stages of the model. To maximize their utility, the attacker
will not demand a ransom larger than the data value I, in order to ensure the defender
will not favor destruction over payment in stages III and IV. Therefore, R∗ ≤ I, A∗

1 ∈
{Pay, Recover}, and A∗

2 = Pay. In stage III, the defender compares (1 − ε∗) fγ(W∗ + Y∗ +
C) + ε∗ fγ(W∗ +Y∗ +C + R∗) and fγ(W∗ +Y∗ + R∗) to determine whether to attempt data
recovery. Without loss of generality, we assume that in case of a tie, the defender will pay
ransom immediately. Thus we have:

A∗
1 =

{

Pay (1 − ε∗)eγ(C−R∗) + ε∗eγC ≥ 1,
Recover Otherwise.

In stage II, the attacker solves the following two optimization problems with respect
to the defender’s possible actions.

(a) If A∗
1 = Pay: The attacker solves the following optimization problem:

R∗
Pay =







maxR R

s.t. (1 − ε∗)eγ(C−R) + ε∗eγC ≥ 1,
0 < R ≤ I.

(1)

(b) If A∗
1 = Recover: The attacker solves the following problem:

R∗
Recover =







maxR R

s.t. (1 − ε∗)eγ(C−R) + ε∗eγC
< 1,

0 < R ≤ I.

(2)

Lemma 1. Define εh = eγ(I−C)−1
eγI−1

< 1. Equation (1) always has a feasible solution. Equation (2)
has a feasible solution if and only if ε∗ < εh. Furthermore,

1. if ε∗ ≥ εh, then only Equation (1) has a solution, which is R∗
Pay = I;

2. if ε∗ < εh, both (1) and (2) have one solution, which are R∗
Pay = C + 1

γ log 1−ε∗

1−ε∗eγC < I and
R∗
Recover = I, respectively.

Proof. Note that the left-hand side in the constraints of Equationns (1) and (2) are de-
creasing in R, and the constraint of Equation (1) holds strictly for R = 0 (since γ, C > 0,
thus eγC

> 1). Therefore, Equation (1) always has a feasible solution, while this is not
necessarily true for Equation (2). If the constraint of Equation (1) is satisfied for R = I,

which is equivalent to ε∗ ≥ eγ(I−C)−1
eγI−1

= εh, then it also holds for all 0 < R ≤ I, therefore

R∗
Pay = I and Equation (2) is infeasible. Otherwise, we can find 0 < R̂ < I by solving

(1 − ε∗)eγ(C−R) + ε∗eγC = 1, yielding R̂ = C + 1
γ log 1−ε∗

1−ε∗eγC . Then the constraint of Equa-

tion (1) holds for 0 < R ≤ R̂, and the constraint of Equation (2) holds for R̂ < R ≤ I.
Therefore, R∗

Pay = R̂ < I and R∗
Recover = I.

The attacker compares R∗
Pay and R∗

Recover (if they both exist) to determine the optimal
ransom amount. Note that in case of a successful attack, the attacker’s expected payout
is R∗

Pay for A∗
1 = Pay, and ε∗R∗

Recover = ε∗ I for A∗
1 = Recover. Again, without loss of

generality, we will assume that in case of a tie the attacker chooses R∗
Pay, resulting in

A∗
1 = Pay.

3.2. Main Results

If C ≥ I, then εh ≤ 0, resulting in a degenerate case where R∗ = R∗
Pay = I regardless

of ε∗. The following lemma characterizes R∗ for C < I.

Theorem 1. Assume C < I, and define g : [0, εh] → R as g(ε) = C − εI + 1
γ log 1−ε

1−εeγC . Then
one of the following cases applies.



Games 2023, 14, 20 8 of 19

(a) g(ε) has at most a single root in (0, εh). In this case, the attacker will always choose
R∗ = R∗

Pay.

R∗ = R∗
Pay =







I ε∗ ≥ εh,

C +
1

γ
log

1 − ε∗

1 − ε∗eγC
ε∗ < εh.

(3)

(b) g(ε) has two roots ε l < εm in (0, εh). In this case, the attacker will choose R∗ as follows.

R∗ =



















R∗
Pay = I ε∗ ≥ εh,

R∗
Pay = C +

1

γ
log

1 − ε∗

1 − ε∗eγC
ε∗ ≤ ε l or εm ≤ ε∗ < εh,

R∗
Recover = I ε l < ε∗ < εm.

(4)

Furthermore, C ≥ 1
γ log(γI + 1) is a sufficient (but not necessary) condition for ruling out (b),

resulting in R∗ = R∗
Pay.

Proof. If ε∗ ≥ εh, then from Lemma 1 only Equation (1) has a solution and R∗ = R∗
Pay = I.

Otherwise, for the attacker to choose R∗
Pay in the equilibrium, we must have R∗

Pay ≥
ε∗R∗

Recover = ε∗ I, which is equivalent to g(ε∗) ≥ 0. We have:







































g(0) = C > 0 ,

g(εh) = (1 − εh)I > 0 ,

g′(ε) =
1

γ(e−γC − ε)
−

1

γ(1 − ε)
− I ,

g′′(ε) =
1

γ(e−γC − ε)2
−

1

γ(1 − ε)2
> 0 ,

where we have used the fact that 0 ≤ ε ≤ εh = eγ(I−C)−1
eγI−1

⇒ 0 <
1−e−γC

eγI−1
≤ e−γC − ε < 1 − ε.

Since g(ε) is strictly convex and positive for both ends of the range [0, εh], then one of the
following must be true.

• g(ε) has at most a single root in (0, εh), and is therefore non-negative for all 0 ≤ ε < εh.
Then the attacker will always choose R∗ = R∗

Pay, resulting in case (a).

• g(ε) has two roots ε l , εm in (0, εh). Assume ε l < εm, then g(ε) is only negative for
ε l < ε < εm. The attacker will choose R∗ = R∗

Recover for ε l < ε < εm, and R∗ = R∗
Pay

otherwise; this results in case (b).

Finally, If g′(0) = eγC−1
γ − I ≥ 0 ⇔ C ≥ 1

γ log(1 + γI), then g is non-decreasing, and
therefore positive, for all 0 ≤ ε < εh, resulting in case (a).

At stage I the defender determines W∗ and Y∗ as follows.

W∗, Y∗ = arg min
W,Y≥0

{(

1 − θ(W) + θ(W)min
{

(1 − ε(Y))eγC + ε(Y)eγ(C+R∗), eγR∗
})

eγ(W+Y)
}

. (5)

The equilibrium can then be found by finding the solution to Equation (5) and ei-
ther (3) or (4), depending on the number of roots of g(ε) in (0, εh).

Using Theorem 1, we define the follow subsets of R≥0: S1 = {Y ≥ 0 : R∗ = R∗
Pay = I},

S2 = {Y ≥ 0 : R∗ = R∗
Pay < I}, and S3 = {Y ≥ 0 : R∗ = R∗

Recover = I}. Note that
depending on the values for εo and ε∞, any, but not all, of these subspaces might be empty.
Both S1 and S3 are either the empty set or an (open or closed) interval. S2 is either empty, a
single interval, or the union of two intervals. The equilibrium of the A-D game satisfies one
of the following cases.

(a) R∗ = R∗
Pay = I, Y∗ = 0 ∈ S1, and W∗ = arg minW≥0

{(

1 + θ(W)(eγI − 1)
)

eγW
}

.
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(b) C ≤ R∗ = R∗
Pay = C + 1

γ log 1−ε∗

1−ε∗eγC < I (with ε∗ = ε(Y∗) given from below) and

W∗, Y∗ = arg min
W≥0,Y∈S2

{(

1 + θ(W)

(

eγC 1 − ε(Y)

1 − ε(Y)eγC
− 1

))

eγ(W+Y)

}

.

(c) C ≤ R∗ = R∗
Recover = I and

W∗, Y∗ = arg min
W≥0,Y∈S3

{(

1 + θ(W)
((

1 + ε(Y)(eγI − 1)
)

eγC − 1
))

eγ(W+Y)
}

.

Note that in the first case we are using the fact that Ud = −
(

1 + θ(W)(eγI − 1)
)

eγ(W+Y),
and therefore the optimal backup effort is zero. The defender can solve each case separately,
and choose the equilibrium with the largest utility.

3.3. Discussion

In general, a high recovery cost C discourages the defender from making a recovery
attempt and encourages the attacker to demand the highest ransom R∗ = I. The only
way (in the non-degenerate case) for the defender to induce a lower ransom (< I) is to
exert sufficiently high backup effort Y so as to satisfy ε(Y) < εh; this acts as a credible
threat to discourage high ransom, an observation that does not appear to have been noted
in prior works. Note, however, that even in this scenario the lower ransom is only true
when accompanied by the defender’s equilibrium action to pay immediately; in other
words, the discounted ransom amount is offered in exchange for not attempting recovery.
When the defender’s action is to try and recover data first, the attacker again demands
the highest ransom, a logical choice as the defender has no option but to pay the ransom
if their recovery attempt fails. Theorem 1 further shows that C ≥ 1

γ log(1 + γI) ensures

that the defender will always favor ransom payment over recovery. Since 1
γ log(1 + γI) is

decreasing in γ, a more risk-averse defender is more likely to pay the ransom instead of
attempting recovery; a point that we also observe in our numerical experiments. Theorem 1
also suggests that the highest backup efforts (resulting in ε∗ < ε l) are not used directly, but
are leveraged to force the attacker to lower their ransom demand for immediate payment,
another observation seen in our numerical results in Section 5.

The fact that W plays no part in the attacker’s decision is easily explained, since the
attacker’s decision on R is made after the attack has succeeded, which is conditioned on
whatever value W is. However, W does play a role by providing general protection against
attacks, and reducing the attacker’s expected payout.

4. The Defender-Insurer (D-I) Game: Model, Analysis, and Results

Now consider the contract between the defender and an insurer providing ransomware
insurance. Strictly speaking, this is a two-stage game (more commonly known as a Stack-
elberg game with a leader and a follower [30]), where the insurer (the leader) sets the
format of the contract (what and how contract parameters are to be determined depending
on the defender’s actions) and the defender best responds, which then determine the
contract terms. This is formulated as a complete information game between the two, thus
eliminating typical issues caused by information asymmetry (unobservable actions can
worsen moral hazard, and unobservable types lead to adverse selection). This simplifica-
tion is a first step toward understanding the role insurance plays in the specific case of
ransomware attacks; the basic model can then be extended to include the more general
issue of information asymmetry.

As mentioned earlier, in the D-I game we shall model the attacker as a non-strategic
third party, whose likelihood of success and subsequent ransom demand are input to the
D-I model. In doing so we treat the ransomware attack as a constant existence, which is in
accordance with the fact that many such attacks are non-targeted with a generic ransom
amount set based on empirical and market knowledge rather than on individual victims’



Games 2023, 14, 20 10 of 19

specific information; such an attacker is also effectively agnostic of whether a given victim
has ransomware insurance. We will also use the A-D game to obtain the defender’s option
outside the insurance contract: uo = E[U∗

d ] denotes the defender’s equilibrium expected
utility outside the contract.

Similar to the A-D game, the defender has two actions prior to an attack: deterrence
(W) and backup (Y); and two actions post a successful attack with probability θ(W): try to
recover data (and possibly pay if recovery fails with probability ε(Y)) and pay immediately.

We will again assume an exponential form for the defender’s utility function, i.e.,
Ud = fγ(x) = −eγx, where x is the total sum cost borne by the defender, including effort,
insurance, backup, recovery, ransom payment, and data loss, less coverage. What subset
of these appears in the total cost depends on the scenario; these possibilities are shown in
Figure 2 in the many different fr() expressions and analyzed below.

To capture all of the above, we will assume a linear insurance contract that consists of
the tuple (0 ≤ p, 0 < a, b ≤ 1, 0 ≤ z, τ ≤ 1) and detailed below:

• p ≥ 0 is the premium the defender pays the insurer for the contact.
• a and b characterize the defender’s fraction of efforts after the insurer subsidies for

W, Y, respectively; in other words, the actual cost of the effort of the defender are aW
and bY with the insurer returning (1 − a)W and (1 − b)Y to the defender as discounts
on the premium. Note that neither a nor b can be 0 (i.e., the insurer cannot subsidize
100% of the effort), for otherwise the defender will seek infinite W, Y, respectively.
Accordingly, we will define small a and b that bound a and b away from 0, respectively.

• Upon a successful attack, if the defender decides to recover data first, then the insurer
will cover 1 − z fraction of the total loss; this loss consists of the defender’s recovery
cost if recovery is successful, or the recovery cost plus the ransom if recovery fails.

• If the defender decides to pay immediately, then the insurer covers 1 − τ fraction of
the ransom.

As can be seen, we are affording the insurer multiple options and significant flexibility
in designing the insurance contract; this is intended to help us understand questions such
as whether the insurer would incentivize deterrence and backup efforts differently, or
whether it is in the insurer’s interest to incentivize recovery and discourage immediate
payment by offering a low z, and so on. The defender’s utilities under all possible actions
and outcomes in this D-I game are illustrated in Figure 2.

Define Uin
d to be the defender’s utility inside a cyber insurance contract. Then the

expected utility E[Uin
d ] can be written as

E[Uin
d ] =

(

1 − θ(W) + θ(W)min
{

(1 − ε(Y))eγzC + ε(Y)eγz(C+R), eγτR
})

eγ(p+aW+bY) .

Define U to be the insurer’s utility. Consider the indicator F =
1{(1−ε(Y))eγzC+ε(Y)eγz(C+R)≥eγτR}, with F = 1 indicating that the defender will choose to

pay immediately (A1 = Pay) and 0 otherwise (A1 = Recover). Then the insurer’s expected
utility is affected by the premium, the effort subsidies, as well as the loss, and can be written
as

E[U] = p − (1 − a)W − (1 − b)Y − F · θ(W)(1 − z)(C + ε(Y)R)− (1 − F) · θ(W)(1 − τ)R .
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Insurer

Defender

Attack

fγ(p + aW + bY) Defender

Recovery fγ(p + aW + bY + τR)

fγ(p + aW + bY + zC) Defender

fγ(p + aW + bY + z(C + R))

Choose (a, b, z, τ, p)

Choose W, Y

Failure (1 − θ(W)) Success (θ(W))

Recover Pay

Success (1 − ε(Y)) Failure (ε(Y))

Pay

Figure 2. The Defender-Insurer (D-I) game tree, with the corresponding utility of the defender Uin
d

under each possible game outcome. Rounded corners indicate the player whose turn it is to move;

ovals indicate stochastic events (with probabilities written next to each outcome). The argument in

fγ() is the defender’s total cost, whose expression changes depending on the different realizations of

the game. The defender’s actions are not in response to the insurer but rather to the attack; while

these actions are not part of the D-I game, they must be anticipated in order to compute (W, Y).

4.1. Subgame Perfect Equilibrium

As mentioned earlier, the D-I game is also a sequential-move game that involves two
stages. Below we detail the backward induction process we use to find a subgame perfect
equilibrium. Denote by (p∗, a∗, b∗, z∗, τ∗) the insurer’s equilibrium strategy, and (W∗, Y∗)
the defender’s. Formally, the subgame perfect equilibrium is the solution to the following
optimization problem.

arg max
W,Y,p,a,b,z,τ

p − (1 − a)W − (1 − b)Y − Fθ(W)(1 − z)(C + ε(Y)R)− (1 − F)θ(W)(1 − τ)R

s.t. E[Uin] ≥ uo , (6)

W, Y ∈ arg max
W,Y≥0

E[Uin] , (7)

p ≥ 0, a ≤ a ≤ 1, b ≤ b ≤ 1, 0 ≤ z, τ ≤ 1 .

Recall uo = E[U∗
d ] is the equilibrium expected utility of the defender outside the

contract, i.e., from the previous A-D game presented in Section 3. Here the first constraint (6)
ensures individual rationality, i.e., the defender will only enter into the contract if it does not
lower their expected utility. The second constraint (7) ensures incentive compatibility, i.e.,
given the contract terms the defender is going to take actions W, Y to maximize self-interest.
It’s not hard to verify the above problem is always feasible.

Lemma 2. At the equilibrium, p∗ can be expressed as

p∗ =
1

γ
log

−uo

(

1 − θ(W∗) + θ(W∗)min
{

(1 − ε(Y∗))eγz∗C + ε(Y∗)eγz∗(C+R), eγτ∗R
})

eγ(a∗W∗+b∗Y∗)
.
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This is easy to see because at the equilibrium the defender must be indifferent between
purchasing and not purchasing the contract (otherwise the insurer can always adjust the
premium by the right amount so that equality E[Uin

d ] = uo is attained while increasing
the insurer’s utility). Therefore, p∗ can be computed by setting equality in Equation (6),
yielding the expression above.

In the first stage of this two-stage D-I game, the insurer solves the following two
sub-problems that correspond to the defender’s possible actions (pay or recover) in the
event an attack is successful.

(a) A1 = Pay. The following optimization problem yields equilibrium actions by both the
defender and the insurer, denoted by (W1, Y1, a1, b1, z1, τ1), if the defender chooses to
pay immediately:

arg max
W,Y,a,b,z,τ

1

γ
log

(

−uo

1 − θ(W) + θ(W)eγτR

)

− W − Y − θ(W)(1 − τ)R (8)

s.t. W, Y ∈ arg min
W,Y≥0

{(

1 − θ(W) + θ(W)eγτR
)

eγ(aW+bY)
}

,

(1 − ε(Y))eγzC + ε(Y)eγz(C+R) ≥ eγτR,

a ≤ a ≤ 1, b ≤ b ≤ 1, 0 ≤ z, τ ≤ 1.

(b) A1 = Recover. The following optimization problem yields equilibrium actions by
both the defender and the insurer, denoted by (W2, Y2, a2, b2, z2, τ2), if the defender
chooses to recover data first:

arg max
W,Y,a,b,z,τ

1

γ
log

(

−uo

1 − θ(W) + θ(W)(1 − ε(Y))eγzC + θ(W)ε(Y)eγz(C+R)

)

(9)

−W − Y − θ(1 − z)(C + ε(Y)R)

s.t. W, Y ∈ arg min
W,Y≥0

{(

1 − θ(W) + θ(W)(1 − ε(Y))eγzC + θ(W)ε(Y)eγz(C+R)
)

eγ(aW+bY)
}

,

(1 − ε(Y))eγzC + ε(Y)eγz(C+R)
< eγτR,

a ≤ a ≤ 1, b ≤ b ≤ 1, 0 ≤ z, τ ≤ 1.

Lemma 3. Both Problem (8) and Problem (9) always have feasible solutions.

Proof. Consider Problem (8), take τ = 0, z = 1, a = 1, b = 1. We can verify the second
constraint holds:

(1 − ε(Y))eγzC + ε(Y)eγz(C+R) = (1 − ε(Y))eγC + ε(Y)eγ(C+R)

≥(1 − ε(Y))eγC + ε(Y)eγC = eγC ≥ 1 = eγτR .

Obtain (W, Y) from the first constraint, and we find a feasible solution (W, Y, a, b, z, τ).
Similarly, for Problem (9), we take z = 0, τ = 1, a = 1, b = 1, and derive (W, Y) from the
first constraint. It can be easily verified that this (W, Y, a, b, z, τ) is a feasible solution.

The way the insurer solves their optimization problem is to compare the solutions to
the above two sub-problems, E[U(p1, W1, Y1, a1, b1, z1, τ1)] andE[U(p2, W2, Y2, a2, b2, z2, τ2)];
whichever yields higher utility value is the course of action (i.e., pay vs. recover) that the
insurer wants to induce the defender to take in the event of an attack. This decision then
dictates the optimal contract (p∗, a∗, b∗, z∗, τ∗). This is then presented to the defender. Since
these contract terms are jointly optimal with the defender’s actions W∗, Y∗ with respect
to the defender’s utility Uin

d , the defender best responds with the intended W∗, Y∗ for the
intended choice (pay vs. recover). This is how the subgame equilibrium is arrived at.
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While existence is clear, we have not established the uniqueness of the equilibrium. To
compute the equilibrium unambiguously, we will assume the following tie-breaking rules
without loss of generality: In the event the two sub-problems yield the same utility for
the insurer, they will choose (p∗, a∗, b∗, z∗, τ∗) = (p1, a1, b1, z1, τ1), resulting in A∗

1 = Pay

and W∗ = W1, Y∗ = Y1. Note that the two sub-problems cannot yield identical tuples as
optimal solutions; this is because the second constraints in the two are mutually exclusive
under the same Y. In addition, if two or more contract parameter tuples yield the same
utility in the same sub-problem, the insurer breaks the tie by choosing the one with the
highest parameter value in the order (a, b, z, τ, p), i.e., selecting the one(s) with the highest
a, and of those still tied, selecting the one(s) with the highest b, and so on.

4.2. Main Results

While we don’t have closed-form solutions to the above problem, below are a few
results that provide some partial characterizations of the equilibrium solution. These
properties prove very helpful in our numerical experiments presented in Section 5 as
they drastically simplify the solution space. Here we assume an exponential form of
θ(W) = θoe−λW and ε(Y) = εoe−µY.

Proposition 1. For the sub-problem in Equation (8), the optimal efforts (W1, Y1) is given by

Y1 = 0, W1 =







0 a1 ≥ λ(eγτ1R−1)θo

γ(1+(eγτ1R−1)θo)

1
λ log

(λ−γa1)(e
γτ1R−1)θo

γa1
otherwise

.

Further, for the special case θo = 1 (always being successfully attacked if doing nothing in de-

terrence), and R = I (ransom demand is at its maximum), then a1 <
λ(eγτ1R−1)θo

γ(1+(eγτ1R−1)θo)
, meaning

W1 = 1
λ log

(λ−γa1)(e
γτ1R−1)θo

γa1
, i.e., the deterrence effort is strictly positive.

Proof. For the first sub-problem, in inspecting the constraints we see W and Y can be
optimized separately. The only constraint on Y is Y ≥ 0, thus the optimal value is 0. The

constraint then becomes W ∈ arg min
{

(1 − θ)eγaW + θeγ(aW+τR)
}

. Solving it gives us the

expression given in the theorem.
If R = I, we show that W1 = 0, Y1 = 0 will result in the insurer’s utility E[U1] ≤ 0.
First, we show that at the equilibrium of the A-D game, uo is lower bounded by

−(1− θo + θoeγI). Consider the case where W = Y = 0 and A1 = Pay. Then the defender’s
expected utility is E[Ud] = −(1 − θo + θoeγR) ≥ −(1 − θo + θoeγI). Therefore at the
equilibrium, uo ≥ −(1 − θo + θoeγI) must hold, otherwise the defender can move to
W = Y = 0, and A1 = Pay to achieve a higher utility (note that the defender moves first in
the game).

Return to the D-I game, with W1, Y1 = 0 we have

E[U1] =
1

γ
log

−uo

1 − θo + θoeγτR
− θo(1 − τ)R

≤
1

γ
log(

−uo

eθoγτR
)− θo(1 − τ)R

≤
1

γ
log(1 − θo + θoeγI)− θo I

When θo = 1 the upper bound is non-positive. Thus to ensure there’s a market, we must

have W1 = 1
λ log

(λ−γa1)(e
γτ1R−1)θo

γa1
.

Proposition 2. For the sub-problem in Equation (9), the optimal efforts (W2, Y2) can be character-
ized as follows depending on the values of a2 and b2:
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• If a2 ≥ λ
γ , b2 ≥ µ

γ , then W2 = Y2 = 0;

• If a2 ≥ λ
γ , b2 <

µ
γ , then W2 = 0, and

Y2 =











0 b2 ≥ µ
γ

1

1+ 1−θo+θoeγz2C

θo εoeγz2C(eγz2R−1)

1
µ log

θoεo(e
γz2(C+R)−eγz2C)(µ−γb2)

γb2(1−θo+θoeγz2C)
otherwise

;

• If a2 <
λ
γ , b2 ≥ µ

γ , then Y2 = 0, and

W2 =











0 a2 ≥ λ
γ

(

1 − 1
1+θo(εoeγz2(C+R)+(1−εo)e

γz2C−1)

)

1
λ log

(λ−γa2)θo
γa2

(

εoeγz2(C+R) + (1 − εo)eγz2C − 1
)

otherwise
;

• If a2 <
λ
γ , b2 <

µ
γ , then

W2, Y2 ∈ arg min
W≥0,Y≥0

{

eγaW+γbY + θo(e
γzC − 1)e(γa−λ)W+γbY + θoεoeγzC(eγzR − 1)e(γa−λ)W+(γb−µ)Y

}

.

Proof. The expected utility of the defender in this case can be simplified.

E[Uin
d ] = eγ(aW+bY) + θo(e

γzC − 1)e(γa−λ)W+γbY + θoεoeγzC(eγzR − 1)e(γa−λ)W+(γb−µ)Y.

It’s not hard to verify that when γa ≥ λ, then W2 = 0, since the first term is strictly
increasing while the last two are non-decreasing with W. Similarly, γb ≥ µ will ensure Y2 =
0. When W2 = 0, the optimal Y2 = arg minY≥0{eγbY + θo(eγzC − 1)eγbY + θoεoeγzC(eγzR −

1)e(γb−µ)Y}. Solving it yields the closed form of Y2. Similarly, when Y2 = 0, we can also get
a closed form for W2.

Note that, in the last case of Proposition 2, the closed form of (W2, Y2) is not presented,
however using KKT conditions [31] we can numerically solve the problem efficiently.

Finally, we can also bound the insurer’s maximum possible utility.

Proposition 3. At the equilibrium, the expected utility of the insurer is upper bounded by
1
γ log(−uo).

Proof.

E[U] = p − (1 − a)W − (1 − b)Y − F · θ(W)(1 − z)(C + ε(Y)R)− (1 − F) · θ(W)(1 − τ)R

≤ p ≤
1

γ
log(−uo) ,

where the last two inequalities come from Lemma 2.

5. Numerical Evaluation

To further analyze the A-D and D-I games, in this section we will examine and visualize
the equilibria of these games using numerical simulations. We will assume an exponential
form for θ(W) and ε(Y), i.e., θ(W) = θoe−λW and ε(Y) = εoe−µY. We also set I = 1 for our
experiments, therefore computed costs/rewards in this section are all relative to the data
value. No external data is used in the experiment. All the data are generated on-the-fly in
the associated scripts. We perform all the experiments using Matlab [32] on a single PC.

5.1. A-D Model

To visualize how the equilibrium strategies of the attacker and the defender change
with respect to the recovery cost C and risk attitude γ, we compute and plot W∗, Y∗, and R∗
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as a function of these parameters. Figure 3 displays our results, where we have generated
plots using different θ(W) and ε(Y).
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(a) θ(W) = 0.5e−10W ,

ε(Y) = 0.9e−10Y .
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(b) θ(W) = 0.5e−5W ,

ε(Y) = 0.9e−10Y .
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(c) θ(W) = 0.5e−10W ,

ε(Y) = 0.9e−5Y .

Figure 3. Equilibrium strategies (W∗, Y∗, R∗) of the A-D game plotted as a function of C and γ. Unit

data value, I = 1, is used in all simulations. Each column employs different or different combinations

of θ(W) and ε(Y): the second (resp. third) column has a less effective deterrence (resp. backup) than

the first. Regions in each graph are discussed in Section 3.

As discussed in Section 3, we can divide the game parameters into three regions
depending on the equilibrium strategy types they support. On the left side of each figure
(low C) the attacker chooses R∗ = I, while the defender will attempt recovery before paying
the ransom. On the right side of each figure (high C) the attacker will again choose R∗ = I,
while the defender will pay the ransom immediately. In the region between these two, the
attacker will lower the ransom to ensure that the defender will pay without attempting
recovery. While both γ and C play a role in determining the type of equilibrium, we observe
that C is the main driver. An increasing C forces the defender to shift from attempting
recovery to paying ransom immediately. Note that Laszka et al. [9] derive a similar result
with respect to the unit cost of backup in their model.

In the high recovery cost region, the backup effort is abandoned as discussed in
Section 3, and the defender has to rely on deterrence effort to lower the expected loss.
Interestingly, however, in the other two regions, the attacker seems to favor one type of
defense over the other, with one of W∗ or Y∗ being low. We also observe that a more
effective backup effort relative to the deterrence effort (the second column in Figure 3)
seems to expand the middle region.

Another interesting observation is that, in the middle region, though the defender
pays ransom immediately (backup is not used), the backup effort is still made (and is
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significantly higher than the deterrence effort in the first and the second columns). As
mentioned earlier, in this case, backup is used as a credible threat to the attacker to lower the
ransom. It is indeed noteworthy that the highest backup effort occurs in this region: when
the defender has invested the most in backup, they will also choose to pay immediately.
This observation is supported by Theorem 1, where ε∗ < ε l is followed by accepting a lower
ransom.

Though C is the main driver, a larger γ enlarges the width of the middle region,
meaning that a more risk-averse defender is more willing to accept the attacker’s low
ransom compromise. A large γ also shrinks (and in some cases completely eliminates) the
recovery region.

5.2. D-I Model

We also visualize the equilibrium of the D-I game in Figure 4, using the same parame-
ters as Figure 3. We shall assume that the attacker acts according to the equilibrium of the
A-D game, i.e., the ransom amount at each point is equal to what is presented in Figure 3.
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ε(Y) = 0.9e−10Y .
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ε(Y) = 0.9e−5Y .

Figure 4. Equilibrium strategies (W∗, Y∗, U∗
i ) of the D-I game plotted as a function of C and γ. The

parameters used in this experiment are the same as in Figure 3: the second (resp. third) column

has a less effective deterrence (resp. backup) than the first. The most significant observation is that

while deterrence is reduced under insurance, it remains positive, whereas backup effort is almost

completely abandoned under insurance.

Comparing the two games, we observe that the recovery region remains roughly the
same, which means the defender basically keeps the original decision making regardless
of the contract. However, the defender’s efforts are very different. The defender will
almost always abandon the backup effort under insurance, while the deterrence effort is
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reduced but positive as compared to the equilibrium of the A-D game. While the presence
of moral hazard is not surprising, it is interesting to see that it affects the backup effort
more drastically than the deterrence effort. An explanation for this is that the deterrence
effort controls the overall probability of a successful attack, while the backup effort only
affects the expected loss when going down the recovery path. Therefore, the latter has a
smaller effect on the overall loss, and is abandoned first in the presence of insurance; this is
compounded by the fact that the attacker is non-strategic in the D-I game, a consequence of
which is that the backup effort cannot be used as a credible threat, unlike in the A-D game.

On the insurer’s utility, we first observe that it is positive in almost all cases. In
particular, for large γ, it is nearly half of the data value in some cases, clearly demonstrating
the existence of such a market for insurance. Note that the optimal a∗, b∗ are at the minimum
values a and b, respectively, with τ∗ = 0 for the pay region, and z∗ = 0 for the recovery
region. These values suggest that the defender essentially only pays the premium, while
the costs of effort and losses from a successful attack are all but completely covered by the
insurer.

In addition, with the introduction of insurance, the attacker gains a slightly higher
payout due to the reduction of the defender’s effort. Note that the defender’s utility remains
the same inside and outside of the contract. This means that the attacker is essentially
cutting into the insurer’s potential profit. Nevertheless, the insurer is still making a profit
by taking advantage of the defender’s risk-aversion, with their profit increasing as the
defender becomes more risk-averse.

6. Limitations and Discussion

One obvious limitation of the current study is the fact that the ransomware ecosystem
is modeled as a two separate, albeit connected, two-player games. A more accurate and
comprehensive treatment of the subject might require a three-way A-D-I game model,
where the attacker is also strategic. This remains an interesting direction of future work.

Other possible extensions of the work include analyzing and providing potential solu-
tions for the moral hazard issue and studying the problem under incomplete information
assumptions.

It is worth noting that different parties in this ransomware ecosystem typically have
different risk perceptions. In particular, an insurer faces not just one customer (defender)
but many, and the risk pooling effect justifies less risk-aversion (in theory that is, not
necessarily in practice). For this reason, in our models, the defender is risk-averse – its
utility is a concave (decreasing) function of the total cost – but the insurer is risk neutral –
its utility is a linear function, the simple sum of the total profit (or equivalently, total cost).
This is not the same as studying a population game with multiple defenders each having
their own policy, but takes into account the difference in the insurer’s risk perception.

7. Conclusions

This paper presented and analyzed two game theoretic models involving ransomware
attacks.

In the Attacker-Defender (A-D) game we analyze the strategic interaction between
an attacker (whose action is choosing a ransom amount) and a defender deciding on their
effort levels. We identify three types of equilibria, mainly dependent on the cost of data
recovery and the level of risk-aversion for the defender. Our findings show that the backup
effort is often used as a credible threat against the attacker to induce a lower ransom, rather
than as a real recovery measure. We also detect that a highly risk-averse defender is more
likely to arrive at a compromise with the attacker, accepting a lower ransom and paying
immediately.

Our analysis of the Defender-Insure (D-I) game suggests that the introduction of
insurance causes the defender to almost completely abandon the backup effort and reduce
their deterrence effort. At the same time, the insurer offers to cover all efforts through
premium discounts and cover all potential losses. The insurer’s profit is then derived from
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the risk-aversion of the defender, which increases as the defender becomes more risk-averse.
However, in presence of insurance, the attacker also enjoys a higher payout due to lower
efforts by the defender. Nevertheless, our empirical results show that there is still a market
for insurance.
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Notes

1 In this case G&G fell victim to a ransomware attack and paid $35K in ransom. They sought coverage under their crime insurance

policy which was denied by their insurer, Continental Western Insurance, citing G&G had declined computer virus and hacking

coverage, and that the ransom payment was “voluntarily transferred” to the hacker, among other arguments. G&G sued. Lower

courts sided with the defendant, awarding the insurance company summary judgment; this was vacated by the Indiana supreme

court, stating that neither defendant nor the plaintiff could be awarded summary judgment in the case.
2 The assumption of risk-aversion is because a risk-neutral defender would have no incentive to purchase insurance, which is the

focus of our next game.
3 While this assumption is consistent with historical data, it is quite likely that we are witnessing the onset of a major trend shift, with

increasingly targeted attacks and much higher ransom demand, see e.g., the recent Colonial. [4].
4 Note that our model does not necessarily assume that a zero backup effort results in no recovery options, e.g., in case the defender

has access to a no-cost backup option. Therefore, in this and the following case the defender may still benefit from backups while

not investing any backup effort.
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