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Abstract—Increasing design complexity and reduced time-to-
market have motivated manufacturers to outsource some parts
of the System-on-Chip (SoC) design flow to third-party vendors.
This provides an opportunity for attackers to introduce hardware
Trojans by constructing stealthy triggers consisting of rare events
(e.g., rare signals, states, and transitions). There are promising
test generation-based hardware Trojan detection techniques that
rely on the activation of rare events. In this paper, we investigate
rareness reduction as a design-for-trust solution to make it
harder for an adversary to hide Trojans (easier for Trojan
detection). Specifically, we analyze different avenues to reduce
the potential rare trigger cases, including design diversity and
area optimization. While there is a good understanding of the
relationship between area, power, energy, and performance, this
research provides a better insight into the dependency between
area and security. Our experimental evaluation demonstrates that
area reduction leads to a reduction in rareness. It also reveals
that reducing rareness leads to faster Trojan detection as well as
improved coverage by Trojan detection methods.

Index Terms—Hardware security, Trojan Detection, Design-
for-Trust, Design-for-Test, Rareness Reduction

I. INTRODUCTION

The complexity of the hardware designs continues to grow

over the years. To make matters worse, the hardware de-

velopment life cycle has been shortened significantly. As a

consequence, the designers do not have enough time to verify

the functional behaviors as well as non-functional (e.g., secu-

rity) requirements. This opens up opportunities for attackers

to implant malicious circuits into the designs that can lead to

serious security risks. This research utilizes rareness reduction

techniques to improve the security verification process to

enable trustworthy hardware systems.

A. Threat Model

We consider the threat model under supply chain vulnera-

bility where the attackers (untrusted foundry, rogue designer,

malicious CAD tool [1]) can insert stealthy hardware Trojans

that can stay hidden during traditional functional validation

and testing. Specifically, an attacker is likely to combine

several rare signals with low activation probabilities as the

trigger for the Trojan. Once the Trojan is activated, it may

alter the functionality, leak sensitive data to the outputs, or

perform other malicious activities. Figure 1 shows a simple

hardware Trojan that is triggered by two rare signals of p and

q, while it flips the design output as the payload.
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Fig. 1: Hardware Trojan triggered by two rare signals (p,q)

B. Limitations of Existing Methods

Hardware obfuscation (logic encryption) is a promising

avenue to build a design-for-trust solution since it is hard for

the attacker to figure out the functionality without the key,

and therefore, hard to identify where to hide the Trojans [2]–

[4]. However, it can lead to unacceptable area, power and

performance overhead. Samimi et al. used logic obfuscation

to reduce rareness of signals [2]. However, it faces three

practical limitations. First, it inherits the disadvantages of

obfuscation and leads to significant area (32%), power (9%),

and performance (56%) overhead. Next, the requirement of

a key itself can be under attack. Finally, the applicability

is limited to small combinational designs (applied on simple

designs with less than 4000 gates).

There are promising research efforts for efficient detection

of hardware Trojans that can be broadly divided into the fol-

lowing categories: statistical test generation methods [5], [6],

directed test generation methods [7], machine learning based

techniques, side-channel analysis based techniques [8], self-

referencing based techniques, and also equivalence checking

based techniques [9]. The success of these methods heavily

depend on the number of potential triggers for Trojans in

the hardware designs. Specifically, if there are too many rare

signals or a lot of rare signals with very low probabilities,

it would be infeasible for the existing methods to detect

any stealthy Trojans constructed from these rare signals. The

proposed rareness reduction will be helpful for existing Trojan

detection methods, as demonstrated in Section III-D.

C. Research Contributions

In this paper, we look at Trojan detection problem from

an orthogonal perspective. We try to eliminate the hiding

places for Trojans as much as possible during the design stage.

This contributes to design-for-trust from two complementary

avenues. (1) The reduced rareness can demotivate the attackers

to introduce malicious implants in the design due to less

number of potential triggers. (2) Trojan detection approaches

can take the benefit of reduced rareness for faster and efficient



Trojan detection. Specifically, this papers makes the following

major contributions.

• We perform a theoretical analysis of the root causes of

rare signals that are likely to be exploited by adversaries

to construct stealthy triggers in hardware Trojans.

• We explore various methods for rareness reduction, in-

cluding design diversity and area optimization.

• To the best of our knowledge, this is the first attempt

in formulating a theoretical relationship between design

area and hardware security, and confirming with empirical

results on real-world hardware designs.

• Experimental evaluation demonstrates the effectiveness of

rareness reduction for Trojan detection using statistical

test generation as well as maximal clique activation.

This paper is organized as follows. Section II describes our

proposed methodology. Section III presents the experimental

results. Section IV concludes the paper.

II. RARENESS REDUCTION

In this section, we perform theoretical analysis as well as

exploration of rareness reduction techniques. Specifically, this

section is organized as follows. First, we define few terms that

are used in the rest of the paper. Next, we introduce metrics

to compare rareness between designs. Then, we perform a

theoretical analysis of the root causes of the rare signals in

hardware designs. We also explore several rareness reduction

techniques. Finally, we discuss the effect of rareness reduction

on two state-of-the-art Trojan detection techniques.

A. Definitions

We define three terms that are used in the rest of the paper.

Definition 1: Rareness of a Signal (Sω)

Every signal has two possible values: high (‘1’) and low” (‘0’).

We define the rareness of a signal S as the minimum of the two

probabilities as shown below. For example, if signal Si is ‘0’

10% of the time (‘1’ for 90% of the time) during simulation,

Si
ω is 0.1. Sω = min(P (S ← 0), P (S ← 1)) (1)

Definition 2: Logic Probability Vector (P (S̄))
In order to represent the probabilities of a signal S having a

value “Low” (“0”) and “High” (“1”), we use the following

vector and matrix representations.

P (S̄) =< P (0), P (1) >=

[

P (0) 0
0 P (1)

]

(2)

Definition 3: Ideal Transfer Matrix

The Ideal Transfer Matrix (ITM) is used for the reliability

evaluation of logic circuits [10]. In ITM, we express the

truth table of a logic gate in matrix representation where

rows represent the inputs combinations of the gate while

two columns represent the output signal being the value of

0 and 1. ITM representation of primary logic gate types

(AND,OR,NOT) is shown in Equation 3. ITM representation

for other gates can be computed in a similar way.

ITMAND =







1 0
1 0
1 0
0 1






ITMOR =







0 1
0 1
0 1
1 0






ITMNOT =

[

0 1
1 0

]

(3)

B. Metrics

We define the following three metrics to measure the

rareness of the hardware designs.

Definition 4: Rarest Rareness in a Design (Ω)

In the following equation, Ω represents the rareness of the

rarest signal in the design. Consider an example design that

has only two rare signals: Si and Sj where Si
ω= 0.1 and Sj

ω=

0.05. Then Ω = 0.05 (smallest between Si
ω and Sj

ω).
Ω = min({S0

ω , .., S
n
ω}) (4)

Definition 5: Average Rareness (µ(ωn))
We define average rareness for most rare n signals as below.

Clearly, higher average rareness implies that the design is

more resistant against malicious implants. In other words,

higher average rareness implies easier Trojan detection.

µ(ωn) =

∑

n

i=0 S
i
ω

n
(5)

Definition 6: Signal Count less than a threshold (ρ(<τ))

We count the number of rare signals with rareness less than a

specific threshold τ in a design D as follows. Clearly, lower

ρ(<τ) implies that the design is more resistant against mali-

cious implants. In other words, lower ρ(<τ) indirectly implies

easier Trojan detection for the given rareness threshold.
ρ(<τ) = |∀Si

ω ∈ D : Si
ω ≤ τ | (6)

C. Theoretical Analysis

Rareness of the signals in a hardware design depends on the

type and the order of logic gates involved in the propagation

path of the considered signal. In this section, we first show how

to compute the logic probability vector of a signal. Next, we

analyze the effects of various parameters on rareness, including

the types of logic gates in a specific path, logic depth (number

of logic gates in a path), as well as design area (total number

of logic gates).

1) Calculating the Logic Probability Vector of a Signal:

We formulate the rareness calculation of a signal as a ma-

trix multiplication problem. Figure 3 illustrates the example

calculation for a fan-out of an AND gate. For this example

we have to use the ITM corresponding to AND gate from

Equation 3. Then we obtain Equation 7 by multiplying the

Kronecker product of input probabilities (P (A) and P (B)) of

the gate with the ITM matrix of the AND gate. The column

sum of the resultant matrix represents the P(0) and P(1) values

of the fan-out (Z) signal.

A
B

Z P (A) = P (B) =

[

0.5 0
0 0.5

]

X = P (A)⊗ P (B)× ITMAND (7)






a1 b1
a2 b2
a3 b3
a4 b4






=







0.25 0 0 0
0 0.25 0 0
0 0 0.25 0
0 0 0 0.25






×







1 0
1 0
1 0
0 1







P (Z̄) =<

4∑

i=1

ai,

4∑

i=1

bi >=< 0.75, 0.25 > (8)

Fig. 3: Calculating the rareness probability for a signal (Z)

when fan-in signals (A,B) propagate through an AND gate.
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Fig. 2: Overview of proposed rareness reduction based design-for-trust improvement.

2) Effect of Logic Gate Types in the Path on Rareness:

The types of logic gates involved in a circuit is a signature

of the design. Since the ITM matrix (discussed above) is

calculated based on the truth table of the logic gate, the

rareness of a signal is affected by the type of logic involved in

the circuit. In other words, P(1) is a lower value for the output

of an AND gate, while an OR gate makes P(0) a lower value.

Therefore, it is possible to obtain designs with lower rareness

metric using different logic implementations. We will explore

design diversity in Section II-D to verify this hypothesis.

3) Effect of Logic Depth on Rareness:

Since the logic probability of a signal is always less than

1 (P (signal) ≤ 1), signal propagation through the same

gate type will always reduce the probability. However, this

phenomenon may not hold when gate types are interchanged

in the propagation path. Figure 4 illustrates a counter-example

to demonstrate this scenario. Figure 4a shows a circuit with a

logic depth of two, with two AND gates. Figure 4b consists

of a similar circuit except the last AND gate is replaced by

an OR gate. In 4a, the fan-out signal is the rarest (Ω) signal,

although in 4b the rarest (Ω) signal is not the fan-out signal.

This demonstrates that the effect of logic depth on the rareness

values depends on the design. Therefore, we will explore

rareness reduction techniques in Section II-D.

A < 0.5, 0.5 >

B < 0.5, 0.5 >
< 0.75, 0.25 >

X < 0.875, 0.125 >
C < 0.5, 0.5 >

(a) Xω = 0.125 and Ω = 0.125

A < 0.5, 0.5 >

B < 0.5, 0.5 >
< 0.75, 0.25 >

X < 0.375, 0.625 >
C < 0.5, 0.5 >

(b) Xω = 0.375 and Ω = 0.25

Fig. 4: An example to illustrate the effect of gate type in

rareness propagation through logic depth.

4) Effect of Area Optimization on Rareness:

Logic optimization refers to reducing a complex logical equa-

tion to a simplified version without changing the indented

behavior of the circuit. There are various logic optimization

techniques for Boolean circuits such as Boolean algebra,

graphical methods (e.g., Karnaugh maps, Quine–McCluskey

algorithm, and Petrick’s method), heuristic methods (e.g.,

Espresso heuristic logic minimizer), etc. During these opti-

mizations, either logic gates get removed by gate sharing or a

part of the circuit may get replaced with a simpler circuit. For

example, Karnaugh map tries to identify repetitive patterns

in the signals and eliminates them. Based on the intuition

provided by logic optimization, we analyzed the relationship of

rareness metrics (µ(ωn), ρ(<r)) with logic area optimization.

Results revealed that if the area reduction is occurred within

the region that contributed towards the rareness metrics, then

area optimization improves the rareness metrics. We have

performed empirical analysis on real-world hardware designs

with different synthesis area efforts, as demonstrated in Sec-

tion III-C.
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< 0.75, 0.25 >

< 0.75, 0.25 >

< 0.56, 0.43 >

< 0.58, 0.42 >

< 0.78, 0.22 >< 0.75, 0.25 >

Ω = 0.22 ρ(<0.25) = 1 µ(ωall) = 0.2187

(a) X=(CB+AC̄)A+DA logic circuit before optimization

A

C

B

D

< 0.42, 0.58 >

Ω = 0.25 ρ(<0.25) = 0 µ(ωall) = 0.3219

< 0.75, 0.25 >

< 0.75, 0.25 >

< 0.75, 0.25 >

< 0.56, 0.43 >

(b) X=AB+AC̄+DA logic circuit after area optimization

Fig. 5: An example scenario of rareness reduction of logic

circuits through area optimization

Figure 5 presents an illustrative example to demonstrate

the effect of area reduction on rareness metrics. Figure 5a

shows the logic circuit representing the Boolean equation

X=(CB+AC̄)A+DA. Corresponding Ω, ρ(<0.25), and µ(ωall)
metric values are 0.2187, 1, and 0.3033 respectively. Then us-

ing Karnaugh maps we optimized the circuit (CB+AC̄)A+DA

to equivalent Boolean circuit (AB+AC̄)+DA, which is rep-

resented in Figure 5b. From the metric values calculated

for the optimized circuit, it can be observed that the rarest

signal (Ω) has increased from 0.2187 to 0.25. The number

of signals less than the threshold of 0.25 has reduced from 1
to 0 and the average rareness of all the signals has increased

from 0.3033 to 0.3218 demonstrating that area reduction has

positively impacted rareness reduction. Table I presents several

illustrative examples for different logic circuit expressions.

TABLE I: Rareness metrics for different Boolean circuit

expressions before and after area optimizations
Original Circuit Area Optimized Circuit

Logic Ω ρ µ Logic Ω ρ µ

AB+BC(B+C) 0.18 1 0.26 (A+C)B 0.25 0 0.31

AC+AB̄C̄+ABC 0.12 2 0.25 AB̄+AC 0.25 0 0.31

ADC+ABD 0.12 2 0.19 A(DC+BD) 0.21 0 0.28



D. Rareness Reduction Techniques

Based on the theoretical analysis in Section II-C, we can

conclude that two factors affect the rareness metrics in a

hardware design. (i) nature of the design and (ii) area of the

design. We propose two techniques to reduce the rareness of

signals in hardware designs considering the above factors.

1) Design Diversity: In order to achieve a functionality,

there can be multiple algorithms. There are multiple readily

available implementations for most generic sub-components,

such as adders, multipliers, dividers, sorting algorithms, search

algorithms, hashing algorithms, etc. We explore different im-

plementations for sub-components of the design. For example,

if we need an adder, we can consider various adder choices

(e.g., ripple-carry adder, carry lookahead adder, etc.) to select

the implementation with the minimum contribution to the

rareness. Similarly, if we need to implement sorting, we can

consider diverse sorting algorithms, including bubble sort,

insertion sort, quick sort, merge sort, etc. while we are trying

to improve rareness, we also have to satisfy other design

constraints, such as area, power, and performance.

2) Area Optimization: Our theoretical analysis revealed that

area reduction leads to improved rareness. Therefore, a design-

for-trust solution needs to select the implementation with the

lowest area without violating other design constraints. Another

way to reduce design area is by reducing the parallelism inside

the design. Any hardware synthesis tool considers various

avenues for area reduction including parallelism reduction

(sharing components), simplified (bare-bone) implementation,

and logic minimization. For example, let us consider a proces-

sor consisting of two ALU units. If we use a single ALU, it

is expected to reduce the ρ(<0.1) value contribution of ALU’s

by 1
2 . Similarly, the bare-bone implementation of the required

functionality is preferable for obtaining a verification-friendly

design-for-trust solution. The logic minimization techniques

are expected to reduce the area and improve the rareness.

E. Fast Detection of Trojans with Rareness Reduction

Existing Trojan detection techniques ( [5]–[7], [11]–[13])

follows the threat model outlined in Section I-A. In other

words, the Trojan detection time depends on the number of

rare signals in the design. To evaluate the effects of rareness

reduction on Trojan detection, we consider two complimentary

test generation based Trojan detection techniques: statisti-

cal [5] and maximal clique activation [7].

1) Trojan Detection using Statistical Test Generation:

Statistical test generation technique MERO [5] depends on N-

detect [14] principle, where each rare signal is activated N

times. First, it simulates the design with random test vectors

while performing rareness calculations. Next, it identifies all

the rare signals (potential trigger conditions) with rareness

values less than a specific threshold (τ ). Then using the

initial set of random test vectors, the algorithm performs bit

flips until the N criterion is satisfied for all the identified

rare signals. Due to the statistical nature of the generated

test set, if N is sufficiently large, a good Trojan coverage

can be obtained. The authors demonstrate the results of the

MERO framework on ISCAS’85 benchmarks. To achieve a

good coverage of detecting Trojan triggers consisting of four

triggers, the authors have used a N value of 1000. Rareness

reduction is effective for statistical-based test generation in

two ways. (1) It reduces the number of rare signals in the

design. Assume that the number of rare signals that we can

reduce is X . This reduces the initial rareness calculation time

by reducing the signal value monitoring effort by X . This

further reduces the test generation in the order of X × N ,

(ii) Reducing the average rareness of the design improves the

chances of signals getting activated during random simulations

as well as during the execution of the underlying bit-flipping

algorithm, yielding higher Trojan coverage from the generated

test vectors. Section III-D demonstrates the effect of rareness

reduction on statistical test generation.

2) Trojan detection using Maximal Clique Activation:

Directed test generation technique of TARMAC [7] tackles

the problem following a complementary approach to MERO.

Similar to MERO, TARMAC first calculates the rare signals

in the system with random test vectors. Let us assume that

we have identified R number of rare signals. For all the rare

signals, TARMAC creates a two-trigger connectivity graph by

querying all pairs (R× R−1
2 ) of rare signals using satisfiability

solving. The complexity of the satisfiability graph construction

is in the order of R2. Next, maximal clique partitioning is

employed on the satisfiability graph to identify the trigger

cliques. SAT solver is used to generate test vectors to activate

all the identified cliques in the design. Rareness reduction

benefits TARMAC in two ways. (1) Suppose the number of

rare signals that we can reduce is X . Then satisfiability graph

construction complexity is reduced in the order of (R−X)2.

(2) Due to the reduction of average rareness, it is easier

for the SAT solvers to activate the cliques. This significantly

reduces the three major limitations of TARMAC, satisfiability

graph construction, clique partitioning, and test generation

using clique activation. Section III-D demonstrates the effect

of rareness reduction on maximal clique activation.

III. EXPERIMENTS

We have created several experimental scenarios to

strengthen the analysis of rareness reduction techniques in

Section II. First, we explain the experimental setup. Next, we

conduct rareness reduction experiments using design diversity

as well as area optimization. Finally, we evaluate the effects

of rareness reduction on detecting randomly inserted Trojans.

A. Experimental Setup

All the experiments including the execution of state-of-the-

art test generation methods were carried out on a server with

Intel(R) Xeon(R) CPU E5-2640 v3 @2.60GHz processor and

64GiB Memory. For rareness and coverage analysis simula-

tions, we have used Synopsys VCS simulator. For compiling the

RTL designs to the gate-level netlist, Synopsys DC Compiler is

used with SAED90nm CMOS technology. In order to calculate

the rareness of the synthesized designs, we have obtained the



VCD dump of the synthesized designs. For validating the

sampled Trojan triggers, Synopsys TetraMax was used. An

overview of the experimental setup used for the evaluation

is presented in Figure 6.

Design

(RTL/GateLevel)

Technology

(saed90nm)
Synth. Script

(effort High/Med/Low)

Netlist

(GateLevel)

Metrics

(µ(ω), ρ,Ω)

Simulation

Test Vectors

(Random)

Compiler

(DC shell)

Fig. 6: Overview of our evaluation framework.

B. Design Diversity Experiment

For this experiment, we have selected 64-bit adder circuits

of CarryRipple (CRA), CarrySkip (CSA), CarryLookAhead

(CLA), CarrySelect (CSeA), Hybrid (HA) and Kogge-Stone

(KSA). These circuits were synthesized in two area effort

levels of high and low. Next, we simulated the synthesized

circuits individually with 10,000 randomly generated test

patterns. Then using the VCD dump, we calculated the average

rareness of the 100 most rare signals in each circuit. Figure 7

shows the results of the experiment.

CRA CSA CLA CSeA HA KSA
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Fig. 7: Design diversity comparison for diverse 64-bit adder

implementations synthesized with low and high area efforts

versus average rareness for 100 most rare signals (µ(ω100))

It can be observed that the average rareness for different

algorithms that implement the same functionality are different.

We analyzed the reason behind the drastically low µ(ω100)
values of the CarryLookAhead adder. In the synthesized

design, it was observed that there are paths consisting of only

NAND gates. This phenomenon negatively contributes to the

rareness significantly, due to the involvement of the same type

of gates in the propagation path of the signal, as discussed in

Section II-C3. Therefore, it is important to consider diversity

of algorithms and their rareness metrics to build a design-for-

trust solution. Although the average rareness varies across the

algorithms due to design diversity, the relationship between the

area and the rareness metrics still holds for each algorithm.

This can be observed by observing the rareness metrics at

different area synthesis efforts. The designs with the lowest

area have the highest average rareness, while the designs with

the higher area have the rarest signals. This means that the

signals in the area-optimized design are less rare, making it

easier for Trojan detection.

C. Area Optimization versus Rareness Correlation

In order to empirically prove the hypothesis that we have

outlined in Section II, we have created a correlation analysis

experiment. For this we have selected diverse designs covering

network-on-chip (NoC) routers, processors (Attiny), crypto

cores (AES and ECDSA), error correcting (ECC) memory

cores from OpenCores [15]. Figure 8 presents the correlation

heat-map for the design physical features against the average

rareness (µ(ω)) and number of rare nodes below the rareness

threshold of 0.1 (ρ(<0.1)). The results were obtained using

the experimental setup illustrated in Figure 6. First, we have

synthesized the designs with three different area effort levels

of low, medium and high. Then we have simulated the

synthesized designs with 10,000 test patterns to calculate the

rareness metrics. Finally, we have calculated the correlation

coefficient value for each design parameter against the signal

rareness metrics. It can be observed that the design area is

positively (■) correlated with ρ(<0.1) (A ∝ ρ(<0.1)) while

design area is negatively (■) correlated with µ(ω) (A ∝ 1
µ(ω) ).

This confirms that fact that the theoretical properties holds

true on real-world designs. Further, it can be observed that

the correlation between the rareness metrics against the logic

levels varies depending on the design. This reflects the effect

of gate type involved in the design for the signal rareness.

TABLE II: Percentage comparison of area reduction (A↓) ,

effect on rareness metrics (ρ(<0.1) ↓, ∆µ(ωall) ↑) and test

generation time reduction for different hardware designs. The

complexity of the designs in terms of number of logic gates

is as follows: ECC memory (100K), Attiny processor (30K),

NoC router (10K), AES (80K), and ECDSA (300K).

Design A↓% ρ ↓% ∆µ ↑
Test Generation Time ↓

MERO [5] TARMAC [7]

ECC mem 10.1% 5.8% 0.007 8.9% 23%

Attiny 4.8% 3.4% 0.012 7.2% 19.8%

NoC router 7.3% 6.1% 0.010 10.3% 24.1%

AES 5.2% 11.8% 0.009 5.8% 17.9%

ECDSA 12.1% 9.7% 0.018 13.6% 28.4%

Table II presents the percentage reduction of area between

lowest and highest area effort setting with the decrement

of ρ and increment of ω for different benchmarks in this

experiment.

D. Effectiveness of Rareness Reduction on Trojan Detection

For this experiment, we have used the MERO [5] and TAR-

MAC [7] test generation-based Trojan detection algorithms.

First, we have generated test vectors (τ= 0.2) using both

methods on the design before and after rareness reduction. The

test generation time reduction column of Table II illustrates the

time saved during the test generation process by each method.

For MERO, we have used N as 1000. Then we randomly

insert Trojans into the design following the method outlined

in [16] to evaluate the coverage improvement. Specifically, we

compute the Trojan coverage as the ratio between the number

of Trojans detected by the test vectors and the total number

of inserted Trojans.



Metrics Logic Levels Leaf Cells Comb.Cells Comb.Area Net Area Cell Area Design Area Total Nets

ECC
memory

µ(ωall) 0.44 -0.68 -0.68 -0.85 -0.83 -0.85 -0.90 -0.64
ρ(<0.1) -0.74 0.90 0.90 0.98 0.57 0.98 1.00 0.88

Attiny
Core

µ(ωall) 0.80 -0.44 -0.56 -0.69 -0.31 -0.88 -0.87 -0.88
ρ(<0.1) -0.29 0.79 0.78 0.82 0.82 0.91 0.92 0.80

ProNoC
router

µ(ωall) 0.00 -0.24 -0.85 -0.73 0.56 -0.61 -0.98 -0.85
ρ(<0.1) -0.19 0.09 0.92 0.69 -0.81 0.73 0.88 0.77

AES
Core

µ(ωall) 0.57 -0.17 -0.97 -0.99 -0.17 -0.80 -0.83 -0.85
ρ(<0.1) -0.27 -0.52 0.95 0.84 0.54 0.98 0.88 0.87

ECDSA
Sign

µ(ωall) -0.37 0.42 -0.74 -0.99 -0.69 -0.88 -0.90 -0.98
ρ(<0.1) 0.29 0.24 0.68 0.92 0.81 0.79 0.90 0.92

Fig. 8: Correlation analysis heat-map generated by analyzing synthesized design features vs rareness metrics (µ(ωall),ρ(<0.1))
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Fig. 9: Design diversity coverage improvement for ALU-CSA

and ALU-KSA designs with MERO and TARMAC.(τ = 0.2)
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Fig. 10: Area optimization coverage improvement for ECDSA

module with MERO and TARMAC.(τ = 0.2)

In order to evaluate the effectiveness of rareness reduc-

tion due to design diversity, we have used two 64-bit ALU

implementations. For the first ALU, we have inserted an

instance of CarrySkip adder (ALU-CSA) and for the second

ALU, we replaced it with a Kogge-Stone adder (ALU-KSA).

Figure 9 illustrates the coverage results of the design diversity

experiment. It can be observed that although the functionality

of the two ALU’s still the same, different implementations

yields drastically different Trojan coverage results. In this

experiment, the ALU-CSA implementation is more friendly

toward security verification.

In order to demonstrate the effectiveness of area optimiza-

tion based rareness reduction, we have selected the ECDSA

core as the evaluation benchmark. Figure 10 demonstrates

the coverage improvement results on the ECDSA benchmark

before and after area optimization. It can be observed that

coverage has been improved in both MERO and TARMAC

methods on the most area optimized design.

IV. CONCLUSION

Design-for-trust is an important objective to develop secure

and trustworthy systems. While obfuscation is a promising

avenue, it can lead to unacceptable hardware overhead. In

this paper, we explored the effectiveness of rareness reduction

to design trustworthy systems. We performed a theoretical

analysis of the root causes of rare signals that are likely

to be exploited by adversaries to construct stealthy triggers

in hardware Trojans. We also explored two techniques for

rareness reduction, including design diversity, and area op-

timization. We performed empirical evaluation using real-

world hardware benchmarks to demonstrate the validity of

the theoretical analysis. We also conducted experiments to

evaluate the effectiveness of rareness reduction for Trojan

detection using statistical test generation as well as maximal

clique activation. Experimental results demonstrated that our

proposed rareness reduction techniques improved the Trojan

detection efficiency in terms of reduction in test generation

time as well as improved Trojan coverage.
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