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lot of work has been done to e�ciently enumerate non-isomorphic

models in various kinds of areas such as test generation [32, 42, 59],

con�gurations of robotics [11, 34], and graphs [37, 41, 55]. To our

knowledge, there is only one existing tool called TestEra [29, 31, 35]

that utilizes Alloy to generate non-isomorphic test inputs for Java

programs. However, this approach has one limitation: it requires

users to manually add the symmetry breaking speci�cation to real-

ize the full symmetry breaking for their Alloy speci�cations. Mo-

tivated by this, we aim to propose a fully automated approach to

enumerate non-isomorphic models for Alloy speci�cations without

requiring manual input from users.

Quanti�cationMeasurement of Kodkod Partial SBPs Kodkod

partial SBPs are often e�ective—they are often able to rule out a

large fraction of models from each isomorphism class. However,

the pruning ability of Kodkod partial SBPs is unpredictable, which

means that the partial SBPs can result in totally di�erent ruled-out

fractions for di�erent input problems. Shlyakhter et al. did some

initial measurements for the e�ectiveness of the partial SBPs applied

on only a few examples with the known number of isomorphism

classes [48]. However, to our knowledge, no work has been done

to automatically measure the e�ectiveness of Kodkod partial SBPs

for an arbitrary Alloy speci�cation due to the di�culty of counting

the number of isomorphism classes of the speci�cation. Regarding

this, we aim to automatically measure the pruning ability of the

applied Kodkod partial SBPs for an arbitrary Alloy speci�cation, by

getting the non-isomorphic count for the speci�cation.

Isomorphic Model Counting Model counting is a classical prob-

lem of computing the number of models for a given formula. Pro-

jected model counting [4] is a kind of model counting problemwhich

counts only the unique models with respect to designated variables.

Consider a simple SAT formula (G1 ∨ G2) ∧ (G3 ∨ ¬G4), the pro-

jected model count over variables G1 and G2 is 3; over variables G1
and G4 is 4. There have been several recent works in doing model

counting for Alloy speci�cations [57, 60, 62]. The model count-

ing for Alloy speci�cations belongs to projected model counting,

which counts the number of satis�able models of the translated SAT

formulas over only primary variables (i.e., the variables directly

encoding Alloy speci�cation components) excluding auxiliary vari-

ables introduced during the translation. A recently published tool

called AlloyMC [62] has added o�-the-shelf projected model coun-

ters to the Alloy backend. A recent study [60] found that Kodkod

partial SBPs can substantially reduce the counting time taken by

the-state-of-art model counters for counting satis�able models of

Alloy speci�cations. However, the addition of partial SBPs means

that the reported counts are accurate only with respect to partial

symmetry breaking (PaSB). Indeed, it is the isomorphic count (i.e.,

the model count with no symmetry breaking) that is commonly

desirable. Inspired by the �ndings of the study, we aim to e�ciently

get the isomorphic count for Alloy speci�cations by utilizing the

Kodkod partial SBPs.

We propose an automated tool called SymMC to solve all these

three challenging problems by solving two key technical problems:

the non-isomorphic model enumeration/counting and the isomor-

phic model counting for Alloy speci�cations. The two technical

problems are in general hard problems—they would quickly become

intractable as the number of all possible permutations in the input

problem increases substantially. Regarding this, the core idea inside

SymMC is to e�ciently approximate the non-isomorphic models

and the isomorphic model count, by sampling the permutations

instead of considering all possible permutations.

We �rst convert the non-isomorphic model enumeration prob-

lem into a graph theory problem. The non-isomorphic models can

be over-approximated through the weakly connected components

of the converted graph which are constructed by the randomly

sampled permutations. Based on the formulation, we propose our

non-isomorphic model estimator and show that the estimator is able

to provide high approximation accuracy. The isomorphic counting

estimator is built upon the non-isomorphic model estimator. We for-

mulate the isomorphic counting problem into a statistical inference

problem. Based on the formulation, we then propose our isomorphic

counting estimator based on the simple random sampling. We prove

that both estimators provide the upper bound/over-approximation

of the count/enumeration and have consistency property. Finally,

we present two practical approximate algorithms of SymMC for

realizing the two estimators, respectively.

We evaluate SymMC mainly in two aspects: the approximation

e�ciency and the approximation accuracy. To do the empirical

evaluation, we collect 110 Alloy speci�cations as our subjects from

four sources relating to a variety of real-world applications such as

security, protocols and test generation. For non-isomorphic model

approximation, experimental results show that SymMC success-

fully solves 73 subjects within the standard time limit of 5,000

seconds; for all those subjects, SymMC approximates with surpris-

ingly zero error rate. For quanti�cation measurement of the Kodkod

partial SBP, SymMC found that its pruning ability is often e�ective

and even perfect in some subject types (e.g., n-Queen problems),

while its ability is sometimes very limited in other subjects (e.g.,

singly linked list data structure). For isomorphic model counting,

experimental results show that SymMC is more e�cient than the

state-of-the-art exact counter GANAK [47] in 77.2% subjects and the

state-of-the-art approximate counter ApproxMC [51] in 79.5% sub-

jects; SymMC approximates with lower error rate than ApproxMC

in 95.6% subjects. The source code of SymMC is publicly available

at https://github.com/wenxiwang/SymMC-Tool.

The contributions of this paper are:

• Idea. We introduce the idea of utilizing symmetry informa-

tion and permutation sampling to approximate the non-

isomorphic model enumeration and isomorphic counting

for Alloy speci�cations.

• Approximate Non-isomorphic Enumeration. To our knowl-

edge, SymMC is the �rst to do automatic non-isomorphic

model enumeration for Alloy speci�cations.

• Quanti�cation Measurement. SymMC provides an automatic

way of measuring the pruning ability of the Kodkod partial

SBPs for an arbitrary Alloy speci�cation.

• Approximate Isomorphic Counting. We present an approx-

imate isomorphic counting algorithm based on sampling

which is competitive with state-of-the-art counters.

2 RELATED WORK

For non-isomorphic model enumeration for Alloy speci�cations,

the most related tool is TestEra [29, 31, 35] which applies Alloy as
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Algorithm 2 SymMC permutation sample size setting.

Input: perms number C>C0;?4A<; the sampling rate A0C8> .

Output: the sample size B0<?B8I4

Parameters: sample size range [<8=?4A<,<0G?4A<];

1: procedure setSampSize(C>C0;?4A<, A0C8>)

2: if C>C0;?4A< ≤ <8=?4A< then

3: return C>C0;?4A<

4: end if

5: U ← C>C0;?4A< · A0C8>

6: if U < <8=?4A< then

7: return<8=?4A<

8: end if

9: if U ≤ <0G?4A< then

10: return U

11: end if

12: return<0G?4A< ⊲ U > <0G?4A<

13: end procedure

[12] is then performed on the graph� (M% , =̂� ) to �nd its weakly

connected components and construct M̂� (line 13)2; The sampled

permutation set Ê gets updated with the set of new permutations

Δ (line 14). As the number of added edges grows, the number of

weakly connected components decreases, so as the estimated count.

The approximation process continues until the decrease of the

estimated count is not signi�cant under the early stopping criterion

\ or all permutations have been sampled (line 16).

Algorithm 2 shows the details of how we set the sample size

given the total permutation number C>C0;?4A< and the sampling

rate A0C8> . The idea is that if the total permutation number is smaller

than the threshold<8=?4A<, we utilize all the permutations without

doing the sampling (lines 2-4); otherwise, we �rst set the sample size

based on the sampling rate and normalize it within a parameterized

range [<8=?4A<,<0G?4A<] (lines 5-12).

4.4.3 The �antification Metric. There is a by-product of the non-

isomorphic model approximation, which is the quanti�cation met-

ric for approximately evaluating the pruning ability of the ap-

plied Kodkod partial symmetry breaking predicate. Inspired by

Shlyakhter [48], we de�ne the metric as the ratio of non-isomorphic

count to the count under PaSB: �̂�

|M% |
. The range of the metric is

(0,1]. Larger value indicates higher pruning ability. The value of

1 indicates that the Kodkod partial SBP is actually doing full sym-

metry breaking. Note that since �̂� is the upper bound of �� , the

metric is an optimistic estimation in evaluating the pruning ability.

4.5 The Isomorphic Count Estimator

The isomorphic count estimator takesM% and (~< as inputs. It

�rst utilizes the non-isomorphic model estimator to generate the

estimated non-isomorphic model set M̂� . Based on M̂� , the iso-

morphic counting problem is formulated as a statistical inference

problem, where the desired isomorphic count denoted by �# is es-

timated using simple random sampling techniques [45] (Chapter 7.3,

2In our implementation, for e�ciency purposes, we utilize the Union-Find operations
to combine disjoint sets as long as new edges are found, instead of constructing a
complete graph before computing WCCs.

Page 202-220). We show that the expectation of the estimator pro-

vides the upper bound of the isomorphic count and has consistency

property.

4.5.1 The Estimator.

Problem Definition 3. Let =# be an equivalence relation on

M� × E such that (<, 4) =# (<
′, 4 ′) i� 5 (<, 4) = 5 (<′, 4 ′). Our

goal is to calculate the number of equivalence classes de�ned by =# ,

which is the count �# .

Lemma 1. Let I : E ↦→ {1, . . . , |E |} be a permutation ordering

function which returns the index of a permutation in E based on a

prede�ned ordering of the permutations in E. Let G# :M� × E ↦→

{0, 1} be a global labeling function over all model-permutation pairs:

G# (<, 4) =

{

0, ∃4 ′ ∈ E .I(4 ′) < I(4) ∧ (<, 4) =# (<, 4 ′)

1, >Cℎ4AF8B4.

Thus, we have �# =
∑

<∈M�

∑

4∈E G# (<, 4).

Proof. First, we prove that for any<,<′ ∈ "� and 4, 4 ′ ∈ E, if

< ≠<′ then (<, 4) ≠# (<
′, 4 ′) by contradiction. Assuming there

exists <,<′ ∈ "� and 4, 4 ′ ∈ E such that < ≠ <′ ∧ (<, 4) =#
(<′, 4 ′). By the de�nition of =# , we have 5 (<, 4) = 5 (<′, 4 ′). We

then have 5 (<, 44 ′−1) =<′, thus< =� <′. By the de�nitions of =�
andM� , we know that if<,<′ ∈ M� and< =� <′ then< =<′.

This contradicts to< ≠<′.

Thus, we have that the number of the equivalence classes (w.r.t.

=# ) in M� × E, which is �# , is the sum of the number of the

equivalence classes (w.r.t. =# ) of {<} × E for every < ∈ M� .

For each< ∈ M� , the number of equivalence classes (w.r.t. =# )

in {<} × E is the sum of all labels
∑

4∈E G# (<, 4). Because the

model-permutation pair with the smallest permutation index in

each equivalence class (w.r.t. =# ) is taken as the representative of

that class and labeled as 1, and the rest pairs are labeled as 0. Thus,

we have �# =
∑

<∈M�

∑

4∈E G# (<, 4).

□

Theorem 3. Let Ê be a set of permutations uniformly sampled

from E. One estimator of �# is �̂# =
|E |

| Ê |

∑

<∈M�

∑

4∈Ê
G# (<, 4).

�̂# is an unbiased estimator of �# .

Proof. Let ˆ̀< =
1

| Ê |

∑

4∈Ê
G# (<, 4) be the mean of the labels

over {<} × Ê, and `< =
1
|E |

∑

4∈E G# (<, 4) be the mean of labels

over {<} × E. Based on the properties of simple random sampling

[45] (Chapter 7.3, Page 205), we have E( ˆ̀<) = `< . Thus, we have

E(�̂# ) = |E |
∑

<∈M�

E( ˆ̀<) =
∑

<∈M�

|E |`< = �# .

□

However, the labeling via the global labeling function G# could

be expensive when the permutation size becomes large. To make

it scalable, we propose a sample labeling function Ĝ# as follows,

with which the labeling is done only w.r.t. the model-permutation

pairs in M̂� × Ê.
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Theorem 4. Let M̂� be the estimated non-isomorphic model set

generated by our non-isomorphic model estimator. Let Î : Ê ↦→

{1, . . . , |Ê |} be a sample ordering function which returns the index

of a sampled permutation in Ê based on a prede�ned ordering of the

permutations in Ê. Let Ĝ# be a sample labeling function:

Ĝ# (<, 4) =

{

0, ∃4 ′ ∈ Ê .Î (4 ′) < Î (4) ∧ (<, 4) =# (<, 4 ′)

1, >Cℎ4AF8B4.

One estimator of�# is de�ned as �̂ ′
#

=
|E |

| Ê |

∑

<∈M̂�

∑

4∈Ê
Ĝ# (<, 4).

E(�̂ ′
#
) is the upper bound of �# .

Proof. For any <,<′ ∈ M̂� , if < =� <′, then the number

of equivalence classes in {<} × Ê equals to that in {<′} × Ê.

Thus,
∑

4∈Ê
Ĝ# (<, 4) =

∑

4∈Ê
Ĝ# (<

′, 4). Since M̂� is the over-

approximation ofM� (see Theorem 1), we have

�̂ ′
#
≥
|E|

|Ê |

∑

<∈M�

∑

4∈Ê

Ĝ# (<, 4) . (1)

Next, for each < ∈ M� , we divide model-permutation pairs of

{<} × Ê into equivalence classes w.r.t. =# : if we label the pairs via

Ĝ# , there is exactly one pair labeled as 1 for each equivalence class

(w.r.t. =# ); if we label the pairs via G# , there is at most one pair

labeled as 1 for each equivalence class (w.r.t. =# ). Thus, we have

∑

4∈Ê

Ĝ# (<, 4) ≥
∑

4∈Ê

G# (<, 4). (2)

Based on Inequation 1, Inequation 2 and Theorem 3, we have

E(�̂
′
#
) ≥ E(

|E |

|Ê |

∑

<∈M�

∑

4∈Ê

G# (<, 4)) = E(�̂# ) = �# .

□

Theorem 5. �̂ ′
#
→ �# when Ê → E.

Proof. If Ê → E, then M̂�

=�
→ M� based on Theorem 2, and

Ĝ# → G# based on Theorem 4. Thus, we have �̂ ′
#
→ �# . □

We use �̂ ′
#

=
|E |

| Ê |

∑

<∈M̂�

∑

4∈Ê
Ĝ# (<, 4) as our �nal estimator

of �# . The estimator has the consistency property and its expecta-

tion provides the upper bound of �# .

4.5.2 The Algorithm. Our isomorphic model counting algorithm

for realizing the estimator �̂ ′
#
is shown in Algorithm 3. The algo-

rithm is built upon the non-isomorphic model enumeration al-

gorithm, which reuses the sampled permutations and the non-

isomorphic models produced by the non-isomorphic algorithm

(line 2). Note that for each model< ∈ M̂� , all the models in the

permuted model setM
Ê
are labeled as 1 and the rest (the dupli-

cated models with the models inM
Ê
) are labeled as 0. Therefore,

for each< ∈ M̂� , the sum of the labels
∑

4∈Ê
Ĝ# (<, 4) is the size

of the permuted model (line 7).

Algorithm 3 SymMC approximate isomorphic model counting.

Input: all the models under PaSBM% ; symmetry info (~<

produced by enhanced Kodkod module.

Output: the estimated isomorphic model count �̂ ′
#
.

1: procedure approxIsom(M% , (~<)

2: M̂� , _, Ê ← 0??A>G#>=�B><(M% , (~<)

3: C>C0;B0<? ← |Ê |

4: BD< ← 0

5: for each< ∈ M̂� do

6: M
Ê
← 0??;~%4A<B (<, Ê)

7: BD< ← BD< + |M
Ê
|

8: end for

9: �̂ ′
#
← C>C0;?4A</C>C0;B0<? · BD<

10: return �̂ ′
#

11: end procedure

5 EXPERIMENTAL EVALUATION

SubjectsWe take the speci�cations from four sources as our sub-

jects, including 1) 53 speci�cations fromAlloy standard distribution,

arising from a variety of real-world applications such as security in

protocols and �le systems; 2) 14 speci�cations from Kodkod stan-

dard distribution including constraint satisfaction problems such

as the graph coloring problem and the Latin squares problem; 3)

n-Queen (10 speci�cations) and 3-Queen problems (9 speci�cations)

from the recent study of the symmetry breaking impact in model

counting [60]; 4) 30 speci�cations from the recent study [36] that

counts the models for 6 data structures (e.g., red-black trees and

double linked lists), each with 5 di�erent scopes. In total, there are

116 speci�cations, out of which 6 speci�cations have no detected

symmetries (4 from Alloy category and 2 from Kodkod category).

We exclude those subjects in our experiments. Therefore, there

are 110 subjects in our benchmark, including 49 subjects in Alloy

category, 12 subjects in Kodkod category, 19 subjects in n-Queen

category, and 30 subjects in Data Structure category.

Platform All the experiments were performed on a machine with

a 3.7 GHz Intel Core i7-8700K CPU and 32 GB RAM.

Research Questions Our research questions are summarized as

follows:

• RQ1: How does SymMC perform in approximating the non-

isomorphic models/count?

• RQ2: How does SymMC perform in approximating the iso-

morphic count?

• RQ3:What does the quanti�cationmetric of SymMC indicate

about the pruning ability of Kodkod partial SBPs?

5.1 RQ1: SymMC Performance in

Approximating Non-Isomorphic Models

The Baseline Since there is no existing automatic tool for non-

isomorphic model enumeration for Alloy speci�cations, we make

an exact model enumeration and counting variant of SymMC called

SymMC-exact as our baseline, by turning o� the permutation sam-

pling of SymMC (i.e., do the enumeration and counting with all

possible permutations).
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