
Deep Reinforcement Learning Based Mobile Robot Navigation in Crowd
Environments

Guang Yang and Yi Guo

Abstract— Robots are becoming popular in assisting humans.
The mobile robot navigation in human crowd environments
has become more important. We propose a deep reinforcement
learning-based mobile robot navigation method that takes the
observation from the robot’s onboard Lidar sensor as input
and outputs the velocity control to the robot. A customized
deep deterministic policy gradient (DDPG) method is developed
that incorporates guiding points to guide the robot toward the
global goal. We built a 3D simulation environment using an
open dataset of real-world pedestrian trajectories that were
collected in a large business center. The neural network models
are trained and tested in such environments. We compare the
performance of our proposed method with existing algorithms
that include a classic motion planner, an existing DDPG method,
and a generative adversarial imitation learning (GAIL) method.
Using the measurement metrics of success rate, the number of
times freezing, and normalized path length, extensive simulation
results show that our method outperforms other state-of-the-art
approaches in both trained and untrained environments. Our
method has also better generalizability compared with the GAIL
method.

I. INTRODUCTION

Mobile robots have been used to assist people in various
environments such as hotels [1] and warehouses [2]. In
these applications, safety is the basic requirement and the
robot needs to navigate collision-free in crowded environ-
ments. Traditional collision avoidance algorithms (e.g., [3]
[4] [5]) find shortest paths through heuristic search with
a cost function, or sample the velocity space and evaluate
optimal motion trajectories (e.g., [6]). Considering the highly
dynamic nature of human-centered environments, it is still
a challenging problem for a mobile robot to autonomously
navigate in a crowded environment and share the space with
humans.

Learning-based algorithms have been developed for mobile
robot navigation in human environments. A recent approach
is to learn pedestrian behavior through demonstration. Inverse
reinforcement learning (IRL) [7] or imitation learning (IL)
[8] were applied to replace the classic mechanism of reward
function selection or to learn directly from demonstration
data. In such methods, the robot learns a synthetic reward to
update motion policy by repeating the expert behavior, which
helps the robot to generate the expert-like behavior. In [9],
Tai et al. developed a generative adversarial imitation learning

This work was partially supported by the US National Science Foundation
under Grants CMMI-1825709 and IIS-1838799.

The authors are with the Department of Electrical and Computer Engineer-
ing, Stevens Institute of Technology, Hoboken, NJ 07030, USA. Emails:
{gyang11, yguo1}@stevens.edu

(GAIL) method, and the demonstration data was generated
using a social force model (SFM) [10]. Although the SFM
has long been used in simulating human crowd behaviors, it
cannot replace pedestrian motion behaviors in the real world.
Also, excessive reliance on demonstration data makes the
robot difficult to generalize its motion behavior in different
environments.

Deep Reinforcement Learning (DRL) based methods were
developed for the robot navigation problem. Traditional DRL
methods cannot be used for continuous actions. Deep Deter-
ministic Policy Gradient (DDPG) [11] successfully solved
the problem in continuous action generation. The approach
presented in [12] used DDPG to generate continuous linear
and angular velocities in a motion planner for stationary envi-
ronments. They generalized the simulated model to real-world
settings and demonstrated the performance of the method
in a real-world robot navigation problem. The approaches
reported in [13], [14] demonstrated that DRL solves the
problem of collision avoidance in crowd-robot interaction for
mobile robots. Compared to the imitation-learning approach,
the DRL method requires longer training time, the algorithm
has better generalizability, and the robot is able to navigate in
a different environment without additional training. However,
most existing DRL work avoids collision in a local region,
its performance in a global crowd environment is yet to be
demonstrated.

In this paper, we focus on solving the problem of mo-
bile robot navigation in crowded environments. We propose
a DRL-based algorithm using DDPG with global guiding
points. The neural network model is combined with the
guiding points that are generated from a global planner,
and the robot can complete a global navigation task without
freezing in crowded environments. We use a large human
trajectory dataset from a real-world business center [15] to
create the simulation environment, and the robot is trained in
such an environment. In our simulation tests, the robot obtains
a laser range scan from the onboard Lidar sensor and obtains
the position of the odometry as input. The robot generates
linear and angular velocities for robot motion control. We
compare the performance of our proposed algorithm with
other existing methods including DDPG [11] and imitation
learning [8]. Simulation results show better navigation per-
formances of our method in terms of less number of times
freezing and a better success rate. We also demonstrate better
generalizability of our method compared with the GAIL
method.

Fig. 1: The environment setup in ROS Gazebo.

The main contributions of this work include (1) a motion
planner that takes the onboard Lidar sensor as input and
outputs the robot’s motion control; (2) neural network models
trained end-to-end through DDPG with global guiding points;
(3) the use of real-world pedestrian trajectory dataset in a
mall-like environment; and (4) the trained model generaliz-
able to different environments due to the benefit of the DDPG
algorithms.

The rest of the paper is organized as follows: Section II
formulates the robot navigation problem. Section III describes
our proposed DRL approach. We present the simulation
environment and evaluate the performance of our approach
in Section IV. Discussions of methods and its limitations are
provided in Section V. Finally, we conclude our work and
discuss future work in Section VI.

II. THE ROBOT NAVIGATION PROBLEM

In this paper, we consider the robot navigation task as a
Markov Decision Process following prior work in [8]. The
robot is placed in a crowded environment, and the task for
the robot is to navigate to a given goal position autonomously
without collisions with the stationary objects and the moving
humans in the environment. At each time t, the robot takes
the action at (defined as the robot’s velocity Vt = (vt, ωt)
that represents the linear and angular velocities) according to
the observation ot obtained by the Lidar, the robot position
pr = (xr, yr) and heading ϕr, and the goal position pg .
This decision-making process keeps generating new actions
to control the robot until the robot reaches the goal position.

We build a 3D simulation environment in ROS Gazebo,
see Fig. 1. The building structures and pedestrian trajectories
are created from real-world data collection [15]. The robot is
a Pioneer-3DX with an onboard Velodyne Lidar. The robot
is placed at an initial position in the simulator and a goal
position is given. The onboard Lidar sensor collects 360-
degree scans along the horizontal plane as the observation
ot. The existing SLAM algorithm is applied and the robot
can localize itself in the world coordinate.

In the next section, we present our learning-based approach
to generate the action at that controls the robot navigating
to the goal position.

III. THE PROPOSED APPROACH

To address the robot navigation problem, we propose
a DRL method using the DDPG architecture. The overall
diagram of our method is depicted in Fig. 2. The robot
interacts with the environment to obtain the state st and
the reward rt. The state st contains the observation ot, the
position of the robot pr = (xr, yr), the heading of the
robot ϕr, the distance vector between the robot and the goal
position dg , that is, st = (ot,pr, ϕr,dg). The state and
the reward are stored in the experience replay buffer and
randomly sampled to update the parameters of the neural
networks. The neural networks contain an actor network and
a critic network, whose structures are described in Section
III-B.

A. Rewards Function and Global Guiding Point Selection

Existing DRL-based approaches, such as the one [12],
guide robots to their goal by leveraging the orientation of the
direct line between the robot and its goal. While effective
in local areas, these methods struggle in crowded settings
with obstacles and a global goal, leading to the robot making
unneeded attempts to go through obstacles, failing to feasible
path, or even freezing in place.

To mitigate the challenges inherent in traditional DRL
approaches, we incorporate the notion of “global guiding
points,” enhancing the fundamental structure of existing
methodologies by embedding the goal point directly within
the reward functions. This integration improves the efficiency
of the robot’s global navigation tasks.

We first use an existing path planning method, such as D*
[3], to generate a sequence of path points avoiding stationary
obstacles. Given the variable trajectories of pedestrians, these
path points act as flexible guiding markers instead of fixed
waypoints, accommodating the dynamic nature of the envi-
ronments. Then, we select the reward function rt as follows:

rt =

 c1 arrive;
c2 collision;
c3 ∗ (drg + dgg) others.

(1)

where c1 is a positive constant as a reward; c2 is a negative
constant as a penalty for collisions; c3 is a constant parameter
multiplied by the path cost, which is the sum of the distance
between the robot and its current guiding point drg and the
distance between the current guiding point and the goal dgg .
The selection of the guiding point is critical in our navigation
approach, aimed at providing the robot with an efficient local
direction to reach its destination. To determine the current
guiding point, we consider the two closest path points to the
robot’s current position. For each of these candidate points,
we calculate the sum of two distances: the distance from
the robot to the guiding point (drg) and the distance from
the guiding point to the goal (dgg). The guiding point that
minimizes this combined distance is selected as the current
guiding point for the robot. This will guide the robot closer
to the goal while optimizing its path with an effective local
direction toward the target goal position. In our simulation

Fig. 2: The overall architecture.

study (described in Section IV), the parameters are chosen
as c1 = 200, c2 = −150, c3 = −0.05.

B. The Neural Network Structure

Our DRL structure adopts the DDPG framework, which
is based on an Actor-Critic architecture and draws on the
experience reply mechanism and the target network idea
of the deep Q-learning [11], [16]. Each of the Actor and
Critic networks consists of the current network and the target
network. The Actor network takes the state st as input,
and outputs action to the robot (i.e., the robot’s linear and
angular velocity controls), that is, at = ut(st|θu), where θu

is the parameter of the actor-network and is updated using
the gradient ascent method, that is,

θu = θu + β · g, (2)

g =
∂q(st,ut(st|θu), θQ)

∂θu
(3)

where g is the gradient and β is the learning rate. Fig. 3
(a) shows the structure of the policy network in the actor
network.

(a) (b)

Fig. 3: The network structure of the Policy Network in (a) and the Evaluation
Network in (b). Each layer is represented by its type, dimension, and
activation.

The Critic network takes the state and action pairs as input
to get the Q-value prediction, qt(st,at|θQ), where θQ is the
parameter of critic network, and is updated using the loss
gradient descent method:

θQ = θQ − α · δt ·
∂q(st,at|θQ)

∂θQ
, (4)

δt = qt − (rt + γ · qt+1) (5)

where qt+1 is the evaluation network makes prediction for
time t+1, a′

t+1 is the prediction of action, shown in equation
(6), α is the learning rate. Fig. 3 (b) shows the structure of
the evaluation network in the Critic network.

qt+1 = q(st+1,a
′
t+1|θQ),&wherea′

t+1 = ut(st+1|θu) (6)

C. The Training Algorithm

Algorithm 1 illustrates the training algorithm of the DRL
network. The input of Algorithm 1 is robot state st and
the goal position pg . The output is the neural networks’
parameter θ that includes the parameters of the policy net-
work, evaluation network, target policy network, and target
evaluation network, that is, θu, θQ, θu

′
, and θQ

′
.

In Algorithm 1, the neural network parameters θ and
the experience reply buffer are initialized in lines 1-3. In
the outer loop starting from line 4, the parameters θ are
updated iteratively through M episodes. At the beginning
of each epoch, the training environment is initialized, and
the robot is put at its initial position in the environment
with pedestrians. Then, guiding points are obtained using
a global planner in each training epoch. In the inner loop
starting from line 7, the environment evolves for N time
steps. At each time step, the policy network generates an
action at based on the current state st. Then, the guiding
point is obtained by comparing the path cost from the two
closest guiding points of the robot. The shortest path cost
is selected as the guiding point to be used for computing a
reward, rt. We then store the transition in the experience reply
buffer and randomly sample a minibatch of transitions from
the replay buffer for the update training of our models. The
replay buffer allows the robot to learn from previous unrelated

Algorithm 1 The Training Algorithm

Input: The robot state st = (ot,pr, ϕr,dg), the goal
position pg

Output: Network parameters θ
1: Initialize policy network u(s|θu) and evaluation network

Q(s, a|θQ) with parameter θu and θQ

2: Initialize target networks u′ and Q′ with parameter θu
′ ←

θu, θQ
′ ← θQ

3: Initialize replay buffer D
4: for episode← 1 to M do
5: Initialize the environment and obtain state s1
6: Obtain the global guide points from the global planner
7: for t← 1 to N do
8: Propose and execute an action at and obtain state

st
9: Obtains guiding points from a global path planner

10: Calculate the rewards rt using (1)
11: Store transition [st, at, rt, st+1] into D
12: Randomly sample the minibatch from D for network

training
13: Update the critic-network parameter from θQn to

θQn+1 using equation (4)
14: Update the actor-network parameter from θun to θun+1

using equation (2)
15: Soft update the target networks
16: θu

′ ← τ · θu + (1− τ) · θu′

17: θQ
′ ← τ · θQ + (1− τ) · θQ′

18: end for
19: end for

Algorithm 2 Robot Motion Control

Input: State st, goal position pg

Output: Robot velocity control Vt

1: Load the network parameters θ trained by Algorithm 1
2: Initialize robot position pr, and set goal pg

3: for timestep← 1 to N do
4: Obtain the robot state st
5: Compute the action at using the policy network
6: Obtain Vt ← at

7: end for

experiences, which enables an effective and faster training
process. Lines 13 and 14 use equations (2)-(5) to update the
parameters of the policy network and the evaluation network.
In lines 15 to 17, the target networks use the soft update to
update the parameters, where τ is the constant coefficient
to adjust the soft update factor. The weights of the target
network are constrained to change slowly, greatly improving
the stability of learning. After the training process, the policy
neural network is deployed on the robot for use in motion
control.

The training of our model was performed using a set of
hyper-parameters, carefully chosen to ensure the convergence
of the learning process. The Adam optimizer was utilized

as an optimizer, and Gaussian noise was incorporated for
exploration noise. The list of the selected hyper-parameters
is presented in Table I.

TABLE I: Hyper-parameters used in training

Parameter Value
Learning Rate (Actor) 0.001
Learning Rate (Critic) 0.002
Discount Factor (γ) 0.98
Batch Size 64
Max Episode 5000
Soft Update Coefficients (τ) 0.01

D. Robot Motion Control

After the training process of Algorithm 1, the robot uses the
trained policy network to generate the control. In Algorithm
2, it takes the robot state st and the goal position pg as input
and outputs the velocity Vt that is applied to the mobile robot.
In line 1 of Algorithm 2, the policy network parameters θ
trained by Algorithm 1 are loaded. Line 2 initializes the
robot position and the testing environment, and sets the goal
position. In the loop from lines 3 to 7, the robot obtains
the state st that is input into the trained policy network and
outputs the action at that converts to velocity vector Vt to
be deployed on the mobile robot.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

A. The Simulation Environment

We created a simulation environment in ROS Gazebo. A
real-world pedestrian trajectory dataset [15] was used and
integrated with our simulator. This dataset contains pedestrian
motion trajectories at a Japanese business center, Asia Pacific
Trade Center (ATC) (which is a mall-like environment), that
were collected using 3D range sensors over 92 days. It
recorded approximately 3.25 million pedestrians, and the total
length of the trajectories in the dataset is 128,692 km. The
measurement frequency of the recorded data is approximately
25 Hz.

Fig. 4: The simulation environment created in ROS Gazebo using a real-
world pedestrian trajectory dataset. The neural network was trained in Area
A, and tested in both Area A and Area B. In each run, the robot started at
a randomly selected position in the robot’s initial position area (marked as
the blue square), and the goal position was randomly selected in the robot’s
goal position area (marked as the orange square).

We selected the Pioneer 3-DX robot equipped with an
onboard Lidar sensor in our simulation. The maximum linear
velocity of the robot was 1.2m/s and the maximum angular
velocity was 2rad/s. A distance of 0.2m was set as the safety
distance between the robot and the object. The robot was
considered to reach the goal if its distance to the goal is
within 0.2m.

The pedestrian trajectories were loaded into the environ-
ment together with the robot. In this work, the motion goal
of the robot is to navigate from its initial position to the
goal position without interfering with humans’ motion, thus
pedestrians’ motion is not affected by the robot. We marked
two areas, Area A (of approximate size 57x15 m2) and Area
B (of approximate size 30x30 m2), in the simulation as shown
in Fig. 4. We trained the neural networks in Area A only
and tested them in both Areas A and B for validation of
generalizability.

During training, the robot was set at a random position in
the initial position area of size 5x5 m2 in Area A. The goal
position was randomly generated in the goal position area of
size 5x5 m2 located in the other end of Area A, as marked
in Fig. 4. Algorithm 1 was run and the training takes 5000
episodes.

During testing, we ran Algorithm 2 in both Areas A and B.
The robot started from one point in the initial position area
and navigated to a goal position that was randomly selected
in the goal position area. For performance evaluation in envi-
ronments of various complexity, we selected a “low density”
scenario and a “high density” scenario, where a maximum
of 15 pedestrians were allowed in the “low density” scenario
and a maximum of 30 pedestrians were allowed in the “high
density” scenario.

Fig. 5: Robot trajectory (in red) and pedestrian trajectory (in blue). The
circles on the trajectory were drawn every second.

B. Performance Metrics

We use the following metrics to evaluate the performance:
• Success rate (SR) is defined as the ratio of the number of

successful cases (where the robot reaches the goal) over
the total number of tested cases. Collisions or timeout
(defined as exceeding the maximum allowed time to
complete the task) are counted as unsuccessful cases.

• The number of times freezing is defined as the number
of times that the robot was freezing at its place without
a decision of action for 5 seconds.

• Normalized path length (NPL) is defined as the ratio
between the actual robot path length (PL) over the
straight-line distance between the robot start and the goal
positions.

C. Performance Evaluation

We performed simulation tests in Areas A and B, re-
spectively. In each of the two areas, we tested with the
“low density” condition and the “high density” condition,
respectively, as defined in Section IV-A. We run 50 testing
cases in each of the four environmental settings. We compare
our DRL-based method with a few other existing methods:

• The “move base (MB)” package in ROS serves as a
baseline comparison, representing a classic navigation
method. It offers an implementation of the widely used
Dynamic Window Approach (DWA) [6] and uses a local
planner and global planner to guide the robot to its goal.
The local planner uses the DWA algorithm to compute
feasible velocity commands that avoid obstacles, and
the global planner plans a high-level path based on a
costmap to drive the robot to reach the goal.

• The DDPG [11] method uses the DDPG architecture
and Adam Optimizer for learning the parameters of the
actor and critic networks. We used the same structure
and parameters as in our proposed method except for
the global guiding points and trained the model in Area
A of our simulation environment.

• The GAIL [8] method learns human navigation be-
haviors using an imitation learning approach based on
the generative adversarial imitation learning architecture.
The GAIL model was trained in Area A only.

We report both robot trajectory performance and statistical
results in the next.

Fig. 6: Comparison of robot trajectories generated using different methods
in the environmental setting: (a) Area A, low-density condition; (b) Area
A, high-density condition; (c) Area B, low-density condition; (d) Area B,
high-density condition. The circles on the trajectories were drawn every 4
seconds.

1) Robot Navigation Trajectories: Fig. 5 visualizes a
scenario of a robot navigating among pedestrians. We can
see that the robot avoids potential collisions with surrounding
moving pedestrians and finds a path through them.

Fig. 6 compares the paths taken by robots using different
navigation methods. Although all methods successfully guide
the robot to the goal, there are significant differences in the
trajectories. The sub-figures (a) and (b) show the testing
results in Area A (the same environment used to train the
neural network model) with low-density and high-density

Fig. 7: Boxplot of the normalized path length of robot trajectories generated
using different methods in the environmental setting: (a) Area A, low-
density condition; (b) Area A, high-density condition; (c) Area B, low-
density condition;(d) Area B, high-density condition. The central line shows
the medians in each box, the edges of the boxes are the 25th and 75th
percentiles, the whiskers extend to the maximum and minimum, and the dot
in the box represents the mean in each boxplot.

conditions, respectively. The sub-figures (c) and (d) show the
testing results in Area B, which were not seen by the robot
as Area B was not used in training.

Comparing different methods, our proposed method can
efficiently complete the navigation task in both trained and
untrained environments. The planner of Move base tends to
re-plan the path or detour a long way when the environment
is crowded. The planner of DDPG can efficiently avoid
potential collisions, but its planned trajectories are longer and
it takes the robot longer to reach the goal. GAIL has good
performance in Area A but does not perform well in Area B
due to imitation learning that lacks generalizability.

2) Statistical Results: We run 50 testing cases in each of
the two areas with two different crowd conditions. We use
the metrics defined in IV-B to compare the performance of
different methods.

Tables II and III show the statistical result of navigation
time, NPL, success rate, and the number of times freezing
of different methods with low and high density conditions in
Areas A and B, respectively. In Area A, the mean navigation
time (i.e., navigation time averaged over 50 runs) of GAIL
is 52.52 and 1.30 mean NPL with 94% success rate in low-
density crowds, and the mean navigation time of our method
is 50.48 and 1.32 mean NPL with 92% success rate. The
mean navigation time of GAIL is 59.13 and 1.33 mean NPL
with 92% success rate in high-density crowds, and the mean
navigation time of our method is 65.92 and 1.37 mean NPL
with 84% success rate. We can see that GAIL has the best
performance in the trained environment. Our method has
the best performance in Area B, the untrained environment,
with with 94% success rate in low-density crowds and 92%
success rate in high-density crowds. The mean navigation
time is 29.56 and NPL is 1.27 in low-density crowds and
32.44 and 1.31 in high-density crowds. Thus, our proposed
method is quantitatively similar to the GAIL method in Area
A and has the best performance in Area B. It demonstrates
the generalizability of our DRL-based method.

The boxplot of the NPL is shown in Fig. 7 for each
of the four testing scenarios (i.e., Areas A and B, low or
high-density crowds). We can see that in Area A as shown
in Fig. 7 (a) and (b), GAIL and our method have similar
performances. In Area B as shown in Fig. 7 (c) and (d), our
method has the best performance in terms of NPL. This is

consistent with the other two metrics of success rate and the
number of times freezing as shown above, and demonstrates
the generalizability of our method.

V. DISCUSSION AND LIMITATION

The fundamental contribution of the paper is the devel-
opment of a new DRL-based robot navigation algorithm.
Compared with other recent work on robot navigation in
crowded environments(e.g., [17]–[24]), we proposed an end-
to-end approach that takes the robot Lidar scan as input
and outputs the robot control commands. Also, we used an
open dataset with real-world pedestrian trajectories to train
the DRL algorithm. Existing works use random or model-
based simulated pedestrian data for training and/or simulation
validation, for example, PedSim simulator generated data
were used in [22], the social force model-based pedestrian
movement was used in [18], simulated pedestrian trajectories
were generated by a model consistent with the fundamental
diagram based on physiological and psychological factors
in [21], ad-hoc or randomly spawned obstacle scenarios
were used in [23], [24]. As it is well known, training data
is important to reinforcement learning methods, and the
performance largely depends on the quality and authenticity
of the training data. Our algorithm was trained and vali-
dated using real-world pedestrian data, thus presenting more
authentic pedestrian motion behaviors in real-world crowd
environments.

It is worth noting that we do not consider complex human-
robot interaction behaviors. Among existing works on robot
navigation in crowded environments, some works resolved
the freezing robot problem by accounting for human-robot
cooperation, that is, the robot and the humans adjusted their
trajectories cooperatively. Some DRL methods model coop-
erative behaviors between humans and robots implicitly or
explicitly. However, for many applications, such as package
delivery or helpers in hotels, the robot needs to navigate
through dense crowd environments without collision, and
at the same time, minimize the effect of its presence on
the humans (i.e., be unobtrusive to the nearby pedestrians).
This is the case studied in our paper. In other words, we
aimed to validate the hypothesis that our DRL-based learning
algorithm (trained using real-world pedestrian trajectories)
can navigate in dense crowd environments without human-
robot collaboration. A similar experiment setup was presented
in [21], where the goal is to solve the freezing robot problem
and to ensure the robot is unobtrusive to nearby pedestrians.
Our method is complementary to the hybrid method proposed
therein, and we demonstrated that a well-trained robot can
move with the pedestrian flow smoothly without human-robot
collaboration.

VI. CONCLUSION AND FUTURE WORK

This paper presented an algorithm using DDPG combined
with global guiding points to complete the robot navigation
task in human crowd environments. We used an existing
open human trajectory dataset and built a 3D simulation

TABLE II: Summary statistics for navigation time and NPL. The mean value and standard derivation (SD) are shown for 50
trajectories.

Method Area A with Low Density Area A with High Density Area B with Low Density Area B with High Density
Time(SD)[s] NPL(SD)[m] Time(SD)[s] NPL(SD)[m] Time(SD)[s] NPL(SD)[m] Time(SD)[s] NPL(SD)[m]

Move base 68.84 (6.73) 1.46 (0.10) 73.08 (8.1) 1.54 (0.13) 35.8 (3.61) 1.40 (0.06) 36.12 (3.08) 1.49 (0.08)
DDPG [11] 105.32 (18.45) 2.13 (0.43) 108.84 (11.34) 2.63 (0.55) 53.10 (7.04) 1.88 (0.28) 67.08 (9.11) 2.49 (0.50)
GAIL [8] 52.52 (5.64) 1.30 (0.08) 59.13 (5.77) 1.33 (0.09) 34.68 (3.75) 1.36 (0.06) 36.40 (3.21) 1.46 (0.04)

DRL (Ours) 50.48 (4.54) 1.32 (0.05) 65.92 (5.75) 1.37 (0.07) 29.56 (2.81) 1.27 (0.04) 32.44 (3.80)) 1.31 (0.04)

TABLE III: Performance comparison in terms of success rate (SR) and the number of times freezing.

Method Area A Low Density Area A High Density Area B Low Density Area B High Density
SR[%] # freezing SR[%] # freezing SR[%] # freezing SR[%] # freezing

Move base 78 3 64 13 84 1 70 8
DDPG 32 0 24 0 40 0 28 0
GAIL 94 0 92 0 82 0 80 0

DRL (Ours) 92 0 84 0 94 0 92 0

environment in ROS Gazebo. We placed a mobile robot
equipped with an onboard Lidar sensor into the simulation
environment, and the robot was controlled by the trained
neural network model to navigate to a given goal position in
the crowd environments. The proposed method was evaluated
and compared with other state-of-the-art algorithms quantita-
tively. Statistic results demonstrated the generalizability of
our method. In the future, we plan to perform real robot
experiments using our proposed method.

REFERENCES

[1] Y. Lee, S. Lee, and D.-Y. Kim, “Exploring hotel guests’ perceptions
of using robot assistants,” Tourism Management Perspectives, vol. 37,
p. 100781, 2021.

[2] R. Bogue, “Growth in e-commerce boosts innovation in the warehouse
robot market,” Industrial Robot: An International Journal, vol. 43,
no. 6, pp. 583–587, 2016.

[3] A. Stentz et al., “The focussed dˆ* algorithm for real-time replanning,”
in IJCAI, vol. 95, pp. 1652–1659, 1995.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[5] M. Seder and I. Petrovic, “Dynamic window based approach to mobile
robot motion control in the presence of moving obstacles,” in IEEE
International Conference on Robotics and Automation, pp. 1986–1991,
2007.

[6] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[7] M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate:
A deep inverse reinforcement learning approach,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 819–826,
2018.

[8] M. Fahad, G. Yang, and Y. Guo, “Learning human navigation behavior
using measured human trajectories in crowded spaces,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 11154–
11160, 2020.

[9] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant
navigation through raw depth inputs with generative adversarial im-
itation learning,” in IEEE International Conference on Robotics and
Automation, pp. 1111–1117, 2018.

[10] D. Helbing and P. Molnár, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” International Conference on Learning Representations,
pp. 1–14, 2016.

[12] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learn-
ing: Continuous control of mobile robots for mapless navigation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 31–36, 2017.

[13] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot navi-
gation in crowded environments using deep reinforcement learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5671–5677, 2020.

[14] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in IEEE International Conference on Robotics and Automa-
tion, pp. 6015–6022, 2019.

[15] D. Brščić, T. Kanda, T. Ikeda, and T. Miyashita, “Person tracking in
large public spaces using 3-d range sensors,” IEEE Transactions on
Human-Machine Systems, vol. 43, no. 6, pp. 522–534, 2013.

[16] H. Gong, P. Wang, C. Ni, and N. Cheng, “Efficient path planning for
mobile robot based on deep deterministic policy gradient,” Sensors,
vol. 22, no. 9, pp. 3579–3598, 2022.

[17] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1343–1350, IEEE,
2017.

[18] R. Guldenring, M. Görner, N. Hendrich, N. J. Jacobsen, and J. Zhang,
“Learning local planners for human-aware navigation in indoor envi-
ronments,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 6053–6060, IEEE, 2020.

[19] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “Navrep: Unsuper-
vised representations for reinforcement learning of robot navigation in
dynamic human environments,” in IEEE International Conference on
Robotics and Automation, pp. 7829–7835, IEEE, 2021.

[20] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in IEEE International Conference on Robotics and Automa-
tion, pp. 285–292, IEEE, 2017.

[21] A. J. Sathyamoorthy, U. Patel, T. Guan, and D. Manocha, “Frozone:
Freezing-free, pedestrian-friendly navigation in human crowds,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4352–4359, 2020.

[22] L. Kästner, B. Fatloun, Z. Shen, D. Gawrisch, and J. Lambrecht,
“Human-following and-guiding in crowded environments using seman-
tic deep-reinforcement-learning for mobile service robots,” in Interna-
tional Conference on Robotics and Automation, pp. 833–839, IEEE,
2022.

[23] L. Kästner, M. Meusel, T. Bhuiyan, and J. Lambrecht, “Holistic deep-
reinforcement-learning-based training for autonomous navigation in
crowded environments,” in IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, pp. 1302–1308, IEEE, 2023.

[24] Q. Qiu, S. Yao, J. Wang, J. Ma, G. Chen, and J. Ji, “Learning to socially
navigate in pedestrian-rich environments with interaction capacity,” in
International Conference on Robotics and Automation, pp. 279–285,
IEEE, 2022.

