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Chemomechanical damage prediction
from phase-field simulation video sequences using
a deep-learning-based methodology

Quan Zeng,1 Shahed Rezaei,2 Luis Carrillo,3 Rachel Davidson,4 Bai-Xiang Xu,2 Sarbajit Banerjee,3,5,6,*

and Yu Ding1,*
SUMMARY

Understanding the failure mechanisms of lithium-ion batteries is essential for their greater adoption in
diverse formats. Operando X-ray and electron microscopy enable the evaluation of concentration, phase,
and stress heterogeneities in electrode architectures. Phase-field models are commonly used to capture
multi-physics coupling including the interplay between electrochemistry and mechanics. However, very
little has been explored regarding developing predictive models that would forecast imminent failure.
This study explores the application of convolutional long short-term memory networks for damage pre-
diction in cathode materials using video sequence from phase-field simulations as a proxy for videomicro-
scopy. Twomodels are examinedmaking use of, respectively, the damage video only and the damage and
hydrostatic stress videos combined.We use customized quantitativemetrics to compare the performance
of the models. Our work demonstrates the outstanding capability of deep learning models using limited
data to predict fracture behavior of battery materials, including crack propagation angle and length.

INTRODUCTION

The loss of capacity of Li-ion batteries upon prolonged cycling is traceable in large measure to degradation mechanisms that arise from the

coupling of electrochemistry and mechanics.1–4 Compositional gradients arising from inhomogeneities of the Li-ion diffusion flux and its

propagation through an insertion host result in local stress gradients,5 which are exacerbated in phase-transforming materials by intercala-

tion-induced structural transformations. Structural transformations induce elastic misfit and lattice coherency strains or give rise to disloca-

tions6,7 at semi-coherent interfaces. In brittle oxide intercalation hosts, stress accumulation upon continuous electrochemical cycling engen-

ders intergranular or transgranular fracture and/or decohesion of particles from the bulk electrode or current collector, resulting in an

irreversible loss of capacity. Therefore, deciphering mechanisms of inelastic deformation and fracture is a key imperative to extending the

lifetime of Li-ion batteries.8

One efficient method for studying fracture behavior is to simulate the process using phase-field (PF) fracture and related finite element

simulations.9,10 PF damage formulations show great potential in predicting crack nucleation, propagation, and branching in various com-

plex multi-physics problems. PF fracture models rely on introducing a length-scale parameter11,12 and by manipulating the gradient term in

the formulation, can successfully capture anisotropic crack propagation.13 Wu and Nguyen14 proposed a new PF fracture model, which

takes into account the cohesive nature of the fracture, where in addition to the fracture energy, the material ultimate strength is also a

direct input for the model. Such models are essentially length-scale independent, which makes them promising candidates for capturing

the full complexity of battery electrodes.10 PF models have been successfully applied in the context of chemo-mechanical fracture in bat-

tery systems. Through various contributions such as Miehe et al.,15 Zhang et al.,16 Zuo and Zhao,17 Klinsmann et al.,18 and Xu et al.,19 PF

fracture models have been adapted to study crack formation across lithiation and/or delithiation cycles including inter- and intra-granular

damage modes.10,20

Despite their great potential, PF models remain computationally expensive and difficult to execute in batchwise format since oftentimes

sharp and arbitrarily complicated gradients need to be accurately computed across the system. Therefore, new techniques at different levels

of computation are required to speed up the process. Machine learning (ML) methods have emerged as powerful tools to facilitate predictive

design and to accelerate numerical modeling with reduced computational effort and greater generalization ability.21 Montes de Oca Zapiain
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Figure 1. Overall workflow

The machine learning model replaces the simulation model by generating image frames after time t. A ConvLSTM neural network takes the damage and stress

video frames simulated by a PF simulation as inputs and predicts damage progress in future video frames. The deep learning model provides a means of

accelerated failure detection based on the previous sequence of dynamic time-correlated images.

ll
OPEN ACCESS

iScience
Article
et al.22 proposed a surrogate model that learns the microstructural evolution of targeted systems by combining statistically representative,

low-dimensional description of the PF data and history-dependent ML techniques. The high-dimensional microstructural representation

given by the microstructure autocorrelations is simplified though principal component analysis and then modeled using a long short-term

memory (LSTM) neural network to accelerate the PF framework. Alhada-Lahbabi et al.23 presented a neural-network-trained model, which

includes supervised and nonsupervised learning of Landau energy landscapes for ferroelectric PFmodeling andpredicts the polarization field

evolution in the microstructure determining the electrostatic and mechanical equilibrium at each time step.

In this article, we create anML video processingmodel to predict crack formation, gain a deeper understanding of the failure process, and

provide a means of early failure detection through approximation of a segment of a multi-physics PF simulation video sequence. It is worth

nothing that our purpose is not to build a computation-accelerating surrogate model to replace or complement the PF simulations, but

instead to treat the PF output as realistic proxies of physical microscopy video data. In this context, the PF simulation introduces a pre-notch

or pre-crack to emulate crack nucleation arising from the presence of surface defects. Our purpose is to develop a method that could be

applicable, should the operando optical, scanning transmission X-ray, or electron microscopy video sequences that afford clear contrast

mechanisms for imaging fracture become available such as to enable real-time battery control. The key findings reported in this paper

thus correspond to video prediction rather than the improvement of surrogate models of PF simulations. The design of the model structure

developed here does not explicitly encode any specific physics domain knowledge derived from partial differential equations used in the PF

simulations nor does it adapt to the shape of any initial notch if there is one. The predictions of crack initiation and propagation are made

based on the damage field and stress field simulation rather than a specific geometry. We instead examine the ability of the model to reveal

the spatial-temporal evolution of inelastic deformation and fracture.

Our model is a deep learning (DL) model, which arguably is among the most common approaches for learning features directly from

raw video/image data. Hochreiter and Schmidhuber24 proposed a recurrent neural network with feedback connections—the LSTM

network—which has been increasingly used to solve the time-series prediction problem. To learn good video representations, Srivastava

et al.25 used a composite model consisting of an autoencoder and a future predictor based on LSTMs. Lew et al.26 applied a ConvLSTM-

based model to physics-based molecular modeling (MD) simulations to learn the spatiotemporal relations of crack propagation. Wang

et al.27 developed a DL model, StressNet, to predict the sequence of maximum internal stress by combining a temporal-independent con-

volutional neural network and bi-directional LSTM. Despite recent advances, the use of DL models with multi-source data to predict the

propagation of fracture patterns in materials remains limited. In this paper, we report our effort that builds a ConvLSTM neural network to

predict damage initiation and propagation using the damage information along with internal stress information output from the PF sim-

ulations; see Figure 1.
RESULTS
Crack formation in lithiation process

Crack nucleation and growth phenomena can follow a wide variety of patterns, as exemplified by experimental data shown in Figure 2 for a

single crystal of a canonical intercalation host, a-V2O5. Three lithiation/delithiation cycles led to crack expansion as well as new secondary

crack formations branching from previously formed cracks present before lithiation in a-V2O5. Cracks present before lithiation provide a

means for the Li-ion flux to engender local lattice expansion and contractions, which results in crack propagation and formation of secondary

cracks, exposing new surfaces for interaction with the electrolyte (Figures 2A–2C). We note that crack propagation occurred perpendicular

through stair-step layers due to increased flux during lithiation/delithiation processes (Figures 2D–2F) as seen before for another 2D-layered

insertion host g0-V2O5.
28 Similarly, lithiation-induced flux across crack formations formed from deintercalation processes can lead to crack

formations post-lithiation perpendicular to the pre-lithiation crack (Figures 2G–2I). Such lithiation-induced cracks form due to the brittle na-

ture of V2O5 where lattice expansion and contraction especially across phase boundaries lead to elastic misfit and crack formation/

propagation.
2 iScience 27, 110822, September 20, 2024



Figure 2. SEM images of crack formation in lithiated a-V2O5 single crystals

(A–I) SEM images of exfoliated single crystals that underwent three chemical lithiation and three delithiation cycles where (A–C) depict crack elongation, (D–F)

depict crack formation along stair-step layers, and (G–I) show perpendicular secondary crack formation.
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PF model simulations

Physically meaningful connections between flux, displacement, and stress fields are crucial in the context of computer modeling of fracture in

chemo-mechanical systems. Therefore, we investigate a case where change in chemical flux drives damage progression and three main

fields—displacement field, concentration field, and damage field—are connected together in a chemo-mechanical coupled environment.

More detailed formulation and parametrization are provided in the study by Rezaei et al.10 The geometry and the boundary conditions

are according to Figure 3. The initial concentration of c0 = 0.9cmax is kept within the bulk. The concentration on the left edge is kept constant

by applying a Dirichlet boundary condition (cmin = 0.1cmax). All other surfaces are insulated.

Dependent on the microstructural features or atomistic direction within the structure of a crystal, there might exist some preferential di-

rection for the crack. The latter is also known as the cleavage plane and can serve as a potential site for the initiation of cracks. Figure 3 pre-

sents one example where an angle ofv= 30� is used as the preferential crack direction. Upon delithiation, the crack tends to deviate from the

horizontal line. In other words, the crack tends to propagate along the weakest direction. Furthermore, we set the parameter a = 10 for this

simulation (see Equation 7). The output of the PF simulation is a series of video frames, which are reminiscent of physical videos obtained in

field through operando video microscopy. These simulation video frames are the only information used as inputs to the subsequent ML

models.

Damage prediction using DL models

Problem formulation

We propose an ML method as a possible alternative to computationally more expensive finite element simulations for facilitating real-time

battery control. As mentioned earlier, the simulation videos are treated as realistic proxies and can in principle be supplanted by physical

microscopy video from any imaging mechanism that differentiates fractured regions from the substrate.29

Given a sequence of image frames from a PF simulation video, {X1, X2, ., XT}, we aspire to predict the future H image frames, {bX T+1,bX T+2, ., bX T+H} and identify cracks and other anomalies in a post hoc manner. One can use ML to learn a function that maps a sequence

of input images to an output image or a sequence of output images given in Equation 1.
iScience 27, 110822, September 20, 2024 3



Figure 3. Simulating crack propagation for f = 30�

Top: geometry and finite element mesh for the simulation. Bottom: results of the multi-physics finite element calculation in terms of concentration and damage

field through time.
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bXT+h = f ðX1;X2;.;XT Þ;h = 1;.;H (Equation 1)

where f is the mapping function.

We employ two different DLmodels for the given purpose. The first model, the damagemodel, is based on Srivastava et al.25 and uses only

the historical damage profile to predict the future damage image frame. The secondmodel, the ensemblemodel and amodification ofWang

et al.,27 uses both the historical damage and stress profiles to predict the future damage image. For both models, we constrain ourselves to

employ four frames, d = 4, to make one-step ahead prediction at h = 1.

Data description and preprocessing

In this study, we use the PF fracture simulations to generate eight videos of stress and damage profiles of a square-shaped sample with a

notched left edge. Each video displays a distinct grain orientation. The eight grain orientations are 0�, 10�, 25�, 30�, 45�, 60�, 75�, and 90�,
respectively.

The resolution of the original image is 792 3 1216, which is relatively high for training convolutional neural networks (CNNs). Image res-

olutions used for training CNNs are generally between 643 64 and 2563 256.30 To reduce the risk of model overfitting, it is often desirable in

applications of deep architectures to minimize the number of input variables or features that must be optimized.31 Therefore, we preprocess

both stress and damage videos by cropping the surrounding white space and downsampling the cropped images to a resolution of

224 3 224.

Existing image preprocessing strategies32,33 advocate the use of binarization for making the path of the cracks in the damage videos

sharper. The downside is that after binarization, some useful information in the original grayscale images is possibly lost. We have explored

both options and contrasted the performance of the ensemble model with and without image binarization. Binarization is achieved by

converting the damage frames from their original grayscale to binary images. The threshold used for binarization is 0.75, i.e., when a value

greater than 0.75 is set to 1 and a value smaller set to 0. Figure 4 shows the cropping, downsampling, and binarization of the damage

video image.
4 iScience 27, 110822, September 20, 2024



Figure 4. Video image preprocessing

Left: original damage frame at 30�. Middle: cropped and downsampled frame. Right: binarized frame.
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Training and testing settings

Since each PF simulated video has a preferential direction for the crack, we split the training and testing data based on the distinct grain orien-

tation. Seven out of the eight grain orientations videos are used for training, whereas the eighth grain orientation, which has not been used in

training, serves as the holdout set for out-of-sample testing. The test set is then an indicator of overfitting, enabling evaluation of whether the

model can be generalized to a new, unseen grain orientation. In the numerical study, we conduct two training-test rounds, which use the

0� video and the 60� video as the test set, respectively. Specifically, in the round when the 0� video is used for testing, the videos of grain

orientations of 10�, 25�, 30�, 45�, 60�, 75�, and 90� (without 0�) are used for training, whereas when the 60� video is used as the test set,

the videos of grain orientations of 0�, 10�, 25�, 30�, 45�, 75�, and 90� (without 60�) are used for training.

The videos contain a different number of image frames, ranging from31 to 48, and in general only 6 frames capture the initiation anddevel-

opment of cracks. Therefore, to strike a good balance between maintaining a reasonable number of training samples and keeping some un-

used image samples for testing, we divide each video into sub-videos of five frames in order to efficiently train and test the model. Overex-

tending the length of each sub-video would lead to a decrease in the number of training samples, whereas too short sub-video may

not contain sufficient details to recover the underlying dynamics of the process. Suppose that a video has 35 frames, with each frame labeled

as #1, #2, ., #35, respectively. The sub-video sequences, each containing five frames, are grouped as such: #1, #2, ., #5, #2, #3, ., #6, .,

#31, #32,., #35. As we aim tomake a one-step ahead prediction, for each sub-video sequence, the first four frames are used as training input

and the fifth frame is used as training output. For example, for the first sub-video sequence, #1, #2, #3, #4 are used as input to predict the

appearance of frame #5. Next, the summation of the squared difference between the predicted fifth frames and the actual fifth frames are

used to tune the parameters in the model. In total, we have 260 input-output pairs for training and 30 pairs for testing in the first training-

test round, and 263 pairs for training and 27 pairs for testing in the second round.

Damage prediction

Let us first visually inspect the results to gain an intuitive understanding of the performance of the two different DLmodels. Figure 5 shows the

output of the damage and ensemble models at 0� and 60� grain orientations, respectively. At frame #26 and #27 for 0� and frame #27 for 60�,
the predicted crack growth output by the damage model alone apparently lags behind the actual growth. Adding the stress profile to the

model yieldsmore promising results. The lag between the prediction and the actual frame becomes smaller. For instance, the predicted frac-

ture path at frame #27 for 0� grain orientation is longer andmore distinct thanwhat the damage-alonemodel predicts. For the 60� grain orien-
tation, the ensemble model is even able to predict the correct grain orientation at frame #27.

Considering that binarization may leave out useful information contained in the original grayscale images, we also conduct experiments

using the original images and the ensemblemodel. The outcomes are presented in Figure 6.We do observe differences in the initial stages of

crack propagation, when using the binary damage images and the grayscale images, indicating that the early crack path is indeedmasked by

binarization. After removing the threshold, the damage profile more effectively contributes to the prediction—the lengths of the predicted

cracks from frame #27 onward for both grain orientations are longer than in the ensemble model using the binary damage input. In general,

the predicted cracks for both degrees closely match the prevailing pattern, despite the minor variations in hues.

Performance evaluation

Next, we quantify the quality of the damage prediction for each model using the following four evaluation metrics: the initiation lag, crack

length ratio, crack width ratio, and crack angle deviation. We are purposeful in selecting these rather than generic image quality metrics

such as peak signal-to-noise ratio (PSNR)34 and structural similarity index measure (SSIM).35 The reason for our use of the customized metrics

is because our objective here is to evaluate the local crack path prediction, instead of image reconstruction or enhancement. In other words,

PSNR and SSIMmeasure if the processed images are clearer than the raw images. In our context, the image predicted by ourmodel for time t,
iScience 27, 110822, September 20, 2024 5



Figure 5. The test results of the damage and ensemble model using binary data

(A) 0� grain orientation, (B) 60� grain orientation. The first four frames of each sub-video are used as input. The damage profile is used by both the damagemodel

and the ensemble model, whereas the stress profile is used only by the ensemble model. The output is the predicted damage frame.
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if comparedwith the raw image at time t, is always less clear—our image is a prediction and the raw image is the ground truth, somuch so, that

it is not practical to expect the prediction to be as good as the ground truth, much less so to demand the prediction to be better. As such,

PSNR and SSIM are not good measures of the quality of prediction relevant to our objectives.

In the context of local crack path prediction, the key frame is the frame in which crack initiation or propagation occurs. Notably, the pre-

dicted frame images are always in grayscale, even if binary damage images are used as training inputs. The crack boundaries on grayscale

images are harder to define, as they gradually fade into the background. When using binary damage images as inputs, the predicted cracks

have sharper boundaries (albeit in grayscale), whereas when using original gray images, the predicted cracks have broader, fuzzier bound-

aries. In order to render a fair comparison between models and when using distinct data types, we apply the binarization process again to

all the predicted damage images using a threshold of 0.6, so that the crack boundary is clearly and consistently defined. The final results

are shown in Figure 7, where all the metrics are then calculated based on the measurements taken on the white contours. The initiation

lag is computed by comparing the image frame index difference between the actual and predicted frames in which the crack first appears.

The crack length is measured from the notch tip to the crack tip. The five crack widths are measured at 0%, 25%, 50%, 75%, and 100% of the

total length, along the path of the crack. The crack angle is calculated using the arc-tangent function, and the absolute difference between the

predicted crack angle and the actual one is recorded as the crack angle deviation.
Figure 6. The test results of the ensemble model using original data

(A) 0� grain orientation, the lag between predicted crack growth and the truth is further decreased.

(B) 60� grain orientation, the model is able to predict crack initiation as soon as the true crack happens.

6 iScience 27, 110822, September 20, 2024



Figure 7. Illustration of the quantitative performance measures

Left: the crack length measurements. Middle: the crack width measurements. Right: the crack angle measurements. All measurements are displayed for both the

real frame and predicted frame at 60� grain orientation.
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We further calculate a crack length ratio using Equation 2, a crack width ratio using Equation 3, and the crack angle deviation using Equa-

tion 4. Because we measure five crack widths along the path of the crack, we use the median value to generate a single crack width ratio per

frame for easy comparison.

Crack Width Ratio =
Median Predicted Crack Width

Actual Crack Width
(Equation 2)
Crack Length Ratio =
Median Predicted Crack Length

Actual Crack Length
(Equation 3)
Crack Angle Deviation = jActual Crack Angle � Predicted Crack Anglej (Equation 4)

We calculate the metric values for both the damage and ensemble models using the binary damage images, as well as for the ensemble

model using the original grayscale damage images. Table 1 records four performance metrics. What is reported therein is the initiation lag,

corresponding to the video sequence in which the crack first appears, and themedians of the other three metrics over the entire training/test

sub-video sequence pairs.

The numerical results are consistent with visual inspection, especially in terms of length andwidth ratios. The ensemblemodel predicts the

length andwidth of the actual crack with increased accuracy and consistency. Ourmodel performswell in predicting the crack direction for 0�,
in which the angle deviation values are less than 2�. On the other hand, the prediction for the 60� crack propagation has a larger, more notice-

able angle deviation, as a result of noise in the predicted frames, an issue that needs to be addressed in future research. The ensemble model

with the original images performs better than the ensemble model with binary data. In most instances, the length and width ratios derived

from the original data are more stable and closer to one. Intriguingly, when using binary images, the sharpness of the predicted cracks, in

terms of the width ratio, is slightly better than using gray images for the 60� grain orientation case. This is explicable, because as stated earlier,

using binary images as training input does render a sharper crack boundary in prediction. But the advantage is not significant, and such an

advantage does not materialize for the 0� grain orientation case, nor for other performance metrics for the 60� grain orientation case either.

With all things considered, we believe it is preferable to use the original gray images for the purpose of damage prediction.
DISCUSSION

In this study, we applied a ConvLSTM-based neural network model for spatiotemporal representation learning. By feeding image sequences

of stress and image sequences of damage to the model, we were able to train the model within 36 min and to generate a prediction on the

next image of damage with good fidelity within 2 s. With this capability, out of every five images, one only needs to run the expensive PF

simulation four times, generating the four input images, while the DL model would produce the fifth one. Roughly speaking, this saves

20% of the simulation cost. If used on physical data, such capability can be used for anticipating how a crack propagates in material (like bat-

teries) health monitoring.

The achieved results show exceptional promise. Even for a low-resolution image, the output dimension/degrees of freedom are very high,

making the video frame prediction problem challenging from aML standpoint. Increasing the size of training data by addingmore videos and

considering a higher temporal resolution of the crack propagation process, whichwould effectively increase the training sample size, will likely

enhance training. We do caution that the current predictive model is trained on a limited amount of data. Expanding the training dataset will
iScience 27, 110822, September 20, 2024 7



Table 1. Numeric test results

0� Grain orientation Frame 26 Frame 27 Frame 28 Frame 29 Frame 30 Frame 31 Median

Damage model – binary images LR 0 0.471 0.781 0.846 0.656 1.000 0.719

WR 0 0.333 1.467 1.500 1.286 1.429 1.357

AD 0 2.384 1.005 0 0 0 0

Lag 1 – – – – – –

Ensemble model – binary images LR 0 0.673 0.900 0.794 0.706 1.006 0.750

WR 0 1.000 1.467 1.333 1.286 1.333 1.309

AD 0 3.464 1.818 1.414 1.014 0.712 1.214

Lag 1 – – – – – –

Ensemble model – original images LR 0 0.915 0.963 0.885 1.006 1.063 0.939

WR 0 0.854 0.800 1.333 1.200 1.321 1.027

AD 0 2.027 1.438 0.504 0.358 0.358 0.431

Lag 1 – – – – – –

60� Grain orientation Frame 26 Frame 27 Frame 28 Frame 29 Frame 30 Frame 31 Median

Damage model – binary images LR 10.548 0.190 1.166 0.854 0.524 0.924 0.889

WR 10.000 0.438 1.389 1.444 1.300 0.901 1.344

AD 5.427 36.758 6.737 5.480 1.504 2.015 5.453

Lag 0 – – – – – –

Ensemble model – binary images LR 2.062 0.673 1.269 0.990 0.594 0.897 0.944

WR 2.000 1.000 0.500 0.944 0.286 0.900 0.922

AD 13.765 12.993 17.311 0.377 1.532 3.180 8.087

Lag 0 – – – – – –

Ensemble model – original

Images

LR 0.779 0.537 1.047 1.018 0.945 1.009 0.977

WR 1.200 0.727 1.257 1.214 1.091 1.010 1.145

AD 25.413 19.289 3.718 2.410 1.801 0.246 3.064

Lag 0 – – – – – –

LR, WR, and AD stand for the crack length ratio, crack width ratio, and crack angle deviation, respectively. Lag stands for the initiation lag. Lag is only reported at

the initial key frame.
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undoubtedly increase both the robustness and stability of themodel under different circumstances. In other words, based only on the current

results, re-training will still be needed for different notch geometries.

One extension is to increase the capability in multiple-step ahead prediction. What is reported in this paper is one-step ahead prediction,

which represents the current state of the art. Undoubtedly, more useful solutions would come from the ability to anticipate multiple steps

ahead by feeding the generated frames back into the inputs and this will be the focus of future research. This may be further facilitated by

integrating physical laws to a given boundary value problem and involving physics-informed neural networks in our method.36,37 Another

extension is to acquire a suitable representation (low-dimensional embedding) for the crack growth process. The low-dimensional embed-

ding would improve the sample efficiency of the training process and enable the system to discover a more complex growth process. Such

crack prediction and connection to electrochemical signatures meet a significant need for the design of physics-based dynamic derating pro-

tocols for the analysis and proactive management of battery state-of-health.

Limitations of the study

We introduce aDLmodel that approximates a segment of amulti-physics PF simulation video sequence in order to give an early-failure detec-

tion method. Due to the limited amount of simulation data available, this model was trained using a single pre-cut shape with a discrete num-

ber of preferential directions for the crack, which has various drawbacks.

Firstly, the simulation video does not contain any crystallographic defect that could affect the start and development of cracks in real ma-

terials. For example, stress accumulationmay occur at different locations rather than only in the pre-notch tip area. It is necessary to adjust the

input video or network structure specifically to mitigate the impact of noise and identify the critical cracking area. Secondly, the metrics in this

study are also tailored to the simulation data. In the real microscopy video, crack branching can occur, and the damage zone is no longer

diffused. It is essential to introduce a newmetric to quantify the generated predictions to address this issue. Lastly, the preferential directions

should be considered more explicitly to facilitate the predictions. Given that the crack length and growth pace vary depending on the direc-

tion, it is important to comprehend how these directions affect the stress/damage field both spatially and temporally.
8 iScience 27, 110822, September 20, 2024



Table 2. Chemo-mechanical coupled formulation of cohesive fracture

Displacement Concentration Damage

V$s+b = 0 V$J + _c = 0 V$H+Y = 0

s = CðdÞ : εe J = � Mðc;dÞVm
H =

2lc
p
GcðcÞVd

εe = ε � ðc � c0ÞU m = mnet � V$z
Y = � f 0dH � u0Gc

plc
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Sarbajit Banerjee (banerjee@chem.tamu.edu).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals

Lithium hydroxide Sigma Aldritch Prod#: 920312

Vanadium (V) oxide Sigma Aldritch Prod#: 221899

Ethanol Sigma Aldritch Cat#: EX0276-3

Nitrosonium Tetrafluorborate Alfa Aesar Cat#: A15806-18

Acetonitrile Sigma Aldritch Cat#: EM-AX0143-6

Deposited data

Code for deep-learning-based modeling This paper Zenodo: https://doi.org/10.5281/zenodo.12668274

Software and algorithms

Spyder 4.2.5 Open source https://www.spyder-ide.org/

TensorFlow 2.9.1 Open source https://www.tensorflow.org/

OpenCV 4.6.0.66 Intel https://opencv.org/
METHOD DETAILS

A short review on chemistry-mechanics

Chemistry-mechanics coupling in materials encompasses the interplay betweenmechanical, chemical, and electric-field-driven forces during

principal electrochemical processes.38,39 A considerable amount of attention has focused on the repercussions arising from the coupling of

these electrochemical and mechanical processes.20,40–42 In typically brittle positive electrode materials, chemo-mechanical phenomena are

particularly of significance in materials possessing multiple intercalation-induced phase transformations.43 These coexisting phase transfor-

mations can lead to cracking and particle degradation regimes specifically along the phase boundaries.44 Furthermore, particle degradation

phenomena compound across length scales and can result ultimately in large-scale pulverization of the material and resultant loss of

capacity.29

Insertion and deinsertion of Li-ions within positive electrode materials during discharging and charging regimes drive structural phase

transformations, substantial dilation/contraction of crystal lattices, and thus engender directional stresses.1 Li-ion insertion in 2D materials

leads to weakened van der Waals’ interactions between layers, altered layered stacking, and plane slippage.45 Furthermore, heterogeneous

lithiation within single particles drives inhomogeneous deformations and lattice incommensurability at the solid-solid interface between

phase boundaries and gives rise to compounding stresses that begin at the atomistic level and scale to the electrode level, resulting in frac-

ture, dislocations,7 and delamination.40 Ceramic cathodes, such as LixV2O5, are prone to damage regimes upon intercalation after only a few

cycles, evenwhen they only undergo small volume changes (ca. 2–8%), due to their characteristically brittle nature44–49. Nucleation andgrowth

regimes of microcracks oftentimes result from the initiation and accumulation of misfit dislocations.50 Such formation of new surfaces leads to

altered diffusion pathways and amplifies lithiation heterogeneities with their accompanied stresses.51,52

Gaining understanding of and having the ability to predict chemo-mechanical processes occurring in electrode materials is essential to-

ward informing design of cathode materials and can further be leveraged to extend battery life and prevent battery failure in commercially

deployed systems by informing battery monitoring and derating algorithms.29 Battery monitoring systems which actively monitor the health

of the battery for signs of thermal-runaway-triggering processes are crucial for mitigating catastrophic failure.53,54 Most of the methods im-

plemented rely upon electrochemical metrics such as measurement of the anode overpotential or detection of characteristic high voltage

plateau upon discharge to detect the presence of plated metallic lithium on non-metallic anodes. These metrics can be used to mitigate fail-

ure by triggering a response such as a reduction in the rate of charge.55,56 Measurement of proxies of chemo-mechanical degradation are less

developed. Deciphering electrochemical signatures of mechanical failuremechanisms as is the focus of this work could indeedprovide a valu-

able method to monitor degradation.

Derating strategies represent a complementary idea, whereby battery operating windows are narrowed across the lifetime of use allowing

manufacturers to achieve the greatest balance possible between optimizing performance versus ensuring safety and longevity.57 Derating

strategies can be static, where limits set for metrics such as system temperature, state of charge, voltage, or resistance serve as cut-off points

for derating processes to initiate, resulting in a corrective response such as lowering the current density or preventing further charge/

discharge. Dynamic derating strategies can alternatively allow for adaptive changes in the cut-off points based on the state of health of

the battery system approximated using metrics such as capacity loss or increases in resistance. A major challenge is that cut-off limits are

typically set based on empirical relationships established between the effects of using different derating metric cut-off points versus the
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resulting extension of battery life. Establishingmore generalizable models will require building data-enabled frameworks which are informed

by decoupled and direct measurements of the primary degradation processes. Understanding the likelihood of crack formation and prop-

agation mechanisms is important for the decoupling or direct measurement of degradation.

SEM phase-field model

It is assumed that the bulk undergoes elastic deformation together with a quasi-brittle fracture at small deformation. The material volume

changes due to the concentration field captured by the additional chemical strain tensor εc = ðc � c0ÞU. Here, c is the Li concentration,

and c0 is the initial concentration. The total strain tensor ε = 1
2 ðVu +VuT Þ = εe + εc , is additively decomposed to elastic εe and chemical parts

εc . The total energy is divided into the elastic part je, chemical part, jc and damage part jd :

jðε; c;Vc;d;VdÞ = jeðε; c;dÞ+jdðc;d;VdÞ+jcðc;VcÞ (Equation 5)

The elastic energy is given by:

je =
1

2
εe : Cðc;dÞ : εe =

1

2
ðε � εcÞ : ðfdC0ðcÞ + ð1 � fdÞPÞ : ðε � εcÞ (Equation 6)

The stiffness tensor is disaggregated through a damage function fdðdÞ = ð1�dÞ2
ð1�dÞ2+a1dð1+a2dÞ

and a1 = 4EGc

plcs2u
, a2 = � 0:513,14. Moreover, C0 is

the undamaged elasticity tensor and to avoid cracking in the compressive regime, the tensor P is introduced in Amor et al.11 In phase-field

damage models, the crack surfaces in the bulk are replaced with a diffusive damage zone and the fracture energy is dissipated via a crack

density function g12–14:

jd = GcðcÞgðd;VdÞ =
Gc

u0

�
1

lc
uðdÞ + lcVd$A$Vd

�
(Equation 7)

Here, uðdÞ = 2d � d2 and the internal length scale parameter is denoted by lc . The constant scaling parameter u0 = 4
R 1
0

ffiffiffiffiffiffiffiffiffiffiffi
uðdÞp

dd = p.

Finally, the second-order structural tensorA = I+aa⨂a is constructed based on the vector a = ½cosðfÞsin ðfÞ�T . Utilizing a non-zero value for

the parameter a, one can penalize the crack direction along the angle f13. The angle f is treated as a constant input parameter and is in accor-

dance with the preferential crack direction.

The chemical energy within the bulk of the material is given by:

je = RTcmax½~cln~c + ð1 � ~cÞln ð1 � ~cÞ�+RTcmaxc~cð1 � ~cÞ (Equation 8)

Here, ~c = c=cmax is the normalized concentration, R is the gas constant, T is the reference temperature, and k is an interphase parameter. The

first term in Equation 8 represents the entropic contribution to the system and the second term stands for the enthalpic contribution, which

favors the separation of the system.

For the thermodynamic forces we have8,10:

s =
vj

vε
=

vje

vε
= CðdÞ : ðε � εcÞ = Cðc;dÞ : εe (Equation 9)
m =
vj

vc
= RT

�
ln

~c

1 � ~c

�
+
1

2
εe :

vC

vc
: εe � s : U (Equation 10)
Y =
vj

vd
=

vðje+jdÞ
vd

=
1

2
εe :

vC

vd
: εe +Gc

u0ðdÞ
plc

(Equation 11)
H =
vj

vVd
=

vjd

vVd
=
2

p
GclcVd (Equation 12)
J = � Mðc;dÞVm = � hdðdÞM0ðcÞV
�
RT ln

� ~c

1 � ~c

�
� s : U

�
(Equation 13)

A summary of governing equations for displacement, concentration, as well as damage field, is provided in Table 2. For the displacement

and damage field we apply a variational derivative with respect to u and d to obtain the relative differential equation.

In Table 2, the expressionH is defined as the maximum value between the undamaged elastic strain through the simulation time j0
eðtÞ =

1
2εe : Ch : εe, and the damage energy threshold jth =

s2u
2E, i.e., we have H = maxt ðj0

eðtÞ;jthÞ13.

Deep learning model

A collection of images or a video can be used to simulate and represent the evolution of a particle’s stress and damage. The primary objective

of the deep learningmodel is to predict the future state of a particle based on its historical images of stress and damage. The results shown in

this study are obtained by two different deep learning models, the ensemble model and the damage model, with the primary distinction
iScience 27, 110822, September 20, 2024 13



ll
OPEN ACCESS

iScience
Article
beingwhether or not the stress images are included as inputs. The ensemblemodel’s architecture and layer parameters are shown in Figure 8.

The damage model deploys only the top segment of the ensemble model. Its structure and layer parameters can be seen in Figure S1.

For both models, we apply downsampling andmax pooling to the input frames. These operations enhance the ability of translation invari-

ance for the resulting model and reduce the size of the image to make the image representation manageable. Translation invariance means

that a small translation in the images does not significantly affect the outcomes of the model. Then, given a sequence of input images, we

employ the ConvLSTM-based model to capture the temporal relationships underlying crack propagation. The final frame of the input

sequence, which contains the spatial and temporal information of the entire sequence, is extracted by a subsequent convolutional network

for prediction. For the damage model, this final frame contains only damage information, whereas for the ensemble model, the last frame of

the damage input and the stress input aremultiplied element-by-element to produce a new frame. For bothmodels, the subsequent convolu-

tional network is identical, i.e., using some 2D convolution anddeconvolution layers to predict the damage at time t + 1 after going through an

upsampling process. We use ConvLSTM as our choice of deep learning network with a ReLU activation function for the hidden layers. The

code is implemented using Python libraries Keras58 and Tensorflow.59 We select the mean squared error as the loss function and train the

neural network model for one hundred iterations with a batch size of five. To prevent overfitting, the order of training data is shuffled before

every epoch. The Adam optimizer is used to minimize the loss and update the weight matrices in the network. The learning rate is 0.001. The

training process costs around 36 min on a single A100 40GB GPU.
Materials

Reagents and their commercial sources are as follows: LiOH (Sigma Aldrich, 99.9%), V2O5 (Sigma Aldrich, 99.6%), ethanol (Sigma Aldrich,

R99.6%), NOBF4 (Alfa Aesar, 98%), acetonitrile (Sigma Aldrich, Drysolv R95%), finder grids (Ted Pella, Cu 200 mesh).
Synthesis of a-V2O5 single crystals

Single crystals were first synthesized as d-Li0.7V2O5 powder using a solvothermal process. Stoichiometric amounts of LiOH (Sigma Aldrich,

99.9%) and V2O5 (Sigma Aldrich, 99.6%) and 86 mL of ethanol (Sigma Aldrich,R99.6%) were added to a PTFE-lined stainless-steel autoclave

(Parr, 125mL capacity) and allowed to react for 72 h at 210 �C. The resulting powderwas filtered and allowed to dry overnight. The powder was

ground and annealed at 600 �C in a tube furnace under a flow of Ar gas for 12 h to remove residual moisture. To obtain large crystals, the

resulting powder was ball-milled again, sealed in a quartz ampoule under vacuum, then melted at 800 �C and cooled at a rate of 2 �C/h
in a programmable furnace (Thermo Scientific, Lindberg Blue M with UT150 controller) to obtain large black single crystals.

To obtain a-V2O5 single crystals, topochemical deintercalation of d-Li0.7V2O5 was performed by treating them with 1.5 M equivalents of

NOBF4 (Alfa Aesar, 98%) in dry acetonitrile (ca. 0.01 M solution) (Sigma Aldrich, DrysolvR95%) for 24 h. The leaching of Li ions and oxidation

of V4+ to V5+ caused a drastic change in color from lustrous black to yellow/orange single crystals. Furthermore, cracks were observed along

blacks in a layer-like habit exhibiting the 2D nature of the thermodynamically stable V2O5 structure.
Scanning electron microscopy characterization

Large single crystals were ground using a mortar and pestle to yield smaller single crystals with lateral dimensions 100–200 mm were fixed to

transmission electron microscopy finder grids (Ted Pella, Cu 200 mesh). The sample was then mounted to a scanning electron microscope

focused-ion beam (FIB-SEM). FIB-SEM images were performed using a Tescan LYRA-3 equipped with a Schottky field emission electron

source and fully integrated Canion Ga focused ion beam column. The instrument also contained a 5-resevoir gas injection system (GIS)

with W, Pt, SiOX, H2O, and XeF2. The SEM functionality was solely used for the characterization within this manuscript. Low magnifications

were initially used to raster the grid for ideal single crystals presenting many facets, sizes of 100–200 mm, and flat surfaces.
Simulation images

A simulation video sequence needs to be converted into a certain size of images before being fed into the deep learning model. The video

capture technique in OpenCV is used to first extract the frames, which are then saved in the preferred color space. After that, unnecessary

regions are clipped out, leaving only the damage/stress field, which is then resized to 2243 224 pixels and prepared for training and testing

the model.
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