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1 Abstract

Social-ecological systems, in which agents interact with each other and their
environment are important both for sustainability applications and for under-
standing how human cognition functions in context. In such systems, the en-
vironment shapes the agents’ experience and actions, and in turn collective
action of agents changes social and physical aspects of the environment. Here
we review current investigation approaches, which rely on a lean design, with
discrete actions and outcomes and little scope for varying environmental pa-
rameters and cognitive demands. We then introduce multi-agent reinforcement
learning (MARL) approach, which builds on modern artificial intelligence tech-
niques, which provides new avenues to model complex social worlds, while pre-
serving more of their characteristics, and allowing them to capture a variety of
social phenomena. These techniques can be fed back to the laboratory where
they make it easier to design experiments in complex social situations without
compromising their tractability for computational modeling. We showcase the
potential MARL by discussing several recent studies that have used it, detail-
ing the way environmental settings and cognitive constraints can lead to the
emergence of complex cooperation strategies. This novel approach can help re-
searchers bring together insights from human cognition, sustainability, and AI,
to tackle real world problems of social-ecological systems.



2 Introduction

Some of the biggest challenges facing humanity, such as sustainability, pan-
demics, and conflict resolution, are global in nature but require coordinated
effort of many local communities to address them. This requires understanding
of the complex inter-dependent relations between humans and their social and
biophysical environment as a social-ecological system (Ostrom, 2009; Schill et
al., 2019). In social-ecological systems, the agents’ experience and actions are
shaped by the affordances provided by their physical environment, such as spa-
tial and temporal constraints, resources and dangers, and by affordances created
by their social setting including those of conventions, norms, reciprocity, and
reputation. The environment impacts the decision setting faced by individuals
and interacts with their cognitive processes, such as learning, memory, planning
and attention. Social-ecological systems may thus involve complex couplings
between behavioral, social, physical, and ecological variables since the environ-
ment where agents act is itself changed by their actions.

Social-ecological systems are not just complex because of the number of
agents or the size the system encompasses. Their complexity arises from the va-
riety of behavioral affordances the environment provides, and the different ways
each agent can combine them in space and time to form a behavioral pattern,
and the non-linear feedback loops and interactions between these patterns and
the social and physical environment (Levin et al., 2013). Empirical research on
shared resource governance has demonstrated the importance of the spatial and
temporal context of the resource. They impact the way groups may be able
to cooperate and coordinate on resource governance (Folke et al., 2007; Young,
2002). Studies of long-lasting social-ecological systems, such as fisheries, show
that institutional rules are mainly based on where, when, and how to harvest,
not how much to harvest (Schlager et al., 1994; J. A. Wilson et al., 1994).
This suggests that an understanding of the fit between institutions and ecology
needs to understand how human activities can match the temporal and spatial
dynamics of specific resources. It is also important to take into account the
cognitive processes and motivation structures of the individuals that operate in,
and interact with, their environment (Donges et al., 2020; Schill et al., 2019).
Thus individual cognitive abilities like memory and attention shape collective
behavior. For instance, they may determine which part of the environment is
perceived by individuals, and therefore which environmental signals are likely
to affect behavior. Norms and institutions governing how individuals use envi-
ronmental resources may be seen as evolving through a kind of group-level trial
and error process (Ostrom, 1998). Thus an account of how individuals learn,
and how the learning of individuals constitutes group-level learning, is critical
in the study of social-ecological systems.

The study of social-ecological systems uses many qualitative and quantita-
tive approaches as demonstrated in various methodological textbooks in this
field (Biggs et al., 2021; Poteete et al., 2010). Researchers use questionnaires
and field experiments to understand the dynamics of social norms (Blair et
al., 2019), field work and geographic data to study cultural and environmen-



tal differences (Bansak et al., 2018). Computational models use multi-agent
simulations (J. Wilson et al., 2007) and formal differential equations (Elsawah
et al., 2017) to predict and uncover factors shaping social-ecological dynamics.
These approaches have their individual merits and limitations, such as tracking
real-world settings and problems, or allowing formal solutions to predict social
dynamics. However, in this review we narrow in on two approaches to focus
on collective action in social dilemmas appearing in social-ecological systems.
The first approach is the use of simple matrix games to do controlled experi-
ments for relevant social dilemmas such as common pool resources and public
goods. We contrast this with an emerging approach called MARL (Multi-Agent
Reinforcement Learning) which disaggregates the decisions from a matrix game
into many sub decisions in a dynamic environment using computational learn-
ing agents. We review some of the history related to the emergence and use
of matrix games in behavioral science, and try to delineate their limitations in
explaining and studying social-ecological systems, i.e. which dimensions they
can easily capture and which they can not. We then discuss in detail how to ex-
perimentally study complex social-ecological systems using a particular method,
MARL, which works synergistically with laboratory-based experimental designs
involving environment simulations that have complex spatial and temporal dy-
namics. We review results from taking this approach, and conclude by discussing
open problems where these methods could be applied in the future.

2.1 Experimental Social Psychology Approach

A long tradition in experimental social psychology addresses the complexity of
human behaviour and its interaction with environmental settings. In the early
literature, the aim was to design experiments to be as similar as possible to
real-life scenarios. It was common to employ elaborate experimental designs
involving theatre-like productions with actors, sets, and scripts. For instance,
to study conformity, Asch employed multiple confederates to give an obviously
wrong answer in a simple perceptual task to study one participant Asch (1951),
and Milgram studied deference to authority using electrical equipment and con-
federates playing an electrocuted victim Milgram (1963). In Zimbardo’s Stan-
ford prison experiment, an entire group of participants were put in an isolated
perimeter designed to simulate a prison, and given roles of prisoners and guards,
to examine the stability of personality traits (Zimbardo, 1969). These exper-
iments were amongst the most influential in psychological science, and left a
memorable impression on both the scientific community and the general public.

While this elaborate approach had great impact, and led to many scientific
insights, it also has a number of limitations. First, relying on such elaborate
design makes such experiments very hard to replicate and very sensitive to ex-
perimenter effects (Camerer et al., 2018; Nosek et al., 2022). Confederates may
influence participants’ behaviour in subtle ways, and these influences may ac-
cumulate when designs rely on multiple confederates and circumstantial effects.
Another problem is scalability. In many cases a lot of effort was invested to pro-
duce one data point,which limits the number of participants one can feasibly test



in each study, and restricts the feasibility of carrying out such experiments with
varied populations across the world or in non-university settings like hospitals.
In addition, many studies used bespoke outcome measurements, making it very
hard to pool results across studies and evaluate effects using meta-analysis, thus
making it hard to build larger multi-lab research programs. This is especially
problematic when effect sizes are small since it makes false positive results more
likely, and thus greatly restricts the impact of this line of work.

2.2 The matrix games approach

Behavioural game theory offers a different experimental approach to studying
human social behaviour (Camerer, 2011) (Figure 1B). In a common task, the
Prisoners’ Dilemma, two participants choose between two strategies—to coop-
erate or to defect. The outcome for each participant is determined by the joint
action of both, for example if both choose to cooperate then the reward to both is
high, but if one defects and one cooperates, the reward obtained by the defector
is higher than for the cooperator. The reward per participant per combination
of actions is usually displayed in a matrix, hence the name ‘matrix game’. Game
theoretically “simple” models are not always two-player two-action simultane-
ous move games like the Prisoners Dilemma. For instance they could have more
players or actions may be taken sequentially. However, to simplify terminology,
we include all such games in the category we call matrix games to distinguish
it from the more complex games we discuss below which cannot be compactly
described in a formalism where payoffs are directly determined by joint action
without additional dependence on the environment or other factors.

Matrix games became popular in the experimental study of cooperation in
behavioral economics, neuroeconomics and social cognitive psychology due to
a number of appealing characteristics. First, they offer a concise way of cap-
turing the idea of a social dilemma—a tension between individual and group
rationality. Instead of theatrically elaborated schemes with confederates, they
focus on quantifiable incentives, which they view as determined by the “rules
of the game”, and regard as the sole determinant of rational strategy. Second,
matrix games are flexible, as simply changing the outcomes associated with
actions can produce different kinds of dilemmas, allowing the study of cooper-
ation, coordination and asymmetric relationships. Third, because the problem
is represented in a matrix, which is understood the same way by different labs,
it allows consistent deployment in different settings and in different popula-
tions. For example, this facilitates testing participants around the world, and in
hard-to-reach places, with the same experimental design (Henrich et al., 2001).

One of the most compelling features of the matrix game approach is that
game theory provides formal solutions which define the optimal strategy for
participants. For example, for a given payoff matrix and set of beliefs about co-
player intentions, it is possible to determine optimal strategies which can then
be used as an idealized reference to which human participants’ behaviour can be
compared. This is a powerful feature as it allows experimenters to draw predic-
tions based on theory (Hoffman & Yoeli, 2022). When theoretical predictions



fail to capture observed behaviour, it is possible to refine their assumptions,
for example by introducing subjective utility functions. For example, Fehr and
Schmidt used a social utility concept that assumes people don’t like unequal
payoffs, i.e. inequity aversion, and showed it changed what is optimal to do in
a prisoners’ dilemma Fehr & Schmidt (1999b). Such interaction between theo-
retically derived predictions and behavioural experiments allows researchers to
better formalize and reproduce theoretical insights and predictions.

While matrix games have been a very successful tool for studying human
social behaviour, their lean structure constrains their ability to address complex
features of socio-ecological systems, such as cognitive, spatial and temporal
dimensions of social behaviour. Actions in matrix games, such as cooperation
and defection, are manifested in discrete choices between two (or more) options,
and usually directly related to monetary allocations (Figure 1B). This leaves
matrix games unable to capture the way cooperation manifests in cases where
actions have a substructure like spatial and temporal complexity. For example,
cooperation may be the outcome of a sequence of actions and activities, with no
discrete moment in the sequence that distinguishes cooperation from defection.
In real life settings, individuals make small elementary choices like walk forward,
say “hello”, open the door, etc. Only taken as a whole does the entire sequence
of such actions then (sometimes) constitute cooperation or defection (Janssen
et al., 2010; Leibo et al., 2017).

Matrix games abstract away many of the mechanisms people rely on to
achieve social coordination where the small actions are often critical. Game
theory is not a neutral modeling language. It highlights back-and-forth strategic
thinking, where players take into account other players’ knowledge of the world
and of one another’s intentions to make a small number of impactful choices.
However, when actions are embedded in specific physical context, people have
a variety of other ways of solving problems that may not involve as much back-
and-forth thinking. For example, they may use spatial cues to clarify their
understanding one another’s intentions without needing to think much about
their mental states Freundlieb et al. (2016); Sebanz et al. (2006). Joint attention
can direct joint action in cases where people occupy a shared environment,
making it easier for two players to observe the actions available to others, or
observe a common landmark as a basis for coordination. This means that the
geography in which action takes place, and the shared attention opportunities
it allows (e.g. whether agents are in the same space or not) may greatly affect
their choice of behaviour, and may do so in a way that is difficult to capture
with matrix games.

L. J. Savage illustrated the problem with using simple matrix games to model
complex phenomena using a pair of proverbs which he presented as distinguish-
ing ‘small worlds’ from ‘large worlds’. A small world is one where you can al-
ways “look before you leap” and individuals may thus plan effectively. Whereas
a large world is one where you must sometimes “cross that bridge when you
come to it” so exploration is necessary and planning unlikely to work (Savage,
1954) (although this distinction is not strictly binary in real life). When you
model a social-ecological system with a simple matrix game you assume it is



A. Clean-Up Game Setup C. Local Behavioral Patterns

Gesture Wait Dwell Coordinate Divide
(] % o % o « o % o ‘o
é ' & o 45 ¢ O« o. « 0o @50 @
® & o 4 o % @ & o
o @ * ® @D.g ¢« © ., ¢ s« 079 L o ®

D. Emergent Cooperation Strategies

‘ urn-Takin
¥ %o w0 w0

B. Matrix Game Approach @ % o ¥ 0 «~a% O %
oame rer 0.5 0 o le5e l0 €

. OK@ 4 O )

Clean Eat 2 % ¢ % ¢ % ¢ %
Territoriality
20 30

Clean % ® % @‘_; «® .ﬁ
@ |2 o ' I 4 o % o %
Eat of 10 ¢‘_® « o « o %« o %
0 |10 ® « 00 4 6@ 4 o o

Figure 1: Approaches to studying socio-ecological systems. A. Clean Up: Apples
regrow at a rate inversely proportional to accumulating pollution in the river.
The pollution can be cleaned with a localized cleaning action. This environment
closely mirrors the Tragedy of the Commons, or any situation with both fear of
being exploited and greed motivations. The action space of the agents includes
motion in any directions, cleaning pollution, and eating apples. The game can
include more than two agents. Example of the game is provided at Leibo et al.
(2021) (https://github.com/deepmind/meltingpot). B. The essence of the
clean-up game can be captured in matrix-game, where two agents need to choose
between two discrete actions: cooperation (Clean) and Defection (Eat), and
their outcome is dependent on both agents’ decisions. C. In MARL approach
agents can learn to display many different local behavioral patterns, composed of
their basic actions, which allow joint action to develop over multiple steps, such
as gesturing, waiting, dwelling in one place, synchronization and mirroring of
the other agent. D. The local behavioral building blocks can accumulate to form
higher level strategies. For example, cooperative strategy can be to take turn
in cleaning and eating, which entails inter-dependence, trust and reciprocity,
or territoriality, where each agent cleans his own patch of the river and eat
the apples in his territory, entailing property rights and boundaries. Local
behavioral patterns and elaborate cooperative strategies are likely dependent
on the environment in which agents operate, and their cognitive model, in a
way that is not easy to capture in matrix games.
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small in this sense, i.e. that the individuals involved may draw up forward-
looking plans with some hope they could be implemented effectively. If the
social-ecological system in question contains possibilities, events, affordances,
resolutions, or failure modes that the individuals involved could not reasonably
foresee before they occur, then it is better to adopt a model more suited to
capturing social exploration in large worlds.

2.3 The multi-agent reinforcement learning (MARL) ap-
proach

In recent years a new framework to capture social-ecological complexity has
emerged, building on the simultaneous development of multi-agent reinforce-
ment learning (MARL) algorithms and their application for in silico simulation
of human behavior in increasingly complex virtual worlds designed to incorpo-
rate principles from the social and biological sciences. The first examples in
this vein to appear were mostly concerned with spatially and temporally ex-
tended analogs to the classic social dilemmas of non-cooperative game theory
(Kleiman-Weiner et al., 2016; Leibo et al., 2017; Lerer & Peysakhovich, 2017;
Lowe et al., 2017; Tampuu et al., 2017). However, since this approach is not
naturally limited to two player games, or games with few actions, they rapidly
moved beyond this origin to incorporate a wide range of social and environmen-
tal phenomena of interest (Du et al., 2023; Leibo, Hughes, et al., 2019; Nisioti
& Moulin-Frier, 2020).

In this framework, models of social-economical systems consist of two inter-
acting parts: (a) an environment simulation, and (b) its inhabitants, which can
be either human players or artificial agents (Figure 2).

The environment simulation is specified by the researchers. It is an inter-
active program that takes inputs and returns outputs on every time-step. For-
malized in reinforcement-learning terms, the inputs are the current environment
state and the actions of the agents populating the environment. The outputs
are the next environment state, the observations of this environment state for
each agent and their respective rewards from the time-step. The environment’s
state influences the agents’ rewards and is itself influenced by them. Examples
of environment simulations include 2D worlds with various different terrains,
rewarding tokens, and harming tokens. The environment simulation may also
include temporal contingencies, such as the rate in which rewards are produced
or terrain shifts (e.g. pollution accumulation in the riverbed, see the Clean
Up environment (Fig. 4))!. Intricate dependencies can be encoded, for exam-
ple linking reward rate with the proportion of pollution in the river. Finally,
the environment also determines the specific actions available to agents, such as
movement, cleaning pollution or harvesting apples. These actions, or behavioral
affordances, are the building blocks of more elaborate strategies which are not

For videos of the environments see; Allelopathic Harvest: https://youtu.be/
BbOduMGOYF4, Clean Up: https://youtu.be/TqiJYx0Owdxw, Commons Harvest: https://
youtu.be/1Z-qpPP4BNE
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specified by the environment. Thus, researchers can design and tweak the envi-
ronment parameters to closely match the properties of the real social-ecological
systems they seek to model. This is useful for testing how different interventions
may affect emergent social behaviour in specific settings.

The simulator is populated by players constituted by humans or artificial
cognitive models. Here, we focus on deep reinforcement-learning agents as the
cognitive models of individual decision makers. Agents receive observations
from their environment and output actions according to their behavioral pol-
icy. They observe the outcome of their actions, and can learn and adapt their
behavior on its basis. Each agent’s behavioral policy is stored in a separate
neural network which is tuned gradually to increase the reward it may be ex-
pected to achieve.? These agents typically learn ‘from scratch’, i.e. the mapping
from their inputs (usually pixels) to outputs (usually basic actions like, ‘move
forward’, ‘turn left’) is initially random but gets refined with experience. Note
that it is possible to expand this approach to capture evolutionary processes,
by allowing the agents to inherit some parameters from previous rounds beyond
their model weights (Jaderberg et al., 2019; Léger et al., 2023; J. X. Wang et
al., 2019). As multiple agents inhabit the same simulation, their learning is
interdependent; they all affect each other’s observations and rewards. Since
the simulated environment can be populated by human players in a very similar
manner this approach makes it possible to draw behavioural predictions from the
behaviour of cognitive-models trained in the environment. In addition, insights
gained from humans can be used to refine the cognitive models, for example by
changing their reward function, attention or working memory (Agrawal et al.,
2020; McKee et al., 2021). While many deep reinforcement learning agents are
simplistic in the way that they are limited to model-free reinforcement learning
(Botvinick et al., 2020), the choice to use model-free techniques yields a core
methodological benefit for the approach: its synthesis of visual processing in
service of reward-guided action—{flexible learning from scratch—offers a new
arena for cognitive modeling where the experiment designer need not imbue the
agent with a prior understanding of any task dynamics. Many MARL studies
use the same basic architecture across myriad different environments and tasks,
and need not assume prior knowledge of task dynamics (Agapiou et al., 2022;
Leibo et al., 2018)3.

The granularity of the simulation and the players makes their analysis in-
tractable for standard game theory*. The state-space of the environment, ob-
served by a stream of raw pixels, is enormous. Similarly, the actions that
form the interface between the agent and the simulation are closer to low-level

2Note that there are different ways to implement MARL, and not all implementations have
separate neural networks for each agent, some approaches share some or all neural network
weights between agents (Du et al., 2023), a change which can alter the interpretation. For
simplicity, we only describe the case with fully independent agents here. This is called the
decentralized MARL setting.

30f course model-based reinforcement learning algorithms can also be used in MARL
(e.g. Silver et al. (2018))

40ur claim is not about game theory in general but focused on the classical “two-player
two-action game toolkit.
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Figure 2: Two components of the MARL approach to socio-ecological systems:
the environment model and the cognitive model. In our approach the exper-
imenter can control both the environment in which the simulations or experi-
ments take place, and the cognitive model of the agents occupying it. A. En-
vironmental settings include the physical settings of the experiment, and the
affordances it provides, such as the observability of rewards, e.g. fish vs. fruit,
and their distribution in space and time. The experimenter decides about the
basic set of actions available to agents, such as movement, collecting rewards
and so on. By expanding the agent’s action repertoire can greatly affect the
local behaviors and emergent strategies learned by agents. B. The experimenter
controls the cognitive model of the agents. The experimenter can control agent’s
cognitive constraints, for example by controlling the information presented to
the agents. The experimenter can also set up different motivations by con-
trolling the rewards available for agents—making different outcomes explicitly
rewarding. When using artificial agents these settings are aimed at capturing
different aspects of human cognition and mimic the way human players operate
in such environments. When using human participants, these settings serve as
experimental manipulations, and the motivations and cognitive constraints are
inferred from behavior.



motor primitives, e.g., move forward, turn left, than they are to discrete and
strategically-impactful ‘cooperate’ versus ‘defect’ actions. In this setting, high
level strategic operations like cooperation must be implemented by stringing to-
gether a sequence of low-level actions suitable for the current environment state
(Leibo et al., 2017). These two features of the MARL approach: its rich environ-
ment model and its elaborate cognitive model of agents, can therefore capture
aspects of socio-ecological systems which were so far overlooked or deemed too
complicated to model appropriately such as the implications of needing to learn
to implement one’s strategic decisions.

With MARL modeling of human interactions in complex social-ecological
systems it is possible for group-level social phenomena to emerge from the inter-
action of individual agents’ cognitive models, without direct specification by the
researcher (Figure 3). This setting allows decisions not to be made in an ‘orderly
fashion’ with each player submitting a single strategic decision per round like in
a matrix game Janssen et al. (2010). While the complexity of the environment
and number of parameters in the agents make formal mathematical analysis
impossible, it offers many experimental advantages. Experimental setups sim-
ilar to computer games allow for rich data collection and require sophisticated
analysis (Mobbs et al., 2021). Additionally, experimental conditions are easy
to control, repeatable, and agents can be subjected to behavioral experiments
during which they do not learn (Koster et al., 2022). This allows researchers to
directly test a diverse range of hypotheses. It captures in a single framework
numerous cognitive hypotheses, e.g. those about innate cognitive modules or bi-
ases, and various environmental hypotheses (e.g. concerning conditions favoring
the emergence of territoriality) (McKee et al., 2021). In the following, we enu-
merate other consequences of specifying rich environments where open-ended
learning by MARL agents is possible.

3 MARL for social-ecological systems

3.1 Modeling individual decision making

There are several ways in which simulated agents learning via interaction with
a complex environment resemble humans learning by trial and error in social-
ecological systems. First, agents gradually learn about the world around them,
acquiring skills, which enable more elaborate actions and strategies. Their learn-
ing process is constrained by their experience and the stochasticity of the en-
vironment. Second, cognitive abilities, such as working memory and attention,
may limit the fidelity and amount of information they retain over time. In ad-
dition, perceptual biases constrain the way they sample their environment, and
the information available for learning and direction of future actions. These
have implications for the emergent behaviour of agents in different settings.

10
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Figure 3: MARL procedure and architecture. Agents learn together while play-
ing the game together in the same game environment. Each agent is modeled
using an independent neural network. The input to the agent’s model is ob-
servation of the game state in form of raw pixels, which includes the location
of agents and rewards. The model can also receive social observations of other
agents’ actions, either by setting up such parameters explicitly or adding some
visual marker for behavior that is delivered in the raw-pixel input. Each agent’s
(in this case an actor-critic formulation) neural network’s output is an updated
estimation of the current state’s value (V(s)), and the next action a to be taken,
which is encoded in a policy (7(s)) that tries to maximize the agents’ reward.
The agent also observe any rewards (r) that arise from the current state (s).
These rewards are used to train the network and adjust its parameters, updating
the state values and policies. This process takes place over many timesteps per
episode, across many episodes. This allows agents to learn complex cooperative
strategies to maximize their rewards of a wide horizon of states.

11
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Figure 4: Three example MARL environments available via https://github
.com/deepmind/meltingpot. In the top panel the observation window of the
purple agent is indicated. Each environment has a different action space that
includes motion, zapping, cleaning (Clean Up) and replanting berries (Allelo-
pathic Harvest).
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3.1.1 Progressive skill learning

In a social-ecological system, in order to pursue a high level strategy like co-
operation, agents need to implement complex sequences of actions. In fact,
cooperation could require different actions every time, since it always needs to
be implemented in a different environment state. This can only be achieved
if agents learn generalizable notions of the environment state and appropriate
actions to take in it. This shifts the focus to learning skills and highlights how
agents’ cognitive limitations may hinder or help said learning.

As agents alter their environment, they can affect their own learning and the
learning of others. Typically, agents first need to learn how to visually parse
the world and what affordances the simulation offers them. Once these basic
competencies are in place the task they face changes. For example, early in
learning an agent’s most pressing issue may be how to find and consume re-
warding fruits. Once all agents have learned how to consume fruits, the most
pressing issue they face may concern navigating competition for fruit with other
agents. This creates an open-ended dynamic in which the population of agents
keeps creating new and harder problems for itself (B. Baker et al., 2020; Jader-
berg et al., 2019; Leibo, Hughes, et al., 2019; Plappert et al., 2021). Climbing
this tree of skills in itself poses a hard learning problem. It requires the ability
to continually add skills without forgetting what one has learned before, or re-
turning to random behavior between learning different skills. For example, in
a game where a bartering economy emerged, this first relied on agents learning
to farm fruit for their own consumption, before they could learn that farming
the fruit they are good at farming in order to trade it for other fruit they prefer
to eat can be a more efficient way to obtain their favorite kind of fruit, and
finally learning that, since others trade, there is an opportunity to specialize
in a merchant-like behavior which entirely forgoes farming and instead seeks
to profit from spatially heterogeneous prices (Johanson et al., 2022). All these
behaviors depend not just on one’s own experience but also on the skills and
behaviour of others, a factor which changes over time and thus may constantly
provide new learning opportunities.

3.1.2 Cognitive constraints

Like humans, but unlike many game theoretic models, MARL agents are typ-
ically constrained in their pursuit of reward by their cognitive abilities and
knowledge about the world (Simon, 1990). For example, an agent may have
a working memory module with limited capacity and time horizon. Working
memory capacity has been shown in artificial agents to affect the emergence
of group-based discrimination behavior in a setting where statistical discrimi-
nation may emerge on the basis of agents inappropriately conditioning partner
choice behavior on features that only spuriously correlate with partner quality.
Agents with more working memory capacity are better able to ignore spurious
correlations and thereby learn less discriminatory policies (Duéfiez Guzmén et
al., 2021). Similarly, spatial attention capacity is another limiting factor. If

13



agents’ fields of view are typically restricted, they may neglect to explore suf-
ficiently to discover far away rewarding locations (Leibo, Perolat, et al., 2019).
The most important cognitive restriction is that agents need to discover and
learn the mechanics of the world. These considerations generally mirror human
cognition in which decision making is constantly constrained both by cognitive
capacities and knowledge of the environment (Simon, 1990).

Notably, since basic perceptual learning is modeled endogenously in MARL,
it is possible for relatively low-level perceptual biases to arise. For example,
in situations where larger and brighter objects are relevant for reward, they
produce larger gradients and thus faster learning relative to alternative situa-
tions where smaller and duller objects are reward-relevant (Leibo et al., 2018)
simply because they are associated with larger numbers (higher RGB values).
This can mean that, on a population level, which convention emerges may be
influenced by which option initially appears more salient. For instance, in ‘Al-
lelopathic Harvest’ (see Fig. 4), groups of agents were more likely to converge
on conventions featuring the replanting of brightly-colored berry varieties (over
dull-colored varieties) (Koster et al., 2020). Another line of work exploring
the downstream effects of perceptual biases in multi-agent reinforcement learn-
ing concerns the emergence of statistical discrimination (stereotyping). In this
model agents learn discriminatory partner selection policies (i.e. selecting part-
ners by pixel color) when they fail to distinguish spurious correlations from
the truly causal features of their social environment. This effect, driven by
perceptual ease, can be ameliorated by increased computational power of each
agent, allowing them to learn to perform less biased and more accurate partner
selection (Duénez Guzmadn et al., 2021). Such salience effects arise because ar-
tificial agents include a connectionist model of basic visual perception which is
subject to some similar idiosyncrasies as biological vision systems (Leibo et al.,
2018; Lindsay, 2021). These effects can give rise to ‘focal points’ and are thus
of importance as natural default options in the study of convention formation
(Schelling, 1960).

For humans, a wide array of perceptual and cognitive biases may be re-
lated to perception of others’ actions, as in the case of omission bias (Ritov &
Baron, 1995), and in the processing of punishments and rewards (Palminteri
& Pessiglione, 2017). When learning about action-outcome contingencies one
learns about the likelihood of an action to lead to a specific outcome. When
outcomes are caused by an active action, such as an agent zapping another
agent and harming them, this is relatively easy. However, when an outcome
is caused by an omission act, e.g., when an agent does not move an obstacle,
thus keeping another agents’ path to reward blocked, people find it hard to
associate the outcome with the omission act (Ritov & Baron, 1995), therefore
attenuating the learning process. Such biases can accumulate in multi-agent
environments, causing different collective behaviours to emerge and persist. For
example, when human players in a multiplayer foraging game learn about social
norms that govern the other players behaviour, they learn faster about norms
that are manifested in active rather than passive actions, and norms that entail
harmful rather than beneficial outcomes (Hertz, 2021).
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3.2 Environmental constraints

Social-ecological systems include an environment, whose spatial and temporal
characteristics can influence which types of collective behaviors emerge, e.g. ter-
ritoriality or turn-taking. In addition, the way rewards are distributed among
players, e.g. whether rewards are publicly available or privately held, can dra-
matically shape the emergent collective behaviors and social structures.

3.2.1 Spatial characteristics

Experimenters can set the environment’s spatial characteristics, making rewards
either concentrated in one part of space or uniformly distributed, and adding
spatial constraints on movement. For example, uniform physical space can be-
come part of a social compromise. In a common pool resource problem, an
environment filled with fruits that cannot regrow once they are fully harvested,
territoriality emerged as part of a more sustainable solution. Agents equipped
with a zapper learned to deter other agents from coming too close, creating
effectively privatized spaces. While it was possible to harvest these spaces more
sustainably for the individual agent, this also increased inequality across agents
(Perolat et al., 2017). In experiments with human participants, when punish-
ment is not possible but participants are allowed to communicate, they divide
up the space in equal size regions (Janssen, 2010; Janssen et al., 2010).

Emergent territoriality preferences are akin to peripersonal space in humans.
Peripersonal space refers to the space immediately surrounding our body, usu-
ally defined as the space which we can reach and manipulate objects (Serino,
2019). Studies show that people prefer that other people wouldn’t enter their
peripersonal space, which they keep as a buffer around them for defensive pur-
poses (Graziano & Cooke, 2006). The amount of peripersonal space that people
prefer to keep clear around them is context dependent, as we may allow some
people to be closer to us some of the time, and it is also varied across individuals,
as the amount of space needed increases with social anxiety levels, for example
(Givon-Benjio et al., 2020).

3.2.2 Temporal Characteristics

As simulations unfold over time, and strategic policies may include sequences of
many discrete actions, they allow the emergent of complex temporal dynamics.
For instance, temporally-coordinated turn-taking behavior may emerge in the
Clean-Up environment (Figure 1). In this environment agents collect apples in
one location, but there is also a river on the opposite side of the environment
which they need to maintain in a healthy state by periodically traveling there
to clean pollution which gradually accumulates. Apples cannot grow when the
amount of pollution in the river gets too high (Hughes et al., 2018). Without
coordination, all agents might eat until there are no more apples, and then
all go to clean at the same time, all individually motivated by the dearth of
apples. This creates equal outcomes, but is inefficient. With more coordination,
a subset of agents could clean more often than the others, who are then free

15



to focus on eating. This is efficient since it reduces travel time but it creates
unequal outcomes. An emergent solution that has equal outcomes and increased
efficiency is when players all asynchronously alternate between cleaning and
eating according to non-overlapping schedules.

Such rotation systems are also common in human social-ecological systems,
e.g. taking turns using irrigation systems, where and when to fish, and coor-
dinating where and when to graze and provide manure (Ostrom et al., 1994).
In laboratory experiments with human subjects we see that participants rotate
locations when some areas have higher growth than other locations (Janssen,
2010), or when participants have asymmetric access to a shared resource like in
irrigation systems (Janssen et al., 2011). Studying such complex arrangements
spanning the interaction of space and time would not be possible in matrix
games since they assume actions are submitted in lockstep (e.g. two players
deciding whether to cooperate or defect in the same timestep). The spatial and
temporal resolution of environments like Clean Up enables the study of how
extended strategies are implemented step by step (McKee et al., 2021).

3.2.3 Situations with multiple equilibria and heterogeneous tastes

Agents often prefer to align their behavior with that of others. When environ-
ments feature multiple equilibria each one is called a “convention”. E.g. driving
on the left or on the right side of the road are both workable equilibria, all agents
prefer to align to whichever solution the others around them have also selected.
For humans, entrenched conventions often take on normative force, prescribing
the behavior of group members (Ullmann-Margalit, 2015). These conventions,
which may also be called social norms, are maintained by conformity of group
members (Hertz, 2021), and by enforcement and punishment of members that
do not comply (Fehr & Schurtenberger, 2018; Heyes, 2022; Sripada & Stich,
2006).

Norms and conventions allow humans to coordinate and cooperate without
direct communication. This can be done by simulating the other party’s decision
process, and predict what their actions are going to be based on current settings,
norms, and our beliefs about the other’s motivations (Misyak & Chater, 2014).
This process was suggested to include a Bayesian inference process, in which
one’s beliefs about other’s intentions are updated online as the other’s actions
unfold (C. L. Baker et al., 2009). Indeed, endowing agents with the ability to
negotiate norms and coordinate behavior based on such internal models seems
to be an important step in creating social artificial agents that can operate in
human society (Chater, 2023). However, this inference process is cognitively
demanding, and while humans are able to perform deep strategic inference,
they avoid such deep planning in favor of shallower inference and heuristics , in
a way that balances between cognitive resource investment and outcome, e.g.,
material payoff, maximization (Levine et al., n.d.; Lieder & Griffiths, 2019). It
is therefore important to take such consideration into account when designing
artificial agents that are suppose to model human behavior and interact with
humans, for example by adjusting their cost function (Alangary et al., 2021;
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Franken et al., 2024).

One environment where convention formation has been studied with MARL
is called ‘Allelopathic Harvest’ (Koster et al., 2020). In this environment, agents
like to eat berries, of which there are three varieties (red, green, and blue). They
grow in a fixed number of berry patches, each of which can be replanted to grow
any variety. Each variety suppresses the growth rate of the others, so berries
grow faster when the environment state is closer to monoculture. At any time,
agents can replant berries of any variety in any patch. This setup features
both a “start-up problem” and a free-rider problem. The start-up problem
refers to the difficult of coordinating agents to plant the same variety as one
another when the current state is far from monoculture. Lack of coordination
discourages investment (planting) since agents do not want to “back the wrong
horse” Marwell & Oliver (1993). The free-rider problem refers to the choice
which arises after some progress has been made toward monoculture between
spending additional time contributing to the common good by planting versus
focusing instead on gathering berries for oneself.

The Allelopathic Harvest setting is further complicated by the fact that
agents have heterogeneous tastes. Some agents receive intrinsically more reward
from consuming a particular berry variety over the others (e.g. more reward
from consuming red berries than green or blue berries). Agents disagree with one
another as to which convention would be optimal, a situation called normative
disagreement (Stastny et al., 2021). The strength of the emergent convention
can be measured by the fractions of berries of each variety, i.e. a high fraction of
red berries represent a high realization of the red ‘convention’, that is established
berry by berry. The worst outcome for the group is a total lack of coordination,
yielding the lowest rewards for everyone. As all agents get some reward for all
berries, any convention is better for every single agent than no convention at
all. This is akin to a system like a parliamentary democracy, where multiple
conflicting goals can be pursued and each individual can choose which goal to
support, and face continual temptation to free ride on the efforts of others.
Despite only being equipped with model-free learning, artificial agents are able
to form conventions in this environment. After time, some agents explicitly
start to support a convention that has traction, despite it being against their
intrinsic taste preference (Koster et al., 2020).

3.2.4 Communication

Complex environments where agents may communicate with one another con-
tain a range of challenges which do not arise in abstracted matrix games set-
tings. Communication channels may be either ungrounded and symbolic or
grounded in the affordances admitted by the underlying simulated environment
Dor (2023).

In the ungrounded case there is a large literature on the spontaneous emer-
gence of communication between reinforcement learning agents. One study
showed that emergent communication patterns in abstracted reference games
may be grounded in natural language by co-training networks on both an in-
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teractive task (a multi-agent referential game) and a passive task (supervised
image-labeling task with natural language image labels) (Lazaridou et al., 2017).
More recent work in this area considered zero-shot coordination protocols where
agents must rapidly adapt to new partners who may have learned different “lan-
guages”. In this setting agents require some form of regularization to encourage
their use of non-arbitrary symbols, which can be reliably used to coordinate
with unfamiliar co-players as long as they experienced a similar environment
and independently settled on a similar vocabulary of signals, an effect that
may be useful for modeling the quasi-universality of gesture-based communica-
tion (Bullard et al., 2020; Hu et al., 2020; Zhu et al., 2021).

In the case of grounded communication channels, several papers studied
agents endowed with actions to negotiate over the exchange of objects. These
were instances of grounded communication since the trades would automati-
cally resolve when agreed, transferring the objects between players’ inventories
(Johanson et al., 2022; Zheng et al., 2022). Various properties of supply and
demand emerged in these studies. However, they had a substantive limitation
in that agents were able to automatically maintain private property in their in-
ventory and exchange simultaneously without risk of theft, making the problem
of learning to trade easier than it would otherwise be. However, a later study
extended this line of work to show the emergence of trade and tolerated theft
using much more generic ‘pick up’ and ‘drop’ actions (Garbus & Pollack, 2023).
Similarly, research in experimental economics demonstrated that exchange of
goods between human participants only happens if property rights are defined
(Kimbrough et al., 2008).

3.3 Cooperation in social dilemmas

When agents are assumed to be fully self-interested, both traditional game the-
ory and MARL predict that agents should not cooperate in social dilemma
situations. These prediction are at odds with human behavior in real life as well
as in the laboratory (Camerer, 2011). Both game theory and MARL must be
augmented in some way to account for the data on human cooperation, trust,
and altruism.

The approach to studying cooperation in MARL models has mirrored the
approach in behavioral game theory. In both cases the research workflow starts
by observing that the theory wrongly predicts self-interested individuals should
not be able to solve a problem (e.g. find a way to cooperate). It then proceeds
to modify the basic model to encode social preferences, and finally to show
that the augmentations are sufficient inducement for agents to find cooperative
solutions, either through rational decision-making (in behavioral game theory)
or learning (in MARL).

3.3.1 Augmenting utility functions (intrinsic motivation)

This approach weakens the assumption that agents are purely self-interested by
adding terms to agent utility functions encoding various kinds of “social prefer-
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ences” like altruism. We already mentioned Fehr & Schmidt (1999) inequality
avoidance bias, which modeled human behavior in simple economic games by in-
troducing utility function terms reflecting an aversion to inequity causing them
to prefer certain money allocations over others Fehr & Schmidt (1999a). Fol-
lowing Fehr & Schmidt (1999), a MARL paper adapted the inequity aversion
approach to MARL and showed it remained effective at promoting cooperation
in much more complex multiagent settings (Hughes et al., 2018). In this case
the aversion signal was interpreted as coming from within the agent itself, as an
‘intrinsic motivation’ (Chentanez et al., 2004). Players in this game typically
receive rewards for eating fruits. However, the intrinsic motivation term also
subtracts small amounts of reward depending on how much reward all other
players earned recently. Notably, being averse to advantageous inequity allows
more favourable outcomes in the public-goods-like clean up game since agents
were less interested in eating while others did the work of cleaning, and thus
explored cleaning actions more often. Disadvantageous inequity aversion on the
other hand had a different effect. It encouraged agents to punish those who
take more than others, and thereby indirectly creates a situation where over-
harvesting is discouraged via punishment. As a result, disadvantageous inequity
aversion promoted sustainable behavior in a common-pool resource appropria-
tion game (Hughes et al., 2018).

Another way to account for human sensitivity to others’ well-being is through
the construct of social value orientation, a cognitive construct representing how
an individual trades off one’s own gain against the gain of others (Griesinger &
Livingston Jr, 1973). It can be seen as a personality factor which reflects an
individual’s general inclination toward altruism versus self-interest. In computa-
tional models it is possible to endow artificial agents with social value orientation
by making them sensitive not only to their own rewards but also to the rewards
of other agents in the population (Li et al., 2023; McKee et al., 2020). Unsur-
prisingly, in mixed motive games (e.g. the aforementioned Clean Up), groups
with overall more altruistic social value orientation achieve higher and more
equal group outcomes. A surprising result is that in many cases, heterogeneous
groups fare better than groups with the same mean (but homogeneous) social
value orientation (B. Baker, 2020; McKee et al., 2020).

3.3.2 Reciprocity

In iterated Prisoner’s Dilemma, agents become incentivized to cooperate if their
partner always punishes defection by defecting themselves (tit-for-tat) (Axel-
rod, 1984). Likewise many laboratory experiments have shown that humans
are conditional cooperators—i.e. they cooperate as long as others also cooperate
Fischbacher et al. (2001). Tit-for-tat-like conditional cooperation strategies are
also effective at promoting cooperation in complex MARL environments. One
approach uses hierarchical MARL agents where a hard-coded high-level con-
troller implementing tit-for-tat decides whether to play a cooperating policy,
trained with joint reward, or a defecting policy, trained using the default self-
interested rewards (Kleiman-Weiner et al., 2016; Lerer & Peysakhovich, 2017).
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This approach yields cooperation in complex spatially and temporally extended
settings via reciprocity.

Sometimes reciprocity can be achieved by augmenting utility functions. In
behavioral game theory, Rabin (1993) took such an approach to modeling condi-
tional cooperation in matrix games, proposing a model where agents represent
the “kindness” of their actions and the perceived kindness of others’ actions.
This model augments the agent’s utility function to include terms encouraging
the agent to match the kindness of their own actions to the perceived kindness
of the others (Rabin, 1993). Eccles et al. (2019) took an analogous approach
for MARL in complex environments. Agents in this model achieve cooperation
via reciprocity because they learn to recognize the “niceness” level of others’
behavior and then imitate their niceness level back to them. The motivation to
imitate is encoded by an augmentation to their utility function that sets a value
on imitation. This approach performed well in several different spatiotemporally
complex environments including Clean Up (Eccles et al., 2019).

3.3.3 Reputation

The social-ecological systems we described are complex and provide many low-
level observations that one could keep track off, and many events happen out-
side one’s field of view. Multiple agents-side mechanism described here provide
agents with useful summary statistics of the environment. Reputation is a spe-
cific summary statistic which tracks social behavior over time, and is seen as
an important contributor to the ability to sustain cooperation (Milinski et al.,
2002). In McKee et al. (2021), agents were equipped with ‘reputation’ informa-
tion in the game of Clean Up. They were able to see who cleaned how much,
and they had an intrinsic aversion to deviating from the group (in either direc-
tion). Agents equipped with this consideration for reputation, achieved better
group results in Clean Up. Importantly, this study directly drew parallels be-
tween agent and human behavior. Humans in this task too, achieved better
group outcomes when reputation information was presented to them. In partic-
ular, both artificial agents and humans achieved cooperation in a very similar
way—they used reputation information to help increase turn taking behavior.
Another intrinsic social motivation is not directly related to rewards that
other agents achieve, but rather to the actions other agents take. Having peo-
ple voluntarily seeking and following an individual’s advice is one manifestation
of prestige and social status (Cheng et al., 2010). A number of studies indi-
cate that humans adapt their behaviour in order to influence other people’s
behaviour (Hertz et al., 2017, 2020; Lindstrom et al., 2021). While agents who
only seek to influence others may produce deceptive behaviour in some scenarios
(Kurvers et al., 2021; Schwardmann & van der Weele, 2019), humans seem to
give accurate advice and promote their accuracy as advisers, i.e. they tend to
act prosocially as a way to build social prestige (Atkisson et al., 2012; Hertz et
al., 2020; Zaatri et al., 2022). Thus individual desire to gain social influence can
promote collective benefit and cooperation. In order to capture such results,
one MARL study looked at agents who estimated their social influence over
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others and received an intrinsic reward when they took highly influential ac-
tions. In Clean Up, using these internally generated predictions of other agents’
actions to internally reward oneself for influential actions helped groups discover
cooperative equilibria (Jaques et al., 2019).

3.3.4 Norms

Both game theory and MARL have employed a variety of different concepts of
‘norm’, ‘social norm’; and the like. The various accounts differ in part because
they are aimed at different levels of analysis. They appear to divide into two
conceptually distinct categories: (a) norms as utility transformations, and (b)
norms as equilibria (Grossi et al., 2013). However, the very same norm can usu-
ally be seen through either lens. For example, consider a norm that proscribes
a certain action. From the individual’s point of view, the effect of this norm
will be felt like an augmentation to a utility function (reducing the payoff of
the proscribed action). Yet at the same time, we may consider how the rule
itself arises from aggregate behavior of all the individuals comprising the group
(Guala, 2016). Both levels of analysis are important in MARL, with some stud-
ies focusing on how individuals learn to enforce and comply with norms (Késter
et al., 2022), while other studies concern how the norms themselves may emerge
(Vinitsky et al., 2023). Agents have also been shown to profit by being furnished
with Bayesian rule induction that allows them to rapidly infer which norms are
being followed by a specific population (Oldenburg & Zhi-Xuan, 2024).

For example, several researchers studied how cooperation may be achieved in
complex social dilemmas by endowing agents with the ability to directly modify
one another’s rewards, e.g. by sending positive reward as inducement to act
prosocially (Lupu & Precup, 2020; W. Z. Wang et al., 2021) or via negotiated
contracts for future reward-transfer commitments (Christoffersen et al., 2022;
Willis & Luck, 2023). Both levels of analysis of the norm concept are evident
simultaneously in this line of work. The incentives faced by each individual
arise from the pattern of inducements offered by their coplayers. And at the
same time, the pattern of gifting and contracting behaviors themselves evolve
as agents learn.

In a study where individuals learned to enforce and comply with norms,
agents had to gather berries while avoiding one poisonous berry variety (Koster
et al., 2022). It was prohibitively difficult to identify the poisonous berry by
trial and error since agents would rapidly eat berries of all varieties, and the
time delay of the poisonous effect was long enough to make it impossible to
accurately identify which specific berry was the cause of the deleterious effect.
However, when the environment ‘marked’ those who ate the poisonous berry
and rewarded others for punishing marked agents, all quickly learned to avoid
the poisonous berry. Unsurprisingly, swifter punishment made this credit as-
signment problem more tractable. Counterintuitively, this result held even if the
introduced extra rule was a ‘silly rule’ which proscribes the eating of a perfectly
harmless berry. Since the negative effects of the actually poisonous berry were
so detrimental it was worth it for the group to engage in “wasteful” punish-
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ments for consuming the harmless “taboo” berry just for the extra opportunity
to practice enforcement and compliance that they created (Koster et al., 2022).
The study’s main result was to show that there were benefits from introducing
additional rules, that provide more practice for agents to learn effective pun-
ishment and compliance behavior. This kind of result could only be achieved
because all agent actions were constituted of the reusable building blocks of low-
level actions orchestrated by the cognitive machinery of the agent that allows
for generalization.

4 Open problems and future directions in MARL
models of social-ecological systems

In this paper we presented a new experimental approach, built on MARL, to
study complex social-ecological systems. The MARL approach allows examin-
ing of how spatial and temporal characteristics of such systems shape collective
behavior. We demonstrated the flexibility of this approach, and how it can be
augmented to incorporate additional environmental affordances, motivational
structures, and other mechanisms in order to address social-ecological charac-
teristics, cognitive processes, social structures, and dynamics. And, we discussed
how the constant interplay of these factors makes possible that a whole range
of group-level phenomena can emerge without being directly specified. We con-
clude by highlighting some open questions that demonstrate the potential of
coupling this modeling approach with studies of real-world settings. Such stud-
ies of human social cognition may facilitate identifying the tolerances or working
ranges where environments lead to emergent behaviours, versus points where the
emergent behaviour changes, and thus provide a powerful tool to formulate novel
scientific insights and predictions of real-world dynamics.

4.1 MARL as a discovery research tool

In this work we surveyed work that used the MARL approach to capture col-
lective behavior demonstrated in humans, and the way insights from research of
human cognition can be used to enhance these models. Both lines of work to-
gether provide a foundation for new studies where MARL can be used to provide
novel insights about factors shaping human behavior in social-ecological systems.
In much of the MARL work discussed above, MARL was used to examine which
factors of the environment were important to give rise to human-like behavior.
To get MARL systems to replicate human phenomena, the researchers needed to
set up specific cognitive abilities and environmental settings. This approach al-
lows understanding the physical and cognitive factors that may underlie human
behavior, and provides testable predictions. It is possible to expand on it by for-
mally comparing agents with different cognitive models, different motivations,
and different environmental affordances to test specific hypotheses concerning
the way humans form collective decisions and cooperation patterns. For exam-
ple, it is possible to test how social motivations and abilities associated with
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different levels of social anxiety support and stabilize social structure (Brosnan
et al., 2017; Zaatri et al., 2022), or how environmental affordances can provide a
unified framework for coordination (Small & Adler, 2019). Some works already
close the loop, testing whether the behavioral patterns predicted by MARL
simulations hold in human behavior(McKee et al., 2021). Others, such as the
study on spurious normativity (Koster et al., 2022), provide novel explanations
to human phenomena. We hope that our work demonstrates MARL’s potential
as a research tool, and will inspire social and cognitive scientists to incorporate
it in their research.

It is important to also be mindful of the mismatches between MARL and
humans. While typically deep RL agents learn gradually, humans excel at rapid
acquisition of knowledge (like episodic memory) or rapid inference or reasoning
taking advantage of a model of the world. An artificial agent approaching a
task as a blank slate, starting with a random neural network, stands in stark
contrast to a human brain formed by the course of evolution and a lifetime
of individual experience. For instance, the often sparse environmental rewards
in MARL typically do not attempt to account for the many metabolic needs
that biology balances when making decisions. However, in principle such detail
can be introduced into the MARL framework to yield more realistic simulations
(e.g. Ackley & Littman (1991)).

4.2 Better models for the effect of communication

When human participants in collective action experiments can communicate,
even without the ability to enforce promises, cooperation improves significantly
(Janssen et al., 2010). However, at present there are no MARL models explain-
ing why communication should have this effect. Why does it work in humans?
There are several possible mechanisms: communication may allow coordination
among participants, they may develop trust relationships, they may express
social pressure, etc, but there is no conclusive explanation of the effect of com-
munication in commons dilemma experiments (DeCaro et al., 2021). In fact, it
seems that the nature of communication (e.g. constructive) is more important
than the specific content of the communication (DeCaro et al., 2021). Future
work using AT methods could explore these hypotheses.

4.3 Predicting the effect of interventions

Sufficiently rich social-ecological system simulations may be used to plan in-
terventions in a way that could be tailored to specific human problems and
capacity. In one early example of this approach, researchers constructed a 2-D
world containing mechanics that allow for a simple economy (resources, build-
ings) populated by four artificial agents. A fifth artificial agent was tasked with
setting a tax policy for this virtual world, guiding the population to a state that
was both more prosperous and more equal (Hua et al., 2023). This approach
could be further enhanced by attempting to quantitatively model human eco-
nomic behavior and preferences using recurrent neural networks. This approach
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directly injects data gathered from human behavior into the simulation. It
stands in contrast to the “first-principles” approach described above, in which
the aim was to show a qualitative agreement between the pattern of results
produced by the model and those obtained from a group of human participants.

One useful technique for quantitatively fitting human behavior is called ‘Be-
havioral cloning’. It has been used successfully to increase artificial agent per-
formance on specific games by incorporating examples of how humans play them
(B. Baker et al., 2022; Carroll et al., n.d.). This technique can be used to create
virtual players to populate a simulation, and can be done in a way that gener-
alizes to new situations not experienced in the training data. For example, it
was possible to design harder psychological tasks using behavioral clones, and
that then these tasks were indeed found later to be more difficult by human
players (Dezfouli et al., 2020). Using these methods, it may eventually be possi-
ble to construct complex socio-economical system models using artificial agents
whose behavior is grounded in human data (Koster et al., 2022). Such models
may ultimately connect ecological complexity and human-like decision-making,
a juxtaposition which will be needed to explore consequences of climate change
on human behavior and to simulate the effectiveness of environmental policies
(Schill et al., 2019).

sectionAcknowledgement UH was supported by the Israel Science Founda-
tion (1532/20).

5 Declaration of interests

The authors declare no competing interests.

References

Ackley, D., & Littman, M. (1991). Interactions between learning and evolution.
Artificial life II, 10, 487-5009.

Agapiou, J. P., Vezhnevets, A. S., Duénez-Guzmén, E. A., Matyas, J., Mao,
Y., Sunehag, P., ... others (2022). Melting pot 2.0. arXiv preprint
arXiw:2211.18746.

Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2020). Scaling up psychology
via scientific regret minimization. Proceedings of the National Academy of
Sciences, 117(16), 8825-8835. doi: 10.1073/pnas.1915841117

Alanqary, A., Lin, G. Z., Le, J., Zhi-Xuan, T., Mansinghka, V. K., & Tenen-
baum, J. B. (2021, June). Modeling the mistakes of boundedly rational agents
within a bayesian theory of mind. arXiv [cs. Al].

Asch, S. E. (1951). Effects of group pressure upon the modification and distor-
tion of judgments. Organizational influence processes, 58, 295-303.

24



Atkisson, C., O’Brien, M. J., & Mesoudi, A. (2012). Adult learners in a novel
environment use prestige-biased social learning. Fwvol. Psychol., 10(3), 519
537. doi: 10.1177/147470491201000309

Axelrod, R. M. (1984). The evolution of cooperation. Basic Books.

Baker, B. (2020). Emergent reciprocity and team formation from random-
ized uncertain social preferences. Advances in Neural Information Processing

Systems, 33, 15786—-15799.

Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J., Ecoffet, A., ... Clune,
J. (2022). Video pretraining (VPT): Learning to act by watching unlabeled
online videos. arXiv preprint arXiw:2206.11795.

Baker, B., Kanitscheider, 1., Markov, T., Wu, Y., Powell, G., McGrew, B.,
& Mordatch, I. (2020). Emergent tool use from multi-agent autocurricula.
International Conference on Learning Representations.

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as
inverse planning. Cognition, 113(3), 329-349.

Bansak, K., Ferwerda, J., Hainmueller, J., Dillon, A., Hangartner, D., Lawrence,
D., & Weinstein, J. (2018). Improving refugee integration through data-driven
algorithmic assignment. Science, 359(6373), 325-329.

Biggs, R., De Vos, A., Preiser, R., Clements, H., Maciejewski, K., & Schliiter,
M. (2021). The routledge handbook of research methods for social-ecological
systems. Taylor & Francis.

Blair, G., Littman, R., & Paluck, E. L. (2019). Motivating the adoption of new
community-minded behaviors: An empirical test in nigeria. Science advances,
5(3), eaaub175.

Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., & Kurth-Nelson, Z.
(2020). Deep reinforcement learning and its neuroscientific implications. Neu-
ron, 107(4), 603—616.

Brosnan, S. F., Tone, E. B., & Williams, L. (2017). The evolution of social
anxiety. In T. K. Shackelford & V. Zeigler-Hill (Eds.), The evolution of psy-
chopathology (pp. 93-116). Cham: Springer International Publishing. doi:
10.1007/978-3-319-60576-0\ 4

Bullard, K., Meier, F., Kiela, D., Pineau, J., & Foerster, J. (2020). Explor-
ing zero-shot emergent communication in embodied multi-agent populations.
arXiww preprint arXiw:2010.15896.

Camerer, C. F. (2011). Behavioral game theory: Ezperiments in strategic inter-
action. Princeton university press.

25



Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T.-H., Huber, J., Johannesson,
M., ... Wu, H. (2018, September). Evaluating the replicability of social
science experiments in nature and science between 2010 and 2015. Nat Hum
Behav, 2(9), 637-644. doi: 10.1038/s41562-018-0399-z

Carroll, M., Shah, R., Ho, M. K., Griffiths, T, Seshia, S., Abbeel, P., & Dragan,
A. (n.d.). On the utility of learning about humans for human-AT coordination.
Advances in neural information processing systems.

Chater, N. (2023, July). How could we make a social robot? a virtual bargaining
approach. Philos. Trans. A Math. Phys. Eng. Sci., 381(2251), 20220040. doi:
10.1098 /rsta.2022.0040

Cheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the
evolutionary foundations of human social status. Ewvol. Hum. Behav., 31(5),
334-347. doi: 10.1016/j.evolhumbehav.2010.02.004

Chentanez, N., Barto, A., & Singh, S. (2004). Intrinsically motivated reinforce-
ment learning. Advances in neural information processing systems, 17.

Christoffersen, P. J., Haupt, A. A., & Hadfield-Menell, D. (2022). Get it in
writing: Formal contracts mitigate social dilemmas in multi-agent rl. arXiv
preprint arXiw:2208.10469.

DeCaro, D. A., Janssen, M. A., & Lee, A. (2021). Motivational foundations
of communication, voluntary cooperation, and self-governance in a common-
pool resource dilemma. Current Research in Ecological and Social Psychology,
2, 100016.

Dezfouli, A., Nock, R., & Dayan, P. (2020). Adversarial vulnerabilities of human
decision-making. Proceedings of the National Academy of Sciences, 117(46),
29221-29228.

Donges, J. F., Heitzig, J., Barfuss, W., Wiedermann, M., Kassel, J. A., Kit-
tel, T., ... Lucht, W. (2020). Earth system modeling with endogenous and
dynamic human societies: the copan: Core open world—earth modeling frame-
work. Earth System Dynamics, 11(2), 395-413.

Dor, D. (2023, March). Communication for collaborative computation: two
major transitions in human evolution. Philos. Trans. R. Soc. Lond. B Biol.
Sci., 378(1872), 20210404. doi: 10.1098/rstb.2021.0404

Du, Y., Leibo, J. Z., Islam, U., Willis, R., & Sunehag, P. (2023). A review of
cooperation in multi-agent learning. arXiv preprint arXiw:2312.05162.

Duénez Guzmén, E. A., McKee, K. R., Mao, Y., Coppin, B., Chiappa, S.,
Vezhnevets, A. S., ... Leibo, J. Z. (2021). Statistical discrimination in
learning agents. arXiv:2110.11404 [cs.LG].

26



Eccles, T., Hughes, E., Kramdr, J., Wheelwright, S., & Leibo, J. Z. (2019).
Learning reciprocity in complex sequential social dilemmas. arXiv preprint
arXiw:1903.08082.

Elsawah, S., Pierce, S. A., Hamilton, S. H., Van Delden, H., Haase, D., Elmahdi,
A, & Jakeman, A. J. (2017). An overview of the system dynamics process for
integrated modelling of socio-ecological systems: Lessons on good modelling

practice from five case studies. FEnvironmental Modelling & Software, 93,
127-145.

Fehr, E.; & Schmidt, K. M. (1999a). A theory of fairness, competition, and
cooperation. The quarterly journal of economics, 114(3), 817-868.

Fehr, E., & Schmidt, K. M. (1999b, August). A theory of fairness, com-
petition, and cooperation. Q. J. Fcon., 114(3), 817-868. doi: 10.1162/
003355399556151

Fehr, E., & Schurtenberger, I. (2018). Normative foundations of human
cooperation. Nature Human Behaviour, 2(7), 458-468. doi: 10.1038/
$41562-018-0385-5

Fischbacher, U., Géchter, S., & Fehr, E. (2001). Are people conditionally
cooperative? evidence from a public goods experiment. Economics Letters,
71(3), 397-404.

Folke, C., Pritchard Jr, L., Berkes, F., Colding, J., & Svedin, U. (2007). The
problem of fit between ecosystems and institutions: ten years later. Ecology
and society, 12(1).

Freundlieb, M., Kovécs, A. M., & Sebanz, N. (2016). When do humans spon-
taneously adopt another’s visuospatial perspective? J. Ezp. Psychol. Hum.
Percept. Perform., 42(3), 401-412. doi: 10.1037/xhp0000153

Franken, J.-P., Valentin, S., Lucas, C. G., & Bramley, N. R. (2024, Jan-
uary). Naive information aggregation in human social learning. Cognition,
242(105633), 105633. doi: 10.1016/j.cognition.2023.105633

Garbus, J., & Pollack, J. (2023). Emergent resource exchange and toler-
ated theft behavior using multi-agent reinforcement learning. arXiv preprint
arXi:2307.01862.

Givon-Benjio, N.; Oren-Yagoda, R., Aderka, I. M., & Okon-Singer, H. (2020).
Biased distance estimation in social anxiety disorder: A new avenue for under-
standing avoidance behavior. Depression and Anziety, 37(12), 1243-1252.

Graziano, M. S., & Cooke, D. F. (2006). Parieto-frontal interactions, personal
space, and defensive behavior. Neuropsychologia, 44 (6), 845-859.

Griesinger, D. W., & Livingston Jr, J. W. (1973). Toward a model of interper-
sonal motivation in experimental games. Behavioral science, 18(3), 173-188.

27



Grossi, D., Tummolini, L., & Turrini, P. (2013). Norms in game theory. Agree-
ment Technologies, 191-197.

Guala, F. (2016). Understanding institutions. In Understanding institutions.
Princeton University Press.

Henrich, B. J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., &
Mcelreath, R. (2001). In search of homo economicus : Behavioral experiments
in 15 Small-Scale societies. American Economic Review, 91(2).

Hertz, U. (2021, June). Learning how to behave: cognitive learning processes
account for asymmetries in adaptation to social norms. Proc. Biol. Sci.,

288(1952), 20210293. doi: 10.1098/rspb.2021.0293

Hertz, U., Palminteri, S., Brunetti, S., Olesen, C., Frith, C. D., & Bahrami, B.
(2017, December). Neural computations underpinning the strategic man-
agement of influence in advice giving. Nat. Commun., 8(1), 2191. doi:
10.1038/s41467-017-02314-5

Hertz, U., Tyropoulou, E., Traberg, C., & Bahrami, B. (2020, October). Self-
competence increases the willingness to pay for social influence. Sci. Rep.,
10(1), 17813. doi: 10.1038/s41598-020-74857-5

Heyes, C. (2022, June). Rethinking norm psychology. doi: 10.31234/osf.io/
thew7

Hoffman, M., & Yoeli, E. (2022). Hidden games: the surprising power of game
theory to explain irrational human behaviour. Basic Books.

Hu, H., Lerer, A., Peysakhovich, A., & Foerster, J. (2020). “other-play” for
zero-shot coordination. In International conference on machine learning (pp.
4399-4410).

Hua, Y., Gao, S., Li, W., Jin, B., Wang, X., & Zha, H. (2023). Learn-
ing optimal “pigovian tax” in sequential social dilemmas. arXiv preprint
arXw:2305.06227 .

Hughes, E., Leibo, J. Z., Philips, M. G., Tuyls, K., Duénez-Guzman, E. A.,
Castaneda, A. G., ... Graepel, T. (2018). Inequity aversion improves coop-
eration in intertemporal social dilemmas. In Advances in neural information
processing systems (pp. 3330-3340).

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda,
A. G, ... others (2019). Human-level performance in 3d multiplayer games
with population-based reinforcement learning. Science, 364 (6443), 859-865.

Janssen, M. A. (2010). Introducing ecological dynamics into common-pool
resource experiments. Fcology and Society, 15(2).

Janssen, M. A., Holahan, R., Lee, A., & Ostrom, E. (2010). Lab experiments
for the study of social-ecological systems. Science, 828(5978), 613-617.

28



Janssen, M. A., M., A. J., & Joshi, S. (2011). Coordination and cooperation in
asymmetric commons dilemmas. Experimental Economics, 14(4), 547-566.

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P., Strouse, D., ...
De Freitas, N. (2019). Social influence as intrinsic motivation for multi-agent
deep reinforcement learning. In International conference on machine learning

(pp. 3040-3049).

Johanson, M. B., Hughes, E., Timbers, F., & Leibo, J. Z. (2022). Emergent
bartering behaviour in multi-agent reinforcement learning. arXiv preprint
arXiv:2205.06760.

Kimbrough, E. O., Smith, V. L., & Wilson, B. J. (2008). Historical property
rights, sociality, and the emergence of impersonal exchange in long-distance
trade. American Economic Review, 98(3), 1009-1039.

Kleiman-Weiner, M., Ho, M. K., Austerweil, J. L., Littman, M. L., & Tenen-
baum, J. B. (2016). Coordinate to cooperate or compete: abstract goals and
joint intentions in social interaction. In Cogsci.

Koster, R., Balaguer, J., Tacchetti, A., Weinstein, A., Zhu, T., Hauser, O., ...
others (2022). Human-centred mechanism design with democratic AI. Nature
Human Behaviour, 6(10), 1398-1407.

Koster, R., Hadfield-Menell, D., Everett, R., Weidinger, L., Hadfield, G. K., &
Leibo, J. Z. (2022). Spurious normativity enhances learning of compliance
and enforcement behavior in artificial agents. Proceedings of the National
Academy of Sciences, 119(3), €2106028118.

Koster, R., McKee, K. R., Everett, R., Weidinger, L., Isaac, W. S., Hughes, E.,
... Leibo, J. Z. (2020). Model-free conventions in multi-agent reinforcement
learning with heterogeneous preferences. arXiv preprint arXiv:2010.09054 .

Kurvers, R. H. J. M., Hertz, U., Karpus, J., Balode, M. P., Jayles, B., Binmore,
K., & Bahrami, B. (2021). Strategic disinformation outperforms honesty
in competition for social influence. iScience, 24(12), 103505. doi: 10.1016/
j-1s€i.2021.103505

Lazaridou, A., Peysakhovich, A., & Baroni, M. (2017). Multi-agent cooperation
and the emergence of (natural) language. In 5th international conference
on learning representations, ICLR 2017, toulon, france, april 24-26, 2017,
conference track proceedings.

Leibo, J. Z., d’Autume, C. d. M., Zoran, D., Amos, D., Beattie, C., Anderson,
K., ... others (2018). Psychlab: a psychology laboratory for deep reinforce-
ment learning agents. arXiv preprint arXiv:1801.08116.

Leibo, J. Z., Duenez-Guzman, E. A., Vezhnevets, A., Agapiou, J. P., Sunehag,
P., Koster, R., ... Graepel, T. (2021). Scalable evaluation of multi-agent rein-
forcement learning with Melting Pot. In International conference on machine
learning (pp. 6187-6199).

29



Leibo, J. Z., Hughes, E., Lanctot, M., & Graepel, T. (2019). Autocurricula
and the emergence of innovation from social interaction: A manifesto for
multi-agent intelligence research. arXiv preprint arXiv:1903.00742.

Leibo, J. Z., Perolat, J., Hughes, E., Wheelwright, S., Marblestone, A. H.,
Duénez-Guzmén, E., ... Graepel, T. (2019). Malthusian reinforcement learn-
ing. In Proceedings of the 18th international conference on autonomous agents
and multiagent systems (pp. 1099-1107).

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., & Graepel, T. (2017).
Multi-agent Reinforcement Learning in Sequential Social Dilemmas. In Pro-
ceedings of the 16th international conference on autonomous agents and mul-
tiagent systems (aa-mas 2017). Sao Paulo, Brazil.

Lerer, A., & Peysakhovich, A. (2017). Maintaining cooperation in com-
plex social dilemmas using deep reinforcement learning. arXiv preprint

arXiv:1707.01068.

Levin, S., Xepapadeas, T., Crépin, A.-S., Norberg, J., De Zeeuw, A., Folke, C.,

. others (2013). Social-ecological systems as complex adaptive systems:

modeling and policy implications. Environment and development economics,
18(2), 111-132.

Levine, S., Chater, N., Tenenbaum, J., & Cushman, F. (n.d.). Resource-rational
contractualism: A triple theory of moral cognition. osf.io.

Li, W., Wang, X., Jin, B., Lu, J., & Zha, H. (2023). Learning roles with
emergent social value orientations. arXiv preprint arXiv:2301.13812.

Lieder, F., & Griffiths, T. L. (2019, February). Resource-rational analysis:
Understanding human cognition as the optimal use of limited computational
resources. Behav. Brain Sci., 43 (el), el. doi: 10.1017/s0140525x1900061x

Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual
system: Past, present, and future. Journal of cognitive neuroscience, 33(10),
2017-2031.

Lindstrém, B., Bellander, M., Schultner, D. T., Chang, A., Tobler, P. N., &
Amodio, D. M. (2021, December). A computational reward learning account
of social media engagement. Nat. Commun., 12(1), 1311. doi: 10.1038/
$41467-020-19607-x

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch, I.
(2017). Multi-agent actor-critic for mixed cooperative-competitive environ-
ments. Advances in neural information processing systems, 30.

Lupu, A., & Precup, D. (2020). Gifting in multi-agent reinforcement learning.
In Proceedings of the 19th international conference on autonomous agents and
multiagent systems (pp. 789-797).

30



Léger, C., Hamon, G., Nisioti, E., Hinaut, X., & Moulin-Frier, C. (2023, De-
cember). Evolving reservoirs for meta reinforcement learning. arXiv [cs.LG]J.

Marwell, G., & Oliver, P. (1993). The critical mass in collective action. Cam-
bridge University Press.

McKee, K. R., Gemp, 1., McWilliams, B., Duenez-Guzman, E. A., Hughes, E.,
& Leibo, J. Z. (2020). Social diversity and social preferences in mixed-motive
reinforcement learning. In Proceedings of the 19th international conference
on autonomous agents and multiagent systems (pp. 869-877).

McKee, K. R., Hughes, E., Zhu, T. O., Chadwick, M. J., Koster, R., Cas-
taneda, A. G., ... Leibo, J. Z. (2021). A multi-agent reinforcement learn-
ing model of reputation and cooperation in human groups. arXiv preprint
arXiv:2103.04982.

Milgram, S. (1963). Behavioral study of obedience. The Journal of abnormal
and social psychology, 67(4), 371.

Milinski, M., Semmann, D.; & Krambeck, H.-J. (2002). Reputation helps solve
the ‘tragedy of the commons’. Nature, 415(6870), 424-426.

Misyak, J. B., & Chater, N. (2014). Virtual bargaining: a theory of social
decision-making. Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 20130487.
doi: 10.1098/rstb.2013.0487

Mobbs, D., Wise, T., Suthana, N., Guzmén, N., Kriegeskorte, N., & Leibo,
J. Z. (2021, July). Promises and challenges of human computational ethology.
Neuron, 109(14), 2224-2238. doi: 10.1016/j.neuron.2021.05.021

Nisioti, E., & Moulin-Frier, C. (2020). Grounding artificial intelligence in the
origins of human behavior. arXiv.

Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber,
A., ... Vazire, S. (2022, January). Replicability, robustness, and repro-
ducibility in psychological science. Annu. Rev. Psychol., 73, 719-748. doi:
10.1146/annurev-psych-020821-114157

Oldenburg, N., & Zhi-Xuan, T. (2024). Learning and sustaining shared nor-
mative systems via bayesian rule induction in markov games. arXiv preprint
arXiv:2402.13399.

Ostrom, E. (1998). A behavioral approach to the rational choice theory of
collective action: Presidential address, american political science association,
1997. American Political Science Review, 92(1), 1-22.

Ostrom, E. (2009). A general framework for analyzing sustainability of social-
ecological systems. Science, 325(5939), 419-422.

Ostrom, E., Gardner, R., & Walker, J. (1994). Rules, games and common-pool
resources. University of Michigan Press.

31



Palminteri, S., & Pessiglione, M. (2017). Opponent brain systems for reward
and punishment learning: causal evidence from drug and lesion studies in
humans. In Decision neuroscience (pp. 291-303). Elsevier.

Perolat, J., Leibo, J. Z., Zambaldi, V., Beattie, C., Tuyls, K., & Graepel, T.
(2017). A multi-agent reinforcement learning model of common-pool resource
appropriation. Advances in neural information processing systems, 30.

Plappert, M., Sampedro, R., Xu, T., Akkaya, 1., Kosaraju, V., Welinder, P., ...
Zaremba, W. (2021). Asymmetric self-play for automatic goal discovery in
robotic manipulation. arXiw preprint arXiv:2101.04882.

Poteete, A. R., Janssen, M. A., & Ostrom, E. (2010). Working together: col-
lective action, the commons, and multiple methods in practice. Princeton
University Press.

Rabin, M. (1993). Incorporating fairness into game theory and economics. The
American economic review, 1281-1302.

Ritov, I., & Baron, J. (1995, November). Outcome knowledge, regret, and
omission bias. Organ. Behav. Hum. Decis. Process., 64(2), 119-127. doi:
10.1006/0bhd.1995.1094

Savage, L. J. (1954). The foundations of statistics. Courier Corporation.
Schelling, T. C. (1960). The strategy of conflict. Harvard University Press.

Schill, C., Anderies, J. M., Lindahl, T., Folke, C., Polasky, S., Cardenas, J. C.,
... Schlitter, M. (2019). A more dynamic understanding of human behaviour
for the anthropocene. Nature Sustainability, 2(12), 1075-1082.

Schlager, E., Blomquist, W., & Tang, S. Y. (1994). Mobile flows, storage,
and self-organized institutions for governing common-pool resources. Land
Economics, 294-317.

Schwardmann, P., & van der Weele, J. (2019, October). Deception and self-
deception. Nature Human Behaviour, 3(10), 1055-1061. doi: 10.1038/s41562
-019-0666-7

Sebanz, N., Bekkering, H., & Knoblich, G. (2006, February). Joint action:
bodies and minds moving together. Trends Cogn. Sci., 10(2), 70-76. doi:
10.1016/j.tics.2005.12.009

Serino, A. (2019, April). Peripersonal space (PPS) as a multisensory interface
between the individual and the environment, defining the space of the self.
Neurosci. Biobehav. Rev., 99, 138-159. doi: 10.1016/j.neubiorev.2019.01.016

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M., Guez, A., ...
others (2018). A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419), 1140-1144.

32



Simon, H. A. (1990). Bounded rationality. In Utility and probability (pp. 15-18).
Springer.

Small; M. L., & Adler, L. (2019, July). The role of space in the formation
of social ties. Annu. Rev. Sociol., 45(1), 111-132. doi: 10.1146/annurev-soc
-073018-022707

Sripada, C. S., & Stich, S. (2006). A framework for the psychology of norms.
The innate mind, 2, 280-301.

Stastny, J., Riché, M., Lyzhov, A., Treutlein, J., Dafoe, A., & Clifton, J. (2021).
Normative disagreement as a challenge for cooperative Al. arXiv preprint
arXiv:2111.13872.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., ...
Vicente, R. (2017). Multiagent cooperation and competition with deep rein-
forcement learning. PloS one, 12(4), e0172395.

Ullmann-Margalit, E. (2015). The emergence of norms. Oxford University
Press, USA.

Vinitsky, E., Késter, R., Agapiou, J. P., Duénez-Guzmén, E. A., Vezhnevets,
A.S., & Leibo, J. Z. (2023). A learning agent that acquires social norms from
public sanctions in decentralized multi-agent settings. Collective Intelligence,
2(2), 26339137231162025.

Wang, J. X., Hughes, E., Fernando, C., Czarnecki, W. M., Duénez-Guzmaén,
E. A., & Leibo, J. Z. (2019). Evolving intrinsic motivations for altruistic
behavior. In Proceedings of the 18th international conference on autonomous
agents and multiagent systems (pp. 683-692).

Wang, W. Z., Beliaev, M., Biyik, E., Lazar, D. A., Pedarsani, R., & Sadigh, D.
(2021). Emergent prosociality in multi-agent games through gifting. arXiv
preprint arXiw:2105.06593.

Willis, R., & Luck, M. (2023). Resolving social dilemmas through reward
transfer commitments.

Wilson, J., Yan, L., & Wilson, C. (2007). The precursors of governance in
the maine lobster fishery. Proceedings of the National Academy of Sciences,
104(39), 15212-15217.

Wilson, J. A., Acheson, J. M., Metcalfe, M., & Kieban, P. (1994). Chaos,
complexity and community management of fisheries. Marine Policy, 18(4),
291-305.

Young, O. R. (2002). The institutional dimensions of environmental change:
fit, interplay, and scale. MIT press.

33



Zaatri, S., Aderka, I. M., & Hertz, U. (2022, May). Blend in or stand out:
social anxiety levels shape information-sharing strategies. Proc. Biol. Sci.,
289(1975), 20220476. doi: 10.1098 /rspb.2022.0476

Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., & Socher, R. (2022). The
AT economist: Taxation policy design via two-level deep multiagent reinforce-
ment learning. Science advances, 8(18), eabk2607.

Zhu, H., Neubig, G., & Bisk, Y. (2021). Few-shot language coordination by
modeling theory of mind. In International conference on machine learning
(pp. 12901-12911).

Zimbardo, P. G. (1969). The human choice: Individuation, reason, and or-
der versus deindividuation, impulse, and chaos. In Nebraska symposium on
motivation.

34



	Abstract
	Introduction
	Experimental Social Psychology Approach
	The matrix games approach
	The multi-agent reinforcement learning (MARL) approach

	MARL for social-ecological systems
	Modeling individual decision making
	Progressive skill learning
	Cognitive constraints

	Environmental constraints
	Spatial characteristics
	Temporal Characteristics
	Situations with multiple equilibria and heterogeneous tastes
	Communication

	Cooperation in social dilemmas
	Augmenting utility functions (intrinsic motivation)
	Reciprocity
	Reputation
	Norms


	Open problems and future directions in MARL models of social-ecological systems
	MARL as a discovery research tool
	Better models for the effect of communication
	Predicting the effect of interventions

	Declaration of interests

