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A B S T R A C T

Near-term iterative ecological forecasting has great potential for providing new insights into our ability to predict 
multiple ecological variables. However, true, out-of-sample probabilistic forecasts remain rare, and variability in 
forecast performance has largely been unexamined in process-based forecasts which predict multiple ecosystem 
variables. To explore how forecast performance varies for water temperature and dissolved oxygen, two fresh-
water variables important for lake ecosystem functioning, we produced probabilistic forecasts at multiple depths 
over two open-water seasons in Lake Sunapee, NH, USA. Our forecasting system, FLARE (Forecasting Lake And 
Reservoir Ecosystems), uses a 1-D coupled hydrodynamic-biogeochemical process model, which we assessed 
relative to both climatology and persistence null models to quantify how much information process-based FLARE 
forecasts provide over null models across varying environmental conditions. We found that FLARE water tem-
perature forecasts were always more skillful than FLARE oxygen forecasts. Specifically, temperature forecasts 
outperformed both null models up to 11 days into the future, as compared to only two days for oxygen. Across 
different years, we observed variable forecast skill, with performance generally decreasing with depth for both 
variables. Overall, all temperature forecasts and surface oxygen, but not deep oxygen, forecasts were more 
skillful than at least one null model >80 % of the forecasted period, indicating that our process-based model was 
able to reproduce the dynamics of these two variables with greater reliability than the null models. However, 
process-based oxygen forecasts from deeper waters were less skillful than both null models during a majority of 
the forecasted period, which suggests that deep-water oxygen dynamics are dominated by autocorrelation and 
seasonal change, which are inherently captured by the null forecasts. Our results highlight that forecast per-
formance varies among lake water quality metrics and that process-based forecasts can provide important in-
formation in conjunction with null models in varying environmental conditions. Altogether, these process-based 
forecasts can be used to develop quantitative tools which inform our understanding of future ecosystem change.

1. Introduction

Near-term, iterative forecasts of water quality variables have much 
potential for enabling managers to anticipate and mitigate change in 
freshwater ecosystems, which are experiencing unprecedented global 
change stressors (Carey et al., 2022; Dietze et al., 2018; Lofton et al., 
2023). With increasing variability in water quality and changes in 
ecosystem functioning due to land use and climate change (Ho and 
Michalak, 2019; IPCC, 2023; Kraemer et al., 2021; Woolway and Mer-
chant, 2019), near-term forecasts (i.e., quantitative predictions of future 

ecosystem states with uncertainty; Dietze, 2017; Carey et al., 2022) of 
key freshwater ecosystem variables could improve understanding of 
changes in freshwater quality over day to decadal scales (Lee et al., 
2023; Lofton et al., 2023; Radeloff et al., 2015). Through the near-term, 
iterative forecast cycle, forecasts are repeatedly produced for a range of 
forecast horizons, or periods of time into the future (Dietze, 2017). 
When monitoring data become available, forecasts are updated and 
evaluated with observations, allowing for iterative, improved pre-
dictions over time. These predictions can then be integrated into 
decision-making frameworks (Bodner et al., 2021; Dietze et al., 2018; 
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Henden et al., 2020).
Two foundational freshwater variables, which both control and serve 

as important indicators of lake ecosystem functioning, are water tem-
perature and dissolved oxygen (Jones and Smol, 2023). Water temper-
ature, which is influenced by meteorological variables including air 
temperature, precipitation, and wind, as well as other factors (Jones and 
Smol, 2023), is a key regulator of thermal stratification and solubility of 
gases within the water column, which in turn controls dissolved oxygen 
concentrations (Bhateria and Jain, 2016; Sánchez et al., 2007). Both 
water temperature and dissolved oxygen influence many ecosystem 
processes, including ecosystem and organismal metabolism (Caffrey, 
2004; Staehr et al., 2012), nutrient cycling (Sondergaard et al., 2001), 
and habitat availability for organisms (Davis, 1975; Jones et al., 2008; 
Magee et al., 2019). Consequently, understanding the dynamics of and 
forecasting these two variables is critical because shifts in lake water 
temperature and dissolved oxygen can indicate changes in ecosystem 
functioning and lake trophic state (Sánchez et al., 2007; Simões dos 
Simões et al., 2008; Richardson et al., 2017).

Lake forecasts that include both water temperature and dissolved 
oxygen together may be able to provide a more comprehensive 
perspective of changing lake ecosystem functioning, than forecasts of 
temperature or oxygen alone. Specifically, managers may need both 
water temperature and dissolved oxygen forecasts simultaneously to 
guide decision-making, as they often need to optimize multiple con-
current needs (Jackson-Blake et al., 2022a). For example, both water 
temperature and dissolved oxygen forecasts could guide decisions on the 
depth of water withdrawal necessary for optimizing downstream habitat 
for organisms with temperature and oxygen sensitivities (Calamita et al., 
2021; Kim and Choi, 2021). Additionally, temperature forecasts could 
provide advance notice of mixing events (Carey et al., 2022), which 
would be complementary to dissolved oxygen forecasts of hypolimnetic 
anoxia. Together, these two forecasts could inform the use of oxygena-
tion systems for mitigating anoxia (Carey et al., 2022), and aid in 
determining whether to implement chemical water treatment applica-
tions (Lee, 2015; Li et al., 2022).

Although near-term iterative ecological forecasts that predict both 
water temperature and dissolved oxygen simultaneously remain rare, 
the majority of those which currently exist use coupled machine 
learning approaches (Lofton et al., 2023). When input data are available, 
machine learning approaches provide relatively high predictive ability 
for nonlinear applications (Zhu et al., 2022), but offer limited ability to 
draw inference about underlying ecological processes (Jia et al., 2018; 
Lazer et al., 2014; Peters et al., 2014). Of the machine learning studies 
which predict multiple water quality variables simultaneously, all have 
generated forecasts of temperature and oxygen from separate tempera-
ture and oxygen models (Durell et al., 2022; Lin et al., 2023; Saber et al., 
2020). As a result, these studies lack explicit representation of the 
ecosystem interactions that occur between the two variables, which 
would otherwise be captured by explicitly defined interactions between 
state variables in a process model.

In comparison to machine learning models, process-based models are 
not as commonly used to produce forecasts of dissolved oxygen or water 
temperature (Durell et al., 2022; Lofton et al., 2023). This may be 
because process-based models often require numerous input variables, 
extensive expert-based calibration, and may not provide a gain in skill 
relative to machine learning models to predict water quality (Durell 
et al., 2022; Jin et al., 2019). Predicting multiple water quality variables 
with a process-based model allows the forecasts to incorporate the 
numerous interrelated processes that control dynamics of both vari-
ables, thereby providing a more holistic representation of ecosystem 
changes (sensu Cuddington et al., 2013). We are aware of only one 
published study that forecasted water temperature and dissolved oxygen 
simultaneously using a single process-based model to represent inter-
related dynamics of both variables (Carey et al., 2022). However, their 
forecasts were only over a period of a few days and focused on scenario- 
based management, without a full assessment of how water temperature 

and dissolved oxygen forecast performance varied over time and depth.
As a result of sensitivity to numerous interacting ecological pro-

cesses, observations of water temperature and dissolved oxygen, and 
correspondingly forecast performance, are likely to vary over space (i.e., 
with depth in the water column) and time (i.e., inter- and intra- 
annually) in lakes. Prior studies which have assessed water tempera-
ture forecast performance at multiple depths in lakes have found that 
surface waters are typically more challenging to forecast accurately than 
bottom waters due to the strong influence of meteorological variability 
on surface waters and seasonal thermal stratification stabilizing bottom 
waters (Thomas et al., 2020, 2023; Wander et al., 2023). However, 
changes in dissolved oxygen forecast performance with increasing depth 
(i.e., a decrease or increase in performance between surface and deeper 
lake layers in the water column) in lakes are less conclusive. Specifically, 
Durell et al. (2023) and Saber et al. (2020) found that surface dissolved 
oxygen forecast performance was more variable than bottom water 
performance, while Lin et al. (2023) found no difference or slightly 
better forecasts in bottom waters than surface waters. In addition to 
variability with depth throughout the water column, temporal vari-
ability in water quality at annual time scales is well-documented in 
freshwater ecosystems, with metrics of ecosystem functioning and water 
quality being highly variable between years (Carey et al., 2014; Geng 
et al., 2022; Jassby et al., 2003; Nõges and Tuvikene, 2012). For 
example, the date of fall turnover, defined as the breakup of summer 
thermal stratification (Jones and Smol, 2023), can vary from year to 
year, potentially driving annual differences in predictability of water 
temperature and dissolved oxygen. To date, most lake forecast studies 
have either focused on predictions in a single year (reviewed by Lofton 
et al., 2023) or do not explicitly evaluate inter-annual variability in 
forecast performance, even when forecasts are made over multiple years 
(Saber et al., 2020).

Multiple measures of forecast performance, which assess distinct but 
complementary information, can provide a more holistic assessment 
about forecast utility than a single metric alone (Jolliffe and Stephenson, 
2012). Here we refer to forecast performance as a general term inclusive 
of multiple forecast evaluation metrics, pertaining to both forecast ac-
curacy and forecast skill. Forecast accuracy metrics compare forecasted 
values or distributions to observations (Hyndman and Athanasopoulos, 
2021), with scores often reported in native units (i.e., oC for temperature 
and mg/L for oxygen). In contrast, forecast skill extends a forecast ac-
curacy metric by comparing accuracy of one forecast model to another 
model to provide a metric of relative skill. This other model is usually a 
null model, such as a climatology or persistence model (Jolliffe and 
Stephenson, 2012; Pappenberger et al., 2015). Climatology null models, 
which make predictions based on the mean conditions for a given day 
over a historical period of data, provide useful information about how an 
ecosystem’s current conditions compare to historical patterns (Jolliffe 
and Stephenson, 2012) and are often the “best guess” in an ecosystem 
that is dominated by longer-term seasonal dynamics. In contrast, null 
persistence models, which predict that a variable will stay the same as 
the most recent observation across the forecast horizon, are valuable 
reference models (Mittermaier, 2008), which may have high skill in 
forecasting variables with little variation across the forecast horizon, but 
are less skilled at capturing variables that exhibit dynamics with sub-
stantial directional fluctuations over time (Olsson et al., 2024).

Examining the forecast skill of process-based models relative to both 
climatology and persistence null models can provide useful insight 
about the additional information process-based models provide. For 
example, if process-based forecasts are more skillful than climatology 
forecasts (which best predict dynamics dominated by historical seasonal 
patterns) or persistence forecasts (which best predict dynamics domi-
nated by autocorrelation), we can make inferences about the mecha-
nisms instantiated within the process-based model that govern dynamics 
in the target forecast variables beyond seasonality and autocorrelation. 
However, this comparison across multiple null forecasts and variables 
remains unexamined in water quality forecasts (Lofton et al., 2023). 
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Comparing process-based forecasts to null models has been highlighted 
as an important best practice in ecological forecasting (Lewis et al., 
2022), and has great potential for furthering our understanding of what 
drives forecast successes and failures (Dietze et al., 2018; Lewis et al., 
2023; Olsson et al., 2024).

To determine how forecast performance varied across time, space, 
and ecosystem variable, we produced forecasts of water temperature 
and dissolved oxygen at two depths over two forecast periods in 
different years. We forecasted water temperature and dissolved oxygen 
simultaneously, using a process-based model. Forecast performance was 
assessed using both forecast accuracy using scores in native units (i.e., oC 
for temperature and mg/L for oxygen), and forecast skill by comparing 
accuracy of our process-based forecasts to forecasts from both clima-
tology and persistence null models. Our primary research questions 
were: 1) How does process-based forecast performance compare be-
tween water temperature and oxygen?, and 2) How does process-based 
forecast skill vary over time, depth, and forecast horizon, relative to 
climatology and persistence null forecasts?

2. Materials and methods

2.1. Forecasting framework overview

We developed forecasts of water temperature (hereafter ‘tempera-
ture’) and dissolved oxygen (hereafter ‘oxygen’) with uncertainty for 
Lake Sunapee, New Hampshire, USA. These forecasts were generated for 
depths throughout the entire water column at one central lake location 
over two open-water (i.e., ice-free) seasons (2021 and 2022). Forecasts 
were made every 0.5 m from the surface to the bottom of the lake (Zmax 
= 33.0 m) using the FLARE forecasting system (Thomas et al., 2020), 
with forecast evaluation focusing on only two depths (1.0 m and 10.0 
m), where high-frequency observations were available for both tem-
perature and oxygen at a high temporal resolution (see Methods: Study 
Site and Observational Data for information on observational data). 
FLARE is an open-source forecasting system that uses a 1-dimensional 

hydrodynamic model, the General Lake Model (GLM; Hipsey et al., 
2019), coupled to an aquatic ecosystem-biogeochemistry model, 
Aquatic EcoDynamics (AED; Hipsey et al., 2022), to make daily near- 
term, iterative, probabilistic forecasts. Using National Oceanic and At-
mospheric Administration (NOAA) weather forecasts as driver data into 
FLARE, we forecasted temperature and oxygen in Sunapee from 1 to 35 
days into the future. Sensor observations of temperature and oxygen 
were assimilated when available, updating model parameter values and 
initial conditions throughout the forecast period (see Methods: Study Site 
and Observational Data for more details on data availability).

FLARE was used to produce daily forecasts via the following steps: 1) 
obtain new sensor observations from the field (Fig. 1a.1); 2) access 
NOAA 35-day meteorological forecasts for the focal lake location 
(Fig. 1a.2); 3) assimilate new observations with the previous day’s 
forecast using an ensemble Kalman filter (EnKF; Evensen, 2009) to up-
date model initial conditions and parameters (Fig. 1a.3); 4) generate a 
1–35 day-ahead ensemble forecast (i.e., simulations with n = 200 
ensemble members to quantify the uncertainty of future predictions), 
which are visualized and archived (Fig. 1a.4); and 5) once time has 
passed and new sensor observations are available, evaluate the forecast 
using multiple metrics, including comparisons to null model forecasts 
(Fig. 1a.5).

2.2. Study site and observational data

Lake Sunapee is a deep (33.0 m), medium-sized (16.55 km2 surface 
area) lake in central New Hampshire, USA (43.37, −72.05, Fig. 2). Lake 
Sunapee is oligotrophic, with long-term mean pelagic summer total 
phosphorus (TP) concentrations of 5 μg/L, chlorophyll-a of 1.7 μg/L, and 
Secchi depth of 8.6 m (Steele et al., 2023). Lake Sunapee is dimictic, i.e., 
it is summer-stratified from May or June to September or October and is 
inversely-stratified under ice cover that typically lasts from December or 
January until March or April (Bruesewitz et al., 2015; LSPA and Suna-
pee, 2022). The summer thermocline depth has been documented to 
range from 6.0 to 8.0 m (Fig. A.1, Carey et al., 2014).

Fig. 1. Conceptual representation of the FLARE (Forecasting Lakes And Reservoir Ecosystems) framework which shows the daily steps of 1) downloading lake 
observational data and appending the new data to the long-term observational dataset, 2) downloading meteorological forecasts from NOAA needed as driver data for 
the lake model, 3) updating model initial conditions (IC) and tuning parameters via an ensemble Kalman filter (EnKF), 4) producing a forecast of 1 to 35-days-ahead 
with uncertainty, and 5) evaluating the forecast. Use of the emblem/logo does not imply an endorsement by NOAA/NWS.
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In our two study years, the timing of the open-water buoy deploy-
ment varied substantially due to maintenance (Table A.1), so forecasts 
were only evaluated during the periods when observations were avail-
able for both variables (temperature and oxygen) and during both years. 
Following a 35-day spin-up period (described in Methods: FLARE 
Configuration), our forecast evaluation time period was from 4 August to 

17 October in 2021 and 2022 (see Table A.1 for a description of data and 
forecast duration each year). As a result, our forecast period excluded 
late fall, winter, and spring dynamics, which would likely exhibit 
differing levels of forecast performance due to changing seasonal drivers 
of temperature and oxygen. However, this summer to early fall period is 
one of the most dynamic time periods in Lake Sunapee (Carey et al., 

Fig. 2. Bathymetric map of Lake Sunapee, NH, USA (43.37◦, −72.05◦) showing the location of the manually-collected data sampling site (circle) and the sensored 
buoy site (triangle). Data from LSPA et al. (2023).Discrete observations of temperature and oxygen have been collected monthly for every meter from the surface to 
the bottom of the lake during the open-water (i.e., ice free) season since 1986 as part of a long-term monitoring program conducted the Lake Sunapee Protective 
Association (LSPA), using methods outlined in Steele et al. (2023). These data were collected with hand-held sensors at the deepest site of the lake. To complement 
the monthly manually-collected data, a buoy instrumented with high-frequency sensors was deployed by the LSPA at a nearby site (Fig. 2) in 2007. The buoy is 
usually deployed annually from ~April or May until ~October, following ice-off and ice-on. The buoy has high-frequency (10-min) water temperature sensors 
deployed every meter from 0.1 m to 10.0 m, and dissolved oxygen sensors at 1.0 m and 10.0 m (LSPA et al., 2023). The 10-min measurements of water temperature 
and dissolved oxygen were aggregated into daily averages for use in this study. Observations of temperature were placed in 1.0 m bins to account for marginal 
differences in thermistor depths among years, with the value given by the top of the bin (e.g., 1.0 m are observations of temperature at depths ≥1.0 and < 2.0 m). 
Both temperature and oxygen sensors were cleaned fortnightly throughout the summer season, and calibrated using standard methods before deployment in summers 
2021 and 2022. Buoy sensor observations (from the surface to 10.0 m) were assimilated into forecasts on a daily basis (Fig. 2, buoy site), while the monthly deep site 
profiles (which included measurements at depths deeper than the buoy sensors at 10.0 m; Fig. 2, deep site) were assimilated when available (approximately monthly 
from June to September). Data from the surface to 10.0 m at both the buoy site (LSPA et al., 2023) and the nearby deep site (Fig. 2; Steele et al., 2023) show high 
agreement (Pearson correlation r = 0.93; Wynne et al., 2023), so we combined temperature and oxygen profiles from 0.1 to 10.0 m at the buoy and 12.0 m to 33.0 m 
from the deep site when available. A single hypsometric curve representing the bathymetry from the lake’s surface to its deepest site was used as an input for FLARE 
(LSPA, 2023, Fig. 2).
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2014), with substantial year-to-year variability, and thus provided a 
rigorous test of our forecasting system to capture ecosystem dynamics. 
Moreover, our focus on this time period facilitates comparison with 
many other limnological studies which are focused on the summer and 
early fall (Stanley et al., 2019).

2.3. FLARE input data

FLARE requires observations of state variables (in this study, water 
temperature and dissolved oxygen), forecasted driver variables (in this 
study, air temperature, shortwave and longwave radiation, windspeed, 
relative humidity, and precipitation), and hypsography. Observations of 
temperature and oxygen were taken from the buoy and deep sites during 
the study period (LSPA et al., 2023, Fig. 2) to initialize and update the 
model states and parameters over time. Meteorological inputs (e.g., air 
temperature, wind speed, etc.) to drive the GLM-AED model were ob-
tained from the NOAA GEFS (National Oceanic and Atmospheric 
Administration Global Ensemble Forecasting System) 35-day meteoro-
logical forecast product (Hamill et al., 2022). NOAA-GEFS is a state-of- 
the-art weather product commonly used to drive ecological forecasts 
with demonstrated skill in recreating meteorological observations to 
within <1.6 ◦C RMSE (Hamill et al., 2022). NOAA GEFS 35-day forecasts 
are produced every six hours and were downscaled from the 6-h to 1-h 
resolution to meet the required timestep of GLM within FLARE following 
the methods of Thomas et al. (2020). Hypsography was provided by the 
Lake Sunapee Protective Association at the deepest site of the lake 
(LSPA, 2023).

During the 35-day spin-up period each year (described below in 
Methods: FLARE Configuration), we used historical, not forecasted, 
meteorological input data (described below) to drive the model, but 
used forecasted weather driver data in all forecast production periods. 
Meteorological forecasts were downloaded from the NOAA GEFS (0.5◦ X 
0.5◦) grid cell which contains Lake Sunapee. Because the required 
meteorological inputs to run FLARE are not collected at Lake Sunapee, 
we developed an estimate of the historical meteorology using the NOAA 
GEFS forecasts. Historical meteorological estimates were developed by 
taking the first time-step of each NOAA GEFS forecast and “stacking” 
them to produce an estimate of the historic conditions at Lake Sunapee. 
Since new NOAA GEFS forecasts were generated every 6 h, there were 
four values for each day (the 0-h horizon for states and the 0-6 h horizon 
for fluxes in each forecast) that were interpolated to an hourly product 
following the downscaling methods outlines in Thomas et al. (2020). 
This stacked meteorological data product has been used in other fore-
casting studies and has been shown to be a good proxy for observed 
meteorological conditions and ensures a seamless transition between 
historical and forecasted weather conditions (e.g., Thomas et al., 2023).

2.4. FLARE configuration

We configured the FLARE forecasts for Lake Sunapee based on pre-
vious deployments of FLARE at other lakes and reservoirs (Thomas et al., 
2020, 2023; Wander et al., 2023). While previous FLARE deployments 
for forecasting water temperature have used the GLM hydrodynamic 
model alone (Thomas et al., 2020, 2023; Wander et al., 2023), fore-
casting oxygen required the addition of the Aquatic EcoDynamics (AED) 
model library (Hipsey et al., 2022). AED provides a full suite of modules 
for predicting multiple freshwater ecosystem state variables that can be 
turned on or off depending on the application and required model 
complexity (Hipsey et al., 2022). Because our focus was on temperature 
and oxygen and Lake Sunapee is an oligotrophic lake with low nutrient 
availability and corresponding low primary production (Richardson 
et al., 2017; Solomon et al., 2013), we used a version of AED with only 
the sediment flux, tracer, non-cohesive, and oxygen modules included 
(see Hipsey et al., 2022 for more information on these modules). These 
modules represented the main processes determining oxygen dynamics, 
including atmospheric fluxes, sediment-water interface fluxes controlled 

by biological and chemical sediment oxygen demand, and temperature- 
based solubility of oxygen. FLARE was configured for Lake Sunapee 
without inflows or outflows using a mass balance approach due to the 
lake’s long residence time (~3.1 years) relative to our longest forecast 
horizon (35 days). This approach has been shown to adequately simulate 
Lake Sunapee water budgets and temperature using a range of hydro-
dynamic models (Wynne et al., 2023), as well as in other lakes using 
FLARE (e.g., Thomas et al., 2023; Wander et al., 2023).

We configured GLM-AED to run with a set of model parameters that 
were selected based on the sensitivity of the forecasts to parameter- 
fitting in previous studies (Thomas et al., 2020, 2023; Wander et al., 
2023). The model parameters were set for three distinct sediment zones 
within the water column, corresponding to 0–10 m, 10–18 m, and 
18–33 m. Configuring FLARE to run with multiple sediment zones 
enabled better representation of the different rates that govern sediment 
water-interface temperatures and sediment oxygen demand across 
sediment zones. A list of parameters that were included for automated 
fitting over time using the EnKF, as well as initial parameter configu-
rations, is provided in Table A.2. All configuration files are available at 
Woelmer et al. (2024). Additional parameters which were not included 
in automated fitting were fixed based on a previously calibrated version 
of GLM-AED at Lake Sunapee (Ward et al., 2020), with calibration from 
2007 to 2015 and validation from 2015 to 2020 for an RMSE (root mean 
square error) of <2 ◦C water temperature and 2 mg/L dissolved oxygen.

Prior to the first evaluated forecast, we ran a 35-day spin-up period 
each year to allow for data assimilation and parameter fitting. We used a 
full 35 days of spin-up in both years to allow all forecast horizons to be 
represented within the time period, avoiding bias towards fitting only 
short-horizon forecasts and acclimating the forecasts to the conditions of 
that year. We observed that parameters evolved through the full 35-day 
period, emphasizing the importance of having a spin-up period of this 
duration (Fig. A.2).

FLARE was configured to quantify four different sources of forecast 
uncertainty: model initial conditions, model parameter, model process, 
and weather driver data which varied across our 200 ensemble members 
(see Table A.3 for a full description of each source and how it was 
quantified). All sources of uncertainty were included in each forecast 
run. For each source of uncertainty, each ensemble member was drawn 
from a distribution determined by the mean and standard deviation as 
described in Table A.3. We ran FLARE with 200 ensemble members to 
ensure a reasonable spread of uncertainty around our forecasts 
(following Thomas et al., 2020, 2023).

2.5. Null model forecasts

We compared our process-based FLARE forecasts of water tempera-
ture and dissolved oxygen to two null model forecasts (a climatology 
null and a persistence null) to calculate forecast skill. Comparing FLARE- 
generated forecasts to null model forecasts allowed us to quantify the 
relative performance across the two focal variables and provided a 
quantifiable estimate of the additional process-based forecast informa-
tion obtained above the nulls (Dietze et al., 2018; Harris et al., 2018; 
Lewis et al., 2022). Both climatology and persistence forecasts of water 
temperature and dissolved oxygen were developed for the same forecast 
period as the FLARE process-based forecasts. First, we calculated the 
climatology null model for a given day of year as the mean and standard 
deviation of observations across all available years of data from the 
high-frequency buoy prior to our study (2007–2020) collected on that 
specific day. Only days with three or more observations across all years 
were included in the climatology null model (Fig. A.3). Second, the 
persistence null model was calculated as the last observation for a given 
water quality variable and depth with random noise added at each 
forecast horizon across the 35-day forecast horizon. Random noise was 
calculated following a random walk model with the error term drawn 
from a distribution of residuals from the historical fit of the persistence 
forecast and added to the observation to produce the next day’s 
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persistence forecast. Persistence forecasts were generated using the RW 
(random walk) function within the fable R package (version 0.3.2; 
O’Hara-Wild et al., 2022).

2.6. Forecast evaluation

We evaluated forecast performance using two metrics: forecast ac-
curacy and forecast skill. First, we calculated forecast accuracy using the 
Continuous Ranked Probability Score (CRPS; Bröcker, 2012), which is 
based on the absolute error between the observation and each forecast 
ensemble member, creating a weighted estimate of the absolute error 
from the full forecast distribution (Hyndman and Athanasopoulos, 
2021) as follows: 

CRPS(F, x) =
∫ ∞

−∞
(F(u)−1(u− x )

)
2du (1) 

Where CRPS is a function of F, the forecasted cumulative distribution 
function and x, the observed outcome; 1 is a step function which equals 1 
if u ≥ x, and otherwise equals 0 (Gneiting et al., 2005). Forecasts were 
scored using the scoringRules package in R (Jordan et al., 2019). CRPS is 
in native units and provides a useful metric for decision-makers because 
it is a quantitative estimate of the distance between the forecast and the 
observation that also evaluates forecast precision. Lower values of CRPS 
indicate better performance. We also calculated absolute error (AE) 
between the mean of the forecast distribution and the observation, but 
found similar patterns between the AE and CRPS so focused our 
reporting on CRPS within the main text. AE results are provided in 
Fig. A.4. Both FLARE forecasts and null forecasts (climatology and 
persistence) were scored using CRPS.

Second, we calculated forecast skill by normalizing CRPS to facilitate 
the comparison of CRPS between temperature in oC and oxygen in mg/L 
as follows: 

Forecast Skill = 1−CRPSFLARE
CRPSNull

(2) 

where CRPSFLARE is the CRPS calculated from a single FLARE forecast 
and CRPSNull is the CRPS of the null model, either the climatology or the 
persistence null. This unitless skill metric allowed us to compare fore-
casts across variables, years, and depths and serves as an indicator of the 
additional information content gained from the FLARE forecasts 
compared to a given null model. For this forecast skill metric, values of 
0 indicate that the FLARE forecast and null forecast were equally skillful, 
values above 0 indicate FLARE was more skillful than the null, and 
values below 0 indicate that FLARE was less skillful than the null. We 
calculated forecast skill across both variables (temperature and oxygen), 
depths (1.0 and 10.0 m), and for each null model. We denote 
climatology-based forecast skill as SkillClimatology and persistence-based 
forecast skill as SkillPersistence.

Another important component of forecast skill is the change in 
forecast skill into the future (i.e., across the forecast horizon). We 
calculated forecast skill degradation by taking the difference between 
the maximum and minimum forecast skill across the 1–35 day forecast 
horizon. We used the maximum and minimum forecast skill, as opposed 
to the difference in skill between 35-day and 1-day horizons, to capture 
the greatest possible degradation in skill. Lastly, to capture the vari-
ability in forecast skill over each open-water period, we calculated the 
percentage of FLARE forecasts which outperformed each null forecast 
within each forecast period.

We also evaluated the calibration of forecast confidence intervals 
using reliability plots (Bröcker and Smith, 2007). These plots were 
calculated by the number of forecasts which fell within specific confi-
dence intervals, ranging from the 10th to the 90th confidence intervals 
across all forecast horizons and for both water quality variables and both 
depths. Reliability refers to the statistical agreement of forecast proba-
bilities and observed frequencies of events (Gneiting et al., 2007; 

Schepen et al., 2016) and these plots show the degree to which a pre-
dicted distribution matches the underlying distribution of the data.

Lastly, we evaluated the ability of FLARE forecasts to predict the date 
of fall turnover (following Thomas et al., 2020), by calculating the 
percent of forecast ensemble members that predicted turnover on each 
day leading up to the observed date of turnover. We defined turnover as 
the first day on which there was less than 1 ◦C difference in temperature 
between the surface (0.1 m) and bottom-most temperature measure-
ment (in our case, 10.0 m given a lack of deeper sensor measurements). 
We identified the earliest forecast to predict the true date of turnover.

All statistical analyses and forecast deployments were conducted in 
the R statistical environment, version 4.2.2 (R Core Team, 2022). All 
forecast output is archived in the Zenodo repository (Woelmer et al., 
2023), as well as code to run the forecasts and reproduce the forecast 
analysis (Woelmer et al., 2024).

3. Results

3.1. Variability with depth was greater for temperature than oxygen, 
while inter-annual variability was greater for oxygen than temperature

In both years, surface temperature generally decreased, while bot-
tom temperature generally increased throughout the open-water season, 
following expected seasonal patterns (Fig. 3). Oxygen patterns also 
followed expected seasonal patterns, with decreases in bottom oxygen 
and small increases in surface oxygen throughout the season (Fig. 3). 
Turnover occurred on October 4 in 2021 and was associated with a 
marked increase in bottom oxygen variability. In contrast, in 2022, 
turnover occurred on September 23 and was followed by a sharp 
decrease in bottom water temperature and an increase in bottom water 
oxygen.

Observations of water temperature during the forecast period 
differed more between the two study years than dissolved oxygen, but 
exhibited greater differences across depth (Fig. 3). Specifically, mean 
water temperature was only 0.1 ◦C different between years at 1.0 m 
(Fig. 3a, c; 21.4 ◦C in 2021 and 21.3 ◦C in 2022), and up to 1 ◦C different 
between years at 10.0 m (Fig. 3e, g; 12.7 ◦C in 2021 and 13.7 ◦C in 
2022). However, there were large differences across depth for water 
temperature in both years, with temperature at 1.0 m during the forecast 
period 6.6 ◦C warmer than 10.0 m (Fig. 3a, e). In comparison to tem-
perature, differences in oxygen were generally greater between years 
than between depths (Fig. 3b, d, f, h). At 1.0 m, oxygen was 1 mg/L 
lower in 2022 than in 2021 (Fig. 3b, d; 9.1 mg/L in 2021; 8.1 mg/L in 
2022). At 10.0 m mean oxygen was 0.5 mg/L higher in 2022 (Fig. 3f, h; 
9.1 mg/L in 2021, 9.6 mg/L in 2022) and much more variable in 2021 
(range = 4.09 mg/L) than in 2022 (range = 1.67 mg/L; Fig. 3h) at 10.0 
m. Averaged across the two years, mean oxygen concentrations were 
similar between depths (Fig. 3h; 1.0 m = 8.6 mg/L; 10.0 m = 8.9 mg/L). 
Patterns of oxygen in percent saturation were similar to patterns in 
concentration (mg/L) (Fig. A.5); correspondingly, we present results in 
mg/L throughout the manuscript for ease of interpretation.

3.2. Accuracy of FLARE-forecasted water temperature and dissolved 
oxygen across the forecast period

Forecast accuracy evaluated using CRPS across all years and depths 
was <1.1 ◦C for temperature and < 0.6 mg/L for oxygen (Fig. 4a, b). 
Both variables exhibited nonlinear decreases in forecast accuracy across 
the 35-day forecast horizon (Fig. 4a, b). Temperature forecasts had a 
mean CRPS of 0.27 ◦C at 1-day ahead, decreasing to 0.53 ◦C at 7 days, 
0.93 ◦C at 21 days, and 1.08 ◦C at the end of the 35-day forecast horizon 
(Fig. 4a). Oxygen forecasts similarly had a CRPS of 0.3 mg/L at 1-day 
ahead, decreasing to 0.5 mg/L at 7 days, with accuracy leveling out 
around 21 days with a CRPS of ~0.6 mg/L through to the end of the 35- 
day forecast horizon (Fig. 4b).
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3.3. Water temperature forecasts were more skillful than dissolved oxygen

Across the forecast period, forecast skill was higher for temperature 
than for oxygen across all horizons, regardless of which null forecast was 
used to calculate skill (Fig. 4c). When comparing FLARE and climatology 
forecasts (hereafter, SkillClimatology), SkillClimatology overall decreased 
over the forecast horizon for both variables, but the strength of this 
pattern varied between water quality variables (Fig. 4c). Specifically, 
aggregated temperature forecasts outperformed the climatology null at 
more horizons than oxygen, with temperature being skillful up to 11 
days into the future, while oxygen was only skillful 2 days into the future 
(Fig. 4c). While SkillClimatology of oxygen (mean skill =−0.6) was overall 
worse than for temperature (mean skill = −0.08), the rate at which 
SkillClimatology degraded over the 35-day forecast horizon was slower for 
oxygen and saturated at ~20 days into the future, while temperature 
showed a near-linear decline across the 35-day horizon (Fig. 4c). 
However, forecasts of both temperature and oxygen were not skillful (i. 
e., climatology forecasts performed better than FLARE forecasts) at 
longer forecast horizons.

Forecast skill relative to a persistence forecast (hereafter, SkillPersis-

tence) showed different patterns from SkillClimatology. First, SkillPersistence 

of FLARE forecasts increased over the forecast horizon, especially for 
oxygen forecasts, indicating that the value of FLARE forecasts over 
persistence forecasts improved with time into the future (Fig. 4c). 
Additionally, temperature forecasts were always skillful relative to the 
persistence forecast, across the full 35-day horizon, whereas FLARE 
oxygen forecasts were never more skillful, although skill at the 35-day- 
horizons was near zero (Fig. 4c).

The uncertainty around the water temperature forecasts was gener-
ally better calibrated than for oxygen forecasts, as determined by reli-
ability plots (Fig. A.6). Specifically, oxygen forecasts tended to be 
underconfident (i.e., uncertainty was too large), whereas temperature 
forecast uncertainty was well calibrated at mid-forecast horizons 
(14–21 days ahead), but overconfident (i.e., uncertainty was too small) 
before ~14 days and underconfident after ~21 days.

Overall, FLARE forecasts were generally more skillful than clima-
tology null forecasts at short horizons and persistence null forecasts at 
longer horizons. The trade-off in skill between climatology and persis-
tence (i.e., where the two lines intersect on Fig. 4c) occurred at 9-days 
ahead for temperature and 7-days ahead for oxygen. This intersection 
highlights the forecast horizon at which autocorrelation (via null 
persistence) and seasonality (via null climatology) each dominate 

Fig. 3. High-frequency observations of daily water temperature and dissolved oxygen from the buoy in Lake Sunapee over the forecast period (August–October) in 
2021 and 2022 showing the time series of observations for a) temperature at 1.0 m, b) oxygen at 1.0 m, violin plots of observations for c) temperature at 1.0 m, d) 
oxygen at 1.0 m. Observations at 10.0 m are shown in the bottom row with the time series of e) temperature at 10.0 m, and f) oxygen at 10.0 m, and violin plots of g) 
temperature at 10.0 m, and h) oxygen at 10.0 m.Turnover is represented by the square points on the time series in panels a, b, e, and f. Circle points on violin plots 
represents the median of the observations.

Fig. 4. FLARE forecast accuracy of a) water temperature (◦C), and b) dissolved oxygen (mg/L) and c) forecast skill (unitless; calculated using Eq. (2)) of both 
temperature and oxygen. These metrics were calculated by aggregating mean forecast skill over the forecast period and across all depths at forecast horizons from 1 to 
35 days into the future (note the difference in y-axes). In panels a and b, more accurate FLARE forecasts are represented by lower CRPS values. In Panel c, values less 
than zero indicate a less skillful FLARE forecast than the null model.
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processes in these two water quality variables.

3.4. Forecast skill varies by year and depth

Forecast skill (accuracy relative to a null model) was different be-
tween years across all variables and null models (climatology or 
persistence), and generally worse at 10.0 m than 1.0 m (Fig. 5). For 
SkillClimatology, FLARE temperature forecasts were more skillful in 2021 
than 2022 across both depths (Fig. 5a, e), with forecasts more skillful 
than the null up to 11 days into the future at 1.0 m and 24 days into the 
future at 10.0 m in 2021. In comparison, 2022 forecasts at 1.0 m were 
more skillful than the null up to 8 days ahead and 11 days ahead at 10.0 
m (Fig. 5c).

SkillClimatology varied by depth and year for oxygen (Fig. 5b, f). At 1.0 
m, SkillClimatology for oxygen was higher in 2022, with forecasts at all 
horizons (1–35 days-ahead) more skillful than the climatology forecasts, 
while no horizons in 2021 exhibited skillful oxygen forecasts (Fig. 5b). 
In comparison, at 10.0 m, median oxygen SkillClimatology was similar 
between years, with skillful forecasts up to only two days into the future 
for both 2021 and 2022 (Fig. 5f). Higher SkillClimatology in 2022 than 
2021 can be attributed to substantially higher accuracy of the clima-
tology null model in 2022 (Fig. A.7), rather than low accuracy of FLARE 
forecasts, which were generally similar between 2021 and 2022 
(Fig. A.8b, d). Overall, the range in SkillClimatology across years was 
greater in 2021 than 2022 at both depths, but especially at 10.0 m 
(Fig. 5b, 6f).

Persistence-based forecast skill (SkillPersistence) also varied by year 
and depth for temperature and oxygen, with SkillPersistence generally 
decreasing with depth (Fig. 5c-d, g-h). For temperature, SkillPersistence 
was worse in 2022 than 2021 at 1.0 m, although most forecasts were 
skillful in both years for temperature at 1.0 m, across all horizons and 
forecasted days. SkillPersistence was lower at 10.0 m, with forecasts in 

2022 more frequently skillful than forecasts in 2021 across all forecast 
horizons.

For oxygen, SkillPersistence was overall lower than for temperature, 
but also varied by year and showed greater skill at 1.0 m than 10.0 m. 
Across both 1.0 m and 10.0 m depths, forecasts in 2021 were more 
skillful than in 2022. At 1.0 m, all forecasts in 2021 were more skillful 
than the persistence after 1-day forecasts, and after 15 days into the 
future in 2022, indicating that FLARE forecasts provide significant 
additional information over the persistence forecast at 1.0 m oxygen 
(Fig. 5d). In contrast, at 10.0 m, forecasts were almost always less skillful 
than a persistence null (Fig. 5h), with very few forecasts skillful at this 
depth, although 2021 forecasts were more skillful than 2022 forecasts 
across the forecast horizon.

We focused our evaluation on 1.0 and 10.0 m forecasts because these 
are the depths with both temperature and oxygen high-frequency ob-
servations. However, we also evaluated water temperature forecast ac-
curacy, as measured by CRPS, across all available sensor depths (every 
meter from the surface to 10.0 m). In 2021, forecasts were more accurate 
at surface depths than deeper in the water column, with a similar mean 
CRPS of <0.75 ◦C across all depths from the surface to 6.0 m (approx-
imate depth of the summer thermocline), but worse performance deeper 
in the water column from 7.0 m to 10.0 m, with CRPS ranging from 1 ◦C 
and above (Fig. A.9). In contrast, in 2022, forecasts from 8.0 m to 10.0 m 
were the best performing especially at longer horizons, with a mean 
CRPS <0.8 ◦C, while forecasts from the surface to 6.0 m all had a mean 
CRPS >0.8 ◦C (Fig. A.9). Across 2021 and 2022, forecast performance 
generally decreased with forecast horizon. Additionally, forecasts 
identified the date of turnover up to four days in advance in 2021 but not 
in 2022 (Fig. A.10).

Fig. 5. Forecast skill across the forecast period of August–October in 2021 and 2022. The top row shows surface (1.0 m) SkillClimatology of a) water temperature at 1.0 
m, b) dissolved oxygen at 1.0 m and SkillPersistence c) of water temperature at 1.0 m and d) dissolved oxygen at 1.0 m. In the bottom row, skill of 10.0 m forecasts are 
shown with SkillClimatology of e) temperature at 10.0 m, f) oxygen at 10.0 m and SkillPersistence of g) temperature 10.0 m and h) oxygen at 10.0 m.
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3.5. Trade-offs in forecast skill depend on choice of null model

FLARE forecasts outperformed at least one null model for a majority 
of forecasts across both water quality variables and depth and across the 
full forecast horizon (Fig. 6). Temperature forecasts outperformed both 
null models nearly 100 % of the time in 1-day ahead forecasts, with only 
14 % of forecasts outperforming neither null model by the end of the 35- 
day forecast horizon (Fig. 6a). When FLARE forecasts did not outperform 
both null models, FLARE forecasts at 1.0 m were more likely to 
outperform persistence forecasts than climatology forecasts across all 
forecast horizons. At 10.0 m, temperature forecasts were also highly 
skillful, outperforming at least one null model 98 % of the time in 1-day 
ahead forecasts, and decreasing only to 94 % of the time by the end of 
the forecast horizon (Fig. 6c). In contrast, 10.0 m forecasts were more 
likely to be skillful relative to the climatology null, with ~25 % of 
forecasts beating climatology throughout the horizon, as compared to 
only 1–5 % of forecasts outperforming the climatology alone at 1.0 m.

In contrast to temperature, the performance of FLARE oxygen fore-
casts relative to a null was highly variable with depth. At 1.0 m, the 
FLARE oxygen forecasts were highly skillful from 1 to 35-days ahead, 
with 89 % of 1-day forecasts outperforming at least one null model, and 
increasing to 100 % by the end of the forecast horizon. Overall, FLARE 
oxygen forecasts at 1.0 m were more likely to outperform a persistence 
forecast than a climatology forecast, especially at longer horizons. 
FLARE oxygen forecasts at 10.0 m were highly skillful at short horizons, 
with 95 % outperforming at least one null model at the 1-day horizon. 
However, 10.0 m FLARE oxygen forecasts were less skillful at longer 
forecast horizons, with 66 % outperforming neither null model by the 
end of the 35-day forecast horizon. However, FLARE forecasts of oxygen 
at 10.0 m were more likely to outperform a climatology null than a 
persistence null by the end of the forecast horizon, with 28 % out-
performing a climatology, and only 5 % outperforming the persistence 
null. Across both temperature and oxygen, FLARE forecasts at the sur-
face (1.0 m) were more likely to outperform the persistence forecast 
than climatology forecast (Fig. 6a, b). The opposite pattern was observed 
in deeper forecasts (10.0 m), which were more likely to outperform a 
climatology forecast than a persistence forecast (Fig. 6c, d).

4. Discussion

4.1. Overview

Forecasts of water temperature and dissolved oxygen using a 
process-based model with daily data assimilation were highly accurate, 
predicting dynamics within ~1 ◦C and ~ 1 mg/L, respectively, up to 35- 
days into the future. Temperature forecasts were more skillful than ox-
ygen forecasts overall, with temperature forecasts being skillful at least 
11 days into the future and oxygen forecasts only two days into the 
future. We found forecast skill varied between years, and typically 
decreased with depth for both variables. Generally, surface forecasts 
were more skillful than bottom water forecasts, especially for oxygen. 
Forecast skill also varied based on the null model being compared, with 
FLARE forecasts outperforming a larger percentage of climatology 
forecasts at shorter horizons, and a larger percentage of persistence 
forecasts at longer horizons. Overall, temperature forecasts were more 
likely than oxygen to outperform both persistence and climatology 
forecasts, indicating that FLARE forecasts of temperature provide more 
process information above autocorrelation and seasonal dynamics than 
for forecasts of oxygen. Our results highlight that forecast performance 
can differ substantially across variables and over time and depth, and 
that null models are critical for contextualizing process-based forecast 
skill.

4.2. Why the differences in relative skill of temperature and oxygen 
forecasts?

We found that water temperature forecasts were more skillful than 
oxygen forecasts according to both of our null models. This result fol-
lows the expectation that physical variables are more predictable than 
chemical or biological variables (Fig. 4c; Soares and do Calijuri, 2021). 
This is likely a result of the number and complexity of processes that 
impact water quality variables like oxygen, especially the non-linear 
dynamics and feedback mechanisms which may be increasing from 
physical to chemical to biological processes. However, by the end of the 
35-day horizon, the difference in skill between temperature and oxygen 
for both SkillPersistence and SkillClimatology was minimal, with SkillPersistence 
for oxygen indicating skill may continue to increase with longer hori-
zons (Fig. 4c). This result may indicate that at horizons longer than 35 

Fig. 6. Percent of FLARE forecasts at 1 to 35-day horizons (aggregated over the entire forecasting period) which were more skillful than both null models (yellow, 
listed as ‘both’ in the figure legend), only the climatology null model (lime green), only the persistence null model (teal green), or when FLARE did not perform better 
than either null model (purple, listed as ‘neither’ in the figure legend) for a) water temperature at 1.0 m, b) dissolved oxygen at 1.0 m, c) temperature at 10.0 m, and 
d) oxygen at 10.0 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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days, FLARE oxygen forecast skill would continue to improve relative to 
FLARE temperature forecasts. We hypothesize that increased oxygen 
skill would occur at longer horizons as the importance of autocorrelation 
(captured by the persistence null) and seasonal variability (captured by 
the climatology null) decreases and FLARE process representation of 
oxygen dynamics dominate. This would be the case if, at longer hori-
zons, oxygen is dominated by mechanistic drivers of dynamics, which 
would be represented by FLARE, and result in an increase in FLARE skill 
as autocorrelation (i.e. persistence) and seasonality (i.e., climatology) 
decrease in importance. However, we cannot currently test this hy-
pothesis due to limitations in the maximum forecast horizon available 
for the weather forecasts which drive FLARE forecasts. Similarly, it may 
be possible that the calibration of the uncertainty confidence intervals 
played a role in the relative skill of the water quality variables (Fig. A.6), 
but we would need additional summers of forecasts to definitively 
examine this pattern (see below).

Differential skill across water quality variables is not uncommon. For 
example, Peng et al. (2019) found that process-based dissolved oxygen 
forecasts were less skillful (relative to a persistence forecast) than 
forecasts of total nitrogen and phosphorus. In contrast, another study 
found that machine-learning derived forecasts of total phosphorus and 
cyanobacterial concentrations were more skillful than a climatology 
forecast, but not forecasts of aggregate measures of chlorophyll-a or lake 
color (Jackson-Blake et al., 2022b). Within the existing literature, we 
were unable to find direct comparisons of water temperature and dis-
solved oxygen forecast skill. Across these studies and our own, patterns 
in skill from physical to biological forecast variables remain unclear, 
likely due to interactions with external drivers (e.g., weather patterns) 
and differences in the importance of lake processes represented in 
models across ecosystems (e.g., from eutrophic to oligotrophic systems). 
Ultimately, while it is not uncommon for ecological forecasts to be less 
skillful than null models (Page et al., 2018; Mercado-Bettín et al., 2021; 
Woelmer et al., 2022; Wheeler et al., 2023), more detailed exploration of 
forecast performance across ecosystem variables, as well as across sea-
sons, is needed.

While we found that forecasts of water temperature were more 
skillful than forecasts of oxygen in Lake Sunapee, forecast performance 
is likely to vary by lake ecosystem. Specifically, because Lake Sunapee is 
an oligotrophic lake, with relatively small changes in oxygen dynamics 
within a year (Fig. 3, Fig. A.11; Richardson et al., 2017), oxygen forecast 
skill may be higher in this system than in other lakes. Forecast skill of 
oxygen may be lower in eutrophic lakes with higher productivity and 
algal blooms that cause large changes in dissolved oxygen concentra-
tions over short-term time scales (e.g., Ladwig et al., 2021). Addition-
ally, higher inter-annual variability in oxygen (Fig. 3) may have also led 
to lower predictability from year to year for oxygen as compared to 
temperature. Ultimately, these results emphasize the value of calcu-
lating forecast skill relative to multiple baseline models and the need for 
similar studies across a gradient of productivity to help inform our un-
derstanding of lake ecosystem predictability more broadly.

4.3. Mechanisms for variability in forecast performance over time and 
depth

Forecast performance (i.e., accuracy and skill) of water temperature 
and dissolved oxygen varied between years (Fig. 5, Fig. A.8), demon-
strating that predictability of ecosystem variables can vary inter- 
annually. One possible explanation for inter-annual variability is dif-
ferences in weather conditions, which can directly influence tempera-
ture and oxygen in lakes. However, we did not see substantial 
differences in the overall magnitude or variability of the meteorological 
variables which drive FLARE between years (Fig. A.12). Rather, there 
were differences in the timing and magnitude of rain events, including 
two large events in September 2022 which likely led to fall turnover that 
year, yet no such similar occurrences in 2021 (Fig. A.13). It is likely that 
differences in the timing of specific weather events can also influence 

predictability of in-lake conditions, in addition to overall in-lake vari-
ability. Global change will continue to alter inter- and intra-annual 
weather patterns, corresponding to more variable physical (Sharma 
et al., 2021; Woolway et al., 2019, 2021; Woolway and Merchant, 2019) 
and chemical (Carey, 2023) conditions, which has important implica-
tions for the performance of lake water quality forecasts. Across tem-
perature and oxygen, bottom water forecasts at 10.0 m showed lower 
performance than surface water forecasts at 1.0 m. The majority of 
studies examining forecast performance across multiple depths have 
generally found that bottom water forecasts have higher performance 
than surface waters for both temperature and oxygen (Durell et al., 
2023; Saber et al., 2020; Thomas et al., 2020; Wander et al., 2023), with 
the exception of Lin et al. (2023), who found that there was little dif-
ference in oxygen forecast performance between surface and bottom 
layers. It is possible that this divergence from our findings may have 
been influenced by the location of our 10.0 m sensor in the upper hy-
polimnion (Fig. A.1), rather than at the deepest point of Lake Sunapee 
(33.0 m). However, a historical data comparison shows that temperature 
and oxygen dynamics at 10.0 m at the buoy site closely follow patterns at 
15.0 m and 20.0 m at the deepest site (Pearson correlation r = 0.89 and 
0.87, respectively; n = 180 observations, Fig. A.14). There is a decrease 
in similarity between the 10.0 m and 30.0 m observations (r = 0.55, 
Fig. A.14), although we note that the water column below 30.0 m rep-
resents a very small proportion of the overall lake volume. These com-
parisons provide confidence that 10.0 m forecasts are representative of 
at least most of the hypolimnion in Lake Sunapee. Thus, our results 
suggest that differences in forecast performance between surface and 
bottom layers may vary across waterbodies based on other factors (e.g., 
waterbody type, morphometry, productivity, mixing dynamics) and that 
more examination is needed to better understand this vertical pattern 
across ecosystems.

Interestingly, decreases in forecast performance between the surface 
and 10.0 m were smaller for temperature than oxygen. This pattern 
could be due to limited representation of processes in our model 
configuration for forecasting deep-water oxygen dynamics. Specifically, 
while our model configuration dynamically fit a sediment oxygen flux 
parameter, which incorporates both biological and chemical oxygen 
demand at the sediments (Hipsey et al., 2022), we did not simulate the 
dynamics of phytoplankton or other solutes that can also alter hypo-
limnetic oxygen cycling. In addition, differences in inter-annual vari-
ability between oxygen and temperature may have also impacted 
differences in performance across depth. For example, observations of 
oxygen in 2021 and 2022 followed different patterns than in previous 
years (Fig. A.11), potentially leading to worse model performance, while 
temperature observations showed similar patterns to historical years 
(Fig. A.15), potentially leading to better predictions.

4.4. Differences in forecast performance metrics across years

Forecast skill integrates both FLARE forecast accuracy and null 
(persistence and climatology) forecast accuracy (Jolliffe and Ste-
phenson, 2012). As such, differences in null forecast accuracy can 
explain differences in FLARE forecast skill across years. For example, 
FLARE forecasts of oxygen at 1.0 m had high accuracy in 2022 
(Fig. A.8b), but climatology forecasts had low accuracy (Fig. A.7), due to 
0.6 mg/L lower concentrations of oxygen in 2022 relative to the his-
torical 2007–2022 average (Fig. A.14). In contrast, both FLARE and 
climatology forecasts of oxygen at 1.0 m had relatively high accuracy in 
2021 (Fig. A.8 and Fig. A.7), but climatology forecasts were more ac-
curate, resulting in a large proportion of unskillful FLARE forecasts 
relative to the climatology forecasts.

Accuracy and skill each assess different components of forecast 
performance. For example, forecast skill is an intuitive measure of how 
well two different forecasts perform relative to each other, providing a 
quantification of how much more information is gained by one forecast 
over another (Jolliffe and Stephenson, 2012). As such, assessing forecast 
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skill may be especially useful for scoring forecasts in ecosystems which 
have shifting baselines, where historical estimates may no longer be as 
good at predicting the future (Daugaard et al., 2022; Pauly, 1995). Given 
the widespread impact of climate change on ecosystems globally 
(Bruggemann et al., 2012; IPCC, 2023; Mariani et al., 2022; Sydeman 
et al., 2013), evaluating forecast skill relative to uninformed models 
provides an opportunity to robustly assess how much more information 
process-based forecasts provide.

By comparing a novel forecasting approach to multiple null fore-
casts, we can disentangle what types of information these forecasts 
provide above each type of null. For example, persistence null forecasts 
directly represent the autocorrelation in observed dynamics and 
climatology null forecasts represent expected seasonal patterns in 
observed dynamics. As a result, in this study, when our process-based 
FLARE forecasts were more skillful than the persistence forecast, as in 
a large proportion of oxygen forecasts at 1.0 m (Fig. 6b), we can infer 
that FLARE forecasts are providing information about seasonal expec-
tations and/or process representation above the climatology forecast. 
This is likely because process-based models such as FLARE can represent 
the entire water column and simulate multiple processes that control 
interactions between state variables (e.g., temperature and oxygen) in 
each water column layer (e.g., Hipsey et al., 2019; Li et al., 2022). In 
contrast, forecasts which were more skillful than a climatology forecast, 
such as the temperature and oxygen forecasts at 10.0 m, provide useful 
information about the role of autocorrelation or process representation 
in observed dynamics. Forecasts which were more skillful than both 
persistence and climatology null forecasts indicate that FLARE process- 
based forecasts were directly incorporating information about process 
representation which was not included in either null forecast. This was 
evident in a majority of temperature forecasts at both depths, and ~ 25 
% of oxygen forecasts at 1.0 m. However, oxygen forecasts at 10.0 m 
were largely less skillful than either null forecast, indicating that dy-
namics of this variable were primarily dominated by autocorrelation 
and expected seasonal patterns, which were relatively accurate at this 
depth (mean persistence CRPS = 0.4 mg/L, climatology CRPS = 0.5 mg/ 
L).

Overall, quantifying both the accuracy and skill of forecasts can 
contribute complementary information for decision-making. Decisions 
regarding specific details about an ecosystem variable likely require 
information provided by forecast accuracy. For example, how likely are 
hypoxic conditions over the next week, or how closely can we predict 
water temperature at 1.0 m? In contrast, forecast skill provides alternate 
information which is more relevant for understanding how ecosystem 
predictability has changed over time or performance across forecast 
models. For example, how much better can we predict algal concen-
trations over the historical mean on a given day? Or, which forecast 
model is more accurate in a given year or at a specific ecosystem?. In 
addition, unitless skill scores allow for a quantitative comparison of 
forecast variables which are not in the same native units, which helps to 
broaden our understanding of the fundamental predictability of eco-
systems. However, it is important to note that interpretation of the 
functional utility of forecasts can also be clouded by the use of a skill 
score (Wheatcroft, 2019), as it is not in meaningful units familiar to 
managers for decision-making. Overall, this study emphasizes the 
importance of using both of these forecast performance metrics, 
depending on decision-making needs.

4.5. Opportunities for expanding our understanding of water quality 
predictability

Results of this study point to important gaps in our understanding of 
predictability of freshwater ecosystems. First, oxygen dynamics are 
driven by both abiotic and biotic processes (Marce et al., 2023) moti-
vating the need for future studies to use more complex oxygen models 
for forecasting. While hydrodynamic models do well at predicting 
abiotic dynamics, predicting many biogeochemical processes remains a 

challenge (Soares and do Calijuri, 2021). Lake Sunapee is an oligotro-
phic lake with low annual NEP (net ecosystem production) that ranges 
from −1 to <1 mg O2 L−1 day−1 (Richardson et al., 2017), and low 
overall phytoplankton levels (historical mean chlorophyll-a = 1.7 μg/L; 
Ward et al., 2020), justifying our use of an oxygen model that did not 
include phytoplankton. Looking ahead, future studies generating oxygen 
forecasts for lakes with greater productivity would benefit from using 
models that represent critical biotic processes governing oxygen dy-
namics (e.g., epilimnetic primary production, respiration, and decom-
position). Second, both data collection limitations as well as long data 
latency (i.e., the time lag to when new observations are integrated into 
forecasting workflows) remain as roadblocks for generating additional 
biogeochemical forecasts, especially for forecast variables which show 
high autocorrelation, as high-frequency sensors may be especially crit-
ical for informing these model states. Third, while process-based models 
are well-positioned for including more forecasted variables, including 
additional state variables and parameters can come at a cost, both in an 
inability to calibrate the model for predicting many variables (Hipsey 
et al., 2020), as well as potential predictive tradeoffs. Issues of param-
eter identifiability and over-fitting (Luo et al., 2009) especially need to 
be considered in forecasting frameworks which use sequential data 
assimilation techniques (e.g., EnKF as used in this study) to tune mul-
tiple parameters while simultaneously fitting models to multiple 
variables.

4.6. Conclusions

Overall, we show that forecast performance of water temperature 
and dissolved oxygen was variable between years, demonstrating that 
predictability of important water quality variables can vary substan-
tially over time in a large oligotrophic lake. This variability was notable 
despite similar average weather patterns between years, indicating that 
specific events such as storms or other factors are likely influencing 
predictability. Across variables, temperature forecasts were more skillful 
than oxygen forecasts in Lake Sunapee, following expectations that 
physical variables are more predictable than chemical variables like 
oxygen, which are influenced by nonlinear dynamics and feedbacks 
from biogeochemical processes, even in an oligotrophic lake. Finally, 
FLARE forecast performance varied between metrics of forecast accu-
racy (e.g., CRPS) and forecast skill (relative to a null model). Specif-
ically, we found low FLARE accuracy (e.g., CRPS) in some cases but high 
skill when compared to null persistence or climatology forecasts. This 
finding emphasizes that process-based forecasts provide important in-
formation above null model forecasts, and may result in increasing value 
of process-based forecasts as ecosystems are pushed further outside of 
historical ranges. Altogether, producing forecasts of temperature and 
oxygen using a process-based model provides novel insight into how 
forecast performance varies over time and depth, especially as fresh-
water ecosystems continue to experience global change stressors.
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