
EvilCS: An Evaluation of Information Leakage through

Context Switching on Security Enclaves
Aruna Jayasena, Richard Bachmann and Prabhat Mishra

University of Florida, Gainesville, Florida, USA

Abstract—Security enclaves provide isolated execution envi-
ronments for trusted applications. However, modern processors
utilize diverse performance enhancement methods (e.g., branch
prediction and parallel execution) that can introduce security
vulnerabilities. Specifically, if a processor leaks any information,
an adversary can monitor and recover secrets from trusted
applications. This paper makes a connection between context
switching and information leakage in security enclaves. We
present an evaluation framework that analyzes the potential
channels through which context switching can expose sensitive
information across the security enclave boundaries as a physical
side-channel signature. Specifically, we propose a statistical infor-
mation leakage assessment technique to evaluate the side-channel
leakage of a security enclave during the pre-silicon design stage.
Experimental evaluation on multiple RISC-V security enclaves
reveals that context switching introduces power side channels
that an adversary can exploit to infer the execution sequences as
well as register values of trusted applications.

I. INTRODUCTION

System-on-Chip (SoC) design needs to consider various

conflicting constraints, including area, power, performance,

and security. For example, modern processors utilize per-

formance enhancement features (e.g., branch prediction and

speculative execution) that can negatively impact area and

power requirements. The power usage and performance are

important considerations since it has a direct impact on energy

efficiency and thermal regulation, which in turn affects the

battery life. Previous studies have demonstrated that the power

consumption of a processor can inadvertently leak sensitive

information through the power and electromagnetic side chan-

nels [1], [2]. These side channels arise from the variations in

power consumption caused by different internal operations,

such as instruction execution and data access. An adversary

can exploit these side-channel leaks to deduce valuable internal

details about the processor’s operations, potentially leading to

the extraction of cryptographic keys, confidential data, or even

details about the execution of specific instructions. Due to

significant concerns regarding security and privacy, there has

been a widespread adoption of security enclaves, often known

as trusted execution environments (TEEs).

A. Security Enclave Kernels

The objective of a trusted execution environment is to main-

tain the confidentiality and integrity of sensitive applications

by isolating them from other (potentially compromised) appli-

cations. Security enclaves provide process isolation utilizing

the specific hardware functionalities while providing basic

This work was partially supported by the grants from NSF (CCF-
1908131) and Semiconductor Research Corporation (2022-HW-3128).

Un-Trusted Process (P1)

Trusted Code (P2)

Enclave

Kernel

Save States in P1

Load States in P2

Enclave

Kernel

Save States in P1

Load States in P2

Un-Trusted Process (P1)

Enclave

Kernel

Save States in P2

Load States in P1

Main Memory

ti
m

e

x1

x31

x31

x1

x31

x1

Fig. 1: An overview of context switching between two pro-

cesses (P1 and P2). When switching from P1 to P2, the

enclave kernel creates a hardware thread (Hart) and saves the

context of P1 (e.g., contents of the registers) into the memory.

Similarly, it needs to load the contents of P2 from the memory

(restore context) into the registers before P2 starts execution.

kernel functionalities such as scheduling, context switching,

and interrupt handling. Open-source instruction sets such as

RISC-V have enabled the development of processor designs

customized to match specific application requirements. This

adaptability allows for the formation of various security en-

clave setups, utilizing different hardware IP cores in conjunc-

tion with a range of security enclave kernels. Keystone [3],

Multizone [4], and OpenMZ [5] are example security en-

clave kernels targeted at RISC-V instruction-set architecture.

These security enclave kernels effectively utilize the physical

memory protection (PMP) feature available in the RISC-V

instruction set to provide process isolation. This allows the

user to run untrusted applications alongside security-sensitive

applications, without the former infringing on the latter.

B. Hardware Threads: Hart

Simultaneous multithreading (SMT) in RISC-V introduces

the concept of “Hart” to enhance throughput and improve

utilization in a processing core. In a single-core processor

with hardware multithreading, a hart represents an indepen-

dent thread of execution. Each hart operates as a virtualized

execution unit within the same physical core. They share the

same execution resources, such as the execution pipelines and

functional units, while maintaining their separate sets of archi-

tectural registers and program counters. This allows multiple

threads to make progress simultaneously within the same core.

The process of isolating the hart is made possible through a

context-switching call from the system kernel or the operating

system. Figure 1 illustrates a scenario where a security enclave

kernel is saving the general purpose registers (GPRs) and

control and status registers (CSRs) during the execution of two

937800 938000 938200 938400 938600 938800 939000 939200
Clock Cycles

20

40

60

m
W

Normal Execution

Context Switch

Fig. 2: Context switching power profile of a RISC-V SoC running OpenMZ Security Kernel compared with the normal

execution. The context-switching process can be visually observed by a simple power analysis due to the block-wise change

of system registers and utilization of the memory bus for bulk read/write transfer of register values.

processes of P1 and P2. Modern processors employ preemptive

thread termination through timed interruptions to facilitate the

context-switching process. This mechanism enables the kernel

to regain control when necessary.

C. Threat Model: EvilCS Vulnerability

To start a context switch, the hardware needs to create

an interrupt, pause the execution of the current process, and

let the kernel take over the process handling. In return, the

kernel needs to save register values from the previous (paused)

execution process and load the register values from the new

execution process. A common implementation of this kernel

functionality is illustrated in Figure 3. This process involves

bulk register value swaps and memory bus transfers to load and

store values involved in the context-switching process. Both

register value swaps and memory bus transfers significantly

change the side-channel signature of the device [6]. Figure 2

illustrates a power side channel signature of a RISC-V-based

SoC running OpenMZ security kernel during a context switch

process. This creates a perfect opportunity for an adversary

to analyze the side-channel signature to retrieve information.

We refer this capability as “EvilCS”, where an adversary

maliciously utilizes the context switch to recover sensitive

data from the trusted application in the security enclave. In

order to exploit the EvilCS, the adversary should have physical

access to the device to observe the power signature of the

SoC. We assume that the kernel and hardware implementations

are open source (e.g., RISC-V). Therefore, an adversary can

identify the timing information to exploit EvilCS to launch

an attack. The adversary is interested in recovering the GPR

values rather than the CSR values since their objective is to

recover computations within the security enclave and not the

configuration of the enclave which may be publicly available.

D. Contributions

We propose a statistics-based strategy for assessing both the

hardware and firmware of security enclave implementations.

Specifically, this paper makes the following contributions,

• We show that sensitive register data of trusted applica-

tions running on an SoC can be recovered via power

signature during the context switching.

• We propose a test generation technique to maximize the

side-channel sensitivity of the context switch process.

• We formulate a change point detection technique that

automatically isolates the power signature that is related

to the context-switch process from the power profile.

.macro ctx_save base

sw ra, 0(\base)

sw sp, 4(\base)

sw s0, 8(\base)

sw s1, 12(\base)

sw s2, 16(\base)

sw s3, 20(\base)

sw s4, 24(\base)

...

.endm

(a) GPR Store (sw) Macro

.macro ctx_load base

lw ra, 0(\base)

lw sp, 4(\base)

lw s0, 8(\base)

lw s1, 12(\base)

lw s2, 16(\base)

lw s3, 20(\base)

lw s4, 24(\base)

...

.endm

(b) GPR Load (lw) Macro
.globl sys_switch

sys_switch:

ctx_save a0 # a0 => struct context *old

ctx_load a1 # a1 => struct context *new

ret # pc=ra; swtch to new task (new->ra)

(c) Register Swap Procedure

Fig. 3: Implementation of switching between two harts using

GPR swap procedure in xv6-RISC-V kernel. This is the

common implementation procedure used by security kernels.

• We implement a power analysis technique to evaluate

the correlation between the register values and the power

consumption of the device during context switch.

• We consider widely used security enclave kernels with

different hardware implementations to form sixteen se-

curity enclave configurations and evaluate them for the

existence of EvilCS vulnerability.

This paper is organized as follows. Section II surveys related

efforts. Section III describes our statistical information leakage

analysis framework. Section IV presents experimental results.

Finally, Section V concludes the paper.

II. RELATED WORK

Test Vector Leakage Assessment (TVLA) is a popular

method for evaluating side-channel leakage of hardware im-

plementations [7]. This process involves generating input test

patterns that make distinguishable differences in the power

signature of the device. The specific TVLA method depends on

the application scenarios, such as evaluation of cryptographic

algorithms [8]–[10] and micro-architectural buffers [11].

A power side channel evaluation framework for symmet-

ric key cryptography algorithms at the pre-silicon stage is

proposed in [9], [10]. The initial step involves generating

test patterns based on Hamming distance to introduce vari-

ations in power signatures. Then KL-divergence is used to

evaluate the side channel leakage of the hardware implemen-

tation. Jayasena et al. [8] propose a framework for evaluating

hardware implementations of asymmetric key cryptography

algorithms. To preserve the timing information of the power

traces during analysis, they propose a dynamic partition-based

Firmware
(bin)

Power Trace Analysis

Kernel Code
(c,asm)

Fail

Pass

Power Profiling

Test Bench

SoC (v)

Test Generation

rom ram

Context
Switch

App Code
(asm)

Correlation
Power

Analysis

Change
Point

Detection

Leakdown
Test

Simulate

Test
Generation

Hardware (v)

cpu

Power
Signature

Hardware level Mitigations
SoC

Fig. 4: Overview of information leakage assessment for security enclaves that consists of four major steps: (i) tests are generated

to maximize the side-channel sensitivity, (ii) power model is generated by simulating the implementation, (iii) automated power

analysis, and (iv) the divergence test is carried out to evaluate the side-channel leakage from the power signature.

differential power analysis technique using Welch’s t-test. A

software-based TVLA technique to evaluate branch prediction

units is proposed in [11]. The authors have employed the

Welch t-test to evaluate software cryptographic benchmarks.

Existing TVLA techniques cannot be directly applied to

evaluate SoCs for the EvilCS vulnerability due to the fact that

existing techniques focus exclusively either on hardware or on

software. EvilCS spans across hardware-software boundary,

requiring the simultaneous evaluation of hardware and soft-

ware. For example, it involves both kernel code and application

code to form the firmware during the evaluation process and

test patterns need to be encoded into the application code.

Similarly, the firmware needs to be compiled and programmed

onto the hardware for evaluation. Therefore, the evaluation

techniques need to be specifically tailored for the EvilCS

vulnerability, as described in the next section.

III. INFORMATION LEAKAGE ASSESSMENT

We propose a leakage assessment framework to assess the

side-channel leakage of security enclaves. Figure 4 illustrates

the main steps involved in the leakages assessment. First,

we generate test cases to maximize side-channel sensitivity.

Next, we construct the power signature of the implementation

through simulation-based power profiling. We perform power

trace analysis to identify the context switch interval. Next, we

perform correlation power analysis to assess the information

leakage. Finally, we perform a leakdown test to identify if the

implementation has EvilCS vulnerability.

A. Test Generation for Side-Channel Sensitivity Maximization

The main objective of the information leakage assessment

is to generate input test vectors to maximize the side-channel

sensitivity of the underlying hardware. In case of EvilCS, input

test cases are application programs. These programs should

maximize the side-channel sensitivity of the system during a

context switch call from the enclave kernel. In order to achieve

this objective, we first need to generate multiple applications to

write values directly to the system registers while maximizing

side-channel sensitivity. Then we need to isolate the context-

switching logic from the kernel and combine it with each

application code to compile the firmware.

Application Code Template: In order to generate multiple (n)

application codes, we have created an assembly template that

can directly write values to GPR as illustrated in Figure 5a.

Since the attacker is interested in the GPR, we focus on

generating different combinations of values to be directly

written into the registers, so that between each application the

Load values from genHW()

lui x1, {v_1[31:12]}

addi x1, x1, {v_1[12:0]}

lui x2, {v_2[31:12]}

addi x2, x2, {v_2[12:0]}

...

lui x31, {v_31[31:12]}

addi x31, x31, {v_31[12:0]}

nop

j os_kernel # return to os

(a) App Template (w=32bit)

#include <stdint.h>

#include "riscv.h"

int os_kernel(void)

{

/* Context switch

logic of kernel

goes here */

while (1) {}

return 0;

}

(b) Kernel Wrapper

Fig. 5: Application template and kernel wrapper used for en-

capsulating different context-switch logic of security kernels.

power side-channel signature corresponding to each GPR is

different. For this purpose, we use a naive approach presented

in Algorithm 1. Inputs to the algorithm are the number of

test cases required n, minimum hamming weight b to be

maintained across register values, and the register width w.

The actual value of n is determined by Equation 1, where

Φ−1(1− β
2
) and Φ−1(β

2
) stands for upper and lower tails of

the power trace distribution, respectively, while d, σ2 and α

represent effect size, the standard deviation of the power trace,

and required statistical significance. Algorithm 1 generates

a random number between 0 and 2w and if it is within the

required minimum hamming weight, it is appended to an array

to be used within the application code. For each register in

GPR, Algorithm 1 will generate an array of register values.

Then for each {v_i} in the template, we assign values from

each set of outputs from Algorithm 1.

n =

(

Φ−1(1− β

2
) + Φ−1(β

2
)

d

)2

· σ2 (1)

Algorithm 1 Register value generation for application code

Require: Number of Tests n, Min HW b, Register Width w
Ensure: Hamming Weight Register Values C

1: function genHW(n, b, w)
2: C ← ∅
3: while n > |C| do
4: a← rand(2w)
5: if a /∈ C & HW (a) ≥ b then ▷ Hamming Weight ≥ b.
6: C ← C ∪ {a}
7: end if
8: if |C| ≥ n then ▷ Enough values found for sample size
9: Return C

10: end if
11: end while
12: end function

Kernel Code Isolation: We strip down the security kernel to

isolate the context-switching logic from the other function-

alities and use it inside the wrapper code as illustrated in

Figure 5b. This makes j os_kernel line in Listing 5a to

perform a jump to the kernel to perform a context switch.

Once n number of assembly programs are generated, we

combine each application code with the striped version of

the kernel to obtain n firmware versions. Next, we compile

the firmware with the relevant gcc compiler to obtain n

complete bare-metal executables on the hardware. Finally, the

executable is compiled with the RISC-V hardware that is in

hardware description language (HDL) and wrapped with a

testbench code to obtain the compiled simulator. This process

is automated for all the n implementation instances.

B. Simulation-based Power Profiling

After obtaining n implementation instances, we need to

obtain the power model for each instance separately. We sim-

ulate each instance individually while dumping the simulation

trace as a Value Change Dump (VCD). Next, each of the

VCDs are converted into a power profile of the particular

instance. Typically, side-channel patterns associated with the

power attributes of hardware designs exhibit correlations based

on the following two models [12]:

Switching Activity Model (SAM): SAM relates to the switch-

ing of internal signals of the device. Transitions from 0 → 1
and from 1 → 0 are deemed to consume higher power and

emit more electromagnetic radiation compared to transitions

from 0 → 0 and from 1 → 1.

Hamming Weight Model (HWM): HWM establishes a con-

nection between the count of signals holding values 0 or 1
at a given instance and the overall power consumption of the

device at that instance.

We use both power models to evaluate the presence of

EvilCS vulnerability in security enclaves. We examine the

VCD file and build the power profile models by considering

both SAM and HWM by iterating through the signal value

transitions and signal values during each clock cycle.

C. Power Trace Analysis

After obtaining the power profiles from the simulation, they

need to be analyzed for potential information leakage. First,

we employ change point detection to identify the areas related

to the context switch. Then on the isolated power trace, we

perform correlation power analysis to statistically identify the

recoverability of register data.

Change Point Detection (CPD): Change point detection esti-

mates the probability density function of data at various points

and looks for abrupt changes in the estimated density. These

abrupt changes can indicate potential change points in the

data where something significant might have occurred. Due

to the bulk register read and write, context-switch produces a

high-density fluctuation in the power signature as illustrated

by color ■ in Figure 2.

Let’s represent the power signature of the device as a time

series distribution {x0, x1 . . . , xn}. For this experiment of

CPD, we construct two hypotheses H0 and H1 as there is

no change point in the power profile and there exists a change

point in the power profile respectively. Let µ̂1(=
1

t1

∑t1
i=1

xi)

and µ̂2(=
1

t2

∑n

i=t1+1
xi) be mean before and after the change

point. Then cumulative sum statistic (Sk) is introduced as

a means of detecting changes in the data distribution as

illustrated in Equation 2.

Sk = max(0, Sk−1 + xk − µ̂) (2)

If H0 is true (no change point), then the Sk statistic before the

potential change point will not exhibit significant deviations

from zero. Conversely, if H1 is true (change point exists),

then the Sk statistic after the change point will likely exceed

zero, signifying a significant change in the data distribution.

Then based on the desired statistical significance level and

the nature of the power profile, a threshold T is selected.

It is often set to control the probability of making a Type I

error (incorrectly detecting a change when there isn’t one). In

order to compute T , we randomly pick five samples from the

distribution, manually perform a simple power analysis, and

take the average as the change point threshold T . Therefore,

a change point will be detected at k when Sk > T . In

other words, when the cumulative sum statistic exceeds the

threshold, it indicates the presence of a change point in the

power trace which corresponds to a context-switch call from

the kernel. The same technique is used to identify the endpoint

of the context switch. Employing this process, a complete

power signature during the context switch can be isolated from

the entire power signature of the implementation. We repeat

this procedure for n instances of the implementation to isolate

context switch power signature related to each instance.

Correlation Power Analysis (CPA): In order to preserve a

good resolution in the evaluation process, CPA is performed

for each register involved in the context switching process.

So far, we have n power profiles that only contain context

switch power signatures, and with CPA we perform statistical

analysis to evaluate the possibility of EvilCS vulnerability.

First, each of the isolated context switch power traces needs

to be segmented into equal-length sub-traces by dividing it by

the number of registers involved in the context switch. This

is possible since register read and write is a constant time

operation and sequential operation as illustrated in Figure 3.

Then each of the sub-trace is analysed against the known

register values computed by Algorithm 1.

Let’s consider the register Rj . Assume that the n sub-

traces relevant for Rj as (p0, p1 . . . , pn) and a set of cor-

responding known register values generated by Algorithm 1

as (v0, v1, . . . , vn). For the CPA experiment, let’s construct

the hypotheses H0 as there is no correlation between the

power consumption against the register values being computed

in the trusted application and H1 as there is a correlation

between the power consumption and the register values. Let

the statistical significance for the experiment be α.

χ2 =
n
∑

i=1

(Pi − Ei)
2

Ei

(3) Ei =
γ(W (vi))× ν(Pi)

Λ
(4)

df = (|γ| − 1).(|ν| − 1) (5) p-value = 1− CDF (χ2, df) (6)

Then we use the Chi-squared statistic (Equation 3) to de-

1 2 3 4 5 6 7 8 9 10
Power Consumption (mW)

1

2

3

4

5H
am

m
in

g
W

ei
g
h
t 8 5 3 3 2 2 6 3 3 9

3 6 3 9 8 2 3 2 0 0

1 3 2 2 3 1 5 4 8 9

0 1 8 1 4 2 6 1 4 0

1 9 6 7 1 6 6 9 0 1
0

2

4

6

8

E
x
p
ec

te
d

V
al

u
e

Fig. 7: Sample contingency table generated with power trace

data (Pi) and hamming weight of register values (W (vi)).

termine the correlation between the power value and the

register value. In Equation 3, Pi corresponds to the peak power

point (Pi = max({pi})) in the power trace corresponding

to register Rj and expected power signature Ei is calculated

from the contingency table constructed using the hamming-

weight power model from vi and pi. Figure 7 illustrates an

example contingency graph created from power traces pi and

hamming weights W (vi) of generated register values. The

table is constructed by iterating through each W (vi) and filling

with the peak power consumption values from corresponding

power traces. Then Ei is calculated from Equation 4 where

γ, ν,Λ represent row sum, column sum, and the total sum of

the contingency table, respectively. This essentially translates

hamming weight into an expected power consumption value.

Next, we need to compute the degree of freedom df from

Equation 5, where |γ| and |ν| represent the number of rows

and columns in the contingency table. For the example in

Figure 7, df = (5− 1)× (10− 1) = 36. Using the cumulative

distribution function with the χ2 Chi-Squared value and df

degrees of freedom, we can determine the p-value associated

with the power trace from Equation 6. If p-value ≤ α, we

reject the null hypothesis (H0), which indicates a significant

correlation between the power consumption and register value.

If p-value > α, we fail to reject the null hypothesis (H0).

D. Classification using Leakdown Test

At this stage, we have established a relationship for each

test instance with a statistical correlation between the power

traces and the register values of the individual register. In the

final step, we determine whether a register value could be

potentially leaked from the power traces based on the CPA

results of all the test instances. Note that based on the p-value,

it can be concluded that either to reject H0 or fail to reject

H0. Therefore, our classification method needs to classify an

implementation based on whether it will leak information from

a register or not. For this, we formulated the leakdown test,

which will go through the results of each register level CPA

and perform a family-wise rejection decision if at least one

occurrence of H0 rejection is found. This indicates that the

implementation that rejects the null hypothesis for a particular

register at least one time will fail the leakdown test and

needs hardware mitigations to reduce the information leakage

through power consumption. After applying the mitigations,

the implementation needs to go through the assessment pro-

cess from beginning to end until it can completely pass the

leakdown test for all of its registers.

IV. EXPERIMENTS

In order to perform information leakage assessment on real-

world implementations, we have selected four security enclave

kernels of Keystone [3], OpenMZ [5] (open source implemen-

tation of MultiZone [4] security kernel), Komodorv [13]1 and

CertiKOSrv [13]1 that are implemented for RISC-V instruction

set architecture. We have isolated the context-switching logic

from the kernel for evaluation purposes. For compiling the

firmware we have used riscv-gnu-toolchain. Next, we have ob-

tained four RISC-V SoC IP core implementations of PicoSoC,

UervSoC, IObSoC, and VeeRwolf as target hardware designs.

We used Synopsys Design Compiler with SAED90nm CMOS

technology for the synthesis of the design. We simulated

hardware designs using Synopsys VCS to obtain the VCD

signal dumps. Power signature construction is performed from

Synopsys vcd2saif utility. For tasks such as test generation and

leakage assessment, we developed customized Python scripts

with the necessary statistics libraries. All the experiments were

carried out in a server environment with Intel(R) Xeon(R) CPU

E5-2640 v3 @ 2.60GHz processor and 64GiB Memory.

A. Evaluation Parameters (n, T, α, w, b)

Based on the literature [8]–[10], we have selected the

statistical significance α of 0.05. Since all the selected SoC

implementations are 32 bits, we have selected the register

with parameter (w) as 32. Column n in Table I presents the

minimum number of traces required to evaluate different se-

curity enclave environments. Then the change point detection

threshold T was also computed empirically from sample traces

for each combination of implementations. Column T of Table I

illustrates the computed T value for each implementation. The

minimum hamming weight (b) was selected empirically as 5
from the sample power traces.

TABLE I: Sample size (n) and the change point detection

threshold (T) for different combinations of security enclaves.

Hardware

Context Switch Logic

Keystone OpenMZ Komodorv CertiKOSrv

n T n T n T n T

PicoSoC 6006 0.4 5691 0.3 5730 0.4 5829 0.4

UervSoC 6312 0.2 6198 0.2 6278 0.3 6910 0.2

IObSoC 4201 0.3 4448 0.3 4780 0.3 4583 0.3

VeeRwolf 7980 0.2 7495 0.2 8489 0.2 8358 0.2

B. Correlation Power Analysis on Registers

This section presents results about individual general pur-

pose registers. Based on CPA results, we decide whether

we can reject the null hypothesis H0. Figure 8 presents

the results for different configurations of security enclaves.

Figure 8a illustrates the minimum p-values observed during

the experiments for four possible implementations of security

enclaves with Keystone, OpenMZ, Komodorv and CertiKOSrv

kernels with the PicoSoC hardware. The same experiment

was carried out through other security enclave configurations.

1Komodorv and CertiKOSrv are retrofitted RISC-V versions of original
Komodo and CertiKOS kernels [13]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri

p
-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(a) PicoSoC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri

p
-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(b) UervSoC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri

p
-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(c) IObSoC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri
p

-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(d) VeeRwolf

Fig. 8: Minimum p-value observed for individual registers in different security enclave configurations (different kernels and

hardware combinations). Registers under the line α fail the leakdown test and need mitigations to prevent information leakage.

Figure 8b, Figure 8c, and Figure 8d illustrate the results for

UervSoC, IObSoC, and VeeRwolf, respectively. Any p-value

that is less than the selected significance value α = 0.05, fails

the leakdown test for the particular register. As demonstrated

by results, general purpose registers ranging from x8 to

x31 consistently fail the leakdown test showing a significant

correlation between the power signature and occupied register

value while most of the registers from x1 to x7, statistically

fail to provide a conclusion. Note that in RISC-V architecture,

x0 is a fixed zero value register and therefore we exempted

it from evaluations. We observed that the reason for the weak

correlation results for registers x1-x7 is that they are pointer

registers. Unlike data registers of x8-x31 that store temporary

data, operands, and results of calculations, pointer registers

store information such as return address, stack pointer, etc.

Although we directly write values in the application during the

evaluation, later they get updated which affects the correlation

analysis resulting values such that p-value > 0.05.

V. CONCLUSION

In this paper, we introduced EvilCS vulnerability to show

that the power consumption of a security enclave can reveal

sensitive information from trusted applications. Specifically,

we demonstrate that the distinct consecutive memory reads and

writes involved during context switching can leak register data

as a power side-channel signature. We proposed an informa-

tion leakage analysis framework to evaluate implementations

that consist of different hardware and firmware configurations.

Evaluation of sixteen combinations of RISC-V security en-

claves reveals that a vast majority of general-purpose registers

leak their values as side-channel signatures. This analysis

is vital for designing secure and trustworthy systems. We

briefly outline two potential countermeasures for RISC-V

based security kernels. A designer can apply a firmware patch

that needs modifications to the security kernel as well as the

application code. Security kernel should temporarily disable

system interrupts by manipulating the interrupt-enable bits in

the Machine Status Register (mstatus). Once the hardware

thread switches to the execution of the trusted application, it

should perform its secret computation and once it is finished,

the application should actively return to the kernel to re-enable

the timer interrupts. An ideal fix against EvilCS would be to

apply register masking as well as common blinding techniques

for each general purpose register during pre-silicon design.

REFERENCES

[1] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks on
caches and countermeasures. HASS, 2:33–50, 2018.

[2] Mahya Morid Ahmadi et al. Side-channel attacks on risc-v processors:
Current progress, challenges, and opportunities. arXiv, 2021.

[3] Dayeol Lee et al. Keystone: An open framework for architecting trusted
execution environments. In EuroSys ’20, pages 1–16, 2020.

[4] Hex Five. Multizone security for risc-v, 2020.
[5] Henrik Karlsson. OpenMZ: a C implementation of the MultiZone, 2020.
[6] François-Xavier Standaert. Introduction to side-channel attacks. Secure

integrated circuits and systems, pages 27–42, 2010.
[7] Aruna Jayasena and Prabhat Mishra. Directed test generation for

hardware validation: A survey. ACM Computing Surveys, 2023.
[8] Aruna Jayasena et al. Test Vector Leakage Assessment on Hardware

Implementation of Asymmetric Cryptography Algorithms. TVLSI, 2023.
[9] Nitin Pundir et al. Power side-channel leakage assessment framework

at register-transfer level. IEEE TVLSI Systems, 2022.
[10] Tao Zhang et al. PSC-TG: RTL power side-channel leakage assessment

with test pattern generation. In ACM/IEEE DAC, pages 709–714, 2021.
[11] Sarani Bhattacharya et al. Online detection and reactive countermeasure

for leakage from bpu using tvla. In VLSID, pages 155–160. IEEE, 2018.
[12] Eric Brier et al. Correlation power analysis with a leakage model. In

CHES 2004, pages 16–29. Springer, 2004.
[13] Luke Nelson et al. Scaling symbolic evaluation for automated verifica-

tion of systems code with serval. In SOSP, pages 225–242, 2019.

	Introduction
	Security Enclave Kernels
	Hardware Threads: Hart
	Threat Model: EvilCS Vulnerability
	Contributions

	Related Work
	Information Leakage Assessment
	Test Generation for Side-Channel Sensitivity Maximization
	Simulation-based Power Profiling
	Power Trace Analysis
	Classification using Leakdown Test

	Experiments
	Evaluation Parameters (n,T,, w, b)
	Correlation Power Analysis on Registers

	Conclusion
	References

