L)
Py SymMC: Approximate Model Enumeration and Counting using

Symmetry Information for Alloy Specifications

Wenxi Wang
The University of Texas at Austin
Austin, Texas, USA
wenxiw@utexas.edu

Kenneth L. McMillan
The University of Texas at Austin
Austin, Texas, USA
kenmcm@cs.utexas.edu

ABSTRACT

Specifying and analyzing critical properties of software systems
plays an important role in the development of reliable systems.
Alloy is a mature tool-set that provides a first-order relational logic
for writing specifications, and a fully automatic powerful backend
for analyzing the specifications. It has been widely applied in areas
including verification, security, and synthesis.

Symmetry breaking is a useful approach for pruning the search
space to efficiently check the satisfiability of combinatorial prob-
lems. As the backend solver of Alloy, Kodkod does the partial sym-
metry breaking (PaSB) for Alloy specifications. While full symmetry
breaking remains challenging to scale, a recent study showed that
Kodkod PaSB could significantly reduce the model counting time,
albeit at the cost of producing only partial model counts. However,
the desired term is either the isomorphic count under no symmetry
breaking, or the non-isomorphic models/count under full symmetry
breaking. This paper presents an approach called SymMC, which
utilizes the symmetry information to compute all the desired terms
for Alloy specifications. To make SymMC scalable, we propose ap-
proximate algorithms based on sampling to estimate the desired
terms. We show that our proposed estimators have consistency
and upper bound properties. To our knowledge, SymMC is the
first approach that automatically approximates non-isomorphic
model enumeration/counting for Alloy specifications. Thanks to
the non-isomorphic model counting, SymMC also provides the first
automatic quantification measurement on the solution space prun-
ing ability of Kodkod PaSB. Furthermore, empirical evaluations
show that SymMC provides a competitive isomorphic counting
approach for Alloy specifications compared to the state-of-the-art
model counters.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE 22, November 14-18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11...$15.00
https://doi.org/10.1145/3540250.3549161

Yang Hu
The University of Texas at Austin
Austin, Texas, USA
huyang@utexas.edu

Sarfraz Khurshid

The University of Texas at Austin
Austin, Texas, USA
khurshid@ece.utexas.edu

CCS CONCEPTS

- Software and its engineering — Software verification; « The-
ory of computation — Automated reasoning.

KEYWORDS
Symmetry Breaking, Permutation Sampling, Alloy specifications

ACM Reference Format:

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid. 2022.
SymMC: Approximate Model Enumeration and Counting using Symmetry
Information for Alloy Specifications. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE °22), November 14—18, 2022, Singapore,
Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3540250.3549161

1 INTRODUCTION

Alloy [27] is a specification language combining first-order logic
with relational algebra. Alloy and its analyzer have been widely
used for complex system modeling in a variety of fields such as
security [2, 56], system analysis and verification [8, 28, 43], and
design [3, 6, 7]. In the backend, Alloy analyzer is supported by a
highly optimized constraint solver called Kodkod [54], which does
symmetry breaking at the problem domain level and efficiently
translates Alloy specifications into SAT formulas. To check the
satisfiability of Alloy specifications, Alloy analyzer calls its off-the-
shelf SAT solvers to solve the SAT formulas.

A symmetry is a permutation of atoms in a problem’s universe
that takes models of the problem to other models, and non-models
to other non-models. Kodkod performs static symmetry break-
ing where the symmetry breaking predicates (SBPs) [13] are pre-
generated and added to the original SAT formula. Unfortunately,
generating a full symmetry breaking predicate to make exactly one
representative per isomorphism class is NP-complete [13]. Regard-
ing this, Kodkod generates a partial SBP which is true of at least one
(typically more than one) representative per isomorphism class.

This paper focuses on addressing three challenging problems for
Alloy specifications by exploiting the Kodkod PaSB.
Non-Isomorphic Model Enumeration Non-isomorphic models
are often desirable because they amount to a significant computa-
tional save without reducing the effectiveness of achieving the goal.
For example, non-isomorphic test inputs save a significant amount
of time to test the program without reducing the code coverage. A

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

lot of work has been done to efficiently enumerate non-isomorphic
models in various kinds of areas such as test generation [32, 42, 59],
configurations of robotics [11, 34], and graphs [37, 41, 55]. To our
knowledge, there is only one existing tool called TestEra [29, 31, 35]
that utilizes Alloy to generate non-isomorphic test inputs for Java
programs. However, this approach has one limitation: it requires
users to manually add the symmetry breaking specification to real-
ize the full symmetry breaking for their Alloy specifications. Mo-
tivated by this, we aim to propose a fully automated approach to
enumerate non-isomorphic models for Alloy specifications without
requiring manual input from users.

Quantification Measurement of Kodkod Partial SBPs Kodkod
partial SBPs are often effective—they are often able to rule out a
large fraction of models from each isomorphism class. However,
the pruning ability of Kodkod partial SBPs is unpredictable, which
means that the partial SBPs can result in totally different ruled-out
fractions for different input problems. Shlyakhter et al. did some
initial measurements for the effectiveness of the partial SBPs applied
on only a few examples with the known number of isomorphism
classes [48]. However, to our knowledge, no work has been done
to automatically measure the effectiveness of Kodkod partial SBPs
for an arbitrary Alloy specification due to the difficulty of counting
the number of isomorphism classes of the specification. Regarding
this, we aim to automatically measure the pruning ability of the
applied Kodkod partial SBPs for an arbitrary Alloy specification, by
getting the non-isomorphic count for the specification.
Isomorphic Model Counting Model counting is a classical prob-
lem of computing the number of models for a given formula. Pro-
Jjected model counting [4] is a kind of model counting problem which
counts only the unique models with respect to designated variables.
Consider a simple SAT formula (x1 V x3) A (x3 V —x4), the pro-
jected model count over variables x; and x3 is 3; over variables x;
and x4 is 4. There have been several recent works in doing model
counting for Alloy specifications [57, 60, 62]. The model count-
ing for Alloy specifications belongs to projected model counting,
which counts the number of satisfiable models of the translated SAT
formulas over only primary variables (i.e., the variables directly
encoding Alloy specification components) excluding auxiliary vari-
ables introduced during the translation. A recently published tool
called AlloyMC [62] has added off-the-shelf projected model coun-
ters to the Alloy backend. A recent study [60] found that Kodkod
partial SBPs can substantially reduce the counting time taken by
the-state-of-art model counters for counting satisfiable models of
Alloy specifications. However, the addition of partial SBPs means
that the reported counts are accurate only with respect to partial
symmetry breaking (PaSB). Indeed, it is the isomorphic count (i.e.,
the model count with no symmetry breaking) that is commonly
desirable. Inspired by the findings of the study, we aim to efficiently
get the isomorphic count for Alloy specifications by utilizing the
Kodkod partial SBPs.

We propose an automated tool called SymMC to solve all these
three challenging problems by solving two key technical problems:
the non-isomorphic model enumeration/counting and the isomor-
phic model counting for Alloy specifications. The two technical
problems are in general hard problems—they would quickly become
intractable as the number of all possible permutations in the input
problem increases substantially. Regarding this, the core idea inside

1210

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

SymMC is to efficiently approximate the non-isomorphic models
and the isomorphic model count, by sampling the permutations
instead of considering all possible permutations.

We first convert the non-isomorphic model enumeration prob-
lem into a graph theory problem. The non-isomorphic models can
be over-approximated through the weakly connected components
of the converted graph which are constructed by the randomly
sampled permutations. Based on the formulation, we propose our
non-isomorphic model estimator and show that the estimator is able
to provide high approximation accuracy. The isomorphic counting
estimator is built upon the non-isomorphic model estimator. We for-
mulate the isomorphic counting problem into a statistical inference
problem. Based on the formulation, we then propose our isomorphic
counting estimator based on the simple random sampling. We prove
that both estimators provide the upper bound/over-approximation
of the count/enumeration and have consistency property. Finally,
we present two practical approximate algorithms of SymMC for
realizing the two estimators, respectively.

We evaluate SymMC mainly in two aspects: the approximation
efficiency and the approximation accuracy. To do the empirical
evaluation, we collect 110 Alloy specifications as our subjects from
four sources relating to a variety of real-world applications such as
security, protocols and test generation. For non-isomorphic model
approximation, experimental results show that SymMC success-
fully solves 73 subjects within the standard time limit of 5,000
seconds; for all those subjects, SymMC approximates with surpris-
ingly zero error rate. For quantification measurement of the Kodkod
partial SBP, SymMC found that its pruning ability is often effective
and even perfect in some subject types (e.g., n-Queen problems),
while its ability is sometimes very limited in other subjects (e.g.,
singly linked list data structure). For isomorphic model counting,
experimental results show that SymMC is more efficient than the
state-of-the-art exact counter GANAK [47] in 77.2% subjects and the
state-of-the-art approximate counter ApproxMC [51] in 79.5% sub-
jects; SymMC approximates with lower error rate than ApproxMC
in 95.6% subjects. The source code of SymMC is publicly available
at https://github.com/wenxiwang/SymMC-Tool.

The contributions of this paper are:

o Idea. We introduce the idea of utilizing symmetry informa-
tion and permutation sampling to approximate the non-
isomorphic model enumeration and isomorphic counting
for Alloy specifications.

Approximate Non-isomorphic Enumeration. To our knowl-
edge, SymMC is the first to do automatic non-isomorphic
model enumeration for Alloy specifications.

Quantification Measurement. SymMC provides an automatic
way of measuring the pruning ability of the Kodkod partial
SBPs for an arbitrary Alloy specification.

Approximate Isomorphic Counting. We present an approx-
imate isomorphic counting algorithm based on sampling
which is competitive with state-of-the-art counters.

2 RELATED WORK

For non-isomorphic model enumeration for Alloy specifications,
the most related tool is TestEra [29, 31, 35] which applies Alloy as

SymMC: Approximate Model Enumeration and Counting using Symmetry Information for Alloy Specifications

. sig Node { link: one Node }
. pred Cyclic {
all n: Node | n.*link = Node

S B NN

. run Cyclic for 5 Node

Figure 1: The Alloy specification of the cyclic linked list.

its backend to enumerate non-isomorphic test inputs for Java pro-
grams with limited data structure types. TestEra requires users to
manually add domain-specific specifications as symmetry breaking
constraints to eliminate all the isomorphic models. It is shown in
the recent study [60] that the manually added domain-specific sym-
metry breaking constraints proposed by TestEra for six basic data
structures are able to do efficient full symmetry breaking. However,
to fully break the symmetries for even the classic data structures
(e.g., linked lists and binary search trees), it took the authors (i.e.,
the experts) a few hours to write the specification [30]. Not to
mention all kinds of complex domain-specific problems defined by
Alloy users. In general, the limitation of this approach is obvious—
it requires users to have enough domain knowledge and expert
knowledge in symmetry breaking to be able to manually write
the symmetry breaking constraints for their own domain-specific
problems. In contrast, by exploiting the symmetry information of
the specifications, SymMC is able to automatically approximate the
non-isomorphic models for arbitrary Alloy specifications, without
requiring any manual effort from the user side.

There are two recent works which consider doing model count-
ing with Alloy. Wang et al. in the study [60] of symmetry breaking
and model counting found that counting under Alloy partial sym-
metry breaking is much faster than counting under no symmetry
breaking, which shows a promising direction to improve the model
counting efficiency. However, using partial symmetry breaking
predicates creates a different counting problem, thus could intro-
duce bias to the original counting problem. Unfortunately, the study
did not attempt to address this issue. Inspired by the findings of
the study, SymMC aims to efficiently approximate the counts both
under no symmetry breaking (isomorphic counting) and under full
symmetry breaking (non-isomorphic counting) by enumerating
models under partial symmetry breaking. AlloyMC [62] is a tool
implementation which adds off-the-shelf model counters to the
Alloy backend and provides a GUI which invokes these counters to
get the count of the input Alloy specification under no symmetry
breaking or partial symmetry breaking. In essence, AlloyMC sim-
ply applies off-the-shelf model counters on Alloy specifications, by
extending the original Alloy grammars and GUL It neither consid-
ers symmetry breaking during counting, nor is able to count the
non-isomorphic models.

Much work has been done in approximate model counting with
sampling [9, 17, 21-25, 33, 50, 51, 61]. A significant amount of re-
search has been attempted in utilizing symmetry breaking in SAT
and constraint solving [5, 14, 15, 18—20, 38-40, 44, 46]. However,
only a few works focus on applying symmetry in the area of model
counting. Besides the recent study [60] by Wang et al. as discussed
above, we are only aware of one very recent paper by Bremen et
al. [58], which is closely related to our paper. The authors exploited
the inherent symmetry exhibited in combinatorial problems for
component caching-based model counters. Their approach is im-
plemented in a propositional counter called SymGanak. There are

1211

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Perm(1 2) Perm (3 4)
Node link Node link
[1—=2 3 4 5] Sug7 § 9 10 [r 2 3—4 s5][6 7 89 10
112 13 12 15 11 12 1314 15
1617 18 19 20 Py s 02
21522 23 24 25 21 22 23774 25
26527 28 29 30 2 27 28529 30
Perm (2 3) Perm (4 5)
Node link Node link
[1 223 4 s][6 758 9 1w0]|/[t 2 3 4—=5][6 7 8 910
pore 1 11 12 13 1415
16 17 18 19 20 16 17 18 1920
21 2223 24 25 3 23 np
2 2728 29 30 2% 27 28 29 %0

Figure 2: Permutations of the cyclic linked list specification
explicitly eliminated by Kodkod symmetry breaking.

two main differences between SymMC and SymGanak: 1) SymMC
presents a specialized counting approach for Alloy specifications
which can do both non-isomorphic model enumeration/counting
and isomorphic counting, while SymGanak can only do the isomor-
phic counting for propositional formulas; 2) SymGanak exploits
symmetry dynamically among the components encountered during
counting, while SymMC dose its counting based on the static sym-
metry info. In addition, the current implementation of SymGanak
does not support projected model counting’.

3 BACKGROUND

We introduce the basics of Alloy specifications and Kodkod par-
tial symmetry breaking for Alloy specifications, using a simple
illustrative example in Figure 1.

3.1 Alloy Specifications

An Alloy specification usually consists of three key components:
signature declarations which define sets or relations, constraint para-
graphs which define the constraints over the signatures, and com-
mands which provide instructions for the Alloy analyzer to carry
out various analyses. Figure 1 shows a specification example which
aims to generate a cyclic linked list. A signature (keyword sig)
named Node represents a set of atoms (line 1). In the body of the
signature declaration, the field named link represents a binary
relation over the Node set (i.e., link C Node X Node). Here, the
keyword one means that for any atom n € Node, there exists ex-
actly one atom n’ € Node satisfying that (n,n") € link. A predicate
Cyclic defines a constraint saying that all nodes are reachable from
every node n (keyword all) following one or more traversals (sym-
bol") along with the link (line 2-4). The run command requests
the Alloy analyzer to search for an instance (i.e., a model) of the
predicate Cyclic. Here, 5 Node means that the Node set contains at
most 5 atoms. Given a specification, the Alloy analyzer invokes
the backend constraint solver called Kodkod [54] to translate it
into a SAT formula. The formula is then solved by an off-the-shelf
SAT solver to check the satisfiablity of the predicate constraint. For
more details of Alloy, please refer to the book [27].

IPlease refer to the discussion at: https://github.com/meelgroup/ganak/issues/14

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

3.2 Kodkod Partial Symmetry Breaking for
Alloy Specifications

As a backend solver of Alloy, Kodkod [54] is an efficient constraint
solver, which supports static partial symmetry breaking at the prob-
lem domain level [49, 53].

Kodkod Translation on Relations When Kodkod translates an
Alloy specification into a SAT formula, it treats every relation as
a matrix of Boolean variables [26]. The dimension of the matrix
equals to the relation’s arity. A signature (i.e., a set of atoms) is
specially viewed as a unary relation and is represented by a vector.
The vector and the matrix representing the Node and link relations
respectively in the illustrative example are shown in Figure 2 (each
Boolean variable is indexed with a unique number). Since the run
command defines that at most 5 atoms are in the Node relation,
the Node relation is represented by a vector with length 5; the link
relation which maps Node to Node is represented by a 5 X 5 matrix.
Symmetry Type, Permutations and Transpositions Kodkod
symmetry detection for Alloy specifications is straightforward:
the symmetry of Alloy specifications happens in each declared
signature that can contain more than one atom. In Kodkod, such
signature is called a symmetry type. In the illustrative example, the
Node signature is a symmetry type. The interchange of any atoms
within symmetry types is taken as one permutation. Figure 2 shows
four permutations of the illustrative example. The top left of Fig-
ure 2 shows one permutation which interchanges atom 1 and atom
2 in the symmetry type Node; the variables in row 1 and row 2,
and column 1 and column 2 of the link relation matrix are also
exchanged correspondingly (as indicated by the red arrows), since
the link relation has the symmetry type Node in both dimensions.
A permutation can be represented as a set of transpositions (i.e.,
permutations which only exchange two atoms and keep all others
fixed). For example, all the permutations shown in Figure 2 are
actually transpositions.

Partial Symmetry Breaking Kodkod performs partial symmetry
breaking using the lexicographical order (lex-order) predicate [53].
For each symmetry type, Kodkod defines a lex-order predicate
over all its atoms. The predicates over atoms are then transformed
into the lex-order predicates over the variables in relation matri-
ces which contain the symmetry type. Figure 2 shows all four
permutations of the example that are explicitly eliminated by Kod-
kod defined lex-order predicates. To eliminate the permutation
(1,2) shown in the top left of Figure 2, Kodkod defines the lex-
order predicate over atoms that atom 1 is lex-smaller (denoted
as <[,y) than atom 2 in the symmetry type Node. This defines
the lex-order of the variables in the relation matrix link: vari-
ables in row 1 are lex-smaller than the corresponding variables
in row 2, which also applies to column 1 and column 2. Thus, the
lex-order predicate over atoms (atom 1 <, atom 2) is equiva-
lent to the lex-order predicate over variables in relation matrices:
(1 Zgex 2) A (6 Spex 12) A7 Zpex 11) A (8 Spex 13) A (9 Spex
14) A (10 <jpr 15)A(16 <jox 17) A(21 <oy 22) A(26 <jor 27). This
way, by transforming the predicate over atoms: (atom 1 <, atom
2) A (atom 2 <p,, atom 3) A (atom 3 <, atom 4) A (atom 4 <.
atom 5) into the predicate over variables, the Kodkod symmetry
breaking predicate is created, with which all four permutations in
Figure 2 are explicitly eliminated.

1212

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

Figure 3: All models of the illustrative example under Kod-
kod partial symmetry breaking; the dashed circle represents
an empty linked list.

Figure 4: Applying the transposition list of permutation (1,
2) on model m; to obtain the permuted model m;. For each
model, the values of 30 primary variables are shown.

As shown in the example, Kodkod only explicitly considers elim-
inating a linear number of permutations in each symmetry type,
which might implicitly eliminate other permutations. Although effi-
cient, there is no guarantee to break all symmetries. As shown in
Figure 3, two satisfying models under the defined SBP are isomor-
phic to each other (circled by the red dashed line). In sum, Kodkod’s
partial symmetry breaking is based on heuristics, and there is no
characterization of what portion of permutations is eliminated by the
defined SBP.

4 SYMMC

Given that the pruning ability of Kodkod SBPs is unpredictable,
instead of only considering the permutations that are explicitly elim-
inated by the Kodkod SBPs, SymMC enhances Kodkod to extract
the symmetry information which is able to generate all possible per-
mutations. It then samples permutations which are usually much
larger than the permutations explicitly eliminated by Kodkod SBPs,
using well-designed algorithms with theoretical guarantees to ap-
proximate the non-isomorphic model set/count and the isomporhic
model count.

4.1 Overview

The overview of SymMC is shown in Figure 5. The input of SymMC
is an arbitrary Alloy specification. SymMC has three key func-
tionalities which correspond to three outputs: the non-isomorphic
models/count of the specification, the isomorphic model count of
the specification, and the quantification metric in evaluating the
pruning ability of the applied Kodkod partial SBP. In order to re-
alize these functionalities, SymMC consists of three modules: 1)
enhanced Kodkod which not only encodes the Alloy specification
under PaSB into a SAT formula (with primary variables indicated),
but also extracts the symmetry info of the specification; 2) the
all-satisfiable model enumerator which generates all the satisfy-
ing models projected over primary variables under PaSB; 3) the
estimator module including the two estimators for approximating
the non-isomorphic model set/count and the isomorphic model
count, respectively. The quantification metric is the by-product of
the non-isomorphic estimator. The following subsections introduce
these three modules in detail.

SymMC: Approximate Model Enumeration and Counting using Symmetry Information for Alloy Specifications

All-SAT model

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

3 [peea—

Enhanced enumerator Estimator
Kodkod non-isomorphic non-isom.
Alloy sat formula model set enumeration/ model
spec. PaSB (PaSB) (PaSB) > counting set/count
sym. info sym. info isomorphic isom. model
extraction R counting count
J

Figure 5: SymMC overview

4.2 Enhanced Kodkod with Symmetry Info
Extraction

The enhanced Kodkod module can not only perform partial sym-
metry breaking but also extract the symmetry info of the input
specification, with which all possible permuted models of a given
model can be efficiently generated. To illustrate why and how we
enhance Kodkod for symmetry info extraction, we first present how
one permuted model of a given model is created with the symmetry
info available from the vanilla Kodkod; we then show that extra
symmetry info is needed for efficient permuted model generation.

With our illustrative example, we explain how the permuted
model my of a given model m is obtained under permutation (1, 2),
as shown in Figure 4. As mentioned above, the detailed info of the
permutation (1, 2) w.r.t. the symmetry type Node is a transposition
list of the corresponding Boolean variables in Node and 1link: (1, 2),
(6,12), (7, 11), (8, 13), (9, 14), (10, 15), (16, 17), (21, 22) and (26, 27). For
the model m1, values of the Boolean variables in each transposition
in the list are exchanged to obtain the permuted model my under
the permutation (1, 2).

As known, every permutation can be decomposed as products
of a linear number of transpositions of any two atoms, while every
permutation can be decomposed as products of a quadratic number
of nearest-neighbor transpositions (i.e., the transpositions of two
atoms which are next to each other). As illustrated in Section 3,
Kodkod only considers nearest-neighbor transpositions for each
symmetry type (e.g., (1, 2), (2, 3), (3, 4) and (4, 5) in our example).
To get a simple decomposition of any permutation in the example,
besides the nearest-neighbor transpositions, we also need the info
(i.e., the transposition list of the corresponding Boolean variables)
of other transpositions (e.g., (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), and (3,
5) in our example). In sum, to efficiently generate any permuted
model w.r.t. one symmetry type, we need the info of transpositions
of any two atoms in that type. Thus, we enhance Kodkod to extract
the info of all possible transpositions for each symmetry type. A
permuted model w.r.t. all symmetry types Ay, ... A, is obtained with
the combination of the permutation in each type, thus the number
of all permutations is [17, |A;]!, which is usually a huge number.
Therefore, the naive non-isomorphic model enumeration/counting
approach as well as the naive isomorphic counting approach could
quickly fail when the number increases substantially. In Section 4.4
and Section 4.5, we will introduce how SymMC utilizes permutation
sampling to make it scalable.

1213

4.3 The AIISAT Model Enumerator

Generating all satisfiable models (AIISAT for short) is a variant of
the propositional satisfiability problem. According to the recent
survey [52], AlISAT solvers can be classified into three categories:
blocking clause-based, chronological backtracking-based and Bi-
nary Decision Diagram (BDD)-based. The blocking clause-based
AlISAT solver is the most typical and easiest to implement. It it-
eratively computes satisfying models using a traditional Boolean
satisfiability (SAT) solver and adds blocking clauses which are the
complement of the already enumerated models. In the current im-
plementation of SymMC, we build a blocking clause based ALLSAT
solver on top of a classic SAT solver called MiniSat-2.2.0 [16] to
enumerate projected models over primary variables for the SAT
formula encoding the input Alloy specification under PaSB.

4.4 The Non-Isomorphic Model Estimator

One key functionality of SymMC is to approximately enumer-
ate/count the non-isomorphic models for the input Alloy speci-
fication, with its model set under PaSB (denoted as Mp) produced
by All-SAT enumerator and the extracted symmetry info (i.e., the
symmetry information containing the transpositions of any two
atoms; denoted as Sym) produced by enhanced Kodkod module. We
first formulate the non-isomorphic model enumeration/counting
problem as a graph theory problem. We then propose our estimator
and show that the estimator is able to provide high approximation
accuracy thanks to the problem formulation. Finally, we present
a practical approximate model enumeration/counting algorithm
realizing the estimator.

4.4.1 The Estimator.

ProBLEM DEFINITION 1. Let & be the set of all possible permuta-
tions. Let f(m, e) be a function which outputs a permuted model by ap-
plying a permutation e € & to a model m € Mp. Let = be an equiv-
alence relation on Mp such thatm =g m’ iff3e € E.f(m,e) = m’.
The goal is to count the number of equivalence classes defined by =p,
which is the non-isomorphic model count Cr; and to select one model
from each equivalence class to create a non-isomorphic model set Mp.

The non-isomorphic model enumeration/counting problem can
be converted into a graph theory problem defined as follows.

ProOBLEM DEFINITION 2. The equivalence relation =p on Mp
can be represented as a directed graph G(Mp, =), where each node
represents a model in Mp, and each edge from the node of m € Mp to

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Algorithm 1 SymMC approximate non-isomorphic model enumer-
ation and counting.

Input: all the models under PaSB Mp; symmetry info Sym
produced by enhanced Kodkod module.
Output: the non-isomorphic model set Mg, count Cp,
and the sampled permutation set &.
Parameters: initial sample ratio d; sample growth rate r;
the early stopping criterion 6; numbers of all perm totalperm
procedure apprOXNoNIsoM(Mp, Sym)
&0
Zpe— 0
MF — Mp
sampsize <« setSampSize(totalperm, d)
do
b« |MF| > back up the size ofMF.
A « sampPerms(Sym, sampsize, &)
for each m € Mp do
Map «— applyPerms(m, A, Mp)
=p — =p U ({m} X Mp)
end for
Mp — wee(G(Mp, 2p)
E—EUA
sampsize « setSampSize(totalperm,r)
while |&] < totalperm A b — |MF| >0
Cr — IMp

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18: return Mg, C'F, é
19: end procedure
Pz g \-\
A 2SS 7 \ ~o N

(a) The graph G(Mp,=F). (b) The graph G(Mp,=p).
Figure 6: An intuitive illustration of why our non-
isomorphic model estimator is able to provide high accuracy.
(a) shows two components of the graph, each of which is
fully connected; (b) shows that 85% random edge deletion
of the graph still preserves its weak connectivity.

the node of m” € Mp represents m =g m’. The non-isomorphic count
Cr is equal to the number of weakly connected components in the
graph. One node in each weakly connected component is arbitrarily
selected, and the models represented by these nodes constitute a non-
isomorphic model M.

THEOREM 1. Let =p be a relation on Mp, such that m =g m’
iff3e € &.f(m,e) = m’, where & is a sample of &. The relation = on
Mp can be represented by a directed graph G(Mp, =p). Let Cr be the
number of weakly connected components in the graph G(Mp, =p).
One node in each weakly connected component of G(Mp,=F) is
arbitrarily selected; and let M be the set of models represented by

1214

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

the selected nodes. Cr is the upper bound of Cg; and M is the over-
approximation of Mp, meaning that for any model m € Mg, there
exists a model m’ € Mp such thatm =g m’.

Proor. According to the definitions of =f and Zp, if m = m’
then m =p m’. Therefore, all edges in G(Mp,=f) are also in
G(Mp, =F). Thus, the weakly connected components in G(Mp, =f
) are no more than those in G(Mp, ZF), thus Cp > Cp.

We prove M is the over-approximation of M by contradiction.
Assume M F is not the over-approximation of Mp, meaning that
there exists a model m € Mg, for any model m” € M F such that
m #f m’. Therefore, if m = m’ then m’ ¢ MF, which means MF
does not include any models in the equivalence class of m w.r.t. =p.
This contradicts to the definition of MF

O

Constructing the graph G(Mp, =F) is equivalent to deleting the
edges of the graph G(Mp,=F) corresponding to the unsampled
permutations.

A =F . . =F
THEOREM 2. Mg — Mp and Cp — Cr when & — &. Here, —
refers to the convergence w.r.t. =p.

Proor. According to the definitions of =p and =p, if & > &,
then £ —=p. Therefore, we have MF = Mpand Cp — Cp. O

In sum, we use CF as the estimator of Cp, which provides the
upper bound of Cr; and M as the estimator of M, which provides
the over-approximation of Mp. As shown in Theorem 2, they both
have the consistency property. It is important to note that the
consistency property can be achieved when |&| is much smaller
than |&|. Because each weakly connected component w.r.t. =p is
in fact fully connected (i.e., every two nodes in the component are
directly and mutually connected), for which randomly deleting a
large number of edges might still preserve the weak connectivity.
This explains SymMC surprisingly high estimation accuracy for
non-isomorphic model enumeration and counting, as shown in
Section 5. Figure 6 shows a conceptual example to illustrate our
intuition, where after randomly deleting 85% of the edges in a fully
connected graph with two components, its weak connectivity still
preserves.

4.4.2 The Algorithm. The practical algorithm based on the pro-
posed estimators for approximating the non-isomorphic models or
count is presented in Algorithm 1. Initially, the permutation sample
set & is set to empty (line 2), and the graph G(Mp, Z) is con-
structed with only nodes representing the models under PaSB and
no edges (line 3-4). In addition, the sample size is initialized based
on the total number of permutations and the initial sample ratio,
using the setSampSize function, which is shown in Algorithm 2
(line 5).

The general idea of the algorithm is to incrementally add edges to
the graph based on each round of sampled permutations and update
the estimated non-isomorphic model set and count iteratively. To
do so, in each round, a set of new permutations A is randomly
sampled from the total permutation set & without replacement (line
8); A is then used to generate permuted models in Mp (line 10) and
add new edges to the graph (line 11); The Union-Find algorithm

SymMC: Approximate Model Enumeration and Counting using Symmetry Information for Alloy Specifications

Algorithm 2 SymMC permutation sample size setting.

Input: perms number totalperm; the sampling rate ratio.
Output: the sample size sampsize
Parameters: sample size range [minperm, maxperm];

procedure sETSAMPSIZE(totalperm, ratio)
if totalperm < minperm then
return totalperm
end if
a < totalperm - ratio
if @ < minperm then
return minperm
end if
if o < maxperm then
return «
end if
return maxperm
13: end procedure

1:
2
3
4
5:
6
7
8
9

> o > maxperm

[12] is then performed on the graph G(Mp, =F) to find its weakly
connected components and construct M r (line 13)%; The sampled
permutation set & gets updated with the set of new permutations
A (line 14). As the number of added edges grows, the number of
weakly connected components decreases, so as the estimated count.
The approximation process continues until the decrease of the
estimated count is not significant under the early stopping criterion
0 or all permutations have been sampled (line 16).

Algorithm 2 shows the details of how we set the sample size
given the total permutation number totalperm and the sampling
rate ratio. The idea is that if the total permutation number is smaller
than the threshold minperm, we utilize all the permutations without
doing the sampling (lines 2-4); otherwise, we first set the sample size
based on the sampling rate and normalize it within a parameterized
range [minperm, maxperm] (lines 5-12).

4.4.3 The Quantification Metric. There is a by-product of the non-
isomorphic model approximation, which is the quantification met-
ric for approximately evaluating the pruning ability of the ap-
plied Kodkod partial symmetry breaking predicate. Inspired by
Shlyakhter [48], we define the metric as the ratio of non-isomorphic

count to the count under PaSB: %. The range of the metric is
(0,1]. Larger value indicates higher pruning ability. The value of
1 indicates that the Kodkod partial SBP is actually doing full sym-
metry breaking. Note that since Cr is the upper bound of C, the
metric is an optimistic estimation in evaluating the pruning ability.

4.5 The Isomorphic Count Estimator

The isomorphic count estimator takes Mp and Sym as inputs. It
first utilizes the non-isomorphic model estimator to generate the
estimated non-isomorphic model set MF. Based on MF, the iso-
morphic counting problem is formulated as a statistical inference
problem, where the desired isomorphic count denoted by Cy is es-
timated using simple random sampling techniques [45] (Chapter 7.3,

In our implementation, for efficiency purposes, we utilize the Union-Find operations
to combine disjoint sets as long as new edges are found, instead of constructing a
complete graph before computing WCCs.

1215

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Page 202-220). We show that the expectation of the estimator pro-
vides the upper bound of the isomorphic count and has consistency

property.

4.5.1 The Estimator.

PROBLEM DEFINITION 3. Let =y be an equivalence relation on
ME X & such that (m,e) =N (m’,e") iff f(m,e) = f(m’,e’). Our
goal is to calculate the number of equivalence classes defined by =N,
which is the count Cn.

LEmMA 1. Let I : & — {1,...,|E|} be a permutation ordering
function which returns the index of a permutation in & based on a
predefined ordering of the permutations in &. Let Gn : Mg X & —
{0, 1} be a global labeling function over all model-permutation pairs:

0,
1,

Je' € 8.T(e') <I(e) A(mye) =N (m,e)

otherwise.

GN(m,e) = {

Thus, we have CN = Ypme My 2iecs GN (M, €).

Proor. First, we prove that for any m,m’ € Mg and e, e’ € &, if
m # m’ then (m,e) #N (m’,¢’) by contradiction. Assuming there
exists m,m’ € Mp and e,e’ € & such thatm # m’ A (m,e) =N
(m’, ¢’). By the definition of =p, we have f(m,e) = f(m’,e’). We
then have f(m, ee’"!) = m’, thus m =p m’. By the definitions of =
and Mp, we know that if m,m’ € Mg and m = m’ thenm = m’.
This contradicts to m # m’.

Thus, we have that the number of the equivalence classes (w.r.t.
=N) in MF X &, which is Cy, is the sum of the number of the
equivalence classes (w.r.t. =y) of {m} x & for every m € Mp.
For each m € Mp, the number of equivalence classes (w.r.t. =x)
in {m} x & is the sum of all labels }}.cg Gn(m, €). Because the
model-permutation pair with the smallest permutation index in
each equivalence class (w.r.t. =j) is taken as the representative of
that class and labeled as 1, and the rest pairs are labeled as 0. Thus,

we have Cn = X ne My Zees GN (M, e).
O

THEOREM 3. Let & be a set of permutations uniformly sampled
. A &
from &. One estimator of Cny is Cn = % ZmeMr Zecg GN (M €).

Cy is an unbiased estimator of CN.

Proor. Let i, = 2 .cé& GN(m, e) be the mean of the labels

L
) el
over {m} x &, and p, = ﬁ Y ecs GN (m, e) be the mean of labels
over {m} X &. Based on the properties of simple random sampling

[45] (Chapter 7.3, Page 205), we have E(fiy;) = fim. Thus, we have

E(CN) =18l) E(im)=) |Elum =Cw.
meMp meMp

However, the labeling via the global labeling function Gy could
be expensive when the permutation size becomes large. To make
it scalable, we propose a sample labeling function G as follows,
with which the labeling is done only w.r.t. the model-permutation
pairs in MF x&.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

THEOREM 4. Let My be the estimated non-isomorphic model set
generated by our non-isomorphic model estimator. Let 7:é6m
{1,...,18]} be a sample orderingfunction which returns the index
ofa sampled permutation in & based on a predefined ordering of the
permutations in &.Let Gy bea sample labeling function:

. 0, e’ e&.I(e’) <I(e)A(me)=n (me)
Gn(me) = .
1, otherwise.
One estimator of C is deﬁnedasél’v }g: Zme/\?tp Zecé QN(m, e).

E(él’v) is the upper bound of Cy.

Proor. For any m,m’ € MF, if m = m’, then the number
of equivalence classes in {m} x & equals to that in {m’} x &.
Thus, Zeeé Gn(m,e) = Zeeé Gn(m’,e). Since Mp is the over-
approximation of MF (see Theorem 1), we have

D, 2, n(me).

meMpr ecé

kel

> 1
B ¢Y)

Ar

N
Next, for each m € Mp, we divide model-permutation pairs of
{m} x & into equivalence classes w.r.t. =y if we label the pairs via
G, there is exactly one pair labeled as 1 for each equivalence class
(w.r.t. =n); if we label the pairs via Gy, there is at most one pair
labeled as 1 for each equivalence class (w.r.t. =x7). Thus, we have

> Gnime) = > Gu(me).)
ecé ecé
Based on Inequation 1, Inequation 2 and Theorem 3, we have
BC) 2ECL Y Y Gnime) =B = O,
! meMFr eeé
m]

THEOREM 5. C‘]’V — Cn when& = &.

ProoF. If & — &, then MF = MF based on Theorem 2, and
GN — GnN based on Theorem 4. Thus, we have CJ’V — Cn. o

We useCAI’\, :g: >

of Cn. The estimator has the consistency property and its expecta-
tion provides the upper bound of Cy.

meMy Zeeé Gn (m, e) as our final estimator

4.5.2 The Algorithm. Our isomorphic model counting algorithm
for realizing the estimator CI,\I is shown in Algorithm 3. The algo-
rithm is built upon the non-isomorphic model enumeration al-
gorithm, which reuses the sampled permutations and the non-
isomorphic models produced by the non-isomorphic algorithm
(line 2). Note that for each model m € M@, all the models in the
permuted model set M are labeled as 1 and the rest (the dupli-
cated models with the models in M) are labeled as 0. Therefore,

for eachm € MF, the sum of the labels ZeeS QN(m, e) is the size
of the permuted model (line 7).

1216

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

Algorithm 3 SymMC approximate isomorphic model counting.

Input: all the models under PaSB Mp; symmetry info Sym
produced by enhanced Kodkod module.

Output: the estimated isomorphic model count ¢ ;\]
1: procedure APPROXISOM(M p, Sym)

2 MF, ,8 — approxNonIsom(Mp, Sym)
3 totalsamp «— 1E|

4 sum «— 0

5: for each m € MF do

6 Mg « applyPerms(m, &)

7 sum < sum + |Mg|

8 end for

9 C‘I’V « totalperm/totalsamp - sum

Ar
10: return C N

11: end procedure

5 EXPERIMENTAL EVALUATION

Subjects We take the specifications from four sources as our sub-
jects, including 1) 53 specifications from Alloy standard distribution,
arising from a variety of real-world applications such as security in
protocols and file systems; 2) 14 specifications from Kodkod stan-
dard distribution including constraint satisfaction problems such
as the graph coloring problem and the Latin squares problem; 3)
n-Queen (10 specifications) and 3-Queen problems (9 specifications)
from the recent study of the symmetry breaking impact in model
counting [60]; 4) 30 specifications from the recent study [36] that
counts the models for 6 data structures (e.g., red-black trees and
double linked lists), each with 5 different scopes. In total, there are
116 specifications, out of which 6 specifications have no detected
symmetries (4 from Alloy category and 2 from Kodkod category).
We exclude those subjects in our experiments. Therefore, there
are 110 subjects in our benchmark, including 49 subjects in Alloy
category, 12 subjects in Kodkod category, 19 subjects in n-Queen
category, and 30 subjects in Data Structure category.

Platform All the experiments were performed on a machine with
a 3.7 GHz Intel Core i7-8700K CPU and 32 GB RAM.

Research Questions Our research questions are summarized as
follows:

e RQ1: How does SymMC perform in approximating the non-
isomorphic models/count?

e RQ2: How does SymMC perform in approximating the iso-
morphic count?

e RQ3: What does the quantification metric of SymMC indicate
about the pruning ability of Kodkod partial SBPs?

5.1 RQ1: SymMC Performance in
Approximating Non-Isomorphic Models

The Baseline Since there is no existing automatic tool for non-
isomorphic model enumeration for Alloy specifications, we make
an exact model enumeration and counting variant of SymMC called
SymMC-exact as our baseline, by turning off the permutation sam-
pling of SymMC (i.e., do the enumeration and counting with all
possible permutations).

SymMC: Approximate Model Enumeration and Counting using Symmetry Information for Alloy Specifications

10!

Speedup

10°

=
o
S

o
N
wu

o
U
o

<
N

Reduction Rate
w

o
o
S

10 20

Subjects

40

Figure 7: The top shows SymMC approximation speedup
over SymMC-exact. The bottom shows SymMC permutation
reduction rate, indicating the amount of work that can be
saved with our permutation sampling approach.

Evaluation Metrics We evaluate SymMC in approximating non-
isomorphic models in three aspects: time efficiency, the computa-
tions saved by our permutation sampling approach, and the ap-
proximation accuracy. For time efficiency, we report the speedup of

SymMC over SymMC-exact. For the amount of saved computation,
totalperm—totalsamp
totalperm
metric. For evaluating the approximation accuracy, in line with prior

approx _exact)_
exact ’> approx

1, defined based on multiplicative guarantees [10].

Parameter Settings For parameters in Algorithm 2, we set the
minimal permutation sample size minperm as 2,000; and the maxi-
mum permutation sample size maxperm as 100,000. For parameters
in Algorithm 1, we set the initial sample ratio d as 0.5; the sample
growth rate r as 0.15; and the early stopping criterion 0 as 0.
Time Limit We use the standard time limit of 5,000 seconds in
solving each subject in all categories.

The Non-Isomorphic Count Collection In order to validate
the correctness and the approximation accuracy of SymMC non-
isomorphic model enumeration and counting, we need to get the
ground truth of the number of non-isomorphic models. For the sub-
jects in Data Structure category and n-Queen category, we collect
the non-isomorphic count in the On-line Encyclopedia of Integer
Sequences (OEIS) [1] as the ground truths. For the other two cate-
gories, we get the ground truths by applying SymMC-exact with
the extended time limit of 20,000 seconds.

we use the permutation reduction rate as our

work of ApproxMC, we use the error rate as max(

5.1.1 Approximation Efficiency. We apply SymMC and SymMC-
exact on all the subjects for enumerating the non-isomorphic mod-
els. Within the time limit, out of 110 subjects, SymMC solves 73
subjects (66.3%) while SymMC-exact solves 68 subjects (61.8%).
There are no cases that cannot be solved by SymMC but solved by
SymMC-exact. Note that there are 31 subjects out of the 73 subjects
solved by SymMC that the total number of permutations totalperm
is less than the minimal permutation sampling size minperm. Based

1217

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

on the setSampSize function (see Section 4.4.2), for those 31 sub-
jects, SymMC does the exact enumeration without permutation
sampling as SymMC-exact. To compare the SymMC approximation
efficiency with SymMC-exact, we omit such subjects and only show
the results of the rest 42 subjects.

Figure 7 shows the speedup of SymMC over SymMC-exact (top)
and the permutation reduction rate of SymMC (bottom) for the 42
subjects. For demonstration purposes, we sort the subjects based
on the permutation reduction rate in its ascending order. We can
observe that, in general, the speedup of SymMC increases as the
reduction rate increases. Overall, SymMC speeds up SymMC-exact
in 74.4% subjects with up to 16.1x. On average, SymMC speeds
up SymMC-exact 1.9x. We notice that, for two subjects, the per-
mutation reduction rate is near 1 which means only a very small
portion of permutations are applied in the approximation. In addi-
tion, we can see that when the reduction rate is near 0 which means
all permutations are applied for the approximation, the speedup
is slightly below 1 which means SymMC is slightly slower than
SymMC-exact. This is because there is a slight overhead for SymMC
to incrementally add the permutations. In general, SymMC is able to
approximate the non-isomorphic models of Alloy specifications with
better time efficiency than the baseline.

5.1.2 Approximation Accuracy. For 73 solved subjects by SymMC
in enumerating non-isomorphic models, the ground truths of 71
subjects are obtained. Surprisingly, SymMC approximates the non-
isomorphic models with 0.0 error rate for all these 71 subjects. The
results suggest that SymMC is able to approximate the non-isomorphic
models with high accuracy, which is consistent with our intuition as
discussed in Section 4.4.1.

5.2 RQ2: SymMC Performance in
Approximating the Isomorphic Count

Baselines For comparison in getting the isomorphic count, we
select two robust state-of-the-art model counters (both in their
default parameter settings) as our baselines, including one exact
model counter called GANAK [47], and one approximate model
counter called ApproxMC [10, 51].

Evaluation Metrics We evaluate SymMC in approximating the
isomorphic count in two aspects: time efficiency and the approxima-
tion accuracy. For time efficiency, we report the actual wall-clock

time cost of the counters. For approximation accuracy, we apply
approx _exact
exact ’ approx

evaluating the non-isomorphic model approximation.

Other Settings We utilize the same parameter setting and time
limit of 5,000 seconds as in non-isomorphic approximation.

The Isomorphic Count Collection To evaluate the approxima-
tion accuracy, we get the ground truth of the isomorphic counts of
our subjects with two tools. We apply SymMC-exact and GANAK
on all the subjects with an extended time limit of 20,000 seconds.

the approximation error rate max(—1lasusedin

5.2.1 Approximation Efficiency. We apply SymMC, GANAK, and
ApproxMC on all the subjects for counting the isomorphic counts.
Within the time limit, SymMC solves 72 subjects; ApproxMC solves
60 subjects; and GANAK solves 54 subjects, out of 110 subjects.
Figure 8 shows the solving time (in seconds) of the three counters
for the subjects that are solved by at least one counter (there are in

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

C % symmC Add 4 AA 4 A A4 4 A% A8 A AR A0AL AARRALAASERRRRRERRRSRRAR
1 A GANAK A N «® A
¢ AY ¢ 2038 ¢
10°: ¢ ApproxMC ‘ x‘ ¢ : ¢ ! A
: A *» 4 ‘ 4 A ppee 3 'Yy
102 I\) 3 4 A
¢ N b4 xx"”“ r s ¢ A
A £33
Aé t A
GEJ 10! 7Y 3 I A xx,,am“* A
10° 4 N . AA x v Y mx”x“ * R ¢ .x
AA % A
Lo LN : “”,am“ A
A
P el A,
1072 ad
®
0 20 40 60 80
Subjects

Figure 8: Sovling time (in seconds) of SymMC, GANAK, and ApproxMC in getting isomorphic counts for all the subjects solved

by at least one counter.

—#— SymMC
—A— GANAK
—4— ApproxMC

103
10?

10!

Time

10°

107t

1072

10 20 30 40

Subjects solved

50 60 70

Figure 9: Cactus plot showing the behavior of SymMC,
GANAK, and ApproxMC (time in seconds).

total 88 subjects); for demonstration purposes, we sort the subjects
based on the solving time of SymMC in the ascending order. We
can observe that SymMC clearly outperforms both GANAK and
ApproxMC in more than three quarters of the subjects. In detail,
SymMC outperforms GANAK in 68 out of 88 solved subjects (77.2%),
and outperforms ApproxMC in 70 out of 88 subjects (79.5%). Overall,
SymMC speeds up GANAK 1.8x, taking 973 seconds less in counting
each subject on average; speeds up ApproxMC 1.6x, taking 703
seconds less in counting each subject on average.

Figure 9 shows the cactus plot for SymMC, GANAK and Ap-
proxMC, where x-asix presents the number of subjects solved and
y-axis presents the solving time. The cactus plot is commonly used
in model counting community, which demonstrates the solving
progress of the counters over time. We can see that SymMC takes
the lead at the beginning, shows its clear superiority at 10 seconds,
and maintains its advantage over two baselines until the end.

We further studied the subjects that are not solved by SymMC
but solved by either of the two baselines. There are in total 15 such
subjects. We found that 13 out of 15 subjects have a large number
of models w.r.t. PaSB, ranging from 10,259,500 to 3,941,750,000
which chokes the blocking clause-based AlISAT solver in the current
implementation of SymMC. However, based on the experimental

1218

0.200{ % symmC

0.175 ¢ ApproxmMC
0.150
0 0.125
8
©
< 0.100
e
1 0.075
0.050
¢
0.025 IYYT124
2.2 2 2

20
Subjects

andtttt?
10

0.000

0 30 40

Figure 10: Error rates of SymMC and ApprxoMC in approx-
imating the isomorphic count.

results in the recent survey [52], the BDD-based AlISAT solver
(mentioned in Section 4.3) is able to enumerate more than one
quadrillion models, with which SymMC might be able to solve
more such subjects. We will leave this possible improvement as our
future work.

The results suggest that, for computing the isomorphic count,
when models of the specification w.r.t. PaSB is enumerable by the
AlISAT solver and there are symmetries present in the specification,
SymMC could be a preferable choice. Overall, the results show that
SymMC is able to approximate the isomorphic model count of Alloy
specifications with better time efficiency than the baseline counters.

5.2.2 Approximation Accuracy. To evaluate the approximation ac-
curacy of SymMC, we take the state-of-the-art approximate model
counter ApproxMC as our baseline. Since GANAK is an exact model
counter, we do not take GANAK as the baseline for approximation
accuracy evaluation. For 72 solved subjects by SymMC, the ground
truths of 64 subjects are obtained; for 60 solved subjects by Ap-
proxMC, the ground truths of 56 subjects are obtained. The results
show that SymMC solves the 64 subjects with the maximum error
rate of 0.15, the minimum error rate of 0.0, and the average error
rate of 0.003; ApproxMC solves the 56 subjects with the maximum
error rate of 0.20, the minimum error rate of 0.0, and the average

SymMC: Approximate Model Enumeration and Counting using Symmetry Information for Alloy Specifications

Alloy DS Kodkod n-Queens
1.0 essssssiesssh essssssscd
D)
° °
L) -
0.8 e .
° [
v 06
4:1:)4 [)
=
0.4 .
° .. o
d [d
0.2
» °
. °
0.0 e o
0 10 20 30 40 50 60 70
Subiects

Figure 11: SymMC quantification metric for the pruning
ability of Alloy SBPs.

error rate of 0.06. In addition, for 58 out of 64 subjects (90.6%),
SymMC approximates the count accurately (with 0.0 error rate),
while ApproxMC can approximate accurately for only one subject.

To further compare SymMC and ApproxMC in terms of the
accuracy in approximating the isomorphic counts, we collect all the
subjects that are solved by both counters and also have the ground
truth. There are in total 45 subjects. The error rate of SymMC
and ApproxMC in approximating the isomorphic count of these 45
subjects is shown in Figure 10. For demonstration purposes, we sort
the subjects based on the error rate of ApproxMC in the ascending
order. We can clearly observe that, as the error rate of ApproxMC
increases, the error rate of SymMC stays almost stable at around 0.0.
In detail, for 43 out of 45 subjects (95.6%), SymMC approximates the
count in a lower error rate than ApproxMC. Overall, results suggest
that SymMC is able to approximate the isomorphic model count of
Alloy specifications with a lower error rate than ApproxMC.

5.3 RQ3: SymMC Quantification Measurement

We use the 73 solved subjects by SymMC non-isomorphic enumera-
tion as the subjects in studying SymMC quantification measurement
for the pruning ability of Kodkod partial SBPs. Figure 11 shows the
values of SymMC quantification metric in evaluating the pruning
ability of the applied Kodkod partial SBPs for each solved subject
classified by categories. For demonstration purposes, we sort the
subjects within each category based on the metric value in its as-
cending order. Overall, the quantification metric ranges from 0.006
to 1 with an average of 0.759; and the metric value is below 0.5 in
19 subjects. To be specific, for 25 solved Alloy subjects, the quantifi-
cation metric ranges from 0.041 to 1 with an average of 0.784; for
25 solved data structure subjects, the metric ranges from 0.006 to 1
with an average of 0.598; for 7 solved Kodkod subjects, the metric
ranges from 0.167 to 1 with an average of 0.693; the metric is 1 for
all 16 solved n-Queen subjects. The results show that the pruning
ability of Kodkod partial SBPs is often effective and even perfect in
many subjects (e.g., n-Queen problems), while the ability is sometimes
limited in some other subjects (e.g., singly linked list data structure).

6 CONCLUSION

This paper presented a symmetry exploitation tool called SymMC,
which provides the first automatic non-isomorphic models/count

approximation approach for Alloy specifications and provides a
competitive isomorphic count approximation approach for Alloy

1219

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

specifications. In addition, SymMC provides an automatic quan-
tification measurement on the solution space pruning ability of
Kodkod PaSB. We hope that SymMC could shed light on special-
ized model counting/enumeration for other specifications (e.g., the
specifications of SAT-based finite model finders) or more gener-
alized model counting approaches applicable to multiple kinds of
specifications.

ACKNOWLEDGEMENT

We thank Darko Marinov and reviewers for very helpful comments
and feedback. This work was supported by CCF-1718903, and a
grant from the Army Research Office accomplished under Coop-
erative Agreement Number W911NF-19-2-0333. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein.

REFERENCES

[1] 2019. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.

[2] Devdatta Akhawe, Adam Barth, Peifung E Lam, John Mitchell, and Dawn Song.
2010. Towards a formal foundation of web security. In 2010 23rd IEEE Computer
Security Foundations Symposium. IEEE, 290-304.

Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kastner. 2010.
Detecting dependences and interactions in feature-oriented design. In 2010 IEEE
21st International Symposium on Software Reliability Engineering. IEEE, 161-170.
Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey. 2015. SAT:
Projected Model Counting. In International Conference on Theory and Applications
of Satisfiability Testing. Springer, 121-137.

Rolf Backofen and Sebastian Will. 1999. Excluding Symmetries in Constraint-
Based Search. In Principles and Practice of Constraint Programming — CP’99, Joxan
Jaffar (Ed.). Springer, Berlin, Heidelberg, 73-87.

Biljana Baji¢-Bizumi¢, Claude Petitpierre, Hieu Chi Huynh, and Alain Wegmann.
2013. A model-driven environment for service design, simulation and prototyping.
In International Conference on Exploring Services Science. Springer, 200-214.
Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. 2010. Feature and meta-
models in Clafer: mixed, specialized, and coupled. In International Conference on
Software Language Engineering. Springer, 102-122.

Fabian Biittner, Marina Egea, Jordi Cabot, and Martin Gogolla. 2012. Verifica-
tion of ATL transformations using transformation models and model finders. In
International Conference on Formal Engineering Methods. Springer, 198-213.
Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2013. A scalable
and nearly uniform generator of SAT witnesses. In International Conference on
Computer Aided Verification. Springer, 608-623.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. Algorithmic
Improvements in Approximate Counting for Probabilistic Inference: From Linear
to Logarithmic SAT Calls. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. AAAI Press, 3569-3576.

I-Ming Chen and Joel W Burdick. 1998. Enumerating the non-isomorphic as-
sembly configurations of modular robotic systems. The International Journal of
Robotics Research 17, 7 (1998), 702-719.

Thomas H. Cormen. 2009. Introduction to Algorithms, Third Edition. (3rd ed. ed.).
MIT Press, Cambridge.

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. 1996.
Symmetry-breaking predicates for search problems. KR 96 (1996), 148-159.

Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. 2017. Symmetric expla-
nation learning: Effective dynamic symmetry handling for SAT. In International
Conference on Theory and Applications of Satisfiability Testing. Springer, 83-100.
Jo Devriendt, Bart Bogaerts, Broes de_ Cat, Marc Denecker, and Christopher
Mears. 2012. Symmetry propagation: Improved dynamic symmetry breaking in
SAT. In 2012 IEEE 24th International Conference on Tools with Artificial Intelligence,
Vol. 1. IEEE, 49-56.

Niklas Eén and Niklas S6rensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502-518.
Stefano Ermon, Carla Gomes, and Bart Selman. 2012. Uniform Solution Sampling
Using a Constraint Solver as an Oracle. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence (Catalina Island, CA) (UAI'12).
AUAI Press, Arlington, Virginia, USA, 255-264.

[0

[11

[12

[13]

[14

[15]

[16

[17

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

[18]

[19

[20]

[21

[22]

[23

[24]

[25

[26

[27

[28

[29

[30

[31

[32

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. 2001. Symmetry
Breaking. In Principles and Practice of Constraint Programming — CP 2001, Toby
Walsh (Ed.). Springer, Berlin, Heidelberg, 93-107.

Filippo Focacci and Michaela Milano. 2001. Global Cut Framework for Removing
Symmetries. In Principles and Practice of Constraint Programming — CP 2001, Toby
Walsh (Ed.). Springer, Berlin, Heidelberg.

ITan P Gent and Barbara Smith. 2000. Symmetry Breaking in Constraint Program-
ming. In ECAL

Vibhav Gogate and Rina Dechter. 2006. A new algorithm for sampling CSP
solutions uniformly at random. In International Conference on Principles and
Practice of Constraint Programming. Springer, 711-715.

Vibhav Gogate and Rina Dechter. 2007. Approximate counting by sampling the
backtrack-free search space. In AAAIL 198-203.

Vibhav Gogate and Rina Dechter. 2011. SampleSearch: Importance sampling in
presence of determinism. Artificial Intelligence 175, 2 (2011), 694-729.

Carla P Gomes, Joerg Hoffmann, Ashish Sabharwal, and Bart Selman. 2007. From
Sampling to Model Counting.. In IJCAI Vol. 2007. 2293-2299.

Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2006. Model counting: A
new strategy for obtaining good bounds. In AAAIL 54-61.

Daniel Jackson. 2000. Automating first-order relational logic. In Proceedings
of the 8th ACM SIGSOFT international symposium on Foundations of software
engineering: twenty-first century applications. 130-139.

Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

Eunsuk Kang and Daniel Jackson. 2008. Formal modeling and analysis of a flash
filesystem in Alloy. In International Conference on Abstract State Machines, B and
Z. Springer, 294-308.

Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz
Khurshid. 2011. Testera: A tool for testing java programs using alloy specifica-
tions. In 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, 608-611.

Sarfraz Khurshid and Darko Marinov. 2004. TestEra: Specification-based testing of
Java programs using SAT. Automated Software Engineering 11, 4 (2004), 403-434.
Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. 2003. A
case for efficient solution enumeration. In International Conference on Theory and
Applications of Satisfiability Testing. Springer, 272-286.

Sarfraz Khurshid, Corina S Pasareanu, and Willem Visser. 2003. Generalized
symbolic execution for model checking and testing. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
553-568.

Lukas Kroc, Ashish Sabharwal, and Bart Selman. 2008. Leveraging belief prop-
agation, backtrack search, and statistics for model counting. In International
Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming. Springer, 127-141.

Jinguo Liu, Yuechao Wang, Shugen Ma, and Yangmin Li. 2010. Enumeration
of the non-isomorphic configurations for a reconfigurable modular robot with
square-cubic-cell modules. International Journal of Advanced Robotic Systems 7,
4(2010), 31.

Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel framework for
automated testing of Java programs. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE, 22-31.

Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel framework for
automated testing of Java programs. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE, 22-31.
Brendan D McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II.
Journal of symbolic computation 60 (2014), 94-112.

C Mears. 2009. Automatic symmetry detection and dynamic symmetry breaking
for constraint programming. Ph.D. Dissertation. Ph. D. thesis, Clayton School of
Information Technology, Monash University.

Christopher Mears, Maria Garcia De La Banda, Bart Demoen, and Mark Wallace.
2014. Lightweight dynamic symmetry breaking. Constraints 19, 3 (2014), 195-242.
Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. 2018.
CDCLSym: Introducing effective symmetry breaking in SAT solving. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 99-114.

1220

[41

[42

[43

= N
R

‘o
=

(5]

[56

(58

[59]

[60

[61]

[62

Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

Patryk Mikos. 2021. Efficient enumeration of non-isomorphic interval graphs.
Discrete Mathematics & Theoretical Computer Science 23 (2021).

Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid.
2007. Korat: A tool for generating structurally complex test inputs. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 771-774.
Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh. 2011.
Formal verification of OAuth 2.0 using Alloy framework. In 2011 International
Conference on Communication Systems and Network Technologies. IEEE, 655-659.
Karen E Petrie, Barbara M Smith, and Neil Yorke-Smith. 2004. Dynamic sym-
metry breaking in constraint programming and linear programming hybrids. In
European starting Al researcher symp. Citeseer.

John A Rice. 2007. Mathematical statistics and data analysis, 3rd Edition. Thomson

Higher Education.
Bas Schaafsma, Marijn JH Heule, and Hans Van Maaren. 2009. Dynamic symmetry

breaking by simulating zykov contraction. In International Conference on Theory
and Applications of Satisfiability Testing. Springer, 223-236.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. 2019. GANAK: a
scalable probabilistic exact model counter. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence. AAAI Press, 1169-1176.

Ilya Shlyakhter. 2007. Generating effective symmetry-breaking predicates for
search problems. Discrete Applied Mathematics 155, 12 (2007), 1539-1548.

Ilya Shlyakhter. 2007. Generating effective symmetry-breaking predicates for
search problems. Discrete Applied Mathematics 155, 12 (2007), 1539-1548.
Michael Sipser. 1983. A complexity theoretic approach to randomness. In Proceed-
ings of the fifteenth annual ACM symposium on Theory of computing. 330-335.
Mate Soos and Kuldeep S Meel. 2019. Bird: Engineering an efficient CNF-XOR
sat solver and its applications to approximate model counting. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33. 1592-1599.

Takahisa Toda and Takehide Soh. 2016. Implementing efficient all solutions SAT
solvers. Journal of Experimental Algorithmics (JEA) 21 (2016), 1-44.

Emina Torlak. 2009. A constraint solver for software engineering: finding models
and cores of large relational specifications. Ph.D. Dissertation. Massachusetts
Institute of Technology.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model finder. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 632-647.

Dat Hoang Tran and Ryuhei Uehara. 2020. Efficient enumeration of non-
isomorphic ptolemaic graphs. In International Workshop on Algorithms and Com-
putation. Springer, 296-307.

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. Checkmate:
Automated synthesis of hardware exploits and security litmus tests. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
947-960.

Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC: testing
model counters using differential and metamorphic testing. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
709-721.

Timothy Van Bremen, Vincent Derkinderen, Shubham Sharma, Subhajit Roy,
and Kuldeep S Meel. 2021. Symmetric Component Caching for Model Counting
on Combinatorial Instances. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 3922-3930.

Willem Visser, Corina S Pasareanu, and Sarfraz Khurshid. 2004. Test input gener-
ation with Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. 97-107.

Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S
Meel, and Sarfraz Khurshid. 2020. A Study of Symmetry Breaking Predicates
and Model Counting. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 115-134.

Wei Wei and Bart Selman. 2005. A new approach to model counting. In Inter-
national Conference on Theory and Applications of Satisfiability Testing. Springer,
324-339.

Jiayi Yang, Wenxi Wang, Darko Marinov, and Sarfraz Khurshid. 2020. AlloyMC:
Alloy Meets Model Counting. In 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Demo
Papers. 1541-1545.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Alloy Specifications
	3.2 Kodkod Partial Symmetry Breaking for Alloy Specifications

	4 SymMC
	4.1 Overview
	4.2 Enhanced Kodkod with Symmetry Info Extraction
	4.3 The AllSAT Model Enumerator
	4.4 The Non-Isomorphic Model Estimator
	4.5 The Isomorphic Count Estimator

	5 Experimental Evaluation
	5.1 RQ1: SymMC Performance in Approximating Non-Isomorphic Models
	5.2 RQ2: SymMC Performance in Approximating the Isomorphic Count
	5.3 RQ3: SymMC Quantification Measurement

	6 Conclusion
	References

