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ABSTRACT Estimation of the trajectories of the leg’s joints is of importance in gait studies, as well as in the
design of motion planners and high-level controllers for exoskeletons, orthotics, prosthetics, and humanoid
robots. Human locomotion is a harmonic phenomenon which benefits from collaboration between different
parts of the leg. This collaboration, together with taking into account the natural hierarchy in the human body
structure, necessitates paying attention to the fact that the motions of the legs’ lower limbs are influenced
by the motions of the upper ones. Having this point and its potential consequences in mind, this study aims
to create a relationship between the legs’ joints, and the motion of the posterior superior illiac (PSI) or
great trochanter (GTR) points, separately. From anatomical point of view, both of the points are above the
ankle, knee, and hip joints. To continuously map the inputs to the outputs, without requiring switching rules,
speed estimation, gait percent identification or look-up tables, a nonlinear auto-regressive modeling with
wavelets and neural network is used. The proposed approach is investigated for forty-two subjects at different
walking speeds. The method is tested for six case studies, in which their root mean square (RMS) errors,
mean absolute errors (MAEs) and correlation coefficients ρcc are compared. The results show that using
GTR point leads to higher estimation accuracy. For instance, in one of the testing case studies, ρcc were
0.97, 0.95, 0.91 using GTR point, in comparison to 0.95, 0.93, 0.87 using PSI point, for the hip, knee, and
ankle joints, respectively. A similar trend was also observed for root mean squared errors (RMSE) and mean
absolute errors (MAEs). In addition, it is found that highest performance occurs in hip angles estimation, and
least performance is seen for the ankle joint. Furthermore, the impact of using both velocity and acceleration
inputs on the estimation accuracy is also investigated. The results show that using velocity or acceleration
of the GTR or PSI inputs leads to relatively similar results. Nonetheless, the results related to the GTR point
are in general better. The impacts of using both velocity and acceleration inputs as well as different estimator
functions (such as sigmoid function) are also investigated and discussed.

INDEX TERMS Estimation of the leg joints’ angles, gait analysis, posterior superior illiac or greater
trochanter, controller design, prosthetics, orthotics.

I. INTRODUCTION
Aside from designing compact and versatile orthotics,
prosthetics, and exoskeletons, which is a major design
challenge, the other challenge is related to their intelligence,
i.e., how to set their operation in line with a human
user’s locomotion. High accuracy intent recognition is
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usually required, but remains challenging, since human
locomotion is the result of intricate interactions between
brain, spinal cord, muscles, limbs, and joints. Using sen-
sory inputs from all of those potential sources would
result in computationally complex control algorithms as
well as complicated mechanical systems. Therefore, the
research community has focused to develop methods to
control these devices using as minimum sensory inputs as
possible.
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In the following, different motion planning methods that
are proposed to predict the motion of the biological or
prosthetic lower extremity joints will be discussed.

A. PREVIOUS STUDIES: THEIR ESTIMATION ALGORITHMS
AND FINDINGS
One early method was to use the motion of the sound side,
and then imitate it on the amputated side. This ‘‘echoing’’
algorithm was proposed to control a prosthetic knee [1].
Two main disadvantages of this method were, requiring
to instrument the sound side, and, the delayed repetition
of sound side’s motion. The method was later improved
through complementary limb motion estimation (CLME)
algorithm [2]. In the latter, although using sound side’s
motion, the state estimation was performed without delay.

Ankle joint’s motions were estimated using speeds and gait
percents in [3]. For this purpose, shank angular positions and
velocities were used to extract corresponding speed and gait
percent based on phase plane concept. Next, an off-line saved
look-up table was used to find out the corresponding ankle
angles. To estimate speeds, the method however required
if-then decision making. A similar approach was later used
to estimate knee angles [4]. Thigh angle and its integral were
used for gait percent estimation. Next, the knee angles were
expressed as a function of the derived gait percents using
the Fourier transform. The work was later improved to take
into account different speeds and gaits, using basis and task
functions [5], [6]. The main advantage over [3] was that,
in [5], [6] a functional approach was adopted, as opposed to
the table-based approach proposed by the former.

Seven regression algorithms were used to compare leg
joints’ angle estimation in [7]. To do so, foot angular
velocities and translational accelerations (at heel) were used
to predict sagittal plane ankle, knee, and hip angles at a
self-selected walking speed. The comparisons showed that
generalized regression neural network (GRNN) algorithm
had the best performance. A similar algorithm was used to
estimate sagittal plane hip, knee, and ankle angles using
foot and shank 3D angular velocities and linear accelerations
(twelve signals) in [8]. The GRNN was combined with the
Fourier transform to estimate leg joints’ angles in [9]. The
work used anthropometric parameters such as foot, shank,
and thigh lengths, together with cadence and stride length.

Shank angular positions and velocities were employed
to predict ankle joint angles at various walking speeds in
[10]. The work was later continued to predict knee angles
using thigh angular positions and velocities [11]. In both
works, Gaussian regression was employed to predict joints’
angular positions. In another work, thigh angles and linear
accelerations were utilized to estimate gait percents and
speeds [12]. Next, the corresponding knee angles were
predicted for various walking speeds based on an off-
line look-up table. To lessen the number of the inputs,
a nonlinear auto-regressive model with exogenous inputs was
proposed to estimate ankle and knee angles [13]. To do so,
only shank or only thigh angular positions were used (as

inputs) for estimations. The method had acceptable results in
comparison to different studies.

EMG signals from semitendinosus, vastus lateralis, rectus
femoris, and vastus intermedius were used to predict knee
positions in the sagittal plane in [14]. To classify different pat-
terns, a Levenberg-Marquardt multi-layer perceptron neural
network was used. In another study, tibialis anterior, gas-
trocnemius, and soleus signals were utilized to predict ankle
angles, using two different models [15]. First, a biomimetic
model was proposed based on muscle properties such as
muscle stiffness and damping factors, activation level, and
isometric length. In the second modeling, a standard back-
propagation algorithm was used to a train a feed-forward
neural network. Both methods were able to estimate ankle
motions with acceptable accuracy.

Ankle flexor and extensor signals were used to estimate
ankle joint angles in [16]. A nonlinear autoregressive neural
networkwas proposedwhose activation functions were tansig
and a linear function with unit slope. Using a similar
methodology, ankle angles were estimated using tibialis
anterior and gastrocnemius signals [17]. In another study,
EMG signals from ten leg muscles were used to estimate
ankle, knee, and hip angles [18]. It was shown that using a
deep belief network was better than a principal components
analysis approach [19] to extract features from surface
EMG signals. Different studies showed that merging EMG
signals and kinematics data (e.g., joints’ angular positions
or velocities) can potentially lead to more accurate results in
comparison to using only EMG signals [20], [21], [22].

B. LIMITATIONS AND CHALLENGES OF MOTION
PLANNING ALGORITHMS
As reviewed, different methods have been proposed for the
estimation of the leg joints’ angles (or moments). However,
there are a number of issues that need more attention.

First, several studies have proposed estimation methods
that can be used for human gait analysis, but would be less
useful for motion planning of orthotics or prosthetics. For
example, foot motion was used for ankle angle estimations
in [7]. This approach cannot be used to control a transtibial
prosthesis, since in this circumstance the biological foot is
missing, and therefore no information can be obtained from it.
Or, knee joint positions were estimated using inputs obtained
from shank and thigh [23]. Since knee joint is between the
shank and thigh, in case of a transfemoral amputee with a
missing shank, this method can not be used, as inputs coming
from biological shank would be missing. Lot of works related
to the joints’ angle/moment estimation can be put in this
category.

Thigh motion together with other inputs were used to
high-level control a hip orthosis in [24], or hip angles
were used to estimate hip moments for a hip orthosis in
[25]. While the methods worked, obtaining inputs from a
point which is below the desired joint, might result in a
paradoxical condition for the intent recognition by the high-
level controller. In other words, it does not seem logical to
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use the inputs from a limb, and then trying to estimate what
the same limb ‘‘should’’ do at the same time.

In the above example, the inputs (coming from thigh)
are already ‘‘directly’’ influenced by the motion of the hip
orthosis. Therefore, it might not be a good idea to ‘‘use’’ the
motion of the thigh, and to simultaneously estimate what it
should do (desired motion). In this example, thigh motion
can be used in a low-level controller in hip orthosis, e.g.,
in its PD controller, to adjust its motions. However, using its
motion for intent recognition of the same joint may not be
logical. Therefore, the authors believe that the desired set-
points (i.e., the desired output angles/moments) should be
generated based on another less-influenced input source.

The second issue is related to the number of the input
sources that are to be used in an estimation algorithm. While
using diverse sources might potentially lead to more accurate
controller, using less inputs (i.e., designing minimal-sensory
controllers) should be the first target. When the limitations
and strengths of a minimal-sensory algorithm are identified,
the use of more input sources into the algorithms can be better
justified. Unfortunately, lots of the studies use a number of
pre-selected input sources without explaining whether all of
them were really required or not.

Third, the vast majority of the controllers for active
powered prosthetics/orthotics rely on the finite state machine
(FSM) approach [26], [27]. In this approach, the gait cycle
is divided into different sections (states) according to the
gait events, and for each section a control rule is devised.
Furthermore, switching rules are also required to transit
between the states. In contrast, human gait seems, at least
visually, a continuous seamless event. This is a good
motivation for trying to develop continuous motion planners.

C. THE CONTRIBUTIONS OF THIS STUDY
This study is designed to address some of the above-
mentioned issues, to the places possible. First, our study
aimed to pay attention to the natural hierarchy in the human
body. Therefore, the motion of a specific joint is estimated
through inputs coming from a point above it. Such an
attitude can potentially be more logical and constructive,
as previously discussed.

Since this study is also targeting the hip joint, it was
decided to use input source(s) close to, but above this specific
joint. One potential candidate point could be around the
waist. To do so, two points were of interest. Specifically, the
motion of the posterior superior iliac point (PSI, on the waist),
and separately, that of the greater trochanter (GTR, on the
connection point of the hip joint), is used to estimate ankle,
knee, and hip angular positions during walking.

GTR point is in the region close to the thigh (hip) rotation
axis, and PSI point is close to the points used in [28] and
[29]. The selected two points are close to the human center
of mass [30]. The excursion of the center of mass is used for
a wide spectrum of inspections, from gait energetics to gait
quality, which show its importance in human gait analysis
[31], [32], [33], [34], [35], [36]. Despite its wide use in gait

studies, little has been devoted to leverage its motion in
high-level controlling and motion planning of prosthetics or
orthotics. Aside from this matter, human locomotion seems
harmonic which implies constructive interactions between
different joints and limbs of the lower extremity. The effect
of these interactions might be summarized in the motion
of the center of mass [37], [38], or possibly those two
proximal points. This study aims at investigating this matter
by inspecting the opposite, i.e., if motions of those two points
could be converted to the motions of the leg joints, paving the
way for a potential motion planner for prosthetics or orthotics.

Vertical ground reaction forces were estimated using three
IMUs in [28]. One of them was attached to the lower trunk
on the fifth lumbar vertebra. The study showed that the forces
can be estimated with high accuracy using only one wearable
sensor mounted at the waist. In a relatively new study, leg
joints’ angles were estimated using five IMUs attached to
pelvis, thighs and shanks [29]. A deep learning model with
convolutional and recurrent layers was used for estimation of
the joints’ angles in twenty-seven subjects while walking and
running on a treadmill. To predict leg joints’ angles (stance
and swing phases separately), moments (stance phase), and
ground reaction forces, a sacrum-attached IMU was used in
[39]. The inputs were acceleration, velocity, displacement
and time, and the proposed approach was investigated on
seven subjects.
Second, this study aims to design a minimal-sensory

motion planner. As mentioned previously, only when limita-
tions and strengths of such an approach are investigated, the
use of more input sources can be better explained. To do so,
different scenarios are planned and compared which will be
discussed in full detail in the Methods section.
Third, the estimations are performed continuously, and

directly, from inputs to the estimated outputs. This attitude
helps avoid the intermediate steps such as gait percent
identification, look-up tables, switching rules, or speed
estimation. The motivation behind this approach is that such
parameters are usually derived from the already available
sensory information or obtained from an extra source
[3], [4], [5], [40]. Thus, it is aimed to create a direct mapping
from inputs to the outputs.
Fourth, since those two points are used (separately) to

estimate sagittal plane ankle, knee and hip joints’ positions,
this enables to relate all of the positions to a single point
on the human body, and to pave the way to develop motion
planners that can be used as high-level controllers for
smart orthotics, prosthetics, or exoskeletons. This approach
would be potentially useful to take steps towards a more
comprehensive controller for such devices.

In addition to the above, studies usually use data from
participants that are within a similar age range, and usually
from young population. Although it is a reasonable starting
point for human gait analysis and designing high-level
controllers, it would also be logical to analyze the developed
methods for a wide range of age which involves both
young and old participants. This approach can lead to more
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FIGURE 1. Schematic view for the definition of the hip angle θh, knee
angle θk , and ankle angle θa, as well as positions of some of the markers
used in this study. See Methods for more detailed information.

comprehensive analysis, and therefore, in this study a data-set
obtained from participants within a wide age range was used.
To estimate leg joints’ positions (outputs) in this study,

a nonlinear autoregressive model [41], [42] together with
wavelets is used to create a direct mapping between the inputs
(the motions of the PSI or GTR points) and the outputs, hence
circumventing the need to define intermediate parameters (for
instance, gait percents).

Reminiscent of the Fourier series, a signal is converted
into a number of small waves (the wavelets) in the wavelet
theory. Thewavelets, whichwax andwane through time, have
however an underlying difference in comparison to the basis
functions in Fourier series (the ‘‘open-end’’ sine and cosine
functions). Human gait has a periodic as well as variable
nature. Wavelets can follow changes in a system’s response
both in time and frequency [43], [44], [45]. It enables them to
express a part of function with a resolution corresponding to
its scale. The Fourier functions can not describe a function
properly enough when the frequency changes with respect
to time (which is common in human gait studies) or when
local fluctuations exist at some points of the function to
be estimated. These features make the wavelets a better
choice [46] in comparison to expressing functions using DFT
(discrete Fourier Transform). Full details are provided in the
next sections.

The structure of the paper is as follows: at first the
fundamentals and methods of the investigation are explained,
next results are reported and then explained and discussed,
and at the end, different conclusions are made regarding
the findings of the study and how they compare with other
studies. Furthermore, the impact of this study and application
implications are also discussed.

II. METHODS
A. DATA ACQUISITION AND REQUIRED PROCESSING
The motion of the right posterior superior illiac (PSI) and
greater trochanter (GTR) points are separately used in this
work to estimate ipsilateral ankle, knee, and hip angles (in
sagittal plane). The former point lies on the waist, and the

latter lies at the intersection of the hip joint and leg. The
definitions of the angles (θh, θk , and θa) are shown in Fig. 1.
Throughout this work, the publicly available data-set

discussed in [47] was used. The set contained data for
42 subjects at eight different speeds (slow, comfortable,
and fast, from 0.4 m/s to 2.2 m/s, depending on the
subjects) walking on an instrumented treadmill (FIT, Bertec,
Columbus, OH, USA, 300 Hz). Since each participant had
its own range of speeds, the exact values of the speeds
were different depending on each subject [47]. The dataset
involved participants from 21 to 84 yrs old. This makes it a
valuable set in order to analyze the impact of an estimation
algorithm for a very wide age range. The data-set involved
twenty-eight marker trajectories obtained from different
human body’s landmark points using a twelve-camera motion
capturing system at 150 Hz [47].
To obtain (right) joints’ angles, the relevant marker

trajectories available in the aforementioned database were
utilized. For this purpose, an extensive Matlab code was
written to read the trajectories of desired markers. To obtain
ankle angles, the trajectories of the fifth metatarsal, ankle,
and knee markers were used (see Fig. 1). To obtain knee
angles, the trajectories of the ankle, knee, and great trochanter
markers were used. To obtain hip angles, the trajectories of
knee and greater trochanter markers were used. Next, using
triangular algebra, themarker trajectories were converted into
joints’ angles. This procedure was done for each subject,
as well as, each speed under investigation. In addition, the
marker trajectories of the (right) posterior superior iliac spine
(PSI) and greater trochanter (GTR) were also extracted from
the database, since these are the inputs to the estimation
process. At the end of the processing, the quality of the data
of each participant was investigated to ensure correct data is
provided to the estimation algorithm. The general shape of the
obtained data was verified against [48] to ensure the data are
bio-mechanically acceptable. An exact comparison was not
possible nor logical, since each human subject has its own
walking behavior.

B. THE ESTIMATION ALGORITHM
As mentioned in Introduction, to estimate θh, θk , and θa (i.e.,
the estimated outputs ŷ), a nonlinear autoregressive model
was used [41], [42]. In this regard, a function relationship
f can be defined which relates the input x to the output y as
y = f (x) or ŷ = f̂ (x), where ŷ is an estimation of the actual
y. Different function estimators can be used in nonlinear
autoregressive modelling technique (see Fig. 2). The pool
contains candidate functions such as wavelets, polynomials
or sigmoids, or a weighted sum of those functions, e.g., in the
form of a network [46], [49], [50] (Fig. 2). While it is out
of the scope of this work to analyze all of the possibilities,
it is the target of this study to concentrate on one possibility
that can work. It was shown in a previous study that the
weighted sum of the wavelets can be suitable candidate for
biomechanical applications [13]. Accordingly, the function
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FIGURE 2. The general structure of the estimation algorithm using nonlinear autoregressive model with exogenous
inputs. The left section shows the input for a case when x(t) = [ŷ (t − 1),u(t),u(t − 1)]. The estimator f̂ (x(t)) then
processes the input to produce the estimated outputs ŷ (t). The symbol ψ denotes a wavelet.

estimator f̂ can be written as f̂ (x) = 6L
i=1ωiψi(x), whereψi’s

denote the wavelets (Fig. 2).
The input variable x can contain the current value of the

input signal and/or its past values. In addition, it can take
in the previous values of the outputs. Therefore, at time
instance t , the general form of the input–output relationship
would be ŷ(t) = f̂ (x(t)) in which x(t) = [y(t − 1), y(t −
2), . . . , u(t), u(t − 1), u(t − 2), . . .]. The model order (i.e.,
how many current and past samples were used in x, and
the components of x (kinematics, kinetics, EMG, etc) can
vary depending on the problem to be solved [42], [51],
[52]. The general structure of the estimation algorithm using
nonlinear autoregressive model is shown in Fig. 2. The
wavelets are represented by a number of basis functions [43],
[44], [46]. Gaussian derivatives family (represented by the

general formula h(x) = ce−
xxT
2 ) [53] are suitable candidates

for biomechanical studies [54], [55], [56], [57], [58].

C. INPUTS TO THE ESTIMATION ALGORITHM
In this study, for the input x different variations were inves-
tigated. To do so, three main variants of x were considered
which involved velocity and/or acceleration information:
1) when x = [żpsi], 2) when x = [z̈psi] and 3) when
x = [żpsi, z̈psi]. The variable żpsi denotes the vertical velocity
of PSI (with respect to the ground). In addition, the impact
of the model order was also investigated, e.g., when x(t) =
[żpsi(t), żpsi(t − 1)].
A same procedure was adopted for the GTR point.

Throughout this work, żpsi or żgtr is replaced by ż for
simplicity (logically, the same applies to the dependent
derivatives). The impact of each input variant as well asmodel
order on the angle estimations will be discussed in detail in
the Results section.

To train the network, for each participant, 25% of the data
of each speed was used. The performance of the algorithm
was then tested by the remaining 75% of the data of that
participant for each of the eight speeds. This procedure
was implemented for each of the joints under study. In the

Results section, further discussion is provided about why this
percentage was selected (Tab. 2).

D. PERFORMANCE MEASURES
To evaluate the quality of the estimations, the following three
success measures were used:

1) The root mean square (RMS) errors (

√∑k
j=1(θj−θ̂j)2

k ),

2) the mean absolute errors (MAEs,
∑k

j=1 |θj−θ̂j|

k ), and

3) correlation coefficient (ρcc =
∑k

j=1(θj−θ̄)(θ̂j−
¯̂
θ )√∑k

j=1(θj−θ̄ )2
√∑k

j=1(θ̂j−
¯̂
θ)2

),

[7], [8], [59], where k is the number of the variables, and θ̂
and θ are the estimated and actual joint positions (ankle, knee,
hip), respectively. In the following section, the results of the
previously discussed case studies are reported.

III. RESULTS AND DISCUSSIONS
Tab. 1, is a comprehensive table that compares the perfor-
mance of the estimator with respect to different input variants
and model orders. In addition, it compares the performance
with regard to using PSI vs. GTR points. The estimation
results using PSI and GTR points are denoted by θPx , and θ

G
x ,

respectively, where x refers to hip h, knee k , or ankle a.
As seen in Tab. 1, six main case studies are developed.

The results are for the following input cases, 1) x(t) =

[ż(t)], 2) x(t) = [ż(t), ż(t − 1)], 3) x(t) = [z̈(t)], 4)
x(t) = [z̈(t), z̈(t − 1)], 5) x(t) = [ż(t), z̈(t)], and 6) x(t) =

[ż(t), ż(t − 1), z̈(t), z̈(t − 1)]. In each case, those three joint
angles are estimated once using PSI, and next using GTR
points, separately. In the left half of Tab. 1, the results are
reported for the first order models, and in the right half, the
results of the second order models are brought. Furthermore,
the results can be compared based on using the velocities,
or accelerations, or combined inputs.

Fig. 3 comparatively shows RMS errors, MAEs, and ρcc
values in one place for all three joints, and all case studies
reported in Tab. 1. Each column of the figure is related to one
case study mentioned previously in Tab. 1, which contains
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TABLE 1. Comparison of average RMS errors [◦], Mean Absolute Errors (MAEs) [◦], and correlation coefficients ρcc according to input variants and model
order (Estim. using PSIP or GTRG).

results both for PSI (red circles) and GTR (Blue circles)
points. The results are for forty-two participants, and the
squares show the mean values in each case. For each case,
the mean values show the average of all of the subjects and
all of the speeds. Furthermore, Fig. 4 shows the results for
three of the participants where actual and estimated hip joint
positions are compared.

Logically, an estimator with fewer number of components
in x(t) would be more desirable as it lessens the computa-
tional efforts. However, looking at Tab. 1 and Fig. 3 shows
that using x(t) = [ż(t)] or x(t) = [z̈(t)] led to the lowest
performance in comparison to the remaining four cases (both
for PSI and GTR points). For the hip joint, the performance
of x(t) = [ż(t)] is better than x(t) = [z̈(t)], however for ankle
and knee it was the opposite.

It is observed that when model order is increased from
x(t) = [ż(t)] to x(t) = [ż(t), ż(t−1)], the differences between
the results get very obvious. For instance, for the ankle
joint, the average ρcc increased nearly 157%, and 125%, for
PSI and GTR points, respectively. For the knee joint, the
corresponding value increases 119% and 129%, respectively.
For the hip joint, the average ρcc increases less in comparison

to knee and ankle joints, about 14% and 23%, for PSI and
GTR points, respectively.

A similar result is seen whenmodel order is increased from
x(t) = [z̈(t)] to x(t) = [z̈(t), z̈(t − 1)]. However, this time,
the differences between the results for the hip joint are more
obvious. In this case, the average ρcc increases nearly 135%,
and 95%, for PSI and GTR points, respectively.

Not very noticeable differences between the results of
x(t) = [ż(t), z̈(t)] and x(t) = [ż(t), ż(t − 1), z̈(t), z̈(t − 1)]
are observed. Although, the former is a first order model in
comparison to the latter which is a second order one. For
instance, for the hip joint, the average ρcc increases nearly
3%, and 2%, for PSI and GTR points, respectively. Having
in mind the previous paragraphs, one can conclude that the
number of the inputs (in this case two inputs in x(t) =

[ż(t), z̈(t)]) was also an important factor, when comparing the
results with x(t) = [ż(t)] or x(t) = [z̈(t)].
With increasing the model order to 2 (right half of Tab.

1), the difference between x(t) = [ż(t), ż(t − 1)] and x(t) =
[z̈(t), z̈(t − 1)] is relatively negligible. This trend is observed
for both PSI and GTR points. However, for both inputs, the
results related to GTR are better than PSI. Furthermore, the
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FIGURE 3. The root mean square (RMS) errors, mean absolute errors (MAEs) and ρcc values for ankle, knee and hip angle
estimations according to different case studies explained in the Methods and Results section. Blue circles are related to the
estimations using GTR point, and the red circles refer to the PSI point. Black squares show the mean of all of the subjects and all
of the speeds for each case study.

results of these two cases are relatively similar to x(t) =

[ż(t), z̈(t)]. Tab. 1 and Fig. 3 show that the best performance is
observed when x(t) = [ż(t), ż(t − 1), z̈(t), z̈(t − 1)]. For these
two latter cases, again it is observed that the estimations have
higher accuracy using GTR point.

According to Tab. 1 and Fig. 3, the best ρcc results are
seen for the hip angle estimation. The lowest performance is
observed for the ankle angle estimation. Interestingly, this is
regardless of the input variant (excluding x(t) = [z̈(t)]).
The above findings can create a guideline for motion

planning and high-level controlling of active orthotics,

prosthetics, or exoskeletons. The control design can start at
first with less complex inputs such as x(t) = [ż(t), ż(t − 1)],
x(t) = [z̈(t), z̈(t − 1)], or x(t) = [ż(t), z̈(t)]. Next, the results
can be compared with those of a more complex input such as
x(t) = [ż(t), ż(t − 1), z̈(t), z̈(t − 1)]. If the impact is slight,
it may be safe to employ the less-inputs scenario. In addition,
the designer may prefer only one type of the input, i.e.,
only velocity or only acceleration; both of which had more
acceptable performance using a second-order model.
In general, different combinations of variables in x(t) are

possible, e.g., x(t) = [ż(t), ż(t − 1), ż(t − 2)] or x(t) =
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FIGURE 4. The comparison between desired hip angle trajectories (red) and the estimated ones (blue), for three of the subjects. The results
are for estimations based on PSI and when x(t) = [ż(t), ż(t − 1), z̈(t), z̈(t − 1)].

TABLE 2. Comparison of average RMS errors [◦], MAEs [◦], and ρcc when
different percentages of data was used for training.

[ż(t − 1), ż(t − 2)], etc. While this will be interesting, it was
out of the scope of this work to evaluate exhaustively so
many possibilities and combinations that exist and may come
to mind, some of which, may have similar results. Here,
the results for one example are presented when x(t) =

[ż(t), ż(t − 1), ż(t − 2)], using GTR point. For hip angles
estimation, the average RMS error [◦], MAE [◦] and ρcc,
were 4.0±1.6, 3.0±1.1 and 0.96±0.05, respectively. For
knee joint, the average values are 6.2±1.8, 4.4±1.3, and
0.94±0.03. For ankle joint, the average values are 3.3±0.7,
2.4±0.5, 0.88±0.05, respectively.

TABLE 3. Comparison of average RMS errors [◦], MAEs [◦], and ρcc when
sigmoid function estimator was used for estimation.

As observed, increasing the dimension of the input x(t)
does not necessarily improve the results (or very slightly in
some cases) in comparison to the results seen in Tab. 1, for
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x(t) = [ż(t), ż(t − 1)] in the top right column. This can be an
important point that can lead to less computational efforts.

For the estimations, it is aimed to avoid using the
previous output estimation into the input structure. Further
investigations shows that its inclusion could even worsen the
performance. For instance, for the hip angle estimation, when
x(t) = [ŷ(t − 1), ż(t)], ρcc reduces to 0.08±0.14 (GTR).
In addition, not using the previous outputs decouples the
performance of the estimator from the output, and makes it
a function of only the inputs that originate from PSI or GTR
points. In addition, it can lead to less computational load for
the high-level controller.

It was mentioned in Methods section that 25% of the
data was used for training. Table 2, shows the results of
estimations when different portions of the data was used for
training. The table shows the results for x(t) = [ż(t), ż(t−1)],
when PSI was used to estimate hip joint positions. Comparing
the results shows that the best performance is seen between
35% - 75%, although in comparison to the portion selected for
this study (i.e., the second row), the differences are not very
considerable. For the case of using 25% of data, the average
ρcc decreased about 1% in comparison to using 50% of data.
The table provides some insights about the importance of
reaching a balanced compromise between the training effort
and the results quality. The table also shows that when 85%
of the data was used, the results declined again.

As mentioned previously in the Methods section, different
estimator functions can be used for estimations. The results
were shown and discussed for the wavelet-based estimator
function. In addition to that, the impact of another estimator
function is also investigated. In one case study, sigmoid
function is used to estimate the output signals. Table 3
compares the ankle, knee and hip angle estimations when
PSI and GTR points are used for estimation, for the cases
x(t) = [ż(t), ż(t − 1)] and x(t) = [z̈(t), z̈(t − 1)]. The table
shows that the results are less accurate than the ones observed
in Tab. 1 for the corresponding case studies. In addition,
the results related to GTR point have higher accuracy again,
similar to what was observed in Tab. 1. Future investigations
can better reveal the full potential of each candidate for the
estimator function.

IV. FURTHER DISCUSSIONS AND CONCLUSION
In this study, it was suggested to use the motion of the GTR
or PSI (separately) as candidate input points, to estimate leg
joints’ positions during walking.

The outcomes of this study can be used in different
applications, e.g., in case of a hip orthosis, a full-leg orthosis,
power-augmentation exoskeletons, or prosthetics. As it was
mentioned in Introduction, the viewpoint of this study had
a fundamental difference with several studies related to the
angle/moment estimations. It was discussed that obtaining
information from a point which is hierarchically lower than
the joint under investigation, could potentially lead to a
paradoxical situation for the high-level controller.

In case of a hip orthosis, the motion of the PSI/GTR would
be influenced (controlled) by both central nervous system
and the operation of the hip orthosis, whereas the motion
of the thigh would be mainly directly influenced by the
orthotic device. Because of this difference, for the above case,
it may be logical to think that the inputs originating from
the PSI/GTR can be more reliable than the inputs coming
directly from the thigh. This might potentially lead to a more
robust controller at the end. Other than paying attention to the
natural hierarchy in human body, the other point that was paid
attention was the usability of the developed method in the
context of orthotics/prosthetics. As an example, stride length,
cadence, and the lengths of leg limbs were used to estimate
leg joints’ position [9]. This approach can potentially have
two issues if one wants to use for the prosthesis control.
First, the stride length and cadence are direct outcomes of the
performance of the prosthetic device and using them for intent
recognition could be controversial. The second is that the
proposed method used biological limbs’ lengths, which for
amputees can be unobtainable. Lots of studies can be found
which lie in this category, e.g., [18], [21], [60], [61].

There are fewer studies which have attitude similar to the
one presented in this study when estimating the positions of
a specific joint for orthotic/prosthetic applications. Rectus
femoris and semitendinosus EMG sgmals were used to
estimate knee positions in [14]. Four subjects were asked to
walk at a self-selected speed. The average results of ρcc were
between 0.59±0.90 and 0.84±0.07. Tibialis anterior and
gastrocnemius EMG signals were used to estimate ankle joint
positions in [62]. The authors used a dataset which involved
data for a wide age range (from 6-72 yrs old). The subjects
were asked to walk at four different speeds, very slow,
slow, medium, and fast, according to their height. The RMS
error, and ρcc for the ankle joint positions were 2.4◦±0.15◦,
and 0.95, respectively (no further information was found
for st.d. of ρcc, in addition no information was found for
MAEs). Displacement, linear velocity, and acceleration (in x-
y directions, obtained form a sacrum-attached IMU), together
with time was used to estimate hip, knee, and ankle angles
in [39]. Seven subjects were asked to walk on a treadmill.
The average speeds were 1.3 m/s (slow), 1.4 m/s (moderate),
and 1.8 m/s (fast). They proposed to use feed-forward neural
network to estimate joint positions in stance phase. The RMS
errors were 3.14◦±1.49◦, 2.17◦±1.23◦, and 3.35◦±1.58◦,
for hip, knee, and ankle joints, respectively. The values
of ρcc were 0.99±0.03, 0.99±0.00, 0.99±0.01, for hip,
knee, and ankle joints, respectively. Similar to [3], phase
plane concept was used to estimate hip, knee and ankle
positions in [5]. The inputs to the model were thigh angle
and its integral, as well as a rule to reset the integral
at the start of each stride. To estimate joint angles, the
algorithm required to determine the gait percent and type of
the locomotion. To do this, basis functions were developed
for phase estimation, and task functions were defined to
take into account the type of gaits. Similar study was
conducted by the authors in [40]. The RMS errors were
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TABLE 4. Comparison of this study with different studies (see also section IV for more information).

3.48◦±0.60◦, 4.14◦±0.92◦, 2.53◦±0.81◦, for ankle, knee and
hip joints, respectively (for ten subjects walking at 0.8, 1.0,
and 1.2 m/s). Table 4 provides a comprehensive information
regarding the outcomes of several studies. In addition, one
can compare the results of different performance measures
and different studies as well as this study at the same
time.

As can be observed from Tab. 4, the values obtained in
this study are also within the range of the values reported by
the above studies. One point to pay attention here is that, for
instance, the method presented e.g., in [40] or in [7] is not
applicable in case of a hip orthosis (due to hierarchy reasons
that were previously discussed in this work), or the method
presented by [62] was only related to the ankle joint. Some
studied also used more inputs than our proposed approach,
e.g., [39].

For the control purpose, an IMU can be attached to the
PSI/GTR points which can act as the input source. The
GTR IMU can be attached around the axis of rotation of
the hip joint in a hip orthosis. For the PSI point, in real-
world applications, a customized belt can be worn by the
user. In case of a full-leg orthosis, or power-augmentation
exoskeleton, the IMU can be already directly attached to
the device around the waist area. Using IMUs near to this
point was already investigated e.g., in [29] and [39] (see also
Tab. 4).

The method presented in this study, estimated the whole
leg joints’ positions. Therefore, it can be used in motion
planning and high-level controlling of humanoids, exoskele-
tons, orthotics, and prosthetics, whose actuation mechanisms
do not have an elastic component such as a spring, e.g,
[4], [64], [65], or [66] (knee joint). In this situation, the joint
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trajectory (trend) would be similar to that of the actuator and
can be mapped accordingly, taking into account the ratios
related to the intermediate transmissions, if any. in addition,
the results showed that the proposed method can be used
for subjects at different ages as in this study data-set of
participants with a very wide age range was used. Although
using data from very diverse population could reduce the
quality of the outputs, looking at the results showed that the
estimator behaved relatively robustly against this (possibly
disruptive) factor.

In this study, the algorithm was tested for walking gait.
Furthermore, in this study the joints’ motions were analyzed
in the sagittal plane, where relatively large range-of-motion
happens. One direction for future works can be to analyze
the quality of the estimations for other anatomical planes
such as frontal and/or transverse planes. Future works can
also involve investigating the performance of the proposed
estimation algorithm for other gaits such as ascending
and descending the stairs and/or slopes, and running.
Furthermore, it can also be investigated if using both points
simultaneously, can increase the efficiency of the algorithm.
In addition, another direction for future investigations can
be to determine the most optimal components as well as
dimension of the input matrix.
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