Semantic Map Based Robot Navigation with Natural Language Input

Guang Yang, Xinchi Huang, and Yi Guo

Abstract— We present a new semantic map based robot
navigation system in the paper. The system takes human voice
input, processes multi-modal data including natural languages
and RGB-D images, and generates semantic maps for robot
navigation. Making use of recent development in image seg-
mentation tools, we integrate robot mapping and localization
with a customized real-time object detection model, so that
the semantic and navigation layers are efficiently combined for
robot navigation purpose. We demonstrate the performance of
our developed algorithms in both simulation and real robot
experiments. Compared with existing works, we demonstrate
applicability to real robot systems and superior performance
in terms of success rate.

I. INTRODUCTION

There is an increasing demand for robots to assist humans
in daily tasks [1], where the robot is expected to understand
humans and respond to human instructions using natural
languages. With the recent development in the field of large
language models, it is now possible to integrate natural
language input with semantic mapping, so that autonomous
mobile robots can take verbal commands from humans
directly and navigate in everyday environments.

Recent studies have targeted the problem of vision-and-
language navigation (VLN), where visual and linguistic
features are extracted and integrated through cross-modal
attention mechanisms. Pioneering works in [2], [3] have
demonstrated good performances incorporating vision and
language modalities in simulation environments (e.g., the
Matterport3D simulator [2]). Due to the limited dataset of the
associated Room-to-Room environment, these algorithms are
prone to overfitting and are overly sensitive to simulation-
specific scenarios, which makes it difficult to adopt under
complex real-world conditions. As described in [4], when
these algorithms were tested in real-world environments,
even environments simpler than the simulator, the success
rate was around 50% only, underscoring the challenges in
generalization. Another line of research develops a gener-
alist agent (GA) using transformer models [5], [6]. While
GAs demonstrated capabilities in addressing various prob-
lem types, their high failure rate in a single task makes
it difficult to be used in robotic navigation tasks due to
potential collisions that will damage robots. Challenges exist
in extending simulation results to real-world navigation tasks

This work was partially supported by the US National Science Foundation
under Grants CMMI-1825709 and IIS-1838799.

The authors are with the Department of Electrical and
Computer Engineering, Stevens Institute of Technology, Hoboken,
NJ 07030, USA. Emails: {gyangll, xhuang60,
yguol}@stevens.edu

in indoor environments. Next, We briefly review related
methods addressing the challenges.

B | Object Position

Co ander: Hi, Robot. \
Can you take me to find
the keyboard?

: Found it! Please
me!

Fig. 1: The proposed semantic map based robot navigation
system.

A. Related Work

Semantic Map: With the development of SLAM tech-
niques and the application of convolutional neural networks
(CNNs) for semantic understanding, semantic mapping has
gained renewed interest. Recent works [7], [8], [9], and
[10] focus on annotating 3D maps with dense semantic
information using 2D semantic segmentation and adopting
object-centric strategies. These strategies aim to build 3D
maps centered around detected objects to facilitate pose-
graph optimization at the object level. A significant limi-
tation has been the extensive need for manual annotation of
semantic labels. The introduction of You Only Look Once
(YOLO) [11], trained on the Common Objects in Context
(COCO) [12] dataset, addressed the challenge of manual
labeling by automating object detection. However, relying
solely on RGB images for semantic mapping can lead to
inaccuracies in object location estimation and issues with
perspective occlusion.

Large Language Model: Large Language Models
(LLMs) are designed to estimate the probability p(W) for a
sequence W = {wq, w1, wa, ..., w, }, where each sequence
is made up of strings w;,¢ = 1,...,n. This is typically
done by breaking down the probability using the chain rule,
leading to p(W) = II' p(w;|w<;), in which the next
string is predicted from the preceding ones. The well-known
models such as Transformers [13], BERT [14], TS5 [15],
GPT-3 [16], have demonstrated significant growth in their
capacities. With billions of parameters in the neural network
and extensive training on large text corpora, their capability
to generalize over multiple tasks has been demonstrated. In
our current work, we make use of the recent development and

apply BERT as an encoder for initial text preprocessing. We
then utilize TextCnn [17] combined with Fully Connected
Layer (FC) as the classification decoder to pull out specific
goals from the natural language input, which facilitates the
generation of high-level executable tasks.

Vision-and-Language Navigation (VLN): VLN repre-
sents a challenging yet pivotal research area in embodied arti-
ficial intelligence, as it involves developing agents capable of
following instructions within real-world scenarios [18]. The
development of large-scale datasets in Matterport3D [19],
Habitat [20], and Gibson [21] has enabled performance
evaluation of agent navigation in photorealistic environments.
Using these simulation tools, researchers have provided
various solutions focusing on cross-modal alignment and
decision-making learning [3], [22]. Initial studies predom-
inantly employed Long Short-Term Memory (LSTM) as the
backbone [23]. With the development of BERT [14], re-
cent approaches have shifted toward pre-trained vision-and-
language BERT models [24], [25], which have demonstrated
superior performance over traditional LSTM-based baselines.

Despite many VLN algorithms exhibiting satisfactory
performance in simulators, they face significant limitations
when applied to real-world tasks [26], [27]. The cross-
modal attention mechanism does not always work well
and the performance degradation has been observed when
transiting from simulations to actual robotic navigation en-
vironments [26]. This discrepancy primarily arises due to
the inherent difference between real-world navigation and
simulated ones. Current simulation models predominantly
utilize navigation graphs, which present limitations when
applied to real-world environments, as these graphs assume
precise robot localization, but actual robot navigation sys-
tems rely on sensor estimation with inherent sensing noises
and localization uncertainties. Also, current VLN algorithms
have limited generalization capabilities, as these algorithms
trained in simulations do not handle unseen scenes, objects,
or navigation instructions in everyday environments well
[27]. Current VLN algorithms have yet to prove their efficacy
in real-world environments.

B. Main Contribution

Addressing this gap, in this paper, we propose a robot nav-
igation system that integrates both natural language process-
ing and semantic maps, and demonstrates performances in
both simulation environments and also in real-world settings.
Specifically, we develop a novel method that effectively in-
tegrates vision and language for robot navigation. Our multi-
modal robotic system combines a large language model,
semantic Simultaneous Localization and Mapping (SLAM),
and an automatic task executor to achieve autonomous
navigation. This system ensures the safety of navigation
without collision while accurately identifying desired goal
objects and navigating to them in both simulation and real-
world environments. Performance evaluation demonstrates
our proposed method achieves a better success rate in real-
world environments than existing VLN methods.

Our main contribution includes: 1) taking advantage of
the recent development in natural language processing and

image segmentation, our method integrates multi-modal data
efficiently and enhances robot navigation capability; 2) com-
paring with classic robot navigation methods, where the task
planner (i.e., choosing a goal position) and motion planning
(i.e., planning a path to the given goal position) are separated
in different design steps, our robot system takes human
natural language as input, and automatically extracts goal
positions and passes to the motion planner, thus the task
planner and the motion planner are integrated seamlessly;
and 3) comparing with existing VLN methods, our system
can be deployed directly to real-world environments due to
the adoption of the navigation map and semantic SLAM that
can efficiently handle sensor uncertainties and localization
errors in real-time.

II. THE SYSTEM AND PROBLEM STATEMENT

We use a Pioneer-3DX mobile robot with an onboard
RGB-D camera and a laptop (with CPU and GPU, detailed
configuration given in Section V) that runs Robot Operating
System (ROS) [28]. The input to the system is a voice
command in natural language, L. The system output is the
robot’s velocity control V' = (v,w), where v represents the
linear velocity and w represents the angular velocity. Our
navigation problem is defined as: for a given voice input L
with intent object expressed in natural language, the robot
extracts human intent, plans a path, and generates velocity
control V' to the robot so that the robot navigates to the
desired goal location.

Fig. 1 shows an example of our system. A commander
gives a voice input: “Hi, robot. Can you take me to find the
keyboard?” The robot responds: “Found it! Please follow
me”, and starts to navigate to the location of the object — the
keyboard, avoiding obstacles in the environment.

Our system needs to process multi-modal data that in-
cludes the voice input L and the RGB-D camera data, I.
The system integrates a task generator and motion planner
and the robot navigates to the desired location autonomously.
We present our method in the next section.

III. PROPOSED METHOD

Nature Language
Interpretation

Object Generator

]
i
i

Desired 1 Task
H
i
|

Goal

Classifier for Object
™ Position

Detection

RTAB-Map

Robot Driving Velocity

Camera

Motion
Planner

Fig. 2: Overall architecture of the system that takes human
voice command as input, and outputs velocity control for
robot autonomous navigation.

A. Overall Architecture

As shown in Fig. 2, our robot system receives the voice
input L and generates velocity output V' to drive the robot
to the desired location. Our proposed method consists of
three modules: 1) Semantic map generation that detects
objects and generates a semantic map for localization and
navigation; 2) Language processing for intent recognition,
that is, processing the voice input and extracting the intent
object as the goal location; (3) Navigation that includes task
generation and motion planning for the robot to navigate to
the goal location.

In the semantic map generation module, the robot makes
use of its onboard odometry and the RGB-D sensor, and
goes through a standard SLAM process using the existing
RTAB-Map method [29], which generates a 2D grid map
of the environment to be used as the “Navigation Layer”
for navigation. Meanwhile, the RGB-D data is used for
an object detection classifier that generates the “Semantic
Layer”. Combining the Semantic Layer and the Navigation
Layer, the location and semantic label of objects are paired
and stored in a look-up table D. When a desired object is
extracted from the natural language interpretation module,
the task generator generates a goal position by searching
the look-up table D. Then, the motion planner plans a path
using the 2D map generated to navigate to the desired goal
position.

In the following, we describe our method in more detail
and present the key algorithms.

B. Classifier for Object Detection

Image
Segmentation

Intersection-
over-Union
_ PointNet Point Cloufis Depth Image
| Segmentation Convert
:Clouds

|
|
|
|
|
- - - - -

RGB-D
Camera

Fig. 3: The block diagram of the classifier for object detec-
tion.

In the semantic map generation module, a key block is
the classifier for object detection. As shown in Fig. 3, the
classifier receives input from the RGB-D camera, processes
both the RGB images and the depth point clouds, goes
through a few functional blocks, and outputs the object
information in the camera frame, o, = (p.,!), where p, =
(z,y, z) denotes the object’s position in the camera frame
and ! represents the semantic label of the object.

We integrated PointNet [30] and YOLO-v3 to detect
objects and their position information. To enhance model
performance, we use The Stanford 3D Indoor Spaces Dataset
[31] to train PointNet and use the SUN Dataset [32] for
fine-tuning the YOLO-v3 model, improving object detection
accuracy in indoor environments.

PointNet is configured with a series of five shared MLP
layers, utilizing global max pooling to process point clouds
data effectively. YOLO-v3 employs a robust structure of
75 convolutional layers with local max pooling for object
detection. Selected global max pooling and ReL.U for Point-
Net, and local max pooling with Leaky ReLU for YOLO-
v3 as pooling strategies and activation functions, ensuring
efficient and synergistic feature extraction and mapping.
Operational parameters such as batch sizes and learning rates
are specifically adjusted to enhance training outcomes and
system performance, and are provided in TABLE III in the
Appendix.

For any given input RGB image I, the YOLO network
generates a set of masks M = {my,ma, ..., m, }. Each mask
m; provides a pixel-wise delineation of a detected object,
along with its associated class label [;. Simultaneously, the
point cloud data P inputs into PointNet for point clouds
segmentation. PointNet processes this data to segment the
point clouds input into distinct regions, denoted as R =
{ri,ra,...,rm}. Each region r; encompasses the point clouds
data of the objects.

Matching segmentation of objects from 2D image data
from YOLO to 3D point clouds data from PointNet, we
transfer the 3D point clouds into 2D depth image first. We
apply the Intersection-over-Union (IoU) align metric. For
every mask m; and depth region r;, the IoU is calculated
as:

__ PixelCount(m; N7;)
~ PixelCount(m; Ur;)

IOU(mi,Tj) (D
The IoU score is evaluated so that each object detected in
the image aligns with its 3D point clouds. A mask and
depth region are determined to be a match if their IoU score
exceeds a threshold, 7 = 0.8.

Algorithm 1 details the classifier for object detection.

C. Coordinate Transformation to Global Map Frame

As o, contains the object information in the camera frame,
to generate a semantic map, we need to transform the object’s
coordinates from the camera frame to the global map frame.
The object information in global frame representation is
denoted as o, = (pg,!), where py = (z4,yy, z4) represents
the object coordinate in the global map and [represents its
semantic label.

We use a transformation matrix, T¢y, from RTAB-Map,
and T,, is a 4 by 4 homogeneous matrix that includes
the rotation and translation required to convert coordinates
from the camera frame to the global map frame. It can be
represented as follows:

ri1 T2 T3t
ro1 To2 T2z t
r31 T3z T3z t.

0 0 0 1

x

<

Tey =

where 7;; are the elements of the rotation matrix, describing
the orientation of the camera frame relative to the global

Algorithm 1 Classifier for Object Detection

Input: RGB Image I, Point Clouds P

Output: List of Objects o,

1: Initialize YOLO-v3 model with trained weights

2: Initialize PointNet model with trained weights

3: Perform object detection on I to get bounding boxes and
labels from YOLO-v3

4: For each detected object in I, extract segmentation
masks M = {my, ma,...,my}

5: Use PointNet on P to segment into object regions R =
{Tl, T2y ooy ’I“m}

6: Project segmented point clouds to a 2D plane with a
depth image

7: for each mask m; in M do

for each region r; in R do

9: Calculate

®

_ PixelCount(m; Nr;)
~ PixelCount(m; Ur;)

IoU(mi, Tj)

10: end for
11: if IoU(m,,7;+) > 7 then

12: Record the match of m; with ;- and calculate the
coordinates (z,y, 2)

13: Assign the corresponding label [

14: Add (z,y, 2,1) to o,

15: end if

16: end for

17: return o,

frame, and (t,,t,,t,) is the translation vector, indicating the
position of the camera frame’s origin in the global frame.

Algorithm 2 describes the details of the coordinate trans-
formation.

D. Semantic Map Generation

We use the existing SLAM algorithm, RTAB-Map [29], to
fuse the robot odometry data and the RGB-D camera data,
which utilizes probabilistic graph optimization techniques
to establish a map and perform real-time localization. The
RTAB-Map module outputs a 2D grid map. We then generate
the semantic map by integrating o, and the 2D grid map. o,
is stored in a look-up table D, with the objects’ coordinates
and semantic labels. This information is used for the task
generator to formulate navigation tasks, thereby creating a
semantic map that not only represents physical space but also
embeds semantic information of the objects in the space.

E. Nature Language Processing for Intent Extraction

I
! Fully- !
| - |
L— Speech Bert TextCNN = Connected | Softmax —— [,
I | -to-text base |
Lay !

Fig. 4: Nature Language Interpretation to extract the intent.

Algorithm 2 Transforming Object Information from the
Camera Frame to the Global Map Frame

Input: o.

Output: o,

1: Retrieve the current transformation matrix 7, from
RTAB-Map, representing the camera frame to the global
frame transformation.

2: Represent p. as a homogeneous coordinate p! =
(Te, Yo, 26, 1) T

3: Compute pZ =T - p! to transform the object position
to the global frame.

4: Convert back from homogeneous coordinates p’g‘ to
Cartesian coordinates to get py = (24, Yy, 29)-

50 0g < (pg,1)

6: return oy

When a robot receives a command, such as “Hi, robot, can
you help me find my cellphone?”, the robot needs to extract
the intent, i.e., finding the desired object (“cellphone”). We
design a neural network to process linguistic information
to achieve this task. Upon receiving the voice command,
the Google Cloud Speech-to-Text service transcribes the
voice input into textual content. A BERT-based model is
then designed as the encoder and TextCNN-Fully Connected
layers-softmax is designed as the decoder for classification.
Fig. 4 shows the functional blocks of this module.

The textual context is tokenized before input to the model.
BERT generates a sequence of embedding for the text. It is
designed as an encoder because of its ability to leverage con-
textual embeddings and deep bidirectional representations,
thus capturing intricate linguistic patterns and dependen-
cies. The pre-trained BERT-based fine-turned with ChatGPT
generated textual data to enhance the performance in our
classification problem. It consists of 12 transformer blocks,
12 self-attention heads, and a hidden size of 768. Given T
as the tokenized representation of the input, the embedding
E can be represented as: E = BERT qpcoder(T)-

Using BERT only has limitations in overfitting on smaller
datasets training. Using TextCNN-Fully Connected Layer-
Softmax as a decoder can improve inference speed and
provide an effective capture of local textual features like
key phrases and patterns. It can also improve the model’s
ability to generalize to new data, potentially boosting the
accuracy of intent recognition tasks without significantly
compromising performance speed.

TextCNN architecture includes 256 filters across three
parallel convolutional layers, utilizing kernel sizes of 2, 3,
and 4 to capture n-gram features. Following the convolutional
layers, the model integrates a fully connected layer compris-
ing 256 units to further process the extracted features, with
ReLU activation, followed by a dropout of 0.3 to reduce
overfitting. The architecture concludes with an 80-unit fully
connected layer, corresponding to the 80 categories within
the COCO dataset. A softmax activation function is applied
to this final layer, to compute a probability distribution over

the 80 classes, thereby enabling the model to predict the
most likely category for a given input. TextCNN layers
process the embedding: G = TextCNN(E). Fully Con-
nected Layer and Softmax designed to produce a probability
distribution across the predefined intents and objects: [, =
Softmax[F'C(G)].

Algorithm 3 Nature Language Interpretation

Input: Voice command L
QOutput: Object name [,

1: Text < SpeechToText(L)
T <+ Tokenizer(Text)

E <+ BERTencoder (T)
G+ TextCNN(E)

l, <+ Softmax[FC(G)]
return [,

AN

Algorithm 3 shows the procedure for interpreting natural
language commands spoken to a robot. The voice input
converts speech to text, then tokenizes to T, processes T
through a BERT encoder, and utilizes the decoder to extract
the desired object which is used to generate goal position in
the task generator.

F. Robot Navigation

As described above, the generated semantic map consists
of the look-up table D with the semantic label of the desired
object l,. We use move_base [33] as the motion planner,
which is the open-source ROS navigation stack’s package,
designed for robot navigation tasks. The navigation employs
a 2D grid map M, previously generated by RTAB-Map, as
the navigation map. The navigation algorithm has D, [,, M
as input and the robot driving velocity V' as the output.

Algorithm 4 details the navigation steps. The task gen-
erator searches [from the D for matching [, in line 1. If
a match is not found, the robot notifies the commander of
the absence of the object using audio output in lines 2 and
3. Otherwise, the corresponding coordinates are set as the
goal position and published to the motion planner in lines
5 and 6. The robot starts to plan navigation once receiving
the goal position. The real-time odometry and camera scan
data are input into the RTAB-Map package for localization
in lines from 8 to 10. Move_base is then used to output
the velocity control V' that drives the robot toward the goal
in line 11. A voice command is announced by the robot to
ask the user to follow it in line 12. Meanwhile, the classifier
of object detection keeps updating the semantic map and the
look-up table D by updating o, in lines 13 and 14.

IV. SIMULATION RESULTS

In this section, we present the simulation setup and results
and evaluate the performance of our proposed algorithms.

A. Simulation Environment

We use the ROS Gazebo simulator and modified AWS
Robomaker World [34] small home and bookstore as our

Algorithm 4 Robot Navigation

Input: Desired object /,, Look-up table D, 2D-grid map
M
Output: V
1: [+ Search(D,1,)
2: if [is not found then
3: Inform the commander that the object is not found via
audio output

4: else

5. goal_position < GetCoordinate(l)

6: Publish goal_position to move_base

7. while navigation is in progress do

8: odom < odometry

9: S <— camera scan

10: Robot’s localization using RTAB-Map input
(M, odom, s)

11: V + move_base(M)

12: Announce and ask the commander to follow the
robot via audio

13: 04 < ClassifierO fObject Detection(s)

14: Update semantic map and D by o,

15: end while

16: end if

17: return V

home and library testing environment. To better mimic a real-
world setting, we added and placed the additional objects
such as apples, cups, laptop, backpack, and 11 other models
in the environments. Fig. 5 shows a residential setting with
a bedroom, living room, and a kitchen-dining area. The
space is filled with standard home furniture, including sofas,
televisions, dining tables, and chairs, to mimic a realistic
home-like environment for algorithm testing. Fig. 6 shows
a library environment that includes tables, chairs, books,
laptop, clock, etc. The robot is randomly placed in the sim-
ulation environment, a commander gives a voice instruction
such as “Hi Robot, can you take me to the refrigerator?”” The
robot extracts the commander’s desired object from the voice
input and autonomously plans and executes the navigation
task. We randomly select objects as the desired goal based on
the items available in the simulation environment. For each
test scenario, we conducted 100 simulation trials to evaluate
the performance.

B. Performance Metrics

We use the following metrics to evaluate the performance:

« Navigation Error (NE): Measuring the
distance between the robot’s actual end position
and the desired goal position, expressed as:
d = \/(1‘2 — 1’1)2 + (yg — yl)Z, where (.Il,yl) is
the desired goal position and (z2,y2) is the robot’s
actual end position.

o Success Rate (SR): It is defined as the percentage
of navigation attempts in which the robot successfully
reaches the desired object indicated by the commander’s

Hi, Robot. Can you take
me to the refrigerator?

Fig. 5: ROS Gazebo simulation: a home environment. The robot receives voice input from the commander to navigate to
the desired object. The home environment (left) with visualization of the navigation map (right top) and onboard camera

view with objection detection (right bottom).

Hi, Robot. Can you \ —_—
take me to the TV ===l e= === ==
monitor?

Goal Object:
TV Monitor

Fig. 6: ROS Gazebo simulation: a library environment.

voice input without any collisions. It is calculated as:

__ Number of successful attempts
SR = Total number of attempts x 100%.

o Success Weighted by Path Length (SPL): We fol-
low the same performance metric as defined in [35],
and use SPL that combines the success rate with the
efficiency of the path taken. It is defined as: SPL =
Ly Si (577> Where N is the total number of
attempts, .S; is a binary indicator of success in the i-th
attempt, [; is the shortest path distance from the robot
start position to the goal, and p; is the actual path length
traveled by the robot. SPL measures the efficiency of
the actual path against the shortest possible path when

the navigation task is completed.

C. Results
TABLE I: Simulation results.
Environment | Mean NE (SD) SR SPL
Home 0.16m (0.08m) 92% 0.74
Library 0.20m (0.13m) 93% 0.75

Our simulation results are shown in Table I using the
defined performance metrics, where the mean value and the
standard deviation (SD) of NE, SR, and SPL are provided
in each of the two testing environments. In the home envi-
ronment, the mean value of NE is 0.16m with a standard
deviation (SD) of 0.08m. The success rate for this setting
is 92%, and SPL is 0.74. Among those unsuccessful cases,
voice recognition inaccuracies led to task failure in 3% of the
trials, navigational challenges in constrained environments
accounted for failures in 3% of the cases, and 2% of mis-
identification for object detection resulted in incorrect object
navigation.

The library environment has more complex spatial layouts,
thus the robot has narrower space to maneuver than in the
home environment. It has a slightly higher mean value of
NE at 0.20m with an increased SD of 0.13m, suggesting a
slightly lower accuracy in navigation performance compared
to the home environment. The success rate is slightly higher
at 93%, with the SPL at 0.75. Among those unsuccessful
cases were 2 failed trials due to voice recognition error,
3 failed trials where the robot stopped and got stuck in a
narrow space during navigation, and 2 failed trials due to
incorrect object detection. With SPL around 0.75 in both
of our scenarios, it indicates our algorithm is an effective
navigation strategy, that not only prioritizes completing the
task but also does so with consideration for path efficiency.

Overall, our algorithm has demonstrated satisfactory per-
formances in two indoor environments. The success rate
exceeds 90% in both environments. In the existing work
[31, [4], [22]-[26], transformer-based VLN methods were
developed and tested using Room-to-Room datasets, and they
achieved SR up to 76% in robot navigation tasks based on
voice command input. Our method obtained a better success
rate compared to the existing work.

V. REAL ROBOT EXPERIMENTS

We conducted real robot experiments in a laboratory
environment. The space has standard lab equipment: laptop,
TV monitor, keyboard, mouse, cell phone, books, table,

(b) t=14s

(c) t=22s

Fig. 7: Snapshots of real robot experiments in a laboratory environment. The navigation map is shown on the top right, and
the current camera view is shown on the bottom right of each sub-figure. (a) The robot receives voice command of the goal
object “Backpack” at t=0s; (b) The robot is navigating to the goal at t=14s; (c) The robot reaches the goal object at t=22s.

chairs, refrigerator, microwave oven, bottle, cup, and apple.
The dimensions of the test area are 6.68m by 7.24m.

we used a Pioneer-3DX robot with a max 0.35 m/s linear
velocity and max 1.0 rad/s angular velocity. The robot is
equipped with an odometry sensor and an onboard Realsense
D435i RGB-D camera. The RGB-D camera was used for
both SLAM and object detection. A laptop is placed on
the robot with ROS Noetic 20.04 installed on the Ubuntu
platform. The laptop is equipped with an Intel 13700k CPU
and an NVIDIA 4080 GPU.

In real-world experiments, we initialized the robot’s start-
ing position for the localization accuracy. The robot starts
to receive the command in 8 seconds after it asks: “What
can I do for you?” Then, the robot leads the user to navigate
to the desired object. Due to the space limitations of the
testing area and the field of view of the camera, some objects
cannot be reached at the exact location (e.g., the keyboard
is on a box), we consider the robot reached its destination
when it is within 0.8m of the target object. We performed the
experiments 50 times, each time randomly choosing one of
the objects mentioned above as the desired object and asking
the robot to find and navigate to it.

Fig. 7 shows the robot navigation process from our real
robot experiments conducted in a lab setting. At the begin-
ning (t=0s), the robot starts receiving a voice command to
find a “Backpack,” showing both the navigation map and
the robot’s camera view. At t=14s, the robot is on its way,
navigating based on updates from the navigation map and its
camera view. At t=22s, the robot successfully arrives at the
goal with both the final location visible on the navigation
map and the robot’s camera view confirming the presence
of the goal object - the backpack. Videos of the experiments
are included in the multimedia file submitted with the paper.

We use the same performance metrics as defined in the
simulation section. In real robot testing, the robot has motion
delays due to the computational load onboard of the robot
and uncertainties in sensing. In addition to the performance
metrics used in the simulations, we add the Responding
Time (RT), which is defined as the time it takes the robot
from receiving the command to starting the navigation.

During the 50 times laboratory tests, the robot completed
the navigation task 41 times, resulting in a success rate of
82%. Failures cases include three instances due to local-

ization and navigation issues: two localization failures, one
collision, and two navigation planning failures. Three times
failures were due to a language recognition error that led to
a navigation error to an incorrect goal.

TABLE II: Real robot experimental results.

Environment
Real-Robot

Mean NE (SD) SR SPL
0.21m (0.02m) 82% | 0.66

Mean RT (SD)
5.54s (2.21)

Responding Time (s)
o o 5 K
o ® oo

-

Fig. 8: The boxplot of the responding time (RT).

Table II presents the quantified testing results. We can
see that the mean value of NE is 0.21m, the SR is 82%,
the SPL is 0.66, and the mean value of the RT is 5.54s.
We can see that the performances downgraded compared
to the simulation results. This is reasonable, as the real
robot experiments are subjected to real-world environmental
complexity, sensor noises, and uncertainties, which lead
to less optimal performance than in simulations. Similar
conclusions were drawn in [4], where they reported a 50%
success rate (10 out of 20 tasks completed) in real-robot lab
experiments.

Fig. 8 shows the box plot of the RT. We can see that the
average RT for is 5.54s, the median is 5.05s, and the 75%
quartile value is 5.75s. These results have demonstrated that
our algorithm can be applied to real-world environments with
satisfactory performances.

VI. CONCLUSION AND FUTURE WORK

We present a multi-modal robotic navigation system that
integrates natural language processing and semantic map
based navigation. This innovative approach allows our robot
to autonomously generate and execute navigation tasks based
on inputs in human natural language, facilitating human-
robot interaction. We demonstrate the performance of our

system through validation in both simulated and real-world
environments, where satisfactory performances have been
observed. Our method outperforms existing VLN methods,
and achieves significant improvement in success rates in
simulations and real robot experiments under real-world con-
ditions. In the future, we plan to expand our robotic system’s
capabilities, such as adding robotic arms for assisting humans
in a wide range of daily activities.

APPENDIX

TABLE III: Parameters for PointNet and YOLO-v3.

Parameter PointNet YOLO-v3

Conv. Layers 5 (Shared) MLP 75 layers

Pooling Strategy

Max Pooling (Global) | Max Pooling (Local)

Batch Size 32 64

Learning Rate 1x 1073 1x 1077
Activation Function ReLU Leaky ReLU
REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Mat-
sumoto, M. Ishikawa, I. Shimoyama, and M. Inaba, “Home-assistant
robot for an aging society,” Proceedings of the IEEE, vol. 100, no. 8,
pp. 2429-2441, 2012.

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf,
I. Reid, S. Gould, and A. Van Den Hengel, “Vision-and-language nav-
igation: Interpreting visually-grounded navigation instructions in real
environments,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3674-3683, 2018.

X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6629-6638, 2019.

C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps
for robot navigation,” in IEEE International Conference on Robotics
and Automation, pp. 10608-10615, 2023.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
G. Barth-Maron, M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg,
et al., “A generalist agent,” arXiv:2205.06175, 2022.

M. Shridhar, L. Manuelli, and D. Fox, ‘“Perceiver-actor: A multi-
task transformer for robotic manipulation,” in Conference on Robot
Learning, pp. 785-799, PMLR, 2023.

R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping
at the level of objects,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1352-1359, 2013.

J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Seman-
ticfusion: Dense 3D semantic mapping with convolutional neural
networks,” in IEEE International Conference on Robotics and Au-
tomation, pp. 4628-4635, 2017.

M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recogni-
tion, tracking and reconstruction of multiple moving objects,” in IEEE
International Symposium on Mixed and Augmented Reality, pp. 10-20,
2018.

B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and
S. Leutenegger, “Mid-fusion: Octree-based object-level multi-instance
dynamic SLAM,” in IEEE International Conference on Robotics and
Automation, pp. 5231-5237, 2019.

J. Redmon and A. Farhadi, “YOLOvV3: An incremental improvement,”
arXiv:1804.02767, 2018.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft COCO: Common objects
in context,” in Computer Vision—-ECCV: 13th European Conference,
pp. 740-755, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv:1810.04805, 2018.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485-5551, 2020.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
models are few-shot learners,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 1877-1901, 2020.

Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv:1408.5882, 2014.

J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, “A survey of embodied
ai: From simulators to research tasks,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 6, no. 2, pp. 230-244, 2022.
A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “MatterPort3D: Learning from rgb-d
data in indoor environments,” arXiv:1709.06158, 2017.

M. Savva, A. Kadian, O. Maksymets, et al., “Habitat: A platform for
embodied ai research,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9339-9347, 2019.

F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
Env: Real-world perception for embodied agents,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp- 9068-9079, 2018.

G. Georgakis, K. Schmeckpeper, K. Wanchoo, et al., “Cross-modal
map learning for vision and language navigation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 15460-15470, 2022.

D. Fried, R. Hu, V. Cirik, et al., “Speaker-follower models for vision-
and-language navigation,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

S. Chen, P.-L. Guhur, C. Schmid, and I. Laptev, “History aware
multimodal transformer for vision-and-language navigation,” Advances
in Neural Information Processing Systems, vol. 34, pp. 5834-5847,
2021.

Y. Hong, Q. Wu, Y. Qi, C. Rodriguez-Opazo, and S. Gould, “VLN
BERT: A recurrent vision-and-language BERT for navigation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1643-1653, 2021.

P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh, and
D. Batra, “Sim-to-real transfer for vision-and-language navigation,” in
Conference on Robot Learning, pp. 671-681, PMLR, 2021.

J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond
the nav-graph: Vision-and-language navigation in continuous envi-
ronments,” in Computer Vision-ECCV: 16th European Conference,
pp- 104-120, 2020.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “ROS: an open-source Robot Operating
System,” in ICRA Workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of Field Robotics, vol. 36,
no. 2, pp. 416-446, 2019.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 652-660, 2017.

I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-
semantic data for indoor scene understanding,” arXiv:1702.01105,
2017.

J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva, “SUN
database: Exploring a large collection of scene categories,” Interna-
tional Journal of Computer Vision, vol. 119, pp. 3-22, 2016.

E. Marder-Eppstein, “Move_base: The ROS navigation stack’s
path planning and navigation package.” http://wiki.ros.org/
move_base, 2016.
“AWS RoboMaker
aws—robotics.

P. Anderson, A. Chang, D. S. Chaplot, et al., “On evaluation of
embodied navigation agents,” arXiv:1807.06757, 2018.

World.” https://github.com/

