Incremental Concolic Testing of Register-Transfer Level
Designs

HASINI WITHARANA, University of Florida, USA
ARUNA JAYASENA, University of Florida, USA
PRABHAT MISHRA, University of Florida, USA

Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware
designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches.
In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in
register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence
of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We
propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test
generated to activate the current event is used as the starting point to activate the next event in the sequence.
Experimental results demonstrate that our approach can be used to generate directed tests to cover complex
corner cases in RTL models while state-of-the-art methods fail to activate them.

1 INTRODUCTION

Functional validation is a major bottleneck for modern System-on-Chip (SoC) designs. According
to the Wilson Research 2020 functional verification study [1], more than 50% of development time
in hardware designs were spent in verification. Irrespective of the validation effort, only 32% of
the systems can achieve the first silicon success [1]. Simulation is the most widely used form of
functional validation. Even millions of random tests may not be able to activate complex corner
cases such as hard-to-detect branches in Register-Transfer Level (RTL) designs. Specifically, memory
and processor designs have complex hard-to-detect branches due to the nature of concurrency,
shared environments and memory consistency. As a result, it is unlikely to achieve 100% functional
coverage using random or constrained-random tests for industrial RTL designs. To improve the
coverage, verification engineers typically write manual tests to cover the remaining functional
scenarios. Manual test writing can be cumbersome and error-prone. In fact, it may be infeasible
to write manual tests for complex designs. There is a critical need for automated generation of
directed tests to verify such complex RTL models.

Automated test generation can be performed using formal as well as semi-formal techniques [2].
For example, SAT-based bounded model checking searches the state space to generate counterex-
amples (directed tests). Since the number of states increases exponentially with the increase of
unroll cycles, formal methods is likely to face state space explosion for complex designs. Concolic
testing is a semi-formal approach that uses an effective combination of concrete simulation and
symbolic execution. Concolic testing is scalable since it explores only execution path at a time
(unlike formal methods that tries to explore all possible paths).

Authors’ addresses: Hasini Witharana, University of Florida, Gainesville, Florida, 32611, USA, witharana.hasini@ufl.edu;
Aruna Jayasena, University of Florida, Gainesville, Florida, 32611, USA; Prabhat Mishra, University of Florida, Gainesville,
Florida, 32611, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

XXXX-XXXX/2024/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

R Instrumented
A
Design > Design
o . + Generate path
?:elr:tl e » Simulate »(Constraints
p C =(cq,Co,.--,Cp)

Negated path
Constraints
C'= (C1,Cz,...,ck)

Selectable
branch?

Fig. 1. An overview of concolic testing that effectively combines concrete simulation with symbolic execution.

Concolic testing has been successfully used as a directed test generation method in both soft-
ware [3, 4] and hardware domains [5]. Figure 1 shows an overview of the concolic testing framework.
The design is instrumented so that the tool can identify the executed path during simulation. Next,
the instrumented design is simulated using an initial vector. The initial test vector can be generated
using random or any other test generation methods. The execution path of the design is identified
by analyzing the simulation trace. Next, an alternate path is selected by negating one of the branch
constraints. The path constraints to activate the selected branch (alternate branch) will be sent to a
constraint solver. Constraint solver will produce a solution if the constraints are satisfiable. This
solution is used to generate a new test vector to activate the selected branch. If the constraint solver
cannot solve the constraints (solution is unsatisfiable), an alternate branch is selected. This process
continues until the expected coverage is achieved. Since concolic testing explores one path at a
time, it overcomes the state space exploration problem. However, concolic testing faces the path
exploration problem due to the exponential number of possible paths to explore. Path exploration
problem can be mitigated by using a profitable alternate branch selection approach.

1.1 Motivation: An lllustrative Example

Alternate branch selection depends on the coverage goal. Existing approaches [6] try to maximize
the overall coverage while try to cover specific branch target [5, 7]. In this paper, we are considering
activation of hard-to-activate branches in RTL models. Some branches become hard-to-activate due
to the complex temporal dependencies that should be preserved in-order to activate that branch.

CFG1 CFG2 CFG3

—>If Intra-Edges

................ » Else Intra-Edges

------- » Intra-BFS

mem[addr] <= w_data
A

-3 Dependancy for r_data

» Dependancy for w_data
Fig. 2. Control and data flow graphs for the ram design in Listing 1. (BFS: Breadth First Search)

Example 1: We use a simple Verilog design (Listing 1) to describe various concepts in this paper.
Listing 1 has three always blocks corresponding to three functionalities in a simple memory module:
write functionality (line 9 - 18), read functionality (line 19 - 28), system functionality (line 29 - 42).
While read and write are basic memory operations, the system functionality can be viewed as the

top module (e.g., processor) trying to check a write followed by a read. For the ease of illustration,
we are not showing all the else blocks for the if statements. Figure 2 presents the control and data
flow for Listing 1. The three always blocks presented in the example corresponds to the three CFGs
as CFG; (memory write), CFG, (memory read) and CFGj; (check). The solid black lines represents
control flow when the branch condition is true, while the flow for the false condition is represented
using black dotted lines. O

Listing 1. Example of a memory module in Verilog

1. module ram

2 input clk, rst,

3 input [ADDR W-1:0] addr, //write signals

4. input w_en,

5. input [DATA W-1:0] w_data, //read signals

6 input r_en,

7. output reg [DATA W-1:0] r_data, //memory declaration
8 reg [DATA W-1:0] mem [2++ADDR W-1:0];

//Memory write

9. always @(posedge clk) begin
10. if(r_en) begin

11. //B1

12. end

13. else begin

14. if (w_en)begin //B2

15. mem[addr] <= w_data; //B3
16. end

17. end

18. end

//Memory read
19. always @(posedge clk) begin
20. if(r_en)

21. if (w_en) begin //B5

22. //B7

23. end

24. else begin

25. r_data <= mem[addr]; //B8
26. end

27. end

28. end

//Check write followed by read
29. always @(+) begin
30. if (r_en) begin

31. if (w_en) begin //B9

32. //B11

33. end

34. else begin

35. if (addr == ADDR) begin //B12

36. if (r_data == DATA) begin //BI13
37. $display (" Target"); //B15
38. end

39. end

40. end

41. end

42. end
43. endmodule

Consider line 36 in Listing 1 that reads a value (r_data) from a specific memory address (addr).
For this condition to be true, a write should happen to that specific memory address with the
exact values. The read can only happen when read flag (r_en) is true and write flag (w_en) is false.
However, write can only proceed when read flag (r_en) is false and write flag (w_en) is true. These
are contradictory constraints that must be satisfied in-order to activate the branch. Existing concolic
testing fails unless the design is sufficiently unrolled in such cases. Unrolling for a large number of
cycles is not feasible for large designs.

1.2 Contributions

In this paper, we propose a sequence-based incremental concolic testing. Our proposed technique
uses edge exploration by traversing the Control Flow Graph (CFG) of the RTL design to identify
the event sequence. Next, it solves each sequence while maintaining the order and preserving each
solution for solving the next sequence incrementally. This paper makes the following three major
contributions.

(1) Proposes an event sequence based approach for concolic testing. For a given branch, the
sequence of events are identified by statically analyzing the concurrent CFGs of the RTL
design.

(2) Incrementally applies concolic testing on an event sequence and preserves the test vectors to
build the directed test to activate the target (hard-to-detect branches).

(3) Extensive experimental evaluation using a memory and a processor design demonstrates the
effectiveness of our approach.

This paper is organized as follows. Section 2 surveys existing test generation techniques. Section 3
defines related terms. Section 4 presents our proposed test generation framework. Section 5 presents
experimental results. Finally, Section 6 concludes the paper.

2 RELATED WORK

In this section, we briefly describe memory verification methods and existing test generation efforts
using formal methods as well as concolic testing.

2.1 Verification of RTL Models

As Al and ML continue to advance, memory requirements are becoming increasingly sophisticated.
Memory modules need to deliver high performance while consuming minimal power. However,
the scaling of technologies has led to complex memory designs, posing challenges for verification.
To bridge the verification gap, design teams must employ advanced modeling and verification tech-
niques. These techniques ensure that the silicon behaves as expected throughout the development
process. Unlike software errors, rectifying errors in memory modules at later stages of the life
cycle becomes significantly more difficult. To tackle this, memory designers are utilizing various
verification techniques to verify the functionality of complex interactions within the memory
modules [8—11]. There are various efforts [10, 12] that rely on abstracted implementation and
provides verification guarantees. In contrast, the test patterns generated by our approach can
be used to simulate the actual implementation. While there is a recent effort [13] that considers
simulation of processor designs, but it assumes the availability of a golden ISA specification. In this
work, we explore the use of concolic testing to activate hard-to-detect branches in both processor
and memory designs, enabling comprehensive verification.

2.2 Test Generation using Formal Methods

There are several test generation methods such as manual testing, random testing and formal meth-
ods. When compared to random testing formal methods are suitable for directed test generation
methods [2, 5, 7, 14-20]. Formal verification techniques mathematically prove system properties
based on formal models and specifications. Formal verification methods include model checking,
theorem proving, property checking, etc. Formal methods can also be applied to automated test-
ing [21-46]. For example, model checking is widely used for automated generation of directed
tests [2]. Specifically, a model checker uses the model of the design and the property (the negated
version of the target activity) to produce a counterexample. It performs bounded model checking
using binary decision diagrams (BDD) [47] or SAT solvers [48]. Unfortunately, model checking is
not scalable due to the state explosion problem. While there are promising avenues to reduce the
model checking complexity, formal methods are not scalable for automated test generation when
dealing with complex behaviors (e.g., hard-to-detect branches) as well as large designs.

2.3 Test Generation using Concolic Testing

Concolic testing is a promising alternative to model checking based test generation. Specifically, it
provides an effective combination of concrete simulation and symbolic execution [5]. Unlike model
checking that tries to explore all possible (exponential) execution paths at the same time, concolic
testing explores only one execution path at a time. Concolic testing has been successfully applied
on both software [3, 4, 49, 50] and hardware designs [5, 51-53].

Although concolic testing can avoid state explosion problem, it faces path explosion problem
since it needs to select a profitable path is each iteration. While there are promising solutions for
selecting beneficial branches [5], they are not suitable for complex corner cases such as hard-to-
detect branches with complex branch conditions. We propose an efficient mechanism to activate
complex branch conditions by identifying it as a sequence of simple conditions and incrementally
applying concolic testing to activate these simple conditions.

3 PRELIMINARIES AND DEFINITIONS
We define few terms that are used in this paper. While our approach is applicable on both Verilog
and VHDL designs, for the ease of illustration, we use Verilog examples in the remainder of this
paper.

Definition 1: Branch is a conditional statement which includes statements that should be
executed if the condition is satisfied. We consider ‘if” and ‘case’ statements as branches. Note that

other statements (e.g., ‘for’ and ‘while’) can also be viewed as an ‘if” statement. For example, line
36-38 in Listing 1 represent a branch statement. O

Definition 2: Branch condition is a Boolean expression that can be constructed using Boolean

operators (&&, ||, !) between Boolean expressions, or relational operators (<, >, >=, <=, ==, ! =)
between numeric expressions. For example, (r_data == DATA) is the branch condition in Listing 1
(line 36). O

Definition 3: Each branch can have up to two blocks: if-block and else-block. Each block (B) is
a sequence of statements that will be executed if the condition is true (if-block) or false (else-block).
For example, B13 in Listing 1 (line 36-38) represents the if-block for the branch in line 35. Similarly,
B15 (line 37) is the if-block for the branch in line 36. O

Definition 4: Control Flow Graph (CFG) represents a flow of control between the block-
s/branches in an ‘always’ or ‘initial’ block in Verilog designs. A CFG is a directed graph, G = (N, E).

Each node n € N represents a block. Each edge e = (n;,n;) € E corresponds to a possible control
flow from block n; to block n;. The edges inside a CFG are called intra-edges whereas the edges
between CFGs are called as inter-edges. For example, Figure 2 shows three CFGs corresponding to
the three ‘always’ statements in Listing 1. O

Definition 5: Simulation trace is a sequence of blocks executed by simulation for a finite number
of clock cycles (cy, ¢z,, ¢p) and corresponding test vectors (t1, 2,, t,) . This can be represented
as a tuple (c;, <B§,...., B;, ...>) where 1 < i < n (total unroll cycles) and 1 < j < number of all blocks.
Bj. represent that for clock cycle c;, the test ¢; is used to simulate, and the block B; is executed. O

Definition 6: Sequence (S) is a sequence of blocks representing an execution path that should
be followed in order to get to a specific block in a CFG. Sequence S can involve blocks from different
CFGs. Consider Sg = < Bik,...., B;,k, >, where B;’k implies that the j-th block (B;) is included in
the k-th sequence (Sk) during the i-th clock cycle (c;). For example, to activate Target in Listing 1,

the execution path will include the following sequence of blocks in CFG3 (Figure 2): B9, B12, B13,

B15. O

Definition 7: Test sequence (T) is a set of test vectors to activate the sequence of blocks in S.
Specifically, Ty consists of <t,1, - t;(, tg> where 1 <i<dandd < n.In t,’(, i is the clock cycle
and k is the sequence id. O

Definition 8: Branch target is a block that we want to activate for a specific outcome of a
branch (true or false). The block that gets activated by activating the branch condition is the target
block (B). B can be activated by following a sequences stack (B = < 51, Sy, ..., S, >). This implies
that in order to activate the branch target (B), one needs to execute a predefined sequences stack in
a particular order. O

Definition 9: A hard-to-activate branch is identified as a branch that remains unactivated even
after applying a substantial number of random test patterns (n) or running concolic testing up to m
unroll cycles. Section 5.2 outlines the procedure for finding hard-to-activate branches as well as
provides illustrative examples of hard-to-activate branches in a cache design. O

4 INCREMENTAL CONCOLIC TESTING OF RTL MODELS

Figure 3 presents an overview of our proposed incremental concolic testing framework. It consists
of three major tasks: sequence identification, design instrumentation, and incremental concolic

testing.
/— Incremental Concolic
Design Sequence <B},B....Bl....,B > Design B!
(RTL Models) Identification ”“\Unstrumentation

Branch Targets [__ _ _ Functional P Directed >
(Corner Cases) Validation ~ Tests -

Fig. 3. Overview of our test generation framework. It consists of three important tasks: sequence identification,
design instrumentation, and incremental concolic testing.

Algorithm 1 shows the relation between the three tasks. Given a design (D) and a branch target
(B;), the first step is to identify the sequences stack (SS) such that B; = < $1, S5, ..., S, >. The
second step is to instrument the design by converting each sequence to a branch statement. The
second step results in instrumented design (iD) and the target queue (TQ). The third step is to apply
concolic testing for each of the branch statements in the order of the sequence. The generated

test can be used to activate the branch target during functional validation. The remainder of this
section describes these three tasks in detail.

Algorithm 1 Sequence-Based Incremental Concolic Testing

Input Design (D), Branch target (B;)

Output Test T

SS «Sequenceldentification(D, B;)

<iD, TQ>«DesignInstrumentation(SS, Design)
T «—IncrementalConcolic(iD,TQ)

Return T

oWy e

4.1 Sequence ldentification

Algorithm 2 shows the procedure for sequence detection for a given branch target which consists
of four major steps. The first step constructs the CFG for the design. This step can be performed
using any existing Verilog language parser [54]. Figure 2 shows the CFG representation of the
design in Listing 1. The next step extracts the branch condition for the target. This condition is
an expression of the signals (SE). The third step uses DependencySearch function to recursively
identify the assignment blocks that are relevant for each of the signal in SE. The DependencySearch
function incorporates safeguards to prevent infinite loops caused by circular dependencies. This
is achieved by introducing a mechanism to track and skip signals that have already been visited
during the recursive search. The final output is a Sequence Stack (SS) containing the identified
blocks representing the execution path required to reach the specific block associated with the
given branch target. FindAssignmentBlock, gets the block which is closest to the branch target. This
ensures that the shortest possible test vector is generated. When traversing the CFG to find the
blocks that update a signal we traverse from the branch target. Therefore, the first block that is
detected is added to the dependency search. The distance calculation used in original concolic
testing [15] is used when finding the assignment block.

Example 2: In Listing 1, consider the target as line 37 where the block is (B15) and this is represented
in Figure 2 as the “Target". Line 1 of Algorithm 2 produces three concurrent CFGs with inter-CFG
edges in Figure 2. Line 2 of Algorithm 2 produces the branch condition (line 36 in Listing 1) as
SE «<—<r_data == DATA>. This signal expression consists of one signal (r_data) and one constant
value (DATA). Since no action needed for DAT A, the DependencySearch routine only tries to find
the assignment block corresponding to signal r_data. The dependency search for r_data is shown
in Figure 2 using the two purple dotted lines. The signal »_data appears in one assignment (Line
25 in Listing 1) where r_data is assigned the value of mem[addr] in CFG, block Bs. The block Bg
is pushed into SS. Then the dependency search is executed for the signals mem and addr. Since
the addr is a primary input, the search will not continue for addr. An assignment exists for mem
in line 15 where mem[addr] is assigned the value of w_data in CFG; block Bs. The block Bs is
pushed into SS. Since w_data is a primary input and there are no more assignments for w_data,
the recursion will end. Once the algorithm terminates, SS will have <Bs, Bg>. O

4.2 Design Instrumentation

Algorithm 3 shows the procedure for branch generation for a given sequence set SS. As shown in
the algorithm, breadth first search is performed along the predecessors of the target block in the
CFG (Intra-BFS) to extract the conditions to activate the target. Line 1 of the algorithm identifies
the constraints for the target. For each sequence in the SS, it tries to identify the constraints

Algorithm 2 Sequence Identification

Input Design (D), Branch target (B;)
Output Sequence Stack (SS)

1: CFG « ConstructCFG(D)

2: SE « GetSignalExpression(B;.condition)

3: SS « DependencySearch(CFG, SE, 0)

4: Return SS

5. function DEPENDENCYSEARCH(CFG, SE, visited)
6: for each signal A € SE do

7: if A is not in visited then

8: visited « visited U {A}

9: B4 « FindAssignmentBlock(CFG, A)
10: SS.push(B,)

11: DependencySearch(CFG, GetSignalExpression(Ba.condition), visited)

12: end if
13: end for

14: Return SS
15: end function

using the similar intra-BFS (line 3). The constraints can have either resolved Boolean expressions
or unresolved expressions. In the next step, constraints from the target are used to resolve the
unresolved constraints of the sequence. First an intersection is performed between the unresolved
constraints from the sequence and constraints from the target. The results of the intersection are
the new resolved constraints for the sequence. If still some of the constraints are unresolved in the
sequence, it searches through dependencies to identify any dependent signals for the target. If any
of the dependent signals are in the target constraints, the value of the target constraint is used to
resolve the sequence constraint. If there are still unresolved constraints, it implies that the scenario
is untestable (target branch cannot be activated).

Example 3: To identify the constraints for “Target” block (Bs in Figure 2 and line 37 in Listing
1), intra-BFS is performed in CFGs. This search is represented using blue dotted lines in Figure 2.
Intra-BFS for “Target” is <Bys, B3, Bia, Bo>. Based on this traversal, we get the constraints to
activate “Target” as r_en = 1, w_en = 0, addr = ADDR and r_data = DATA. Next, Intra-BFS is
performed for the blocks in SS (<Bs, Bg>). The constraints for B; are r_en = 0, w_en = 1, mem = UR,
addr = UR and w_data = UR, and the constraints for Bg are r_en = 1, w_en = 0, mem = UR,
addr = UR and r_data = UR. Here, UR means unresolved. There are three unresolved constrained
for B;. We can resolve the first constraint addr = UR to addr = ADDR. We need to search for
dependencies to address the remaining two unresolved constraints (mem and w_data). The search
of dependencies for w_data is shown in Figure 2 using red dotted lines. w_data is assigned to
mem[addr] and mem[addr] is assigned to r_data. Once the search is complete, final dependency
for w_data can be identified as r_data. Since r_data is included the target constraints, w_data
gets the value of r_data. After discarding the unresolved constraints, the final constraints for Bs
arer_en =0, w_en = 1, addr = ADDR and w_data = DATA and for Bg arer_en =1, w_en = 0,
addr = ADDR and r_data = DATA.]

In Algorithm 3, for each of the sequences in SS, conditional branches are created using the
modified constraints (line 5) and these branches are embedded in the design. The newly created
branches are stored in the TQ (Target Queue) preserving the order in the SS. When the first sequence

Algorithm 3 Design Instrumentation

Input Design (D), CFG, Target (B;), Sequence Stack (SS)
Output Instrumented Design (iDesign), Target Queue (TQ)
Target Constraints TC «— IntraBFS(CFG, B;.block)
for each S € SS do

Sequence Constraints SC «IntraBFS(CFG, S)

SC «—MODIFY(TC, SC, CFG)

TQ «CreateBranch(SC.resolved, D)

iDesign « instrumentDesign(D, TQ)
end for
Return iDesign, TQ

R A A R o A

10: function mop1rY(TC, SC, CFG)
11: SC.resolved < SC.unresolved N TC

12: for each cons € SC.unresolved do

13: Depend Signal DS «Search(CFG, cons.signal)
14: if DS € TC then

15: cons.value < TC[DS].value

16: SC.resolved «— SC.resolved U cons

17: end if

18: end for

19: Return SC
20: end function

is removed from the SS, corresponding branch of that sequence is the first element to insert in the
TQ. This process continues until SS is empty. Finally, the modified design is instrumented (line 6).
The goal of the instrumentation is to identify which path is executed by analyzing the simulation
log. We achieve this goal by adding print statements for all the branch conditions and end of the
blocks by using a unique identifier (block id) as illustrated in Example 4.

Listing 2. Branch creation for sequences

1. if (r_en==1'b0 && w_en==1'bl &&
addr==ADDR && w_data==DATA) begin

2. $display (" Target1") //B17

3. end

4. if (r_en==1'bl && w_en==1'b0 &&
addr==ADDR && r_data==DATA) begin

5. $display (" Target2") //B19

6. end

Example 4: The SS to activate the “Target” block (B;s in Figure 2) is <Bs, Bg>. The resolved
constraints for both these sequences are presented in Example 3. Using those constraints, we can
create branch statements for B; and Bg. The created branches using Algorithm 3 for B; and Bg
are shown in Listing 2 from line 1 - 3 and line 4 - 6, respectively. The corresponding block ids of
these branches are stored in the TQ as < Bj7, Bjg >. After branch creation, instrumentation of
the design is conducted. By analyzing the CFG, each block is given a unique block identifier. Th
instrumentation of the first always block in Listing 1 (line 9 - 18) is shown in Listing 3. We add a

print ($display) statement at the end of each block. This will print the blocks that got activated in
each clock cycle along with clock cycle information. O

Listing 3. Example of design instrumentation

1. always@ (posedge clk) begin
2. if(r_en) begin

3. $display("B1");

4. end

5. else begin

6. $display("B2");

7. if(w_en) begin

8. mem[addr] <= w_data;
9. $display ("B3");

10. end

11. else begin

12. $display ("B4");
13. end

14. end

4.3 Incremental Concolic Testing

In this section, we present the incremental concolic testing scheme to activate a set of sequence
events in the preserved order. Figure 4 presents a pictorial representation of incremental test
generation. As shown in the figure, there are two sets: sequence set <Si, Sy,, Sy> and the
corresponding test set <7y, T, ..., Ty >. To activate a sequence Sy, the required test is >3, Tx. For
example, T; can activate Sy, but to activate S;, we need both T; and T,. A test set is a combination
of different test vectors. A test Ty includes 32 tL where a,b < n (unroll cycle). The test vectors in

i=a "x
Ty are <t], t2, .., tf>, and the test vectors in T are <t§+1, té’“z, s tg >,
Sequences Test vectors
(— ([# :11101010..1010
7T © [I N T4
t? :11101010...1010
t4+1: 11101010...1010
Sz > PR T,
_ t5 :11101010...1010

t& :11101010...1010
SN < I N Tn
% :11101010...1010

—

Fig. 4. Incremental test generation for a sequence set. Here S; implies the j-th element of the sequence
corresponding to branch Bl]., i-th branch in the design.

Algorithm 4 describes the incremental test generation using concolic testing to activate a sequence
of events preserving the order of events. Specifically, the test generated to activate the current event
is used as the starting point to activate the next event in the sequence. For each target in TQ, we run
concolic testing while changing the test set and the starting clock cycle (line 4). For the first target,

10

the test set (T) is generated randomly and it contains test vectors up to the unroll cycle (n). The
first step of concolic framework is to calculate the distance from the target to all the blocks. From
the target breadth-first traversal is performed in the direction along the predecessors. The distance
is initialized to 0 and incremented by 1 when an edge traversal is completed. Next, Path (P) is
generated by simulating the design with test set T. All the alternate branches from the current path
P is selected as the next step. When selecting the alternate branches, the clock is set to a specific
starting clock cycle value so that we only select the branches after the starting clock cycle value.
The path up to the starting clock cycle is set and unchanged. Then the selected alternate branches
are sorted using the distance and the clock value. This will lead to the most profitable alternate
branch. Using the trace of P and the chosen branch, constraint vector is generated. The constraint
vector contains the value of the constraints for each of the clock cycles. Then the constraint vector
is solved using a constraint solver. The constraint solver produces a new test set and this is used to
simulate the design and get a new path. If the new path activates the target, the test set will be
added to T. Also, the clock cycle of the selected branch will be set as the new starting clock cycle.
Hence, the test set generated for the target will be preserved and used as a starting point to the
next target in TQ.

Algorithm 4 Incremental Concolic Testing

Input Design (D), Target Queue (TQ), Unrolled Cycles (n), limit
Output TestSet T =T;, 15, ..., In

1: T « Random Vectors
2: start «1
3: for each target in TQ do
4: T, start «<CONCOLIC(D, target, T, start)
5. end for
6: return T
7:
8: function Concoric(Design, target, T, start)
9: Distance Set DS «— ComputeDistance(target, Design)
10: Path P « Simulate(T, Design)
11: clock « start
12: while iteration < limit do
13: AB « AlternateBranch(P, DS, clock)
14: CV « BuildConstraints(AB, P)
15: Test t « SolveConstraints(CV)
16: P « Simulate(, Design)
17: if P activates the target then
18: T.add(t)
19: start « AB.clock
20: Break
21: end if
22: end while
23: return T, start

24: end function

Example 5: Target Queue (TQ) contains 2 branch targets <Bi7, Bijg> which are shown in Listing 2.
Assume that the unroll cycle (n) is 10 and search [imit is 10 iterations. Concolic is used to activate

the first branch target (By7) which is corresponding to writing a value to the memory. The start
value is 1 and a random test set is used as initial setting. Suppose the test set to activate the target
(By7) is identified in unroll cycle 3. Then the starting cycle is set as 4 for the next target (Byo). The
test set for activating By is shown in Listing 4 (line 1 - 3). This test set is used as a starting point to
activate the second branch target (B19) which is corresponding to reading a value form a memory
(line 4 in Listing 4). O

Listing 4. Test to activate target

\\' Move the ADDR into RO
1. MOVQ RO, ADDR

\\ Move the DATA into R1
2. MOVQ R1, DATA

\\ Store DATA in R1 in ADDR memory in RO
3. ST [RO], R1

\\ Load the value in ADDR memory in RO to R2
4. LD R2, [RO]

While we utilize the core functions of concolic testing in Algorithm 4, we have incorporated
our primary contributions for finding sequences, instrumenting design with new branches, and
incrementally solving one sequence at a time to generate the required test to activate the target.
Note that the instrumented design (including new branches) are used for test generation purpose
only. We do not make any changes to the original design. During the functional validation, the
generated tests are used to activate the branch targets (corner cases) on the original design.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed approach using a wide variety of
hard-to-activate branches in a memory and processor design. We first describe the experimental
setup. Next, we outline the corner case scenarios. Finally, we present the experimental results.

5.1 Experimental Setup

To demonstrate the applicability of our framework, we have applied incremental concolic testing
on two designs: (1) a re-configurable cache implementation, IOb-Cache [55], and (2) a processor
design [56], which implements 32-bit RISC-V instruction set. In order to generate the abstract
syntax tree of the RTL model, we use Icarus Verilog Target API [54]. We use Yices SMT solver [57]
for solving constraints. Incremental concolic testing is implemented on top of the concolic testing
framework proposed in [5]. In order to ensure validity of the generated test vectors, we simulate
the original design with the generated test and analyze the Value Change Dump (VCD) to confirm
the activation of the target (corner case scenario). We ran our experiments on Intel i7-5500U @
3.0GHz CPU with 16GB RAM machine.

5.1.1 Memory module. Memory module interfaces with a processor and main memory as shown
in Figure 5. The design of the IOb-Cache consists of four components: Front-End, Cache-Memory,
Cache-Control, and Back-End. The Front-End implements the interface between the processor and
the cache. The Front-End provides all data signals to the Cache-Memory and control signals are
routed to the Cache-Control. The IOb-Cache is word-aligned and returns the entire word. Cache-
Memory consists of various components including tag buffer, valid buffer, data write-through buffer,
and replacement policy unit. This design can be configured as direct-mapped or set associative

valid N I0b-Cache mem_valid >
> >
addr o ~ mem_addr |
>] Data Write- Replace- , i
> P >
wdata s > Memory Through mgnl > mem_wdata , >
> Buffer Policy Dat
wstrb I_Data DEIE) mem_wstrb N
> Signals Signals >
|, _rdata p Cache-Memory , P mem_rdata
</ < / < <)
Processor | .. | Front-End Back-End | mem ready | Main-Memory
D i K <
< rvalid antrol mem_rvalid
v Signals
>
>
Control Cache-Control
Signals
<
<€

Fig. 5. 10b-Cache [55] block diagram for selected configurations outlined in Table 1.

(N_way as shown in Table 1). The replacement policy unit supports three different modes: Least-
recently-used (LRU), Psuedo-least-recently-used (PLRU: MRU based, Binary tree-based). Finally,
Back-end is responsible for interfacing the main memory with the cache. IOb-Cache supports both
native and AXI interfaces. For the case studies in Section 5.2, we have selected configurations
presented in Table 1. With the above configurations, we flattened the IOb-Cache module eliminating
its hierarchy with Yosys [58] synthesis tool. The flattened RTL netlist is about 10,000 lines of code.
The number of CFGs is 597. The average depth of the CFG is 2 branches and the maximum depth
is 5 branches. A high-level block diagram with the inputs and outputs of the setup is presented
in Figure 5. This configuration is used for validation of different functional scenarios outlined in
Section 5.2.

Table 1. Configurations used for the IOb-Cache setup

Attribute Configuration 1 | Configuration 2
Addr width 16 32

Data width 32 32

Ram type Native AXI

Write Policy Write Back Write through
Replacement Policy LRU PLRU_mru
N_way 4 4

5.1.2 Processor. PicoRV32 [56] consists of 32 internal registers and can be configured for dual-port
register implementation. During the experiments, we communicate with the processor with native
memory interface. Input and output configurations of the native memory interface are presented in
Figure 6. The specific configurations are listed in Table 2. Memory read operations are initiated by
the picorv32 core, signaling the need for data through the assertion of mem_valid and specifying
the target address with mem_addr. The read data is then communicated to the processor through
mem_rdata. On the other hand, for memory write operations, the picorv32 core triggers writes
by asserting mem_valid, providing the address and data through mem_addr and mem_wdata, and
indicating the write strobe with mem_wstrb. The flattened RTL netlist of Picorv32 is about 100,000
lines of code. The number of CFGs is 8695, average depth is 2, and maximum depth is 6 branches.

5.2 Corner Case Scenarios

We refer a branch as “hard-to-activate” if it does not get activated even after simulating for a
considerable amount of test patterns. In general, we use a threshold (e.g., after applying n test

13

Picorv32 Processor mem_instr

mem_valid

mem_addr

Y VY

Decoder
mem_wdata,

Y

Main-Memory

Y

CPU Regs ¢ T mem_wstrb |

_mem_rdata
!

&
<

ALU

mem_ready

&
<

Fig. 6. Picorv32 [56] block diagram for selected configurations outlined in Table 2.

Table 2. Configurations used for the PicoRV32 setup

Attribute Value
REGS_16_31 Enabled
DUALPORT_REGS Enabled
PROGADDR_RESET | 32’h 10_0000

STACKADDR 1024
TWO_STAGE_SHIFT | Enabled
Interrupt requests Enabled

random patterns and m unroll cycles in concolic testing) to figure out hard-to-activate corner
cases. Table 3 shows various branches and how many times they are activated with the increasing
number of random test patterns for IOb cache. IOb case has 446 branches and 94 are considered
hard-to-activate even after 100,000 test patterns.

Table 3. Random testing applied to activate branches in 10b cache

Test 100 1000 10000 | 100000

Branches Activated 329 331 339 352

Uncovered Branches 117 115 107 94
% of Uncovered Branches | 26.2% | 25.78% | 23.99% | 21.07%

We can further refine hard-to-activate branches where we try to activate the branches which were
not activated by previous random/constrained-random tests using concolic testing. We introduce a
parameter unroll cycles (m) with respect to the classical concolic testing. We have considered corner
cases as the branches that do not get activated after 15 unroll cycles using classical concolic testing
for IOb-cache. Table 4 illustrates the percentage of hard-to-activate corner cases after unrolling the
IODb design for different m values. In this example, concolic testing is able to activate 26 (out of 94)
but it still cannot activate 68 branches, which are considered as corner cases.

Table 4. Original concolic testing applied to activate branches, that are not activated by random testing

Unroll Cycles 5 10 15

Branches Activated 17 24 26

Uncovered Branches 77 70 68
% of Uncovered Branches | 81.91% | 74.46 % | 72.34%

We identify the corner case scenarios (hard-to-detect branches) in a IOb design if it does not get
activated even after running 100,000 random test cases and 15 unroll cycles with classical concolic
testing. In case of Picrov32 design, we have used 100,000 random test cases and 50 unroll cycles as
threshold to identify the hard-to-detect branches. In this section, we present different illustrative
examples of corner case scenarios for memory and processor verification. Specifically, we consider
eight corner cases related to memory modules and three corner cases for the processor design.

5.2.1 Corner case scenarios for memory. We have illustrated different hard-to-detect branches
identified in memory verification.

Case 1: Write a specific value to memory as shown in Listing 5.

Listing 5. Case 1

1.if (ready == 1'b1)

2. if (wstrb == 1'b1)

3. if(addr == 16'h1234)

4. if (w_data == 32'hCAFEFEED) begin
5 $display (" Target")

6 end

Case 2: Read a specific data form a specific address as shown in Listing 6. This scenario is similar
to the target in Listing 1.

Listing 6. Case 2

1.if (ready == 1'b1)

2. if (wstrb == 1'b0)

3. if(addr == 16'h1234)

4. if (r_data == 32'hCAFEFEED) begin
5 $display (" Target")

6 end

Case 3: Back to back writes to the same address as shown in Listing 7. We copied the entries in
Listing 5 for 5 times and changed the data values.

Listing 7. Case 3

1.if (ready == 1'b1)

2. if (wstrb == 1'b1)

3. if (addr == 16'h1234)

4. if (w_data == 32'hCAFEFEED) begin
5 $display (" Targetl")

6 end

7.if (ready == 1'bl)

8. if (wstrb == 1'b1)

9. if (addr == 16'h1234)

10. if (w_data == 32'hABCEFEED) begin
11. $display (" Target2")

12. end

Case 4: Back to back reads from the same address as shown in Listing 8. We copied the entries in
Listing 6 for 5 times and changed the data values.

Listing 8. Case 4

1.if (ready == 1'b1)

2. if (wstrb == 1'b0)

3. if (addr == 16'h1234)

4. if (r_data == 32'hCAFEFEED) begin
5 $display (" Targetl")

6 end

7.if (ready == 1'b1)

8. if (wstrb == 1'b0)

9. if (addr == 16'h1234)

10. if (r_data == 32'hABCEFEED) begin
11. $display (" Target2")

12. end

Case 5: Write data to a boundary location in memory as shown in Listing 9. We used the Listing 5,
created two copies, and changed the address value to 16’h0000 and 16 hFFFF, respectively.

Listing 9. Case 5

1.if (ready == 1'b1)

2. if (wstrb == 1'b1)

3 if (addr == 16'h0000)

4. if (w_data == 32'hCAFEFEED) begin
5 $display (" Targetl")

6 end

7.if (ready == 1'bl)

8. if (wstrb == 1'b1)

9. if(addr == 16'hFFFF)

10. if (w_data == 32'hCAFEFEED) begin
11. $display (" Target2")

12. end

Case 6: Read data from a boundary location in memory as shown in Listing 10. We used the same
Listing 6, created two copies, and changed the address value to 16’h0000 and 16’hFFFF, respectively.

Listing 10. Case 6

1.if (ready == 1'b1)

if (wstrb == 1'b0)

if (addr == 16'h0000)
if (r_data == 32'hCAFEFEED) begin
$display (" Targetl")

end

AN U W

7.if (ready == 1'bl)

8. if (wstrb == 1'b0)

9. if(addr == 16'hFFFF)

10. if(r_data == 32 hCAFEFEED) begin
11. $display (" Target2")

12. end

Case 7: Verify front-end and back-end addresses for correct address translation as shown in
Listing 11. The specific address translations are identified by analyzing the RTL models of front-end
and back-end modules. In a write-back cache, data is only written back to the memory when a

cache line is flushed. If the design doesn’t perform cache line flushes in certain scenarios, the
conditions inside the if statements may not always be evaluated as true, and the corresponding
display statements may not be executed. In this experiment, we use explicit flush commands (for
the specific address we set the cache_memory_invalidate bit) to flush the cache line while we try
to activate Case 7.

Listing 11. Case 7

1.if (addr == 16'h1234)

2. if (front_end.data_addr == addr[15:2])
3. $display("Targetl")

4. end

5.if (addr == 16'h1234)

6. if (back_end.write_addr == addr[15:6])
7. $display("Target2")

8. end

Case 8: Verify cache hit for a specific memory read. As shown in Listing 12, when the required
write happens before the read, the cache hit should get triggered.

Listing 12. Case 8

1.if (ready == 1'b1)

2. if (wstrb == 1'b0)

3 if (addr==16'h1234 && r_data=32"hCAFEFEED)
4. if (cache_memory. hit == 1'b1) begin

5 $display (" Target")

6 end

5.2.2 Corner case scenarios for processor. In this section, we present three corner cases for execution
of a processor. Corner cases are illustrative examples of how to check several scenarios including
setting the program counter, writing some arbitrary value to internal registers and reading a
value from the internal register after writing. These types of test cases are useful in situations for
debugging programs on processor designs. Let’s assume a scenario where the processor needs to
be configured to run from the middle of a program based on the earlier execution traces. In this
case, sequence-based concolic testing allows for a division of the original firmware into several
segments and checking for specific coverage scenarios of the design at each segment.

Case 9: Reading from a specific register in SRAM as shown in Listing 13.

Listing 13. Case 9

1.if (mem_la_addr == 32'h00120000) begin
2 if (mem_la_read) begin

3. $display ("Target")$;

4 end

5. end

Case 10: Setting the program counter to a specific value as shown in Listing 14.
Listing 14. Case 10

1.if (! (latched_store && latched_branch)

2 && reg_mext_pc == 32'h00012004) begin
3 if (! irq_pending) begin

4. $display ("Target")$

5 end

6

Case 11: Writing a specific value to internal register as shown in Listing 15.

Listing 15. Case 11

1.if (cpuregs_wrdata == 32'h64) begin

2 if ((latched_rd == 5'h4) && resetn &&
3. cpuregs_write &% latched_rd) begin
4. $display ("Target")$;

5 end

6.end

5.3 Test Generation Results

In this section, we present the results of our case study. We compare our approach with EBMC [59]
and the concolic framework presented in [5]. EBMC is a state-of-the art formal verification frame-
work that uses bounded model checking. The concolic framework [5] is state-of-the-art in activating
RTL branch statements using concolic testing. The number of unrolled cycles are determined based
on the complexity of the scenarios. This can be achieved by starting from a reasonable number
of unroll cycles and increment until the scenarios are covered. The number of unroll cycles is
analogous to the bound determination for bounded model checking. We set the bound for EBMC to
be equal to the number of unroll cycles for concolic testing.

The corner case activation results at system level are shown in Table 5. The first column represents
different corner case scenarios outlined in Section 5.2. For IOb cache we have selected the first
configuration. The second column provides the unroll cycles (bound for EBMC). For each approach,
we provide information about if the target (corner case) is activated (Yes or No) within the bound,
and if yes, what is the memory requirement (in MB) and run time (in seconds). As shown in Table 5,
EBMC only covers one scenario, and concolic [5] covers only 4 scenarios. Our approach successfully
covered all the 11 scenarios. EBMC is expected to fail for most of the scenarios due to state space
exploitation problem. The concolic framework in [5] activates some of the branches, however,
when dealing with contradictory and complex sequences, it fails to activate the target due to path
explosion problem ([5] selects branches based on the distance heuristics).

Table 5. Comparison of system-level target activation using EBMC [59], Concolic [5], and our approach

Unroll Cycles EBMC [59] Concolic [5] Our Approach
Cases - 0 0
(Bound) Activated Memory | Time Activated Memory | Time Activated Memory | Time
(MB) () (MB) () (MB) ()

1 20 No - - Yes 82.34 20.13 Yes 20.00 | 14.55
2 20 No - - No - - Yes 34.67 | 25.78
3 50 No - - Yes 215.84 50.67 Yes 67.89 | 20.78
4 50 No - - No - - Yes 182.56 | 82.91
5 20 No - - No - - Yes 19.78 | 14.43
6 20 No - - No - - Yes 30.24 | 2391
7 20 Yes 597.81 2.01 Yes 20.56 4.93 Yes 15.23 4.81
8 20 No - - No - - Yes 50.67 | 30.88
9 100 No - - No - - Yes 17091 | 61.71
10 100 No - - No - - Yes 53.59 | 85.60
11 100 No - - Yes 210.44 | 369.01 Yes 49.72 | 47.48

The final step of our framework is the functional validation using the generated test from
incremental concolic testing. To validate the generated test vectors from our approach, we simulate
the original design with the generated test and analyzed the VCD to confirm the activation of the
corner case scenarios. Figure 7 shows the VCD for the test generated for Case 2. For Case 2, the first

18

sequence is writing the data value to the address. This is achieved in clock cycle 7 when the ready
signal has changed to 1 with addr = 16’h1234, w_data = 32’hCAFEFEED and wstrb = 4’hF. The
next sequence for Case 2 is reading a value from an address. This is activated in clock cycle 10. The
ready signal has changed to 1 with addr = 16’h1234, r_data = 32’hCAFEFEED and wstrb = 4’h0.

clk e O ey W e R s A sy O s A sy S s A s SO s SO s IO s O
addr[15:2] (0000 (1234

wdata[31:0] (000000+ f\CAFEFEED

wstrb[3:0] (0 \F 10

valid

rdata[31:0] (XXXXXXXX JCAFEFEED

ready \ \ \
hit [I

Fig. 7. Functional validation for Case 2.

To understand the limitation of the state-of-the-art RTL concolic framework in [5], we apply [5]
only on the module level. Specifically, we only consider the iob_ram module with ‘Case 2’ and
compare the performance between our approach and [5] with respect to memory and time while
increasing the unroll cycles. The experimental results are shown in Table 6. The concolic framework
in [5] was able to activate the target (Case 2) only when unrolled to 50 cycles whereas our approach
is able to activate the branch in 10 unroll cycles. The performance improvement of our approach
compared to [5] in terms of time and memory is 24 times and 12 times, respectively. It also highlights
another important aspect of the state-of-the-art concolic framework - it can activate corner cases
if the design is sufficiently unrolled, which can be infeasible for industrial designs since various
components in concolic testing (e.g., constraint solver) may not be able to handle such a large
number of constraints. Our proposed framework solves the corner case scenarios by incrementally
solving the sequence of events.

Table 6. Memory (MB) and time (s) taken to verify Case 2 at module level using [5] and our approach.

Unroll Concolic [5] Our Approach

cycles | Activated | Mem | Time | Activated | Mem | Time
10 No 52.4 | 29.92 Yes 10.9 | 0.59
20 No 86.3 | 70.59 Yes 114 | 175
30 No 121.2 | 137.25 Yes 12.9 | 7.09
40 No 154.8 | 225.37 Yes 12.1 | 6.22
50 Yes 164.6 | 286.09 Yes 13.1 | 11.75

5.4 Test Generation for Different Memory Configurations

Figure 8 shows the time and memory requirements of the two configurations, presented in Table 1,
in the IOb-cache design to activate 8 cases. Configuration 1, characterized by a 16-bit address
width, 32-bit data width, native RAM type, write-back policy, LRU replacement policy, and a 4-
way set-associative structure, consistently exhibits lower memory usage and shorter execution
times compared to Configuration 2. In Configuration 2, featuring a 32-bit address width, 32-bit
data width, AXI RAM type, write-through policy, PLRU_mru replacement policy, and a 4-way
set-associative structure, the higher memory consumption and longer execution times can be
attributed to the increased address width and the different memory access policies. The adoption
of AXI RAM type and write-through policy in Configuration 2 inherently demands more memory
resources and processing time. Still, the memory and the time requirements of configuration 2
remain scalable. This scalability is crucial for accommodating larger and more complex designs,
making our approach suitable for complex applications.

19

250 1 == Config 1 100 == Config 1
Config 2 Config 2
200 804
@
2 150 G 60
> Py
o £
g E
2 100 T a0
50 20
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Cases Cases
(a) Memory comparison (b) Time comparison

Fig. 8. Memory and time comparison for two configurations shown in Table 1 for 8 cases

6 CONCLUSION

Concolic testing provides a scalable test generation framework using an effective combination
of simulation and formal methods. While it is promising for branch coverage in register-transfer
level (RTL) deigns, it cannot activate complex corner cases such as hard-to-activate branches. We
have developed an incremental concolic testing framework to cover such corner case scenarios
in RTL models. Specifically, this paper made three important contributions. First, we show that a
complex branch condition can be decomposed as a sequence of easy-to-activate events by traversing
respective control and data flow graphs. Next, we map the branch coverage problem to the coverage
of a sequence of events such that the test generated to activate the current event can be used as
the starting point for activating the next event in the sequence. Finally, we have developed an
efficient algorithm to cover the sequence of events by iterative invocation of concolic testing. Our
experimental results demonstrated that our approach can be used to generate directed tests to
cover complex branch targets in modern memory and processor designs, while state-of-the-art
methods fail to activate them.

ACKNOWLEDGMENTS
This work was partially supported by the National Science Foundation (NSF) grant CCF-1908131.

REFERENCES

[1] Harry Foster. ~ Wilson research group functional verification study 2020. https://blogs.sw.siemens.com/
verificationhorizons/2020/11/05/part- 1-the-2020-wilson-research- group-functional-verification-study/, 2020. Last
accessed: 2022.

[2] Mingsong Chen, Xiaoke Qin, Heon-Mo Koo, and Prabhat Mishra. System-level validation: high-level modeling and
directed test generation techniques. Springer, 2012.

[3] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random testing. In Proceedings of the
2005 ACM SIGPLAN conference on Programming language design and implementation, pages 213-223, 2005.

[4] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path model-checking tools. In International
Conference on Computer Aided Verification, pages 419-423. Springer, 2006.

[5] YangdiLyu and Prabhat Mishra. Scalable concolic testing of rtl models. IEEE Transactions on Computers, 70(7):979-991,
2020.

[6] Alif Ahmed and Prabhat Mishra. Quebs: Qualifying event based search in concolic testing for validation of rtl models.
In ICCD, pages 185-192. IEEE, 2017.

[7] Yangdi Lyu, Alif Ahmed, and Prabhat Mishra. Automated activation of multiple targets in rtl models using concolic
testing. In DATE, pages 354-359. IEEE, 2019.

[8] Yatin A Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. Rtlcheck: Verifying the memory consistency
of rtl designs. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pages 463-476,

20

https://blogs.sw.siemens.com/verificationhorizons/2020/11/05/part-1-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/11/05/part-1-the-2020-wilson-research-group-functional-verification-study/

[10]

[11]

[12]

[13]

[14

[l

[15]

[16]
[17]

[18
[19

—_

[20]
[21]

[22

—

[23]

[24

=

[25]
[26]

[27

—

[28]
[29]
[30]
[31]

[32

—

[33]

2017.

Yao Hsiao, Dominic P Mulligan, Nikos Nikoleris, Gustavo Petri, and Caroline Trippel. Synthesizing formal models of
hardware from rtl for efficient verification of memory model implementations. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 679-694, 2021.

Yatin A Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta. Pipeproof: Automated memory consistency
proofs for microarchitectural specifications. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 788-801. IEEE, 2018.

Ferhat Erata, Shuwen Deng, Faisal Zaghloul, Wenjie Xiong, Onur Demir, and Jakub Szefer. Survey of approaches
and techniques for security verification of computer systems. ACM Journal on Emerging Technologies in Computing
Systems, 19(1):1-34, 2023.

Hongce Zhang, Caroline Trippel, Yatin A Manerkar, Aarti Gupta, Margaret Martonosi, and Sharad Malik. Ila-mcm: inte-
grating memory consistency models with instruction-level abstractions for heterogeneous system-on-chip verification.
In 2018 Formal Methods in Computer Aided Design (FMCAD), pages 1-10. IEEE, 2018.

Yue Xing, Aarti Gupta, and Sharad Malik. Generalizing tandem simulation: Connecting high-level and rtl simulation
models. In 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 154-159. IEEE, 2022.
Mingsong Chen, Xiaoke Qin, and Prabhat Mishra. Efficient decision ordering techniques for sat-based test generation.
In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), pages 490-495, Dresden, Germany,
2010. IEEE.

Yangdi Lyu, Xiaoke Qin, Mingsong Chen, and Prabhat Mishra. Directed test generation for validation of cache
coherence protocols. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(1):163-176,
2018.

Farimah Farahmandi and Prabhat Mishra. Automated test generation for debugging multiple bugs in arithmetic
circuits. IEEE Transactions on Computers, 68(2):182-197, 2018.

Yangdi Lyu and Prabhat Mishra. Automated test generation for activation of assertions in rtl models. In 2020 25th Asia
and South Pacific Design Automation Conference (ASPDAC), pages 223-228. IEEE, 2020.

Prabhat Mishra and Farimah Farahmandi. Post-Silicon Validation and Debug. Springer, 2019.

Alif Ahmed, Farimah Farahmandi, and Prabhat Mishra. Directed test generation using concolic testing on rtl models.
In DATE 2018, pages 1538-1543. IEEE, 2018.

Farimah Farahmandi and Prabhat Mishra. Automated debugging of arithmetic circuits using incremental grébner
basis reduction. In 2017 IEEE International Conference on Computer Design (ICCD), pages 193-200. IEEE, 2017.
Yangdi Lyu and Prabhat Mishra. Automated trigger activation by repeated maximal clique sampling. In Asia and South
Pacific Design Automation Conference (ASPDAC), pages 482-487, 2020.

Mingsong Chen, Xiaoke Qin, Heon-Mo Koo, and Prabhat Mishra. System-Level Validation: High-Level Modeling and
Directed Test Generation Techniques. Springer Publishing Company, Incorporated, Berlin, Heidelberg, 2012.

Edmund M Clarke Jr. Orna grumberg, and doron a. peled. model checking. In The MIT Press. Springer, Berlin, Heidelberg,
1999.

Mingsong Chen, Prabhat Mishra, and Dhrubajyoti Kalita. Automatic rtl test generation from systemc tlm specifications.
ACM Transactions on Embedded Computing Systems (TECS), 11(2):1-25, 2012.

Xiaoke Qin and Prabhat Mishra. Directed test generation for validation of multicore architectures. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 17(3):1-21, 2012.

Mingsong Chen and Prabhat Mishra. Property learning techniques for efficient generation of directed tests. IEEE
Transactions on Computers, 60(6):852-864, 2011.

Mingsong Chen, Xiaoke Qin, and Prabhat Mishra. Learning-oriented property decomposition for automated generation
of directed tests. Journal of Electronic Testing, 30(3):287-306, 2014.

Heon-Mo Koo and Prabhat Mishra. Functional test generation using design and property decomposition techniques.
ACM Transactions on Embedded Computing Systems (TECS), 8(4):1-33, 2009.

Prabhat Mishra and Nikil Dutt. Specification-driven directed test generation for validation of pipelined processors.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 13(3):1-36, 2008.

Farimah Farahmandi and Prabhat Mishra. Automated test generation for debugging arithmetic circuits. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1351-1356, Dresden, Germany, 2016. IEEE.
Xiaoke Qin and Prabhat Mishra. Automated generation of directed tests for transition coverage in cache coherence
protocols. In DATE, pages 3-8. IEEE, 2012.

Mingsong Chen and Prabhat Mishra. Decision ordering based property decomposition for functional test generation.
In 2011 Design, Automation & Test in Europe, pages 1-6, Grenoble, France, 2011. IEEE.

Sudhi Proch and Prabhat Mishra. Test generation for hybrid systems using clustering and learning techniques. In 2016
29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID),
pages 589-590, Kolkata, India, 2016. IEEE.

21

[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]
[42]

[43]

[44]

[45]

[46]

Xiaoke Qin, Mingsong Chen, and Prabhat Mishra. Synchronized generation of directed tests using satisfiability solving.
In 2010 23rd International Conference on VLSI Design, pages 351-356, Bangalore, India, 2010. IEEE.

Thanh Nga Dang, Abhik Roychoudhury, Tulika Mitra, and Prabhat Mishra. Generating test programs to cover pipeline
interactions. In 2009 46th ACM/IEEE Design Automation Conference, pages 142—-147, San Francisco, CA, USA, 2009.
IEEE.

Prabhat Mishra and Mingsong Chen. Efficient techniques for directed test generation using incremental satisfiability.
In 2009 22nd International Conference on VLSI Design, pages 65-70, New Delhi, India, 2009. IEEE.

Heon-Mo Koo and Prabhat Mishra. Functional test generation using property decompositions for validation of
pipelined processors. In Proceedings of the Design Automation & Test in Europe Conference, volume 1, pages 1-6, Munich,
Germany, 2006. IEEE.

Prabhat Mishra and Nikil Dutt. Munich, germany. In Design, Automation and Test in Europe, pages 678—683, Munich,
Germany, 2005. IEEE.

Prabhat Mishra and Nikil Dutt. Graph-based functional test program generation for pipelined processors. In Proceedings
Design, Automation and Test in Europe Conference and Exhibition, volume 1, pages 182-187, Paris, France, 2004. IEEE.
Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. System-on-Chip Security: Validation and Verification.
Springer Nature, 2019.

Prabhat Mishra, Swarup Bhunia, and Mark Tehranipoor. Hardware IP security and Trust. Springer, 2017.

Yangdi Lyu and Prabhat Mishra. Scalable activation of rare triggers in hardware trojans by repeated maximal clique
sampling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020.

Zhixin Pan and Prabhat Mishra. Automated test generation for hardware trojan detection using reinforcement learning.
In Asia and South Pacific Design Automation Conference (ASPDAC), 2021.

Alif Ahmed, Farimah Farahmandi, Yousef Iskander, and Prabhat Mishra. Scalable hardware trojan activation by
interleaving concrete simulation and symbolic execution. In 2018 IEEE International Test Conference (ITC), pages 1-10.
IEEE, 2018.

Farimah Farahmandi and Prabhat Mishra. Fsm anomaly detection using formal analysis. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 313-320. IEEE, 2017.

Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. Trojan localization using symbolic algebra. In 2017 22nd
Asia and South Pacific Design Automation Conference (ASPDAC), pages 591-597. IEEE, 2017.

[47] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn Hwang. Symbolic model checking:

[48]

[49]
[50]
[51]
[52]
[53]

[54]

1020 states and beyond. Information and computation, 98(2):142-170, 1992.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model checking without bdds. In
International conference on tools and algorithms for the construction and analysis of systems, pages 193-207. Springer,
1999.

Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In 29th International Conference on Software Engineering
(ICSE’07), pages 416—-426. IEEE, 2007.

Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test generation for effective fault localization. In
Proceedings of the 19th international symposium on Software testing and analysis, pages 49-60, 2010.

Lingyi Liu and Shabha Vasudevan. Star: Generating input vectors for design validation by static analysis of rtl. In 2009
IEEE International High Level Design Validation and Test Workshop, pages 32-37. IEEE, 2009.

Lingyi Liu and Shobha Vasudevan. Scaling input stimulus generation through hybrid static and dynamic analysis of
rtl. ACM Transactions on Design Automation of Electronic Systems (TODAES), 20(1):1-33, 2014.

Hasini Witharana, Yangdi Lyu, and Prabhat Mishra. Directed test generation for activation of security assertions in rtl
models. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26(4):1-28, 2021.

Icarus Verilog. Icarus Verilog. http://iverilog.icarus.com/, 2022. Last accessed: 2022.

[55] Jodo V Roque, Jodo D Lopes, Mério P Véstias, and José T de Sousa. Iob-cache: A high-performance configurable

[56]
[57]
[58]
[59]

open-source cache. Algorithms, 14(8):218, 2021.

PicoRV32. A size-optimized risc-v cpu. https://github.com/YosysHQ/picorv32. Last accessed: 2022.

Bruno Dutertre. Yices 2.2. In International Conference on Computer Aided Verification, pages 737-744. Springer, 2014.
Claire Wolf. Yosys open synthesis suite. https://yosyshq.net/yosys/. Last accessed: 2022.

R. Mukherjee, D. Kroening, and T. Melham. Hardware verification using software analyzers. In 2015 IEEE Computer
Society Annual Symposium on VLSI, pages 7-12, Montpellier, France, July 2015. IEEE.

22

http://iverilog.icarus.com/
https://github.com/YosysHQ/picorv32
https://yosyshq.net/yosys/

	Abstract
	1 Introduction
	1.1 Motivation: An Illustrative Example
	1.2 Contributions

	2 Related Work
	2.1 Verification of RTL Models
	2.2 Test Generation using Formal Methods
	2.3 Test Generation using Concolic Testing

	3 Preliminaries and Definitions
	4 Incremental Concolic Testing of RTL Models
	4.1 Sequence Identification
	4.2 Design Instrumentation
	4.3 Incremental Concolic Testing

	5 Experiments
	5.1 Experimental Setup
	5.2 Corner Case Scenarios
	5.3 Test Generation Results
	5.4 Test Generation for Different Memory Configurations

	6 Conclusion
	Acknowledgments
	References

