
Restoring the Executability of Jupyter Notebooks by

Automatic Upgrade of Deprecated APIs

Chenguang Zhu1, Ripon K. Saha2, Mukul R. Prasad2, and Sarfraz Khurshid1

1The University of Texas at Austin, 2Fujitsu Research of America, Inc.

Email: cgzhu@utexas.edu, rsaha@fujitsu.com, mukul@fujitsu.com, khurshid@utexas.edu

Abstract—Data scientists typically practice exploratory pro-
gramming using computational notebooks, to comprehend new
data and extract insights. To do this they iteratively refine their
code, actively trying to re-use and re-purpose solutions created
by other data scientists, in real time. However, recent studies
have shown that a vast majority of publicly available notebooks
cannot be executed out of the box. One of the prominent reasons
is the deprecation of data science APIs used in such notebooks,
due to the rapid evolution of data science libraries. In this work
we propose RELANCER, an automatic technique that restores
the executability of broken Jupyter Notebooks, in near real time,
by upgrading deprecated APIs. RELANCER employs an iterative
runtime-error-driven approach to identify and fix one API issue
at a time. This is supported by a machine-learned model which
uses the runtime error message to predict the kind of API repair
needed - an update in the API or package name, a parameter, or
a parameter value. Then RELANCER creates a search space of
candidate repairs by combining knowledge from API migration
examples on GitHub as well as the API documentation and
employs a second machine-learned model to rank this space of
candidate mappings. An evaluation of RELANCER on a curated
dataset of 255 un-executable Jupyter Notebooks from Kaggle
shows that RELANCER can successfully restore the executability
of 56% of the subjects, while baselines relying on just GitHub
examples and just API documentation can only fix 38% and 36%
of the subjects respectively. Further, pursuant to its real-time
use case, RELANCER can restore execution to 49% of subjects,
within a 5 minute time limit, while a baseline lacking its machine
learning models can only fix 24%.

Index Terms—data science, API migration, software evolution

I. INTRODUCTION

The ready availability of sensors and inexpensive compute

resources, coupled with a number of significant advances in

machine learning and data analytics has fueled an explosive

growth in the field of data science [1], [2]. Kaggle, the relatively

nascent online community of data scientists, already boasts

over 6 million users and hosts 50,000 public datasets [3].

Data scientists typically follow the paradigm of exploratory

programming, iteratively refining code to comprehend new data

and extract meaningful insights from it [4], [5]. To do this they

actively try to re-use and re-purpose solutions created by other

data scientists, in real time. Indeed, Kaggle proudly claims that:

"Inside Kaggle you’ll find all the code & data you need to do

your data science work" [3]. Jupyter Notebooks [6] - interactive

computational structures which interleave code snippets, natural

language text, computation results, and visualizations - have

become the medium of choice for data scientists to program,

record, and share data analyses [7], [8]. Kaggle hosts 400,000

such public notebooks [3]. Similarly, there are currently nearly

10 million Jupyter Notebooks hosted on GitHub, with the

number having grown 8-fold over just the last two years [9].

A data scientist pursuing exploratory programming by re-

using existing Jupyter Notebooks would require such note-

books to be easily reproducible or at the least executable.

In fact, producing "reproducible computational workflows"

was intended to be one of the defining features of Jupyter

Notebooks (and computational notebooks in general) [10],

[11]. However, this promise has not been realized in practice.

A large-scale empirical study by Pimental et al. on Jupyter

Notebooks projects on GitHub found that only 24.11% of

their selected notebooks could execute without errors, and

only 4.03% reproduced the original results [12]. The concerns

about executability are echoed in a recent survey of data

scientists [13]. Similarly, our study of a sample of machine

learning notebooks on Kaggle (reported in Section II-A)

revealed that 47% of them could not be executed.

Recent studies have identified a number of root causes for

why archived Jupyter Notebooks cannot be easily re-executed.

These include, ambiguity in the execution order of the notebook

cells [14], lack of knowledge of the notebook’s execution

environment [15], and references to external resources (such

as data on external servers) [12], [14]. An emerging body of

work also aims at restoring the executability of such notebooks

by automatically inferring correct cell execution order [14]

or inferring an appropriate execution environment [15]. Other

studies have highlighted the landscape of rapidly evolving

Python libraries, particularly data science libraries, which

leads to unhandled deprecation issues in programs using these

libraries [16], [17], [18]. In fact, our study of Kaggle notebooks

(Section II-A) found that deprecated APIs was at least one of

the reasons (if not the only reason) for the unexecutability of

at least 31% of the unexecutable notebooks. Therefore, in this

paper, we propose a technique to restore the executability of

Jupyter Notebooks by automatically diagnosing, inferring, and

upgrading deprecated APIs used by the notebook.

There is a rich body of existing work on computing API

mappings across pairs of libraries, languages, or platforms,

to be then used to migrate a project from a source library

(platform) to a target library (platform) [19], [20], [21], [22],

[23], [24], [25], [26]. There is also recent work that can

perform an end-to-end migration [27], [28], [18]. However,

our target use-case - automatically making broken Jupyter

Notebooks executable in near real-time, by fixing deprecated

240

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00031
978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 04,2023 at 02:09:17 UTC from IEEE Xplore. Restrictions apply.

