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Constraining Adversarial Attacks on Network
Intrusion Detection Systems: Transferability
and Defense Analysis

Nour Alhussien, Ahmed Aleroud

Abstract—Adversarial attacks have been extensively studied
in the domain of deep image classification, but their impacts
on other domains such as Machine and Deep Learning-based
Network Intrusion Detection Systems (NIDSs) have received lim-
ited attention. While adversarial attacks on images are generally
more straightforward due to fewer constraints in the input
domain, generating adversarial examples in the network domain
poses greater challenges due to the diverse types of network
traffic and the need to maintain its validity. Prior research has
introduced constraints to generate adversarial examples against
NIDSs, but their effectiveness across different attack settings,
including transferability, targetability, defenses, and the overall
attack success have not been thoroughly examined. In this paper,
we proposed a novel set of domain constraints for network traffic
that preserve the statistical and semantic relationships between
traffic features while ensuring the validity of the perturbed adver-
sarial traffic. Our constraints are categorized into four types:
feature mutability constraints, feature value constraints, feature
dependency constraints and distribution preserving constraints.
We evaluated the impacts of these constraints on white box
and black box attacks using two intrusion detection datasets.
Our results demonstrated that the introduced constraints have
a significant impact on the success of white box attacks. Our
research revealed that transferability of adversarial examples
depends on the similarity between the targeted models and the
models to which the examples are transferred, regardless of the
attack type or the presence of constraints. We also observed
that adversarial training enhanced the robustness of the majority
of machine learning and deep learning-based NIDSs against
unconstrained attacks, while providing some resilience against
constrained attacks. In practice, this suggests the potential use
of pre-existing signatures of constrained attacks to combat
new variations or zero-day adversarial attacks in real-world
NIDSs.

Index Terms—Adversarial attacks, network intrusion detec-
tion systems, artificial intelligence, neural networks, computer
networks.
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I. INTRODUCTION

EEP learning (DL) is revolutionizing almost every busi-

ness sector by enabling the creation of intelligent systems
and providing solutions to complex problems, which include
defenses against network intrusion. Tasks such as intrusion
detection are becoming increasingly complex in today’s mod-
ern networks due to the ever-changing methods and techniques
employed by cyber attackers to circumvent traditional security
measures [1].

There is an increasing number of NIDSs that employ DL
algorithms for detecting suspicious traffic in network flows [2].
This recent trend of using DL as opposed to traditional ML
algorithms is attributed to the limitations of traditional ML
algorithms. ML-based intrusion detection approaches are typ-
ically rule-based. Even when statistical or feature engineering
methods are used for analyzing traffic, they can still lead to a
significant percentage of false positives [3]. This also requires
a significant monitoring effort by system administrators and
security teams to adapt to emerging threats.

However, the increased use of DL algorithms in NIDSs is
also associated with the recent threats of adversarial attacks.
While DL methods are capable of detecting malicious activ-
ities [4], existing research shows that DL approaches are
vulnerable to adversarial attacks. In these attacks attackers
deliberately craft adversarial examples (AEs) with the goal
of misleading IDSs and causing incorrect classification of
the incoming traffic [5]. Most studies have been investigating
adversarial attacks against DL models in the context of
image classification, leading to findings such as the capability
of adversaries to arbitrarily perturb image features [6], [7].
Existing works in this area rely on the assumption that
image features can be updated without adhering to specific
constraints. This is due to the domain itself where images can
be perturbed easily [8]. This is not the case for network data
where changes are usually bounded by constraints related to
the data and the domain itself, where few changes in network
features can lead to invalid network flows [7], [8], [9]. The
majority of existing research on adversarial attacks on network
data have focused on crafting and mitigating adversarial
examples without taking into consideration a need of the
generated examples to be valid network traffic [10], [11]. It
can be easily detected by IDSs otherwise.

Applying constraints when crafting adversarial attacks
means that the adversary should consider the generated AEs
still meeting the characteristics of the network traffic [12].
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Generating AEs using conventional adversarial attacks may
lead to invalid network traffic such as generating negative port
numbers, a source TCP window advertisement value with a
value greater than 255 or setting a DNS service to a TCP
protocol. Although most of the existing works have reported
high attack success rates [13], [14], they do not consider such
domain constraints. However, with the recent trend of systems
detecting Al-generated data, attackers are expected to adapt to
such changes to avoid detection of AEs. Therefore, it is quite
significant to study the behavior of network Adversarial attacks
under the contextual constraints of a valid traffic. Such a
contextual analysis can lead to create new defense approaches
to mitigate those attacks.

While there is a recent growing body of work that
explores the impact of constrained adversarial attacks on
NIDSs [15] [16] [8], there are many limitations in the existing
methods:

1) Most of the existing research does not comprehensively
investigate the impact of constraints under different
threat models, attack classifications, and characteris-
tics. There are different classifications of attacks which
include targeted and untargeted attacks, black box (BB)
and white box (WB) attacks. It is then necessary
to investigate whether applying generally crafted con-
strained AEs will lead to similar/different decisiveness
behavior when applied to different attacking methods.
While existing research indicates that network con-
straints may not inherently improve robustness against
AEs [8], a comprehensive examination is essential, con-
sidering the varieties of adversarial attacks, the models
they target, and the complexity of the DL architectures
involved. It’s also critical to assess whether implement-
ing constraints as part of an adversarial training defense
mechanism can improve resilience against AEs [17], and
if such defenses are transferable between DL and ML)
models.

2) While constraints may enhance the robustness of some
adversarial attacks against a specific model, their effec-
tiveness and transferability across different models or
architectures need to be studied. Constrained adversarial
attacks on a specific DL model may not be necessarily
effective against other models, making them less practi-
cal in the real-world NIDSs.

3) Existing works that develop constraints do not con-
sider relationships/dependencies between traffic features.
Some of those dependencies are statistical and others
are semantic-based dependencies. By overlooking the
relationships between traffic features when creating AEs,
the generated traffic may not accurately reflect the
complex interdependencies and interactions among the
features in the original data.

This paper presents an approach for crafting and implement-
ing constraints to generate AEs against NIDSs. We adopted
a new set of network constraints while generating AEs to
produce valid network traffic posing a real threat to NIDSs.
We conducted evaluations to assess the impact of the network-
constrained AEs on the success rates of both BB and WB
attacks and transferability of AEs. Additionally, we tested the
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application of our constraints in enhancing adversarial training
to create defense mechanisms against sophisticated adversarial
attacks targeting NIDSs.

The contributions of the paper can be summarized under
the following three research areas:

1) Adversarial domain constraints: We proposed a new
set of network domain constraints that can be applied
to network data. Not only those constraints preserve
characteristics such as feature ranges, but also the
semantic-based and statistical relationship between fea-
tures after the generation of AEs. We then tested the
validity of the generated AEs within the network domain
both before and after applying the created constraints.

2) Transferability analysis: In addition to evaluating the
transferability of constrained AEs, we extended this
analysis to include transferability of defenses. This com-
prehensive evaluation provides valuable insights into the
generalization capabilities of both attacks and defense
mechanisms across different datasets and models.

3) Analysis of transferability and defense using similar and
different attack signatures: The paper investigates the
effects of the proposed adversarial domain constraints on
transferability of AEs between similar/different source
and target DL/ML models. Using the observed vari-
ations in the signatures of the generated AEs, we
investigated whether training a model on AEs from
a specific attack could be effective in detecting AEs
from a different attack. By considering a range of
model complexities, including both basic and intricate
architectures, we provide a comprehensive analysis of
the constraints’ applicability and the transferability of
attacks and defenses across various model setups.

The rest of this paper is organized as follows: Section II
discusses the existing research that is relevant to our work.
Section III delves into the threat models investigated in our
research. Section IV introduces our methodology. Section V
discusses the results of our experiments. The research is
concluded in section VI. Table I summarizes the symbols
and abbreviations used in the related work and methodology
sections.

II. RELATED WORK

General Background: Adversarial attacks can be classified
into two main categories: BB and WB attacks. This catego-
rization depends on the extent of the attacker’s knowledge of
the targeted DL/ML model and data [29]. In BB adversarial
attacks, the attacker does not have access to the internal work-
ings of the model. She/he may only have partial knowledge
about the input features or feature vectors and output, which
correspond to the predictions made by the model [30]. WB
adversarial attacks occur when the attacker has full access
to the internal workings of the model, including the model
architecture and parameters [12]. WB attacks tend to be more
effective compared to BB attacks. This is because in WB
attacks the attacker has more information about the model.
With this increased knowledge, the attacker can craft fine-
tuned AEs [31].

Authorized licensed use limited to: Augusta University. Downloaded on October 28,2024 at 23:10:46 UTC from IEEE Xplore. Restrictions apply.



ALHUSSIEN et al.: CONSTRAINING ADVERSARIAL ATTACKS ON NIDSs: TRANSFERABILITY AND DEFENSE ANALY SIS

TABLE I
LIST OF ABBREVIATIONS

Acronym Meaning Ref

FGSM Fast Gradient Sign Method [18]

MI-FGSM Momentum Iterative Fast Gra- [19]
dient Sign Method

JISMA Jacobian-based Saliency Map [20]
Attack

EAD Elastic-Net Attack with Direc- [21]
tional Gradients

BIM Basic Iterative Method, [22]

PGD Projected Gradient Descent [23]

MLP Multilayer Perceptron [24]

ResNet Residual networks [25]

PSO Particle Swarm Optimization [26]

GA Genetic Algorithm [27]

STTL Source to Destination Time to [28]
Live

TCPRTT Sum of synack and ackdat [28]

SYNACK The time between the SYN and [28]
the SYNACK packets

SINPKT Inter-packet arrival time from [28]
source to destination

SLOAD Source to destination bits/s [28]

The effectiveness of existing adversarial attacks can be
determined by the attack success rate and magnitude of
perturbations introduced [32]. The attack success rate refers
to the percentage of AEs that are successfully misclassified
by the model. The magnitude of perturbations indicates the
extent of noise introduced to the original input to ensure they
are not easily detectable by the targeted DL/ML models [33].
Success of AEs can be also determined based on their
transferability [34]. Transferability measures the capacity of
an attack to successfully fool other models differing from the
one specifically designed to evade.

Compared to WB attacks, the success of BB attacks can
be also determined by their computational efficiency [35].
Efficiency refers to methods that minimize the number of
queries or interactions with the model to craft AEs [36].
Therefore, researchers employed several query optimization
techniques for enhancing the efficiency of BB adversarial
attacks, including: zeroth-order optimization [37], BB gradient
estimation [38], and evolutionary algorithms [15].

Since the seminal work of Szegedy et al. [24] who discov-
ered that DL/ML models are vulnerable to adversarial attacks,
it became apparent that even the most sophisticated DL models
can be deceived when targeted by a well-crafted noise to the
inputs. The field of adversarial attacks applied to IDSs has
experienced an increase in the number of works exploring their
applicability. The following subsections provide an overview
of the recent advancements and contributions in this field.

BB Attacks and Substitute Models: Guo et al. [9] proposed
a BB attack method against ML-based anomaly network flow
detection models. The method consists of training another
model to substitute for the target ML model. Based on
the overall understanding of the substitute model and the
migration of the AE, they used the substitute model to
craft adversarial examples. The authors conducted experiments
on typical classification models, including Convolutional
Neural Networks (CNNs), Support Vector Machines (SVMs),
k-nearest Neighbor (kNN), Multilayer Perception (MLP), and
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Residual Networks (ResNet), which were all trained and
evaluated using the KDD99 and the IDS2018 datasets. A
key success factor in their work was mirroring the target
model and the substitute model. However, the proposed work
didn’t consider adding constraints to craft AEs. The authors
limited the number of modifiable features and concentrated on
introducing perturbations to specific features of network flow
data.

GAN-Based Approaches: Abdelaty et al. [39] presented the
GADoT framework, which is a novel GAN-based approach
for adversarial training. GADoT was proposed to leverage and
augment the training set with adversarial traffic samples and
increase the robustness of ML models against DDoS attacks.
The approach generates fake-benign samples and adversarial
training data that can be fed into LUCID (i.e., a lightweight
DL solution for DDoS attack detection). GADoT successfully
reduced the percentage of undetected malicious flows to 1.5%
compared to 60% without it. The approach focused solely
on adversarial training to mitigate the impact of adversarial
attacks. However, the evaluation of adversarial training did not
utilize constrained adversarial network flows for retraining the
GAN model, which limits the applicability of the approach
to real-world IDSs. In [40] a related IDSGAN approach was
proposed. IDSGAN consists of a generator transforming the
original malicious traffic records into adversarial versions
and a discriminator dynamically learning the real-time black-
box detection system by classifying traffic examples. The
framework incorporates a restricted modification mechanism
to ensure the adversarial generation preserves the original
functionalities of the traffic records, but traffic constraints were
not explicitly applied to perturbed traffic.

Adversarial Domain Constraints: Several studies examined
domain constraints to generate valid adversarial network
data. The authors in [15] used evolutionary algorithms and
generative adversarial networks to create AEs that bypass
ML-based NIDSs. The authors introduced the concept of
mutability within domain constraints, where certain network
traffic features can be perturbed while others are immutable.
Mutable feature perturbations were limited to incrementing
feature values to generate valid AEs. Our method proposes a
broader set of constraints allowing various modifications while
adhering to the semantics and statistical relationships between
the features of network data.

The authors in [41] employed the Carlini and Wagner
(C&W) method to create an adversarial attack known as the
Restricted Traffic Distribution Attack (RTDA). The attack was
used to target ML models used for classifying network traffic.
The approach relied on two types of constraints: increasing
the values of packet sizes and ensuring that the distribution
of the manipulated packet size maintained a monotonically
non-decreasing property. The authors, however, solely focused
on maintaining their constraints on packet sizes without
considering other features of network traffic.

In [42], the authors conducted an evaluation of an anomaly-
based NIDS in terms of its effectiveness against AEs created
through legitimate traffic transformations. The proposed con-
straints pertained to how adversaries interact with the victim
system rather than perturbing a traffic to deceive DL models.
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They focused on dividing the payload across multiple packets,
changing IP addresses and the timing between packets while
keeping their content intact. They also created fake packets
with predefined attributes and subsequently transmitted such
packets alongside the attack traffic.

Evaluating DL/ML Models’ Resilience to Adversarial
Attacks: The authors in [43] conducted a comparative study
on various adversarial machine learning techniques applied
to NIDSs, which included Fast Gradient Sign Method
(FGSM), Basic Iterative Method (BIM), DeepFool, C&W,
EAD (Elastic-Net Attack with Directional Gradients), JSMA
(Jacobian-based Saliency Map Attack), and CW-L2 (C&W
with L2 Norm) on two public datasets, NSL-KDD and
CICIDS2017. FGSM, BIM, and DeepFool were the most
effective methods. Following these top-performing methods,
the study identified additional effective techniques, namely
C&W, EAD, and JSMA, and C&W-L2. The approach involved
generating adversarial examples (AEs) without enforcing
network domain constraints. In a similar vein, Zhang et al. [44]
presented a framework called TIKI-TAKA to generate and
detect adversarial attacks on well-known IDSs datasets in one-
to-one and one-to-all and classification tasks. Their framework
targeted attacks that occur due to time-based features pertur-
bations. They proposed three defense mechanisms: ensemble
voting, adversarial training through ensemble techniques, and
query detection. The authors assumed that many features
should be left unchanged when creating AEs as they directly
affect the behavior of traffic flow. However, leaving too many
features unchanged limits the scope for adversarial attacks.

Analysis of Transferability and Adversarial Training: The
authors in [16] investigated how AEs transfer between differ-
ent ML models, including transferability from feed-forward
neural networks to logistic regression and random forests
models. Key findings indicated that adversarial attacks were
less successful when applied to models different from the
target model. The study also found that transferability of AEs
tended to decrease when ML models were trained on datasets
with imbalanced class distributions. Our research extends
this category of studies by examining the transferability of
constrained AEs and the effectiveness of adversarial training
across various ML and DL models, including both similar and
different attack signatures.

The authors in [8] focused on whether network domain con-
straints can enhance defense against adversarial attacks. They
modified two adversarial algorithms: Adaptive Jacobian-based
Saliency Map (AJSMA) and Histogram Sketch Generation
(HSG) and integrated constraints in creating valid AEs.
Additionally, they conducted an analysis of transferabil-
ity, utilizing two metrics: inter-transferability (transferability
between different models) and intra-transferability (transfer-
ability within the same model). We discussed our comparison
with this research in the experiments section.

Problem Space Attacks: Recent research has placed empha-
sis on adversarial ML attacks in the problem space. These
attacks deceive ML models by modifying the input data in
a way that is imperceptible to humans. The authors in [45]
argued that problem-space attacks pose greater challenges to
the defense mechanism compared to traditional feature-space
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Fig. 1. A taxonomy of adversarial attacks and dimensions covered in our
threat models.
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attacks. Our constraints partially addressed the problem space
of network data to generate valid AEs.

Robust and Explainable Attacks: Recent research has
focused on evaluating the robustness of WB adversarial-trained
models using explainable Al and the SHAP (SHapley Additive
exPlanations) method [46]. By leveraging SHAP method, the
authors were able to measure the contribution of different
features for a deeper understanding of the model’s behavior
and identify vulnerabilities or areas where the NIDSs is more
susceptible to adversarial attacks.

III. ASSUMPTIONS

Our methodology were developed based on the taxonomy
presented in prior research within the area of adversarial
attacks as summarized in Figure 1. We adapted the threat mod-
els within the context of adversarial attacks on NIDSs based
on the 1) attacker’s knowledge, 2) attack space, 3) attacker’s
strategy, 4) attacker’s goal, and 5) attack target.

Attacker knowledge describes the amount of knowledge
the attacker know about the targeting ML/DL model. Based
on that, adversarial attacks are classified into WB, BB and
grey box. Under WB attacks setting, we assumed that the
attacker has full access to the internal details of the targeted
model. This includes knowledge of the model architecture,
parameters, and potentially the training data. In BB attacks
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setting, we assumed that the attacker has no access to the
internal details of the targeted model, such as its architecture,
parameters, or training data. The attacker can only observe the
input-output behavior of the model and has limited knowledge
about specific features or patterns that influence its classifica-
tion process. Gray-box attacks assume that the attackers have
partial knowledge of the targeted ML/DL models. Under those
attacks, the attackers may have a partial knowledge about the
model either by querying it or by having some level of access
to its training data.

Attack space refers to possible perturbations applied to the
data used in the training and evaluation of ML/DL models.
In the domain of network traffic, perturbations can be applied
at two levels: the feature space and the raw network data
space. The feature space represents a high-level aggregation
of network traffic, which includes various features extracted
from network packets such as protocol types, services, port
numbers, and other features that characterize the traffic. The
raw network data space involves the unprocessed network
traffic data, typically captured in pcap files containing the
actual network packets that were transmitted over the network.
As a result, attackers have two principal approaches for
launching their attacks. They can operate within the feature
space, where they manipulate existing feature values to deceive
ML/DL NIDSs models. Alternatively, attackers may opt to
operate within the problem space, generating entirely new
instances of network traffic that the ML/DL model has
never encountered. While the primary focus of this paper is
feature space attacks, the constraints we developed maintain
the semantic and statistical characteristics of network data.
Therefore, our constraints are applicable to problem space
attacks as well.

Attacker’s strategy pertains to the stage within the ML
process when the attacker carries out their attacks, which
can be categorized into evasion, poisoning, or oracle attacks.
Evasion attacks are executed during the inference or testing
phase, after the model has been trained. Poisoning attacks
take place during the model’s training phase, with the intent
of corrupting the model learning process. Oracle attacks
involve creating substitute models that mimic the behavior and
functionality of the target model to induce similar responses.
Our attacks were only conducted at testing time; therefore, we
applied the evasion strategy.

Attacker’s goal refers to the specific objectives that she/he
seeks to accomplish. These objectives can be broadly cate-
gorized into three main areas: integrity, confidentiality, and
availability. If the attacker’s intention is to tamper with or
corrupt the training data, this falls under the category of
integrity-related goals. If the attacker is looking to gain
access to the characteristics of the ML/DL Model or the
network data it handles, this aligns with confidentiality-related
goals. On the other hand, when the attacker aims to disrupt
the normal functioning of ML-based NIDSs Systems, their
goal is to compromise the model’s availability. In our study,
we conducted both targeted and untargeted attacks with the
primary aim of compromising the model’s integrity and, to
some extent, its confidentiality.
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Fig. 2. A framework for generating valid network adversarial traffic.

Attacker’s target can be the physical domains such as the
cyber-physical systems or the applications of ML/DL. In this
research our target is to undermine the effectiveness of DL
and ML models’ in accurately classifying network traffic as
either an attack or a benign activity.

IV. METHODOLOGY

The paper employs the methodological framework sum-
marized in Figure 2 to generate AEs under targeted and
untargeted attack modes. Under the targeted mode, the goal of
the attacker is to misclassify an AEs as a benign activity. In
the untargeted mode, the attacker’s goal is to cause misclassi-
fication of attacks and benign activities without specifying a
particular target class. The approach allows for the evaluation
of the techniques’ evasiveness on both attacks and benign
activities before and after applying the developed network
domain constraints.

Threat Models: Our constraints work for both WB and
BB attacks. We assumed that BB attacks mimic real-world
scenarios where attackers possess limited knowledge of the
internal workings and architecture of the targeted ML/DL
NIDS. In addition, we aimed to assess the vulnerability of
ML/DL NIDSs under WB attacks, where the attacker has full
knowledge about the targeted models.

We considered Zeroth Order Optimization BB attack
(ZOO) [37], DeepFool WB attack [47], and Carlini & Wagner
WB Attack (C&W) [48]. Those attacks were commonly
adopted as benchmark attacks within the domain of adversarial
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ML. Moreover, prior research extensively validates their effi-
cacy [49], [50], [51], [52]. Therefore, they represent a suitable
choice for evaluating the resilience of NIDSs under various
attacking strategies. Under BB attacks, the attack on a DL/ML
model involves a series of steps as shown in Fig. 2. The
attacker begins by querying the targeted BB NID model with
an input network example such as a netFlow x to obtain a
corresponding prediction y = f(x). Input examples and query
results are used to construct a substitute dataset D’, consisting
of input-output pairs (z’,y). Those pairs represent the initial
AEs without any constraints. Given our interest in binary
classification of network traffic as attacks or benign activities,
our primary objective is to develop a BB hard-label attack.
This attack involves iterative updates of input vectors using
gradient estimates obtained from the targeted trained DL/ML
NID model [53]. A hard-label attack directly assigns a discrete
label to each input instance without providing probabilities or
confidence scores. The attacker then generates AEs #;, while
satisfying the set of network domain constraints C. These con-
straints encompass restrictions on: 1) the number of modified
features, 2) the magnitude of perturbation, 3) statistical and
semantics restrictions, and 4) feature range restrictions.

The approach to create AEs for WB attacks is relatively
different since the attacker is assumed to have knowledge
about the target model and data. The goal is to perturb the
input network data by adding noise while considering domain
constraints to ensure the validity of the perturbed examples.
Both categories of attacks were tested under targeted and
untargeted attack modes. The created adversarial examples
were tested under many experimental scenarios, which include
transferability of those examples DL/ML models similar to
initially targeted model and to models with different or more
complex architectures. The next subsection discusses the role
of constraints to create valid network traffic and outlines our
formal model to define constraints.

A. Defining Network Constraints in NIDSs

NIDSs rely on network traffic features to establish a baseline
profile of typical network behavior. The created profiles detect
deviations in the incoming traffic to identify attacks [54].
However, the incoming traffic needs to maintain network
protocols and standards. Network traffic that fails to conform
to the established protocols can be identified as an anomaly,
suggesting it may be invalid or suspicious. Such a traffic could
be the result of an attacker’s deliberate perturbation, leading
to the creation of AEs. Therefore, adversarial attacks against
security systems such as NIDSs may also lead to a non-
functional network traffic. A common example of generating
invalid AEs is through perturbing the “Source to Destination
Time to Live” (STTL) feature. STTL is used to ensure that
packets have a large enough TTL value to reach their intended
destination even if there are many routers in the path. In some
cases, anomalies or deviations in the STTL values can be
indicative of potential network attacks or abnormal network
behavior. If the value of STTL is manipulated to be 257,
the perturbation applied is considered invalid because the
maximum value allowed for the STTL field in an IP packet

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

TABLE II
TABLE OF NOTATIONS

Variable Definition
T, Tp Clean example, adversarial example
y Label of a network flow € {benign, attack}
Yyt Targeted label
TCA(x) Traffic classification algorithm
I, MU Immutable Feature, Mutable feature
Bj, R;j and C; | Binary, continuous and categorical features
R(f, k) Linear relationship between features f and k
W, o Mean and standard deviation
D’ Substitute dataset
WB,BB White box and black box
B Perturbation budget
f Feature before perturbation
fo Feature after perturbation
Ss Step size
m; Maximum iteration
cf Attack confidence
VAR Valid adversarial example

is 255. Another example can be an invalid tcp roundtrip time
teprrt, which potentially affects the sum of the synack and
ackdat of the TCP packet. This can happen if an attacker
modifies the values of the synack and ackdat features in a way
that can result in a different checksum calculation compared
to the original values. By bypassing the network functionality
of the checksum, attackers aim to create AEs passing the
integrity checks performed by the network devices and NIDSs.
However, they may still need to consider network constraints
into their account when crafting AEs to evade threat detection
algorithms.

Table II demonstrates the formal notations used to create,
apply, and experiment our constraints. Formally, given a
benign sample z € X, with the corresponding correct label
y € Y, where y belongs to either an attack or a benign activity,
the attacker goal is to craft an AE %, = x + 71 such that
TCA(%p) # y in an untargeted attack, TCA(3,) = y* in a
targeted attack, 1 denotes the applied perturbation, and 7CA
is a traffic classification algorithm.

In this paper, ! represents the target chosen by the attacker,
with the intention of classifying AEs as benign network flows.
It is important to note that our constraints are not mutually
exclusive, meaning that multiple types of constraints can be
applied to the same feature. For each of the attack modes, our
constraints belong to one or more of following categories:

o Features Mutability Constraints: Network traffic includes
mutable and immutable features. Mutable features are
those attributes of network traffic that can be changed,
while immutable features are network traffic attributes
that cannot be changed. Examples of mutable features
are srcbytes, dstbytes, duration and port numbers. The
examples of immutable features are protocol, which is the
protocol used to transmit data, state, which denotes the
state of the network connection, whether it is established,
closed, or in the listening state, and service, which is the
type of service or application associated with the network
communication, such as HTTP or FTP.

Formally, let an immutable feature denoted by I €
{protocol, state, service} and a mutable feature denoted
by MU C {1,2,...,r}. The attacker goal is to craft AEs
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that satisfy the following constraint:

Viel,f,=f (1)
Ymy, € MU, f, = f +1 )

where the perturbation 7 is applied to the original mutable
feature to create an AE I

Feature value constraints: Network traffic features can
adopt different forms, such as binary, discrete, continu-
ous, and categorical. Binary traffic features are those that
can only have two possible values 0 or 1. The examples
of binary features in network traffic are IP options,
Fragmentation features, and Error features. Continuous
network features can take a value within a numerical
range. The examples of continuous features in network
traffic include ackdat, which is the time duration between
the sending of a SYN packet and the receiving of an
ACK packet in a TCP connection, sintpkt, which is the
inter-packet arrival time between consecutive packets sent
from the source to the destination, and sload, which is
the average traffic load (in bits per second) from the
source to the destination. Categorical network features are
those that can take discrete values without any inherent
order or numerical relationship between the categories.
The examples of categorical features in a network traffic
include: the protocol field in the IP header, which take
the values such as TCP, UDP, or ICMP, service field,
which can take values such as HTTP, FTP, and DNS, state
field which can values such as FIN, INT, CON, URH or
others, and Flag feature which indicates various control
flags in the TCP header, such as SYN (synchronize), ACK
(acknowledge), RST, and (reset).

Let the set of binary features in the network traffic is
denoted by B; C {1,2,...,n}, the set of continuous
features is denoted by R; C {1,2,...,m}, and the set
of categorical features is denoted by C; C {1,2,...,t}
The attacker goal is to craft AEs that satisfy the following
constraints:

Vb; € B, fp €0,1] 3)
Vj € R;, min(f) < fp < max(f) “)
t
Ve, € G, fp=) Cj=1 (5)
j=1

where ¢ in formula 5 represents the total number of values
for a categorical feature c;. Since categorical features are
mapped using one hot encoding, the last constraint holds.
In one-hot encoding, each category is represented by a
binary feature that takes the value of 1 if the category is
present and O otherwise.

Feature dependency constraints: Some features of
network traffic are dependent on other features. For
instance, the source IP address and source port of a
packet are often dependent on each other because they are
associated with the device sending the packet. Similarly,
the destination IP address and destination port num-
ber have a dependency relation because they are both
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associated with the device receiving the packet. Another
example is the flow average inter-arrival time which is the
average time between packets in a flow. It is calculated
by dividing the total time of the flow (duration) by the
number of packets in the flow. If R denotes a relationship
between the features f and k in the original flow, then
the introduced constraint must preserve the relationship
between the features of the perturbed flows fp and l%p as
follows:

YR(F, 3R (foo ko ) IR (Jps B ) = BUK)(©)

Dependency relationships can be also regression-based,
example of those relationships is the linear regression. In
BB models those relationships can be approximated from
the substitute dataset D’. Suppose that there is a linear
relationship between features z and 4. Let us assume that
D' contains (m) number of features. Let us also assume
that z can be predicted based on h. We are interested
in preserving the relationship between z and A4 in the
corresponding linear regression model:

z=hB+e (7

Suppose that n x m data matrix contains observations
of both features, 3 is the coefficient of the model that
we are trying to find, and ¢ is the error. If we use
ordinary least square method for estimation, then, B =
(hTh)=1hT 2. Here hT h is the covariance matrix of the
data if the mean of each feature is set to zero. h” z is the
covariance between every feature vector of 4 and z. Our
constraints ensure the preservation of the linear regression
relationship between those features.
Distribution-preserving constraints: The statistical dis-
tribution of feature values in the original network data
should be taken into account by attackers when craft-
ing AEs. Specifically, an attacker should try to craft
AEs that follow the same statistical distribution of the
benign examples to make them look legitimate if his
target is classifying them as benign. For instance, if
a NIDS is trained on a dataset where the majority
of packets have a small size, an attacker may try to
craft AEs with small size too. Hence, the adversary
should follow the original statistical distribution of data
to avoid outliers AEs through considering the following
constraints:

Vjp|fp =f+te ®)
O’];p ~of (10)

Due to the absence of access to the original data in
BB attacks, we utilize substitute data D’ to uphold
this constraint. In order to perturb numerical features,
we employ a noise parameter (e.g., €) as indicated in
formula 8. This perturbation process ensures that the
mean and standard deviation of the perturbed feature
closely match those of the original feature.
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Algorithm 1 Constrained Generation of Adversarial Examples

Require: Dataset D or D' = (zp, yp)zzl, Adversarial perturbation
budget B = {e, cf, My, ss}, Attack set A, Constraints set C,
Feature set M

Ensure: Adversarial examples zp for p =1,...,n

1: for p =1tondo

2:  zp < Preprocess(z;) {Preprocess input flow}

3:  yp < One-Hot(yp) {Encode true label as one-hot vector}

4: Ipo < zp {Initialize adversarial example as original input}

5. for all a € A do

6: Ip,a + ApplyAttack(a, %) ¢_1, y;,, B) {Apply adversar-

ial attack}

7: for all c € C do

8: Zp < Project(Zp, c) {Projection of constraints set on
M}

9: end for

10:  end for

11: end for .
12: return AE = {Zp,a, yz(, ))}Zzl, ae A

B. Generating Constrained AEs for NIDSs

Our AEs generation procedure is depicted in Algorithm 1.
The algorithm requires a set of constraints C, which encom-
passes a broad spectrum of constraints discussed earlier. The
parameters of perturbation budget B are selected depending on
the type of the attack used to generate AEs. It can be a WB or a
BB attack. B includes parameters such as attack confidence cy,
maximum iterations m;, step size sg or the noise parameter e.
Preprocessing of flows includes removal of any missing feature
values and label binarization. The algorithm returns, for each

p=1,0 € A,

type of attacks, the set of AEs = {Zp q, yj(gt’u))
and the targeted labels of AEs yl(,t). The attacks used in the
generation of AEs are WB or BB. They can be targeted or
untargeted. The following subsections discuss each of those
attacks in detail.

In our study, we employed three adversarial attack genera-
tion algorithms presented in the subsequent subsections:

1) Zeroth Order Optimization BB Attack (ZOO): ZOO
attack was proposed by the authors in [37]. It operates under
the constraint that the attacker lacks direct access to the
gradients of the target model and can only observe model’s
output for a given input. Unlike gradient-based adversarial
attacks, which utilize model gradients to create AEs, ZOO
generates such examples through optimization of the following
regularization function:

H%inHi’p —zlp+ e g(dp) (11

Such that ||.|[, is the regularization used to enforce the
similarity between AEs and the benign examples in terms of
the Euclidean distance (if the attack is targeted), p is the norm,
and c is regularization parameter. g(Z,) is the BB hinge loss
function which depends on model output as follow:

9(ip) = max(max i # tlog[f(z);] —loglf(z)], —¢y)
12)
where f(x) represents the logarithm of the probability of the

model’s output for class i given the input flow x, 7 is the
label of the target class (i.e., the benign label), and cf is used
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to control the attack confidence. For estimating the gradient
information, symmetric difference quotient is used to optimize
the model and approximate gradients in BB setting without
any knowledge about model architecture and parameters as
follow:

of (x) _ fz +s54) — f(z — 854)

ox; 255 (13)

The partial derivative above approximates f(x) with respect
to x; by measuring the difference in the model’s output for
perturbed inputs z + sg; and z — sg;. The step size ss is a
small constant used in the approximation.

2) DeepFool WB Attack: DeepFool WB adversarial attack
is based on the idea of finding the minimum perturbation to
an input that will cause the model to misclassify it [47]. The
attack works with an initial input, then it iteratively computes
the gradient of the model’s output with respect to the input. At
each iteration, the attack adds a small perturbation to the input
in the direction of the gradient that will increase the model’s
output for the least likely class. The process is repeated until
the model’s output for the least likely class exceeds that of
the true class. The process of generating AEs is formalized as
follows:

By 1 (14)
1 to T, (15)
of (2p,5) < of (3p); (16)
wy + Vefy(2p,5) — Vefy(2p,3); 17
Azg e eV o1 < (pg + Azg).  (18)

|w@|2

DeepFool takes as input the traffic flow x to be perturbed,
a classifier ¢f and a perturbation parameter €. The attack will
run for 7 number of iterations. It starts by initializing the
adversarial example %, to be the same as the original example.
A minimum perturbation is required to move the input across
the decision boundary of the neural network. At each iteration,
the gradients output of the neural network with respect to the
original input example are calculated, wy is the direction of the
decision boundary between the true class y and the ¥y, class. It
is obtained by linearizing the decision boundary. The direction
of the minimum perturbation to change the classification of
the input example is then computed. DeepFool then checks
whether the input example has been successfully classified as
benign if the attack is targeted. The process is continued until
that example is classified as benign.

3) Carlini & Wagner WB Attack: The Carlini and Wagner
(C&W) attack is a WB adversarial attack [48]. The generation
of adversarial examples is formulated as the minimization of
the distance between the adversarial example and the original
input, while also maximizing the classifier’s confidence in the
target class. C&W attack finds an initial AE, which is an input
that is close to the original example. It continues refining it
until it generates an AE based on the following optimization
functions:

min||z, — o + ¢ f(z,¢) (19)
Tp

f(@,t) = maz;x4[Z(2)]; — [Z ()]t (20)
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TABLE III

DATASETS
Criteria UNSW-NB15 | I0T-23
Attack sample 17814 5537
Benign sample 542133 4462
Number of flows 559947 9999
Number of features | 49 21

where 7, is the perturbed input, x is the original input or
the clean sample to be perturbed. ||-||2 denotes the Euclidean
norm or the L2 norm to measures the distance between I,
and x, c is a scalar constant that controls the trade-off between
the perturbation size and the confidence of the attack, f(x, 1),
is the objective function which includes both the distance
(Il#p — =||2) and confidence (¢ - f(x, 1)), and Z(z); is the
confidence score of the logit layer. Z(z); is computed using
the SoftMax classification rule to predict the class label of
an input. The AEs are passed through the logit layer and the
SoftMax function to maximize the difference between the true
class and the target class.

V. EXPERIMENTAL RESULTS
A. Data Preprocessing

We employed the UNSW-NBI15 and [oT-23 datasets to
assess the effectiveness of our methodology. Both datasets
comprise network flows specifically designed to evaluate
NIDSs based on DL/ML methods. Table III demonstrates the
details of both datasets.

UNSW-NB15 dataset [55] is a public dataset that was
collected at the Cyber Range Lab of the Australian Centre for
Cyber Security using IXIA PerfectStorm devices. This dataset
includes both legitimate and malicious network traffic repre-
sented in both packet and flow-based formats. The attacks in
this dataset are classified into backdoors, DoS, Reconnaissance
activities, Worms, and some other generic attacks. From this
dataset, we generated a balanced sample containing 17,814
benign flows and 17,814 attack flows.

The I0oT-23 dataset contains IoT network flows that were
captured by the Avast AIC lab between 2018 and 2019 [56].
I0T-23 includes both malicious and benign network traffic
from 20 infected IoT devices and 3 non-infected devices.
The dataset was created to examine how benign IoT devices
behave within computer networks. I0T-23 includes the orig-
inal network capture (i.e., pcap file) and the log files. The
log files have been analyzed and labeled manually. Flows
are labeled as benign or attacks under different categories
including C&C, DDoS, Filedownload, Heartbeat, Mirai, Okiru,
PartOfHorizontalPortScan, or Torii.

We applied several data preprocessing and cleaning steps.
We removed records with missing values from both datasets.
We then binarized the class labels by converting the target
classes into a binary format representing attacks or benign
activities. To prepare the data for ML and DL algorithms,
we converted categorical features into numerical values using
the One-Hot Encoding technique [57]. The most influential
features were selected using Information Gain leading to
excluding some features such as timestamps, locally originated
connections, and locally originated responses [58]. We also
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utilized the Min-Max approach to normalize the data before
the training step to ensure that all features are on the same
scale and to prevent some features from dominating the
learning process based on their magnitudes. We addressed the
class imbalance in the UNSW-NB15 dataset since imbalanced
datasets can result in a model that exhibits a bias towards
the majority class, making the models more vulnerable to
adversarial attacks [16]. We utilized random sampling without
replacement to generate representative and unbiased samples
from both classes such that every instance has an equal chance
of being selected [59].

B. Training of Adversarial Attacks

For the ZOO attack, we employed the Decision Tree
(DT) model in the training and testing phases. The DT was
configured with the Gini impurity criterion and employed
a best split strategy with no imposed restrictions on the
tree’s maximum depth, allowing it to expand until reaching
a minimum split of 2 in our configuration. Additionally, we
constrained the maximum number of nodes to 50 as a measure
to control the tree’s growth. DeepFool and C&W were trained
on a DNN model with 3 hidden layers, each comprising 256,
256, and 128 neurons. The model employed Rectified Linear
Unit (ReLU) activation function and utilized Adam optimizer.
We used Adam optimizer with 51 = 0.9, 82 = 0.99, and a
learning-rate of 0.01 to control the parameter updates during
each DNN training iteration. In our experiments on DeepFool
and C&W attacks, we systematically explored a range of
hyperparameter values to identify the optimal configuration
for our datasets and threat model. We adopted this parameter
tuning approach using the methodology presented in [48]. Our
main objective was to preserve the balance between ASR and
attack stealthiness. After a comprehensive evaluation, we have
determined that the following hyperparameter settings yielded
the best results: for the DeepFool attack: m; = 100, e = 1e—6,
and the number of class gradients = 10. For the C&W attack:
¢f = 0.0, learning-rate = le — 2, and the binary search step
= 10. All experiments run on a NVIDIA A100 GPU with 80
GBs of VRAM. Details about our experimental setup and the
source code are available in the source code repository.

C. Evaluation Metrics

In our experimental analysis, we employed various evalua-
tion metrics as outlined below.

1) Attack success rate (ASR): For untargeted attacks the
ASR is calculated as: ASRptargeted = % % 100 where
S represents the number of successful AEs (i.e., correctly
misclassified), and N represents the total number of the
tested AEs. Attack success rate for targeted attacks is
calculated as: ASRiargeted = Stargeted o 1)) where
ASRtargeted represents the ASR for targeted attacks,
Stargeted Tepresents the number of successful targeted
AEs that deceived the model, and N represents the total
number of attempted targeted AEs.

1 https://github.com/Nour-Alhussien/Constrained Adversarial Attacks
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2) The percentage of valid AEs based on the measure
(VAR): VAR provides insight on the effectiveness of the
constrained attacks. It measures the proportion of adver-
sarial examples that mimic a valid network traffic. VAR
is calculated as: VAR = % x 100 where V represents the
number of valid AEs and T represents the total number
of AEs.

3) Accuracy (Acc): Model accuracy is calculated as: (Acc)
= %XIOO where Acc represents the effectiveness of
model in terms of classifying attacks as attacks and
benign activities as benign activities, and CP represents
the total number of correctly classified flows at the
testing time and N is the total number of tested flows.
Since we are interested in testing the model’s resistance
to intentional manipulation and analyzing the model’s
vulnerability to adversarial attacks, we solely focus on
testing the model’s performance against these crafted
inputs.

The measures above were evaluated under both targeted
and untargeted attacking modes. Targeted attacks involve
training the model on both benign and malicious activities
but generating AEs specifically crafted to misclassify attacks
as benign activities. On the other hand, untargeted attacks
involve the same training process, but the attacker targets the
testing phase using AEs generated for both the benign and
malicious activities. During the testing phase, untargeted and
targeted attacks were evaluated on the UNSW-NB15 dataset
using two sets of AEs. Specifically, 8916 adversarial network
flows were used for testing untargeted attacks, while 4502
adversarial network flows were employed for testing targeted
attacks. For the IoT-23 dataset, 2000 and 1121 adversarial
network flows were generated to test untargeted and targeted
attacks respectively.

D. Results and Discussions

This section discusses the results of 1) effectiveness of
adversarial attacks under constraints, 2) transferability of
attacks, and 3) attack defense using adversarial training.

1) Effectiveness of Attacks:

Results of ZOO BB Attack: To examine the impact of
parameter settings on the ASR of the ZOO adversarial attack,
we tuned two parameters m; and cy, then analyzed their
impacts on both Acc and ASR. Tables IV and V show the
results of this experiment before and after applying network
constraints on the two datasets. Our observations on the
UNSW-NBI15 dataset indicate that increasing m; and cy
results in a higher ASR. Specifically, varying the m; between
20 to 80 and the ¢y between 0.0 to 0.5 increased the ASR from
0.061% to 20.4% under untargeted attack mode. However,
increasing m; and ¢y in the targeted attack resulted in a
small increase in ASR from 0.039 to 0.088. It is observed
that applying constraints do not lead to significant changes in
ASR and Acc as noticed in Table IV. We observed a small
impact on ASR when applying such constraints to targeted
attacks. In untargeted attacks, the objective is to find any
perturbation that leads to misclassification regardless of the
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target class. As a result, the attacker has a broader range of
perturbation magnitudes that meet the constraints and lead to
misclassification across the two classes.

The results for employing ZOO attack on the IoT-23 dataset
which has a smaller number of features is shown in Table V.
Changing the m; and c¢f does not significantly affect the values
of ASR and Acc. However, the performance of ZOO attack is
affected by varying the values of the step size ss. Increasing
the s; from 0.2 to 0.8 resulted in a significant increase in
the ASR from 0.045 to 27.84% under untargeted modes and
before applying any constraints. This substantial increase can
be attributed to the s; numerical estimation of the derivatives.
The larger s; enables the algorithm to navigate and explore
more perturbation magnitude.

Applying network constraints to the IoT-23 dataset does not
have a significant impact on ASR. It is also noticed that the
ASR for the targeted/untargeted ZOO attacks was higher on
[0T-23 compared to UNSW-NB15. This is because in the case
of the IoT-23 dataset, the model was trained on smaller number
of attack signatures compared to the UNSW-NB15 dataset.

Results of DeepFool and C&W WB Attacks: The results of
our experiments on DeepFool and C&W attacks are shown
in Table VI. Before conducting both attacks, we assessed
the accuracy of the DNN models, which resulted in a high
Acc value of 95%. However, after executing both attacks,
the accuracy has significantly decreased before applying any
constraints. It is noticed that applying constraints leads to a
significant impact on the ASR of WB both attacks. Results
in Table VI demonstrate the following observations under
different experimental settings:

o There is no significant difference observed between tar-
geted and untargeted attack modes on the UNSW dataset
when utilizing the DeepFool attack. Applying constraints
leads to very low ASR of x < 0.001% (Table VI). It
is observed that the introduced constraints interfere with
the effectiveness of the adversarial perturbations. The
constraints may alter the behavior of the model and
the introduced BB perturbations in a way that weakens
their ability to deceive it, leading to a significantly
lower ASR. DeepFool attacks approximate the model’s
decision boundary linearly, therefore, when network con-
straints were applied after generating DeepFool AEs,
the linear approximation between the features of the
UNSW dataset is disrupted, resulting in a significant drop
in ASR. The decline in the ASR when experimenting on
the IoT-23 dataset, which has less number of features
was less significant under both targeted and untargeted
attack modes. The ASR dropped from 95.15% to 34.36%,
and from 96.38% to 39.20% for untargeted and targeted
modes respectively.

e The findings for C&W attack were relatively similar
to DeepFool. Under the untargeted model, the ASR
was higher before applying our constraints and reaches
99.30%. It drops to 42.20% on the UNSW dataset
after enforcing network domain constraints. ASR was
comparable for C&W attacks under both untargeted and
targeted attack modes.
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TABLE IV
RESULTS FOR ZOO ATTACK ON UNSW-NB15 DATASET

Before constraints Untargeted attack Targeted attack
Attack parameters m; 20 40 60 80 20 40 60 80
0.0 0.2 0.4 0.5 0.0 0.2 0.4 0.5
Evaluation metrics @5 0.061 10.7%  154% 204% | 0.039  0.059 0.079  0.088
S acc | 939% 893% 84.6% 19.6% | 96.1% 94.1% 92.1% 91.2%
After constraints Untargeted attack Targeted attack
Attack parameters m; 20 40 60 80 20 40 60 80
cy 0.0 0.2 0.4 0.5 0.0 0.2 0.4 0.5
Evaluation metrics 25" 0.06 10.7% 154% 20.3% | 0.039  0.059  0.081 0.092
acc | 94% 89.3% 84.6% 79.7% | 96.1% 94.1% 91.9%  90.8%
TABLE V

RESULTS FOR ZOO ATTACK ON I0T-23 DATASET

Before constraints Untargeted attack Targeted attack
mg 20 40 20 40 20 40 40 80
Attack parameters  cf 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.5
Ss 0.2 0.2 0.8 0.8 0.2 0.8 0.6 0.8
Evaluation metrics  asr | 0.045 0.051 127%  27.84% | 0.003 0.09 21.49%  31.8%
acc | 95.5% 9495% 873%  72.16% | 99.73% 91% 78.51%  68.2%
After constraints Untargeted attack Targeted attack
m; 20 40 20 40 20 40 40 80
Attack parameters  cy 0.0 0.2 0.0 0.2 0.0 0.2 0.4 0.5
Ss 0.2 0.2 0.8 0.8 0.2 0.8 0.6 0.8
Evaluation metrics  asr | 0.043 0.05 128%  27.17% | 0.0019 0.08 20.7% 30.36%
acc | 9557% 94.96% 872% 72.83% | 99.81% 92.3% 79.3% 69.46%
TABLE VI

COMPARISON OF ATTACK PERFORMANCE ON TARGETED AND UNTARGETED ATTACKS FOR DEEPFOOL AND C&W ATTACKS

Datasets Attack Evaluation metrics Untargeted attack Targeted attack
Before constraints ~ After constraints | Before constraints ~ After constraints
DeepFool %57 99.99% 0.0044 99.78% 0.001
UNSW.NBIS P acc 0.0029 99.56% 0.0002 99.97%
) C&W asr 99.30% 42.20% 99.54% 51%
acc 0.007 57.80% 0.005 49%
DeepFool 57 95.15% 34.36% 96.38% 39.20%
I0T-23 P acc 0.0485 65.64% 0.0362 68.14%
o caw AT 94.9% 43.74% 95.72% 44.18%
acc 0.051 56.26% 0.0428 55.82%
o We observed that C&W was less impacted by constraints b
compared to DeepFool. Its optimization function encour-
ages minimizing the distance between the adversarial
example and the original input while maximizing the o
classifier’s confidence in the target class. Particularly, 2
C&W attack aims both AEs leading to misclassification .
and have a minimal distance between the original input
and the perturbed example. DeepFool attack takes a 02
different approach since it considers perturbation mag- - -
nitude. such a difference contributes to variations in 00 ——
bOth attack reSpOnseS to COnStraintS. The C&W attack, DTTZ00  DTU-ZOO  DNNT-ZOO DNN—U—ZO(:Mde‘DNNVT—DF DNN-U-DF  DNN-T-C&W  DNN-U-C&W
with its explicit consideration of distances has partially
Fig. 3. Impact of constraints on different models-UNSW dataset,

handled constraints that affect perturbation direction and
the confidence in that direction. Not only on the features
where constraints were applied but also on other features
that contribute to the model prediction.

While the existing BB attacks are usually tested on ML
models, we conducted additional experiment where the ZOO
attack targets a DNN model. The AEs were also tested on
the same DNN model used to generate and test DeepFool
and C&W attacks. We then reported the constraint impacts
under both targeted and untargeted modes. The results on both
datasets are shown in Figures 3 and 4. The figures illustrate

DT:Decision Tree, T: Targeted Attack, U: Untargeted Attack.

the difference in A ASR before applying constraints compared
to after applying them. The calculation of AASR is done as
follows:

AASR = ASRbefo'reC - ASRaftGTC

The applied constraints had a substantial effect on DNN
models when applied to WB attacks, surpassing the impact of
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D-ASR
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DT-T-Z00 DTU-ZOO  DNNT-ZOO  DNN-U-ZOO

Model

DNN-T-DF DNN-U-DF  DNNT-C&W  DNN-U-C&W

Fig. 4. Impact of constraints on different models-UNSW dataset,
DT:Decision Tree, T: Targeted Attack, U: Untargeted Attack.

the ZOO BB attack. In addition, our observations revealed that
the constrained ZOO attack had a greater impact on the DNN
model compared to the ML model. Nonetheless, this impact
was notably lower compared to DeepFool and C&W attacks.

Validity of AEs: We analyzed the differences between
adversarial attacks in terms of generating valid AEs before
compared to after applying constraints. The results are shown
in Table VII. VAR was lower in the unconstrained domain
for the two WB attacks compared to the BB attack. In the
constrained domain, VAR has improved significantly to 80.88%
for DeepFool and 75.85% for C&W attacks. For the ZOO
attack, the VAR increased from 75.34% to 100%. Notably, VAR
was higher for the ZOO compared to DeepFool and C&W
attacks before enforcing network constraints. The effectiveness
of the ZOO attack in generating valid AEs, despite being a
BB attack can be attributed to its reliance on a surrogate
model to generate adversarial AEs. This approach enables the
generated AEs to be closer to the original valid examples, as
they are based on the output of the model rather than solely
the input itself. However, direct perturbation in WB attacks
resulted in noticeable changes to the input, making most of
the crafted AEs invalid. Consequently, VAR does not seem to
have much dependency on the threat model or having access to
model parameters and data. In our experiments, the BB attack
yields higher VAR compared to WB attacks. The results were
consistent across both datasets. We observed no significant
differences when generating Valid AEs under targeted and
untargeted attack modes.

It is important to note that for DeepFool and C&W attacks,
the number of valid AEs do not reach 100% as for ZOO
attacks. We believe that the existence of some outliers in the
datasets leads to examples that are still not a valid network
traffic. Sometimes modifying network features can also change
the relationships between them, which potentially results in an
invalid traffic.

2) Transferability Analysis: This series of experiments
aims to evaluate the transferability of constrained and uncon-
strained AEs under both targeted and untargeted attack modes.
Our main focus is to answer the following question: 7o
what extent do constrained/unconstrained AEs maintain their
deceptive behavior when transferred between DL/ML models
with similar or different structures/architectures? Our exper-
iments involve examining the resilience of these examples
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in successfully fooling models, even when they deviate from
the specific model they were originally designed for. In the
previous experiments, we conducted extensive analysis and
evaluations on both datasets. However, since we observed
similar result patterns and to maintain clarity in our discussion,
we decided to limit the presentation of our findings to the
results obtained from the UNSW-NB15 dataset.

Table VIII shows the architectures of the various models
used in this series experiments. The table highlights the
structures of the DL models used in our transferability and/or
adversarial training experiments. For transferability analysis,
we mainly used Deep Neural Network 1 (DNN1), Deep Neural
Network 2 (DNN2), and Deep Belief Network (DBN). DNN1
and DNN?2 have similar structure, since both consist of three
layers with 256, 256, and 2 neurons in each layer. Both
models employ ReLU activation function. However, DNNI
utilizes the Adam optimizer, while DNN2 employs the ASGD
optimizer.

Additionally, we conducted experiments using a DBN
model with a more complex structure consisting of multiple
layers of restricted Boltzmann Machines (RBMs). With the
Stochastic Gradient Descent (SGD) optimizer, the DBN opti-
mizes the model parameters by iteratively updating them based
on mini batches of training data.

Two ML models were used in our experiments, mainly the
Decision Tree (DT) and Gradient Boost (GB). The DT model
consists of a hierarchical structure of nodes and branches.
The GB model is an ensemble ML model that combines
multiple weak learners through a boosting mechanism. Since
Gradient Boosting commonly employs DT as weak learners
in its ensemble, both models have some similarities in the
classification process.

Our experiments evaluate the transferability of AEs gen-
erated by WB and BB attacks between models with similar
structures and different structures. The evaluation includes
transferability of constrained/unconstrained AEs under both
targeted/untargeted attacks modes as follows:

1) The transferability of AEs between models with similar

structures:

a) WB attacks: In this scenario, we tested
the transferability of AEs from DNNI1 to
DNN2 model. Specifically, the AEs created

using the DNN1 model are assessed against the
DNN2 model.

b) BB attacks: In this scenario, we tested the trans-
ferability of AEs from the DT to GB model. The
AEs generated on the DT model were evaluated on
the Gradient GB model.

2) The transferability of AEs between models with different
structures:

a) WB attacks: In this scenario, tested the trans-
ferability of AEs from DNNI1 to DBN model.
Particularly, the AEs generated by the DNN1 model
were evaluated on the DBN model.

b) BB attacks: In this scenario, we tested the trans-
ferability of AEs from the DT to DNNI1 model.
Particularly, the AEs generated by the DT model
were evaluated on the DNN1 model.
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TABLE VII
VAR RESULTS FOR BOTH DATASETS

Dataset Attack Untargeted Targeted
Before Constraints ~ After Constraints | Before Constraints  After Constraints
700 75.34% 100% 78.28% 99.62%
UNSW-NBI15 | DeepFool 0 80.88% 0 72.68%
C&W 0.006 75.85% 0.023 75.85%
Z00 85.35% 100% 80.5% 100%
T0T-23 DeepFool 0 99.35% 0 99.82%
C&W 0 98.95% 0 98.24%
TABLE VIII
STRUCTURES OF ML/DL MODELS
Models Name Architecture Optimizer
Deep Neural Network 1 | FNN with 3 layers: 256,256,2 Adam
Deep learning models Deep Neural Network 2 | FNN with 3 layers: 256,256,2 ASGD
Deep Neural Network 3 | FNN with 6 layers: 256,256,256,256,256,2 AdaMax
Deep Belief Network Multiple layers of stacked Restricted Boltzmann Machines | SGD
Machine learning models Deci§i0n Tree _ Hierarchical structure of nodgs and brz_mches ]
Gradient Boosting Ensemble of decision trees with boosting mechanism

* FNN: Feedforward Neural Network

Transferability Scenario la: We first assessed the trans-
ferability of AEs between DNNI and DNN2 models.
We implemented the untargeted DeepFool attack against
a DNNI1 model and measured its ASR on that model.
Subsequently, we conducted a test by applying the generated
DeepFool AEs on the DNN2 model and measured the ASR.
Transferability results that correspond to this experiment are
shown in Table IX. Most of unconstrained and untargeted
DeepFool AEs are transferable as indicated by their ability to
achieve an ASR of 99.80% on DNN2, which is close to the
ASR of 99.99% achieved on DNNI1. Constrained DeepFool
AEs showed limited transferability likely due to their inability
to fool the original DNN1 model.

The transferability of unconstrained DeepFool AEs under
the targeted attack mode is lower compared to the untargeted
attacks. However, the constrained DeepFool AEs exhibit sim-
ilar behavior in both targeted and untargeted settings. It is
noticed that under the targeted attack mode, the transferability
of the DeepFool attack is relatively lower. The targeted attack
might have been successful in exploiting the decision boundary
of the original examples of the targeted class, but it might
not generalize well to other models with a minor variation
in the decision boundaries. The unconstrained C&W AEs
showed similar transferability behavior under both targeted
and untargeted modes. Likewise, it is observed that the
transferability of the constrained C&W AEs is comparable
to that of the unconstrained ones under both targeted and
untargeted attack modes.

Transferability Scenario 1b: We implemented a ZOO attack
against a DT model, we then used the resulting AEs against a
GB model. Table XI summarizes the findings of this experi-
ment. We observed a limited transferability of the untargeted
constrained ZOO attack. The original model yielded an ASR
of 19.5%. When these AEs were tested on the GB model, the
ASR significantly drops to 0.0174. There are a few possible
explanations for this. In general GB models are less sensitive
to perturbations given their ensemble prediction model, which
makes them more robust to adversarial perturbation. The

transferability of the untargeted unconstrained ZOO attack
mode demonstrated no significant variations when compared to
the targeted unconstrained attack modes. The findings suggest
that ZOO AEs do not exhibit notable transferability among the
examined models that share similar structures.
Transferability Scenario 2a: Our objective in this scenario
is to investigate the transferability of AEs between DL models
with different structures. To accomplish this, we generated
DeepFool AEs on DNN1 model and measured the ASR on
the same model. Subsequently, we transferred these AEs to a
different and more complex DBN model. The results of this
experiment are summarized in Table X. It is noticed that a
significant portion of DeepFool AEs, regardless of whether
they were generated under constrained or unconstrained set-
tings or in targeted or untargeted attack modes, did not
exhibit transferability to the DBN model. It appears that when
AEs are transferred from simple model structures to complex
and fundamentally different model structures, they lose their
evasiveness. A relatively similar results were observed when
transferring the constrained and unconstrained C&W AEs. The
transferability of such AEs was limited before constraints.
However, transferring C&W AEs under the untargeted attack
mode was higher compared to the targeted mode.
Transferability Scenario 2b: We explored the transferability
of ZOO AE:s across different model architectures. Specifically,
the ZOO AEs generated by attacking the DT model were
transferred to the DNN1 model. The ASR of the DNN1 model
was evaluated on the clean model when exposed to the
transferred ZOO AEs. The experiments were conducted con-
sidering both constrained and unconstrained ZOO AEs under
both targeted/untargeted attack modes. Table XII demonstrates
our results. The transferability of ZOO AEs to a completely
different model structure is notably limited. The ASR experi-
enced a significant decline to 0.004 when the DNN1 model
was exposed to the transferred ZOO AEs. We noticed that
the ZOO AEs did not achieve a high ASR on the original
ML model. Therefore, transferring these AEs also had no
significant impact on the accuracy of the target model. One
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TABLE IX

TRANSFERABILITY OF WB AES AMONG MODELS WITH SIMILAR STRUCTURES (SCENARIO 1A)

Before constraints

After constraints

ASR against DNN1  ASR after transferability | ASR against DNN1  ASR after transferability
Untargeted attack DeepFool 99.99% 99.80% 0.0044 0.004
C&W 99.30% 51.80% 42.2% 36.6%
Targeted attack DeepFool 99.78% 63.30% 0.001 0.001
C&W 99.54% 41.90% 51% 36.91%

“ ASR after transferability: ASR when transfer AEs from DNN1 to DNN2

TABLE X

TRANSFERABILITY OF WB AES AMONG MODELS WITH DIFFERENT STRUCTURES (SCENARIO 2A)

Before constraints

After constraints

ASR against DNN1  ASR after transferability | ASR against DNN1  ASR after transferability
Untargeted attack DeepFool 99.8% 1% 0.005 0.001
C&W 99.30% 12.7% 42.2% 11.6%
Targeted attack DeepFool 99.98% 0.001 0.001 0.001
C&W 99.6% 4% 50.9% 3%

* ASR after transferability: ASR when transfering AEs from DNN1 to DBN

TABLE XI

TRANSFERABILITY OF BB AES AMONG MODELS WITH SIMILAR STRUCTURES (SCENARIO 1B)

Before constraints

After constraints

ASR against DT  ASR after transferability

ASR against DT  ASR after transferability

Untargeted attack

700

19.7% 0.0174 19.5%

0.018

Targeted attack

700

10.4% 0.008 10.3%

0.008

“ ASR after transferability: ASR when transfer AEs from DT to GB

TABLE XII

TRANSFERABILITY OF BB AES AMONG MODELS WITH DIFFERENT STRUCTURES (SCENARIO 2B)

Before constraints

After constraints

ASR against DT  ASR after transferability

ASR against DT  ASR after transferability

Untargeted attack | ZOO 19.5%

0.004

19.7% 0.003

700 10.4%

Targeted attack

0.003

10.3% 0.003

“ ASR after transferability: ASR when transfer AEs from DT to DNN1

explanation is that ZOO AEs rely on a local search strategy to
find perturbations that lead to misclassifications when applied
to ML models, which make such perturbations sensitive to a
specific model structure and decision boundaries.

3) Adversarial Training: Adversarial training is one of
the defense mechanisms used to strengthen ML/DL models
against adversarial attacks [17]. It involves generating then
using AEs into the model’s training process. By exposing the
model to AEs during the training process, its performance
in detecting similar AEs is supposed to improve. In tradi-
tional ML approaches, the model’s loss function measures
the deviation between model’s predictions and the ground-
truth labels. However, when employing adversarial training,
an additional loss function is used to evaluate the deviation
between the model’s predictions on AEs and the targeted class
determined by the attacker. As a result, the core of adversarial
training lies in modifying the model’s loss function, which
becomes a weighted combination of the regular loss function
for clean examples and a loss function specifically designed
for AEs. By incorporating the adversarial loss function into
the training process, the model learns to defend against
potential adversarial attacks by explicitly considering their
impact during optimization.

We conducted a series of experiments to assess the effec-
tiveness of adversarial training on the ASR for both constrained

and unconstrained AEs. We investigate the effects of varying
the percentage of AEs with respect to clean examples during
the model training phase and through considering both targeted
and untargeted attacks modes. Furthermore, we evaluated the
robustness of adversarial training under two distinct cases:
same attack signature (i.e., SS) and different attack signa-
ture(i.e., DS). In the first case, we retrained the model using
the same type of AEs that were employed to attack it initially.
In the second case, we retrained the model using AEs from a
different type of attack that is used against that model.

We further explored the first case through two different
approaches: similar model same signature (SMSS) and dif-
ferent model same signature (DMSS). The SMSS approach
involves two models M1 and M2 having a similar structures.
Specifically, we attacked M1 and used the AEs generated
from M1 to retrain M2. We then tested M2 on the AEs
generated from M1 to evaluate the robustness of M2 after
adversarial training. In this approach, M1 and M2 have similar
structures in terms of the number and structure of layers and
the activation function used (e.g., DNNI and DNN2).

The DMSS approach involves retraining and testing using
AEs that have SS. We used two models M1 and M3 with
different structure or different categories (e.g., DNNI and
GB). Figure 5 describes the DMSS approach where we trained
two different models M1 and M3 on clean examples, then
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(5)Train
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Training M1
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TrainingM3 |

Clean Data

Fig. 5. Description of adversarial training process.

TABLE XIII
ADVERSARIAL TRAINING SCENARIOS

Scenario | AEs for training Model AE:s for testing
SMSS C&W DNN1, DNN2 C&W
SMSS 700 DT, GB Z00
SMDS DeepFool DNNI1, DNN2 C&W
DMSS C&W DNN1, DNN3 C&W
DMDS C&W DNNI1, GB Z00
DMDS DeepFool DNNI1, DNN3 C&W

we generated C&W AEs by attacking M1 and M3. We then
retrained M3 using the clean data and the AEs generated on
M. This results in a trained Model M 3’ which was then tested
on AEs generated from M3.

We examined the second case using two distinct approaches:
similar model different signature (SMDS) and different model
different signature (DMDS). Table XIII shows the character-
istics of each approach, specifically the AEs used for training,
the models employed, and the AEs used for testing model’s
robustness. In this series of experiments, we created a DNN3
DL model with a higher degree of intricacy, consisting of six
layers, each with a different number of neurons. Each of the
first five layers includes 256 neurons, and the output layer
includes 2 neurons. We used the ReLU activation function for
all layers except for layer 4, where the Tanh activation function
is employed. The Adamax optimizer is employed for training
the DNN3 model.

The results of the experiments on adversarial training while
varying the percentage of AEs used for training are shown in
Figure 6. The following scenarios outline the specific details
of each experimental case.

1) Same Signature:

a) SMSS-WB attacks: we initially targeted the
DNN2 model using C&W attack. Subsequently,
we retrained the DNNI1 model using C&W AEs
generated through the attack on the DNN2 model.
Figure 6(a) and Figure 6(b) show the results for
this experiment. Before applying adversarial train-
ing, the ASR on the DNN1 model using constrained
and unconstrained untargeted AEs was 42.20%
and 99.30%, respectively. However, after applying
adversarial training, the ASR significantly dropped
to 9% and 7%. We noticed that the ASR was
comparable when varying the percentages of AEs.
We observed that both constrained and uncon-
strained AEs improved the model’s robustness.
Furthermore, we observed that retraining the model

b)

)

a)

with just 20% of C&W AEs was sufficient to
enhance its robustness. A similar behavior was
observed under the targeted attack mode, but the
targeted attack led to a more robust model as it
yielded lower ASR (Figure 6(b)).

DMSS-WB attacks: we targeted the DNN1 model
using C&W attack. Subsequently, we retrained
the DNN3 model using C&W AEs generated
through attacking the DNN1 model. Figure 6(c)
and Figure 6(d) show the results for this exper-
iment. Before applying adversarial training, the
ASR of the DNN3 model using the constrained
and unconstrained untargeted attacks was 66.6%
and 99.6% respectively. After applying adversarial
training, the ASR significantly dropped to 0.034%
and 0.017% (Figure 6(c)). Our observations indi-
cated that both unconstrained and constrained
adversarial training under the untargeted mode
improved the model’s resilience to the tested AEs.
Under the untargeted mode, both the constrained
and unconstrained AEs exhibited a similar behavior
in terms of robustness. The targeted mode yielded
relatively similar results. The DMSS adversarial
training approach improved the model’s resilience
to the C&W attack using both constrained and non-
constrained targeted attacks (Figure 6(d)).
SMSS-BB attacks: In this experiment, we gener-
ated ZOO AEs based on a DT model, then we
used the resulting AEs to train and test a GB
model. Figures 6(e) 6(f) show the results for this
experiment. Prior to the adversarial training, the
ASR on the GB model for constrained and uncon-
strained untargeted attacks was 35.4% and 37%,
respectively. However, after applying adversarial
training, the ASR significantly dropped to 0.072
and 0.048 using only 20% of AEs (Figure 6(e)).
Both constrained and unconstrained AEs improved
the model’s robustness in untargeted attacks mode.
The values of ASR were comparable when varying
the percentages of AEs.

We observed slight variations in the ASR when
using different percentages of AEs. Using 33%
of AEs with constraints demonstrated the highest
effectiveness in reducing the ASR under the tar-
geted mode. In contrast, employing 20% of the
unconstrained AEs exhibited the most significant
reduction in ASR as depicted in Figure 6(f). After
applying adversarial training, we noticed a signifi-
cant decrease in the ASR. For the constrained AEs,
the ASR dropped from 19.7% to 0.005. Similarly,
for the unconstrained AEs, the ASR decreased from
21.5% to 0.002.

2) Different Signature:

SMDS-WB attacks: In this scenario, we utilized
C&W adversarial attacks to target the DNN1 model
and performed adversarial training using those
AEs. Subsequently, we employed the DeepFool
AEs generated by attacking a DNN2 model

Authorized licensed use limited to: Augusta University. Downloaded on October 28,2024 at 23:10:46 UTC from IEEE Xplore. Restrictions apply.



2766

10w
e With Constraints
—a- Without Constraits
@ Baseline (With Constraints)
- m Baseline (Without Constraints)
06
g
04l ®
02
00

20 25 30 40 a5 50

35
Percentage of AE

(a) SMSS-WB: adversarial training on
C&W and testing on C&W-untargeted

—e— With Constraints
—a- Without Constraints
® Baseline (With Constraints)
% = Baseline (Without Constraints)
06
o«
2] .
04
02
e
— 3
0.0
20 25 30 40 a5 50

35
Percentage of AE

(d) DMSS-WB: adversarial training on
C&W and testing on C&W-targeted

10 w

—e— With Constraints

—=— Without Constraints

® Baseline (With Constraints)
0.8 m Baseline (Without Constraints)
0.6
g
04 ;%
0.2
0.0
20 25 30 40 45 50

35
Percentage of AE

(g) SMDS-WB: adversarial training on
DeepFool and testing on C&W-untargeted

e~ With Constraints
—a- Without Constraints

® Baseline (With Constraints)
% ®  Baseline (Without Constraints)

ASR
°
S

04 /\‘\-

02

0.0

35
Percentage of AE

(j) DMDS-WB: adversarial training on
DeepFool and testing on C&W-targeted

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 3, JUNE 2024

—e~ With Constraints
—a Without Constraints
@ Baseline (With Constraints)
08 m Baseline (Without Constraints)
06
E °
04
02
0.0
20 25 30 40 a5 50

35
Percentage of AE

(b) SMSS-WB: adversarial training on
C&W and testing on C&W-targeted

0.40
. —- Without Constraints
0.35 . ® Baseline (With Constraints)
= Baseline (Without Constraints)
030
0.25
-4
Q 0.20
015
0.10
0.00
20 25 30 40 45 50

35
Percentage of AE

(e) SMSS-BB: adversarial training on
ZOO and testing on ZOO-untargeted

10 T—wr

—e~ With Constraints
—=— Without Constraints
@ Baseline (With Constraints)

08 m Baseline (Without Constraints)
061 @

02 /,/—_‘

0.0

20 25 30 35 40 45 50
Percentage of AE

(h) SMDS-WB: adversarial training on
DeepFool and testing on C&W-targeted

0.40
—e— With Constraints
. —=— Without Constraints
035 4 @ Baseline (With Constraints)
= Baseline (Without Constraints)
0.30
0.25
«
2 0.20
0.15
0.10
82 .\'\*\r/;/"/.
0.00
20 25 30 35 40 45 50

Percentage of AE

(k) DMDS-BB: adversarial training on
C&W and testing on ZOO-untargeted

—e~ With Constraints
o wanoinConsmims
@ Baseline (With Constraints)
08 = Baseline (Without Constraints)
¢
0.6
5
<
0.4
0.2
o = ey
20 25 30 40 45 50

35
Percentage of AE

(c) DMSS-WB: adversarial training on
C&W and testing on C&W-untargeted

—e~ With Constraints
0200 o s Without Constraints
@ Baseline (With Constraints)
= Baseline (Without Constraints)
0.175
0.150
0125
&
< 0100
0.075
0.050
o /\>—<:
0.000
20 25 30 a5 50

35
Percentage of AE

(f) SMSS-BB: adversarial training on ZOO
and testing on ZOO-targeted

—e~ With Constraints
—a— Without Constraints

@ Baseline (With Constraints)
o = Baseline (Without Constraints)

0.6 -

04 v\

02

ASR

0.0

20 25 30 40 a5 50

35
Percentage of AE

(i) DMDS-WB: adversarial training on
DeepFool and testing on C&W-untargeted

e~ With Constraints
02001 o —=- Without Constraints
®  Baseline (With Constraints)

. line (Without Constrain
0175 Baseline (Without Constraints)

0.150
0.125
2 0100
0.075
0.050

0.025

0.000

35
Percentage of AE

(1) DMDS-BB: adversarial training on
C&W and testing on ZOO-targeted

Fig. 6. Results of adversarial training on constrained/unconstrained AEs for both targeted/untargeted attacks.

to assess the robustness of the DNNI model.
Figures 6(g) and 6(h) show the results for this
experiment. Prior to applying adversarial train-
ing, the ASR of the DNNI1 model on untargeted
attacks was 47.7% for the constrained AEs and
99.3% for the unconstrained AEs. The constrained
untargeted AEs do not add much robustness
to the DNNI1 model, since the ASR dropped
from 47.7% to 45% using 33% of AEs for

b)

model retraining. However, the unconstrained AEs
significantly decreased the ASR from 99.3% to
33% (Figure 6(g)). The results were significantly
different under the targeted AEs. As shown in
Figure 6(h)) constrained AEs increased the robust-
ness of the model.

DMDS-WB attacks: In this experiment, we
initiated C&W adversarial attack against a
DNN3 model. Subsequently, we retrained the
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DNN3 model using DeepFool AEs generated by
attacking a DNNI1 model. We then tested the
DNN3 against C&W AEs. The results of this
experiment are illustrated in Figure 6(i) and 6(j).
Overall, both the constrained and unconstrained
AEs improved model robustness. For the untargeted
attack mode, we noticed that the unconstrained
AEs add more robustness to the DNN3 model
compared to the constrained Examples. The con-
strained AEs performed better under targeted
attacks (Figure 6(j)). For both untargeted and tar-
geted modes, varying the percentages of AEs
resulted in an analogous ASR. In general, 20%
and 25% yielded the best results in most of the
experiments.

DMDS-BB attacks: In this experiment, we gener-
ated ZOO AEs against a GB model. Subsequently,
we retrained the GB model using C&W AEs gen-
erated by attacking a DNN1 model. The GB model
was then tested against ZOO AEs. The results
of this scenario are illustrated in Figures 6(k)
and 6(1). The ASR dropped significantly to 0.056
and 0.052 for constrained and unconstrained untar-
geted attacks. This finding indicates that the
adversarial training process using 20% percentage
of AEs effectively enhanced the model’s robustness
against untargeted attacks (Figure 6(k)). Likewise,
in the scenario of targeted attacks, both constrained
and unconstrained AEs improved model robustness
using adversarial training defense (Figure 6(1)).

4) Time Analysis of AEs Generation: We conducted
another experiment to measure the time taken to generate
AEs for each model-attack combination (Figure 7). The
bars represent the time it takes to generate AEs for
each type of attack with constraints(C) and without
Constraints (NoC). For each attack, we changed the
optimizer or the type of the ML model used to mea-
sure results consistency across different scenarios. We
observed no significant differences between the time to
generate AEs for the DeepFool attack. The creation of
AEs using DeepFool, which is a WB attack, is relatively
fast, which can be attributed to the attack’s inherent
efficiency in generating AFEs. In addition, DeepFool
is a directional attack that focuses on finding the
smallest possible perturbation that can fool the target
model making it an efficient attack compared to others.
C&W takes longer to generate AEs, specifically when
applying constraints. This is attributed to the approach
that C&W attack uses to generate AEs. It is based on
the constrained optimization problem of minimizing the
L2 norm of the perturbation while ensuring that the
model is fooled. The ZOO attack also takes longer time
than DeepFool to generate AEs. BB attacks such as
Z00 are generally more time-consuming than white-box
attacks. This is because they lack direct access to model
gradients and must estimate them. To determine if the
differences in attack times with and without constraints
are statistically significant, we applied a paired sample

Time (in seconds)

Fig. 7.
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t-test. The null hypothesis we tested is that there is no
significant difference between the two cases with and
without constraints. With ¢-value = 2.7468, p-value =
0.0405, and significance level o = 0.05, the p-value is
less than «. That is, there is a statistically significant
difference between the times taken to generate AEs with
constraints and without constraints.

To determine the type of the relationship between the
times with constraints and without constraints, we first
plot the execution times on the scatter plot (figure 8) to
assess the relationship. We then calculated the Pearson
correlation coefficient, which may indicate the strength
of the linear relationship between the two sets of
values. We then fitted two types of models: linear and
exponential to the set of values and determined which
one has the best fit based on the values of the coefficient
of determination RZ,

The scatter plot shows the relationship between the times
without constraints and with constraints for the attack
scenarios shown in figure 7. Each point represents a
model-attack combination. The red dashed line repre-
sents the diagonal where both times would be equal.
Most points lie above the diagonal, which indicates
that for most model-attack combinations, the time with
constraints is greater than without constraints. The points
do not cluster around a straight line, which shows that
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the relationship is not perfectly linear. The spread in the
points indicates a variability in how constraints affect
different model-attack combinations.

We found that Pearson correlation coefficient = 0.8914,
which indicates a strong positive linear relationship
between the times with constraints and without con-
straints. We then fitted both linear and exponential
models by comparing their R? values. For the lin-
ear model, the R? = 0.7947 which suggests that
approximately 79.47% of the variance in the time with
constraints is explained by the time without constraints
using a linear relationship. This supports our earlier
observation from the Pearson correlation coefficient,
which indicated a linear relationship. The R? value for
the exponential model, which = —oo indicates that the
exponential model is not suitable for this difference.
Although constraints lead to a longer time for generating
AEs, this increase in time does not follow an exponential
trend across various model-attack combinations.

5) Comparison With Existing Approaches: We con-
ducted a comparative analysis between applying our
constraints to adversarial attacks and the approach
proposed by Sheatsley et al. in [8]. The authors proposed
an algorithm to incorporate network constraints into
JSMA WB adversarial attack. Their objective was to
explore the effects of enforcing a set of constraints
they developed on both model accuracy and trans-
ferability. To conduct this comparison, we employed
JSMA attack and enforced our constraints during the
process of generating AEs. To maintain consistency in
the experimental setup, we adopted the same evaluation
metrics outlined by Sheatsley et al. Specifically, we
measured ASR and transferability on the same dataset
(UNSW-NB15). They investigated the transferability
of the constrained AEs based on two approaches,
intra-transferability and inter-transferability. The intra-
transferability involves measuring the transferability of
AEs within the same model. This was accomplished
by partitioning the dataset into five distinct subsets
labeled as A, B, C, D, and E. The evasiveness of
the crafted AEs using dataset A was then tested on
datasets B, C, D, and E. To ensure comparable trans-
ferability results, we divided the UNSW-NB15 dataset
into five separate partitions using a stratified shuffle-
split technique [8]. This technique ensures that each split
preserves the class proportions of the original dataset,
facilitating better learning and model generalization. The
inter-transferability examined the transferability of AEs
across models that use different learning mechanisms.
Specifically, the authors considered four ML models
namely DT, Logistic Regression (LR), Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN).
We adopted a similar model framework as in [8], and
we incorporated analogous architectures and hyperpa-
rameters in our comparison. We used a DBN model
with a learning rate equal to 0.01 and using 10 epochs.
Table XIV illustrates the results of our comparison. The
second column from left represents the source models

used for generating AEs, while the top row represents
the target models for testing AEs. The values represent
both inter and intra-transferability. The diagonal entries
denote the ASR when the source and target models are
the same.

The comparison shown in table XIV indicates that our
constraints when employed to JSMA yield a lower ASR
compared to the constraints proposed by Sheatsley et al.
This signifies that our constraints introduced higher
robustness to the model by constraining the perturbation
magnitude available to the attacker. Subsequently, the
transferability of AEs was lower using our approach.
This was not the case for Inter-transferability values,
which show that our constraints lead to more transferable
AEs when applied to certain models such as LR and
SVM. This observation aligns with the results obtained
by Sheatsley et al. who discovered that inter-technique
transferability rates were largely model-dependent.

We further assessed our constraints when generating
adversarial sketches using the perturbation histogram
approach proposed in [8]. Sketches are universal per-
turbations that adhere to network domain constraints.
Similar to the authors in [8], we generated those sketches
through: 1) creating AEs using the JSMA attack, 2) con-
structing a perturbation histogram to identify the most
influential set of features having the highest potential to
fool the targeted model, 3) crafting adversarial sketches
by selecting the top n features from the perturba-
tion histogram, and 4) employing these sketches to
attack the model and report both ASR and transfer-
ability. In our experiment, we adopted n = 9 for the
UNSW-NBI15 dataset to ensure a consistent comparison.
The results presented in Table XIV demonstrated that
when our constraints are applied to create adversarial
sketches, they lead to a relatively lower average (ASR)
compared to the constraints proposed by the authors
in [8]. This indicates that our constraints enhanced
the model’s robustness even when attackers focus their
effort to perturb the most influential features. While our
approach results in lower intra-transferability of adver-
sarial sketches, this does not hold for inter-transferability
values of models such as LR and SVM, which shows
that inter-transferability of adversarial sketches relies on
the model used.

6) Summery of Findings: The summary of our experi-
ments can be condensed into three investigated areas as
follows:

o Attack effectiveness using constrained/unconstrained
AEs: During the assessment of the attack
effectiveness of both constrained and unconstrained
AEs, we made several observations. First, we
found that the existence of constraints did not
significantly impact the ASR for the ZOO BB
attack. Both constrained and unconstrained AEs
displayed comparable performance in successfully
fooling the model. However, when it came to the
DeepFool WB attack, the ASR was significantly
affected by applying network domain constraints.
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TABLE XIV
COMPARISON WITH OTHER APPROACHES
Approach Attack Model M4 Mp Mc Mp Mg LR SVM DT KNN
My 60% 15% 79% 79% 72% 100% 97% 9% 4%
Mp 50% 56% 32% 52% 34% 100% 93% 1% 6%
JSMA M¢ 60% 14% 98% 86% 87% 99% 96% 2% 4%
Mp 49% 30% 61% 97% 55% 99% 97% 3% 5%
Our Approach Mg 60% 38% 98% 91% 95% 99% 96 8% 8%
M4 100% 98% 98% 17% 100% 16% 16% 70%  94%
Mp 22% 32% 100%  100% 16% 16% 16% 70%  88%
Histogram Me 100% 100% 100% 100%  100% 15% 15% 69%  83%
Mp 16% 21% 16% 100%  100% 16% 16% 65%  18%
Mg 100% 17% 16% 100%  100% 16% 16 67%  81%
M4 100% 97% 92% 96% 96% 72% 81% 29%  53%
Mp 50% 100% 72% 94% 71% 62% 62% 12%  26%
JISMA Mc 73% 81% 100% 93% 87% 71% 76% 19%  49%
Mp 69% 64% 55% 100% 59% 53% 48% 8% 25%
The approach in [8] Mg 66% 80% 90% 96% 100% 66% 69% 15%  38%
My 88% 99% 95% 96% 96% 99% 96% 29%  37%
Mp 99% 100% 99% 100% 99% 99% 100% 20%  62%
Histogram Mc 93% 97% 100% 77% 95% 73% 100% 27% 41%
Mp 80% 99% 100%  100% 99% 74% 99% 13%  30%
Mg 98% 100%  100% 94% 92% 85% 100 28%  39%

The constrained DeepFool AEs demonstrated a
significant decrease in their ability to deceive
the intrusion detection models compared to their
unconstrained ones. Constraints applied to C&W
WB attack showed a moderate impact on the ASR
compared to that DeepFool attack. The observation
that constraints have larger effect on the ASR for
WB attacks compared to BB attacks suggests that
the knowledge and accessibility of the model’s
architecture and parameters play a role in the
effectiveness of constraints. This shows that the
applied constraints appear to reduce the attack
surface for WB attacks. We also found that the
validity of the resulting AEs does not depend on the
used threat model. Before applying any constraints,
the percentage of the valid AEs was higher for the
Z00 BB attacks compared to both WB attacks.
Transferability of the constrained/unconstrained
AEs: We investigated the transferability of the con-
strained and unconstrained AEs under two scenarios,
similar model structures and different model struc-
tures. When considering similar model structures,
we observed that the unconstrained DeepFool AEs
yielded good transferability, while the constrained
AEs exhibited a low transferability. In contrast,
both the constrained and unconstrained C&W AEs
demonstrated a reasonable transferability between
similar models. For the ZOO AEs, both constrained
and unconstrained AEs exhibited a low transfer-
ability. The low transferability observed in ZOO
attack can be attributed to its local search pro-
cess to generate AE. When generating adversarial
perturbations, ZOO relies on specific features that
are distinctive to the original model(the one on
which the attack was trained), which may not align
with the vulnerabilities of the targeted model.

The transferability analysis of different model struc-
tures revealed that the AEs generated by the three

attack methods exhibited limited ability to fool
models with different architectures. The differences
in model boundaries between the source and target
architectures lead to significant impacts on trans-
ferability. Regardless of the threat model used, the
transferability of AEs between models with different
architectures did not appear to be significantly
influenced by the application of constraints.

Adversarial training using the con-
strained/unconstrained AEs: We assessed the
robustness of different models against constrained
and unconstrained AEs through adversarial training.
When adversarial training is applied using AEs
with different signatures to retrain the model, we
found that the drop rate in the ASR was lower
compared to the same signature retraining. Overall,
we found that similarities and differences between
the signatures of AEs used for retraining and
testing play a reasonable role in the effectiveness
of adversarial training against WB attacks. The
adversarial training was less effective to mitigate
AEs when they are 1) unknown to the model,
2) constrained, or 3) when the attack is untargeted.

Table XV presents a summary of the attacks we exper-
imented with, their effectiveness, transferability within
similar model structures, transferability to different
model structures, and their utility in adversarial training.
To represent the impact levels on each of the investigated
areas, we used the abbreviations “H” for High, “M” for
Medium, and “L” for Low. The following observations
can be drawn from this table

a) When no constraints are applied, WB adversarial

attacks demonstrate a comparable high level of
transferability. However, this pattern changes when
constraints are imposed. Based on our experiments,
we assert that transferability of WB AEs under
constraints depends on the characteristics of the
attack used.
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TABLE XV
SUMMARY OF RESULTS

Effectiveness of Effectiveness of

Attacks WB/BB Attack ASR "ljrapsferablllty "!'ransferablllty adver training adver training
Mode (similar models) | (different models) . . .
(same signature) | (different signature)
C|NC|C NC C NC C NC C NC
Targeted L H L H L L L H L H
DeepFool || WB Untargeted | T | H | L H L T T H T H
Targeted H H H H L L H H H L
C&w wB Untargeted | H H H H L L H H L H
Targeted L L L L L L H H H H
200 BB Untargeted | M M L L L L H H H H

* C: with constraints, NC: no constraints

b) Both WB and BB AEs do not transfer well between
models with different architectures. Applying con-
straints do not seem to have significant impact
on transferability between models with different
architectures.

Effectiveness of using AEs generated by each
attack as a defense mechanism was effective in
most of the experiments. The results show a
promising direction of using existing signatures
of AEs to mitigate novel variations of adversar-
ial attacks or zero-day adversarial attacks against
NIDS.

c)

VI. CONCLUSION

This paper investigated the impact of the constrained
WB/BB adversarial examples against DL/ML based NIDS.
We created a set of network domain constraints and applied
them to generate WB and BB-based AEs. The examination
of the AEs encompassed three key perspectives: 1) evaluating
the success rate of the attack, 2) assessing the transferability
of the AEs to similar/different models, and 3) analyzing their
effectiveness in defending against adversarial attacks through
adversarial training. We found that WB attacks exhibited a
high ASR without any constraints. Adding constraints limited
the success rate of those attacks. However, the impact of these
constraints can vary depending on the specific characteristics
of the attack. We found that constraints have less impact
on transferability of AEs to models with different learning
approaches compared to the original or source models that
generate those AEs. Both WB and BB AEs do not transfer well
between models with different structures. The results indicated
a promising potential for utilizing existing signatures of AEs
to mitigate novel variations or zero-day adversarial attacks
against NIDSs.

This study is limited to experiments on three types of
attacks. We plan to extend it to examine other existing attacks.
We also plan to extend this work to consider AEs that are
generated from a raw network traffic such as pcap files
(i.e., problem space attacks). Finally, we plan to extend our
approach to detect zero-day AEs against NIDSs.
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