

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

lot of work has been done to e�ciently enumerate non-isomorphic

models in various kinds of areas such as test generation [32, 42, 59],

con�gurations of robotics [11, 34], and graphs [37, 41, 55]. To our

knowledge, there is only one existing tool called TestEra [29, 31, 35]

that utilizes Alloy to generate non-isomorphic test inputs for Java

programs. However, this approach has one limitation: it requires

users to manually add the symmetry breaking speci�cation to real-

ize the full symmetry breaking for their Alloy speci�cations. Mo-

tivated by this, we aim to propose a fully automated approach to

enumerate non-isomorphic models for Alloy speci�cations without

requiring manual input from users.

Quanti�cationMeasurement of Kodkod Partial SBPs Kodkod

partial SBPs are often e�ective—they are often able to rule out a

large fraction of models from each isomorphism class. However,

the pruning ability of Kodkod partial SBPs is unpredictable, which

means that the partial SBPs can result in totally di�erent ruled-out

fractions for di�erent input problems. Shlyakhter et al. did some

initial measurements for the e�ectiveness of the partial SBPs applied

on only a few examples with the known number of isomorphism

classes [48]. However, to our knowledge, no work has been done

to automatically measure the e�ectiveness of Kodkod partial SBPs

for an arbitrary Alloy speci�cation due to the di�culty of counting

the number of isomorphism classes of the speci�cation. Regarding

this, we aim to automatically measure the pruning ability of the

applied Kodkod partial SBPs for an arbitrary Alloy speci�cation, by

getting the non-isomorphic count for the speci�cation.

Isomorphic Model Counting Model counting is a classical prob-

lem of computing the number of models for a given formula. Pro-

jected model counting [4] is a kind of model counting problemwhich

counts only the unique models with respect to designated variables.

Consider a simple SAT formula (G1 ∨ G2) ∧ (G3 ∨ ¬G4), the pro-

jected model count over variables G1 and G2 is 3; over variables G1
and G4 is 4. There have been several recent works in doing model

counting for Alloy speci�cations [57, 60, 62]. The model count-

ing for Alloy speci�cations belongs to projected model counting,

which counts the number of satis�able models of the translated SAT

formulas over only primary variables (i.e., the variables directly

encoding Alloy speci�cation components) excluding auxiliary vari-

ables introduced during the translation. A recently published tool

called AlloyMC [62] has added o�-the-shelf projected model coun-

ters to the Alloy backend. A recent study [60] found that Kodkod

partial SBPs can substantially reduce the counting time taken by

the-state-of-art model counters for counting satis�able models of

Alloy speci�cations. However, the addition of partial SBPs means

that the reported counts are accurate only with respect to partial

symmetry breaking (PaSB). Indeed, it is the isomorphic count (i.e.,

the model count with no symmetry breaking) that is commonly

desirable. Inspired by the �ndings of the study, we aim to e�ciently

get the isomorphic count for Alloy speci�cations by utilizing the

Kodkod partial SBPs.

We propose an automated tool called SymMC to solve all these

three challenging problems by solving two key technical problems:

the non-isomorphic model enumeration/counting and the isomor-

phic model counting for Alloy speci�cations. The two technical

problems are in general hard problems—they would quickly become

intractable as the number of all possible permutations in the input

problem increases substantially. Regarding this, the core idea inside

SymMC is to e�ciently approximate the non-isomorphic models

and the isomorphic model count, by sampling the permutations

instead of considering all possible permutations.

We �rst convert the non-isomorphic model enumeration prob-

lem into a graph theory problem. The non-isomorphic models can

be over-approximated through the weakly connected components

of the converted graph which are constructed by the randomly

sampled permutations. Based on the formulation, we propose our

non-isomorphic model estimator and show that the estimator is able

to provide high approximation accuracy. The isomorphic counting

estimator is built upon the non-isomorphic model estimator. We for-

mulate the isomorphic counting problem into a statistical inference

problem. Based on the formulation, we then propose our isomorphic

counting estimator based on the simple random sampling. We prove

that both estimators provide the upper bound/over-approximation

of the count/enumeration and have consistency property. Finally,

we present two practical approximate algorithms of SymMC for

realizing the two estimators, respectively.

We evaluate SymMC mainly in two aspects: the approximation

e�ciency and the approximation accuracy. To do the empirical

evaluation, we collect 110 Alloy speci�cations as our subjects from

four sources relating to a variety of real-world applications such as

security, protocols and test generation. For non-isomorphic model

approximation, experimental results show that SymMC success-

fully solves 73 subjects within the standard time limit of 5,000

seconds; for all those subjects, SymMC approximates with surpris-

ingly zero error rate. For quanti�cation measurement of the Kodkod

partial SBP, SymMC found that its pruning ability is often e�ective

and even perfect in some subject types (e.g., n-Queen problems),

while its ability is sometimes very limited in other subjects (e.g.,

singly linked list data structure). For isomorphic model counting,

experimental results show that SymMC is more e�cient than the

state-of-the-art exact counter GANAK [47] in 77.2% subjects and the

state-of-the-art approximate counter ApproxMC [51] in 79.5% sub-

jects; SymMC approximates with lower error rate than ApproxMC

in 95.6% subjects. The source code of SymMC is publicly available

at https://github.com/wenxiwang/SymMC-Tool.

The contributions of this paper are:

• Idea. We introduce the idea of utilizing symmetry informa-

tion and permutation sampling to approximate the non-

isomorphic model enumeration and isomorphic counting

for Alloy speci�cations.

• Approximate Non-isomorphic Enumeration. To our knowl-

edge, SymMC is the �rst to do automatic non-isomorphic

model enumeration for Alloy speci�cations.

• Quanti�cation Measurement. SymMC provides an automatic

way of measuring the pruning ability of the Kodkod partial

SBPs for an arbitrary Alloy speci�cation.

• Approximate Isomorphic Counting. We present an approx-

imate isomorphic counting algorithm based on sampling

which is competitive with state-of-the-art counters.

2 RELATED WORK

For non-isomorphic model enumeration for Alloy speci�cations,

the most related tool is TestEra [29, 31, 35] which applies Alloy as

1210

SymMC: Approximate Model Enumeration and Counting using Symmetry Information for Alloy Specifications ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Algorithm 2 SymMC permutation sample size setting.

Input: perms number C>C0;?4A<; the sampling rate A0C8> .

Output: the sample size B0<?B8I4

Parameters: sample size range [<8=?4A<,<0G?4A<];

1: procedure setSampSize(C>C0;?4A<, A0C8>)

2: if C>C0;?4A< ≤ <8=?4A< then

3: return C>C0;?4A<

4: end if

5: U ← C>C0;?4A< · A0C8>

6: if U < <8=?4A< then

7: return<8=?4A<

8: end if

9: if U ≤ <0G?4A< then

10: return U

11: end if

12: return<0G?4A< ⊲ U > <0G?4A<

13: end procedure

[12] is then performed on the graph� (M% , =̂�) to �nd its weakly

connected components and construct M̂� (line 13)2; The sampled

permutation set Ê gets updated with the set of new permutations

Δ (line 14). As the number of added edges grows, the number of

weakly connected components decreases, so as the estimated count.

The approximation process continues until the decrease of the

estimated count is not signi�cant under the early stopping criterion

\ or all permutations have been sampled (line 16).

Algorithm 2 shows the details of how we set the sample size

given the total permutation number C>C0;?4A< and the sampling

rate A0C8> . The idea is that if the total permutation number is smaller

than the threshold<8=?4A<, we utilize all the permutations without

doing the sampling (lines 2-4); otherwise, we �rst set the sample size

based on the sampling rate and normalize it within a parameterized

range [<8=?4A<,<0G?4A<] (lines 5-12).

4.4.3 The �antification Metric. There is a by-product of the non-

isomorphic model approximation, which is the quanti�cation met-

ric for approximately evaluating the pruning ability of the ap-

plied Kodkod partial symmetry breaking predicate. Inspired by

Shlyakhter [48], we de�ne the metric as the ratio of non-isomorphic

count to the count under PaSB: �̂�

|M% |
. The range of the metric is

(0,1]. Larger value indicates higher pruning ability. The value of

1 indicates that the Kodkod partial SBP is actually doing full sym-

metry breaking. Note that since �̂� is the upper bound of �� , the

metric is an optimistic estimation in evaluating the pruning ability.

4.5 The Isomorphic Count Estimator

The isomorphic count estimator takesM% and (~< as inputs. It

�rst utilizes the non-isomorphic model estimator to generate the

estimated non-isomorphic model set M̂� . Based on M̂� , the iso-

morphic counting problem is formulated as a statistical inference

problem, where the desired isomorphic count denoted by �# is es-

timated using simple random sampling techniques [45] (Chapter 7.3,

2In our implementation, for e�ciency purposes, we utilize the Union-Find operations
to combine disjoint sets as long as new edges are found, instead of constructing a
complete graph before computing WCCs.

Page 202-220). We show that the expectation of the estimator pro-

vides the upper bound of the isomorphic count and has consistency

property.

4.5.1 The Estimator.

Problem Definition 3. Let =# be an equivalence relation on

M� × E such that (<, 4) =# (<
′, 4 ′) i� 5 (<, 4) = 5 (<′, 4 ′). Our

goal is to calculate the number of equivalence classes de�ned by =# ,

which is the count �# .

Lemma 1. Let I : E ↦→ {1, . . . , |E |} be a permutation ordering

function which returns the index of a permutation in E based on a

prede�ned ordering of the permutations in E. Let G# :M� × E ↦→

{0, 1} be a global labeling function over all model-permutation pairs:

G# (<, 4) =

{

0, ∃4 ′ ∈ E .I(4 ′) < I(4) ∧ (<, 4) =# (<, 4 ′)

1, >Cℎ4AF8B4.

Thus, we have �# =
∑

<∈M�

∑

4∈E G# (<, 4).

Proof. First, we prove that for any<,<′ ∈ "� and 4, 4 ′ ∈ E, if

< ≠<′ then (<, 4) ≠# (<
′, 4 ′) by contradiction. Assuming there

exists <,<′ ∈ "� and 4, 4 ′ ∈ E such that < ≠ <′ ∧ (<, 4) =#
(<′, 4 ′). By the de�nition of =# , we have 5 (<, 4) = 5 (<′, 4 ′). We

then have 5 (<, 44 ′−1) =<′, thus< =� <′. By the de�nitions of =�
andM� , we know that if<,<′ ∈ M� and< =� <′ then< =<′.

This contradicts to< ≠<′.

Thus, we have that the number of the equivalence classes (w.r.t.

=#) in M� × E, which is �# , is the sum of the number of the

equivalence classes (w.r.t. =#) of {<} × E for every < ∈ M� .

For each< ∈ M� , the number of equivalence classes (w.r.t. =#)

in {<} × E is the sum of all labels
∑

4∈E G# (<, 4). Because the

model-permutation pair with the smallest permutation index in

each equivalence class (w.r.t. =#) is taken as the representative of

that class and labeled as 1, and the rest pairs are labeled as 0. Thus,

we have �# =
∑

<∈M�

∑

4∈E G# (<, 4).

□

Theorem 3. Let Ê be a set of permutations uniformly sampled

from E. One estimator of �# is �̂# =
|E |

| Ê |

∑

<∈M�

∑

4∈Ê
G# (<, 4).

�̂# is an unbiased estimator of �# .

Proof. Let ˆ̀< =
1

| Ê |

∑

4∈Ê
G# (<, 4) be the mean of the labels

over {<} × Ê, and `< =
1
|E |

∑

4∈E G# (<, 4) be the mean of labels

over {<} × E. Based on the properties of simple random sampling

[45] (Chapter 7.3, Page 205), we have E(ˆ̀<) = `< . Thus, we have

E(�̂#) = |E |
∑

<∈M�

E(ˆ̀<) =
∑

<∈M�

|E |`< = �# .

□

However, the labeling via the global labeling function G# could

be expensive when the permutation size becomes large. To make

it scalable, we propose a sample labeling function Ĝ# as follows,

with which the labeling is done only w.r.t. the model-permutation

pairs in M̂� × Ê.

1215

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

Theorem 4. Let M̂� be the estimated non-isomorphic model set

generated by our non-isomorphic model estimator. Let Î : Ê ↦→

{1, . . . , |Ê |} be a sample ordering function which returns the index

of a sampled permutation in Ê based on a prede�ned ordering of the

permutations in Ê. Let Ĝ# be a sample labeling function:

Ĝ# (<, 4) =

{

0, ∃4 ′ ∈ Ê .Î (4 ′) < Î (4) ∧ (<, 4) =# (<, 4 ′)

1, >Cℎ4AF8B4.

One estimator of�# is de�ned as �̂ ′
#

=
|E |

| Ê |

∑

<∈M̂�

∑

4∈Ê
Ĝ# (<, 4).

E(�̂ ′
#
) is the upper bound of �# .

Proof. For any <,<′ ∈ M̂� , if < =� <′, then the number

of equivalence classes in {<} × Ê equals to that in {<′} × Ê.

Thus,
∑

4∈Ê
Ĝ# (<, 4) =

∑

4∈Ê
Ĝ# (<

′, 4). Since M̂� is the over-

approximation ofM� (see Theorem 1), we have

�̂ ′
#
≥
|E|

|Ê |

∑

<∈M�

∑

4∈Ê

Ĝ# (<, 4) . (1)

Next, for each < ∈ M� , we divide model-permutation pairs of

{<} × Ê into equivalence classes w.r.t. =# : if we label the pairs via

Ĝ# , there is exactly one pair labeled as 1 for each equivalence class

(w.r.t. =#); if we label the pairs via G# , there is at most one pair

labeled as 1 for each equivalence class (w.r.t. =#). Thus, we have

∑

4∈Ê

Ĝ# (<, 4) ≥
∑

4∈Ê

G# (<, 4). (2)

Based on Inequation 1, Inequation 2 and Theorem 3, we have

E(�̂
′
#
) ≥ E(

|E |

|Ê |

∑

<∈M�

∑

4∈Ê

G# (<, 4)) = E(�̂#) = �# .

□

Theorem 5. �̂ ′
#
→ �# when Ê → E.

Proof. If Ê → E, then M̂�

=�
→ M� based on Theorem 2, and

Ĝ# → G# based on Theorem 4. Thus, we have �̂ ′
#
→ �# . □

We use �̂ ′
#

=
|E |

| Ê |

∑

<∈M̂�

∑

4∈Ê
Ĝ# (<, 4) as our �nal estimator

of �# . The estimator has the consistency property and its expecta-

tion provides the upper bound of �# .

4.5.2 The Algorithm. Our isomorphic model counting algorithm

for realizing the estimator �̂ ′
#
is shown in Algorithm 3. The algo-

rithm is built upon the non-isomorphic model enumeration al-

gorithm, which reuses the sampled permutations and the non-

isomorphic models produced by the non-isomorphic algorithm

(line 2). Note that for each model< ∈ M̂� , all the models in the

permuted model setM
Ê
are labeled as 1 and the rest (the dupli-

cated models with the models inM
Ê
) are labeled as 0. Therefore,

for each< ∈ M̂� , the sum of the labels
∑

4∈Ê
Ĝ# (<, 4) is the size

of the permuted model (line 7).

Algorithm 3 SymMC approximate isomorphic model counting.

Input: all the models under PaSBM% ; symmetry info (~<

produced by enhanced Kodkod module.

Output: the estimated isomorphic model count �̂ ′
#
.

1: procedure approxIsom(M% , (~<)

2: M̂� , _, Ê ← 0??A>G#>=�B><(M% , (~<)

3: C>C0;B0<? ← |Ê |

4: BD< ← 0

5: for each< ∈ M̂� do

6: M
Ê
← 0??;~%4A<B (<, Ê)

7: BD< ← BD< + |M
Ê
|

8: end for

9: �̂ ′
#
← C>C0;?4A</C>C0;B0<? · BD<

10: return �̂ ′
#

11: end procedure

5 EXPERIMENTAL EVALUATION

SubjectsWe take the speci�cations from four sources as our sub-

jects, including 1) 53 speci�cations fromAlloy standard distribution,

arising from a variety of real-world applications such as security in

protocols and �le systems; 2) 14 speci�cations from Kodkod stan-

dard distribution including constraint satisfaction problems such

as the graph coloring problem and the Latin squares problem; 3)

n-Queen (10 speci�cations) and 3-Queen problems (9 speci�cations)

from the recent study of the symmetry breaking impact in model

counting [60]; 4) 30 speci�cations from the recent study [36] that

counts the models for 6 data structures (e.g., red-black trees and

double linked lists), each with 5 di�erent scopes. In total, there are

116 speci�cations, out of which 6 speci�cations have no detected

symmetries (4 from Alloy category and 2 from Kodkod category).

We exclude those subjects in our experiments. Therefore, there

are 110 subjects in our benchmark, including 49 subjects in Alloy

category, 12 subjects in Kodkod category, 19 subjects in n-Queen

category, and 30 subjects in Data Structure category.

Platform All the experiments were performed on a machine with

a 3.7 GHz Intel Core i7-8700K CPU and 32 GB RAM.

Research Questions Our research questions are summarized as

follows:

• RQ1: How does SymMC perform in approximating the non-

isomorphic models/count?

• RQ2: How does SymMC perform in approximating the iso-

morphic count?

• RQ3:What does the quanti�cationmetric of SymMC indicate

about the pruning ability of Kodkod partial SBPs?

5.1 RQ1: SymMC Performance in

Approximating Non-Isomorphic Models

The Baseline Since there is no existing automatic tool for non-

isomorphic model enumeration for Alloy speci�cations, we make

an exact model enumeration and counting variant of SymMC called

SymMC-exact as our baseline, by turning o� the permutation sam-

pling of SymMC (i.e., do the enumeration and counting with all

possible permutations).

1216

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

[18] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. 2001. Symmetry
Breaking. In Principles and Practice of Constraint Programming — CP 2001, Toby
Walsh (Ed.). Springer, Berlin, Heidelberg, 93–107.

[19] Filippo Focacci and Michaela Milano. 2001. Global Cut Framework for Removing
Symmetries. In Principles and Practice of Constraint Programming — CP 2001, Toby
Walsh (Ed.). Springer, Berlin, Heidelberg.

[20] Ian P Gent and Barbara Smith. 2000. Symmetry Breaking in Constraint Program-
ming. In ECAI.

[21] Vibhav Gogate and Rina Dechter. 2006. A new algorithm for sampling CSP
solutions uniformly at random. In International Conference on Principles and
Practice of Constraint Programming. Springer, 711–715.

[22] Vibhav Gogate and Rina Dechter. 2007. Approximate counting by sampling the
backtrack-free search space. In AAAI. 198–203.

[23] Vibhav Gogate and Rina Dechter. 2011. SampleSearch: Importance sampling in
presence of determinism. Arti�cial Intelligence 175, 2 (2011), 694–729.

[24] Carla P Gomes, Joerg Ho�mann, Ashish Sabharwal, and Bart Selman. 2007. From
Sampling to Model Counting.. In IJCAI, Vol. 2007. 2293–2299.

[25] Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2006. Model counting: A
new strategy for obtaining good bounds. In AAAI. 54–61.

[26] Daniel Jackson. 2000. Automating �rst-order relational logic. In Proceedings
of the 8th ACM SIGSOFT international symposium on Foundations of software
engineering: twenty-�rst century applications. 130–139.

[27] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

[28] Eunsuk Kang and Daniel Jackson. 2008. Formal modeling and analysis of a �ash
�lesystem in Alloy. In International Conference on Abstract State Machines, B and
Z. Springer, 294–308.

[29] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz
Khurshid. 2011. Testera: A tool for testing java programs using alloy speci�ca-
tions. In 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, 608–611.

[30] Sarfraz Khurshid and DarkoMarinov. 2004. TestEra: Speci�cation-based testing of
Java programs using SAT. Automated Software Engineering 11, 4 (2004), 403–434.

[31] Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. 2003. A
case for e�cient solution enumeration. In International Conference on Theory and
Applications of Satis�ability Testing. Springer, 272–286.

[32] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. 2003. Generalized
symbolic execution for model checking and testing. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
553–568.

[33] Lukas Kroc, Ashish Sabharwal, and Bart Selman. 2008. Leveraging belief prop-
agation, backtrack search, and statistics for model counting. In International
Conference on Integration of Arti�cial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming. Springer, 127–141.

[34] Jinguo Liu, Yuechao Wang, Shugen Ma, and Yangmin Li. 2010. Enumeration
of the non-isomorphic con�gurations for a recon�gurable modular robot with
square-cubic-cell modules. International Journal of Advanced Robotic Systems 7,
4 (2010), 31.

[35] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel framework for
automated testing of Java programs. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE, 22–31.

[36] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel framework for
automated testing of Java programs. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE, 22–31.

[37] Brendan D McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II.
Journal of symbolic computation 60 (2014), 94–112.

[38] C Mears. 2009. Automatic symmetry detection and dynamic symmetry breaking
for constraint programming. Ph. D. Dissertation. Ph. D. thesis, Clayton School of
Information Technology, Monash University.

[39] Christopher Mears, Maria Garcia De La Banda, Bart Demoen, and Mark Wallace.
2014. Lightweight dynamic symmetry breaking. Constraints 19, 3 (2014), 195–242.

[40] Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. 2018.
CDCLSym: Introducing e�ective symmetry breaking in SAT solving. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 99–114.

[41] Patryk Mikos. 2021. E�cient enumeration of non-isomorphic interval graphs.
Discrete Mathematics & Theoretical Computer Science 23 (2021).

[42] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid.
2007. Korat: A tool for generating structurally complex test inputs. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 771–774.

[43] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh. 2011.
Formal veri�cation of OAuth 2.0 using Alloy framework. In 2011 International
Conference on Communication Systems and Network Technologies. IEEE, 655–659.

[44] Karen E Petrie, Barbara M Smith, and Neil Yorke-Smith. 2004. Dynamic sym-
metry breaking in constraint programming and linear programming hybrids. In
European starting AI researcher symp. Citeseer.

[45] John A Rice. 2007. Mathematical statistics and data analysis, 3rd Edition. Thomson
Higher Education.

[46] Bas Schaafsma,Marijn JHHeule, andHans VanMaaren. 2009. Dynamic symmetry
breaking by simulating zykov contraction. In International Conference on Theory
and Applications of Satis�ability Testing. Springer, 223–236.

[47] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. 2019. GANAK: a
scalable probabilistic exact model counter. In Proceedings of the 28th International
Joint Conference on Arti�cial Intelligence. AAAI Press, 1169–1176.

[48] Ilya Shlyakhter. 2007. Generating e�ective symmetry-breaking predicates for
search problems. Discrete Applied Mathematics 155, 12 (2007), 1539–1548.

[49] Ilya Shlyakhter. 2007. Generating e�ective symmetry-breaking predicates for
search problems. Discrete Applied Mathematics 155, 12 (2007), 1539–1548.

[50] Michael Sipser. 1983. A complexity theoretic approach to randomness. In Proceed-
ings of the �fteenth annual ACM symposium on Theory of computing. 330–335.

[51] Mate Soos and Kuldeep S Meel. 2019. Bird: Engineering an e�cient CNF-XOR
sat solver and its applications to approximate model counting. In Proceedings of
the AAAI Conference on Arti�cial Intelligence, Vol. 33. 1592–1599.

[52] Takahisa Toda and Takehide Soh. 2016. Implementing e�cient all solutions SAT
solvers. Journal of Experimental Algorithmics (JEA) 21 (2016), 1–44.

[53] Emina Torlak. 2009. A constraint solver for software engineering: �nding models
and cores of large relational speci�cations. Ph. D. Dissertation. Massachusetts
Institute of Technology.

[54] Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model �nder. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 632–647.

[55] Dat Hoang Tran and Ryuhei Uehara. 2020. E�cient enumeration of non-
isomorphic ptolemaic graphs. In International Workshop on Algorithms and Com-
putation. Springer, 296–307.

[56] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. Checkmate:
Automated synthesis of hardware exploits and security litmus tests. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
947–960.

[57] Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC: testing
model counters using di�erential and metamorphic testing. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
709–721.

[58] Timothy Van Bremen, Vincent Derkinderen, Shubham Sharma, Subhajit Roy,
and Kuldeep S Meel. 2021. Symmetric Component Caching for Model Counting
on Combinatorial Instances. In Proceedings of the AAAI Conference on Arti�cial
Intelligence, Vol. 35. 3922–3930.

[59] Willem Visser, Corina S Pǎsǎreanu, and Sarfraz Khurshid. 2004. Test input gener-
ation with Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. 97–107.

[60] Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S
Meel, and Sarfraz Khurshid. 2020. A Study of Symmetry Breaking Predicates
and Model Counting. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 115–134.

[61] Wei Wei and Bart Selman. 2005. A new approach to model counting. In Inter-
national Conference on Theory and Applications of Satis�ability Testing. Springer,
324–339.

[62] Jiayi Yang, Wenxi Wang, Darko Marinov, and Sarfraz Khurshid. 2020. AlloyMC:
Alloy Meets Model Counting. In 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Demo
Papers. 1541–1545.

1220

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Alloy Specifications
	3.2 Kodkod Partial Symmetry Breaking for Alloy Specifications

	4 SymMC
	4.1 Overview
	4.2 Enhanced Kodkod with Symmetry Info Extraction
	4.3 The AllSAT Model Enumerator
	4.4 The Non-Isomorphic Model Estimator
	4.5 The Isomorphic Count Estimator

	5 Experimental Evaluation
	5.1 RQ1: SymMC Performance in Approximating Non-Isomorphic Models
	5.2 RQ2: SymMC Performance in Approximating the Isomorphic Count
	5.3 RQ3: SymMC Quantification Measurement

	6 Conclusion
	References

