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In this article, we report on our experiences with interdisciplinary projects at 
the intersection of freshwater ecology, data science, and computer science. 
The translational research process has progressively led to the development of 
distributed systems that apply both edge computing and function-as-a-service 
(FaaS) cloud computing to support end-to-end water quality forecasting workflows 
across the edge-to-cloud continuum.

The environmental sciences are being trans-
formed by an increasing variety, velocity, and 
volume of data streaming from sensors and Inter-

net-of-Things (IoT) devices, and there is a growing need 
to access and extract information in real-time to enable 
transformative applications.1 In particular, ecological 
forecasting is poised to significantly increase predictive 
capacity for effective decision-making with broad socie-
tal impact, including improving water quality in lakes and 
reservoirs.2,3 Water quality forecasting requires a robust 
and scalable cyberinfrastructure (CI) with end-to-end 
workflows encompassing sensors and edge and cloud 
computing for real-time decision support.4 However, 
there are often significant barriers that prevent ecolog-
ical forecasters from making effective use of available 
physical CI capacity (e.g., edge and cloud computers).

The effort required in software development, de-
ployment, and resource management makes adopt-
ing end-to-end forecasting workflows by the ecology 
research community challenging. Thus, while new ad-
vances in CI (e.g., serverless computing5) hold much 
promise for forecasting applications, they need to be 
grounded in realistic use cases and deployments to 
validate their potential. We have approached these 

challenges through translational research uniquely 
enabled by multiple years of collaboration at the in-
tersection of two disciplines, which has resulted in the 
development of a scalable forecasting system now be-
ing deployed at lakes around the world.6,7

TRANSLATIONAL PILLARS
Translational computer science (TCS) focuses on 
three pillars8: laboratory, locale, and community. We 
extend the analogy by describing these in the context 
of ecological forecasting. In our experience, the lab-
oratory pillar has been multifaceted: It includes the 
ecosystems where sensors are deployed, a physical 
laboratory where water samples are analyzed, as well 
as a virtual laboratory where software is developed for 
data capture, transfer, and model execution. The locale 
pillar has also been multifaceted: It includes physical 
CI deployed at/near a lake (e.g., water quality sensors 
and edge computing gateways) as well as virtual CI 
(e.g., containers, virtual machines and networks, con-
tainers, and cloud storage). The third pillar, commu-
nity, has included early adopters (our research team, 
which includes students, postdoctoral researchers, 
technicians, and faculty), managers, and community 
members. By building upon these pillars, our trans-
lational research workflow has led to basic research 
contributions as well as to the development of new 
practices—backed by field deployments and data—
that are leading state-of-the-art innovation in ecologi-
cal forecasting, illustrated in Figure 1.
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TRANSLATIONAL PROCESS
A question we have been asked many times when de-
scribing our collaboration is: How did it all start? The 
seeds were planted during in-person meetings of the 
Pacific Rim Applications and Grid Middleware Assem-
bly (PRAGMA) and Global Lake Ecological Observa-
tory Network ()GLEON networks starting in 2014 that 
provided forums for interdisciplinary cross-pollination. 
The opportunities for social and technical interactions 
created in these grassroots meetings have been cru-
cial to interdisciplinary exchange as well as the build-
ing of mutual trust.9 Nurturing these connections re-
quires willingness to listen with curiosity to learn new 
concepts, terminology, and jargon associated with re-
search questions with which one is initially unfamiliar.

Laboratory: Basic Research
Throughout our projects, basic research questions have 
emerged from both computer systems and ecology do-
mains. The computer systems/CI research questions 
focused on the development of virtualization applied to 
edge and cloud computing to reduce the complexity as-
sociated with the deployment of end-to-end forecasting 
workflows. Because these workflows involve both edge 
computing (in situ data collection and staging) and cloud 
computing (forecasting models and data assimilation), 
a core research question was: How can virtual network 
systems suitable for both edge and cloud computing 
environments leverage software-defined networking 
(SDN)? In particular, we were constrained by our locale at 

the physical location of a freshwater ecosystem, where 
edge devices have limited compute and storage capacity, 
have limited power, and use commodity cell phone Inter-
net with private, nonroutable Internet addresses subject 
to network address translation (NAT). Addressing this 
question led to development of EdgeVPN,10,11 a novel 
SDN-based overlay virtual network integrating NAT-con-
strained edge and cloud devices end-to-end.

Another core computer systems research ques-
tion was: How can serverless computing be harnessed 
to support end-to-end ecological forecasting work-
flows, while presenting an accessible interface for 
users and developers in this domain? This challenge 
led to the development of Function-as-a-Service for R  
(FaaSr), a novel middleware supporting serverless, 
cross-platform workflows written in R.12

For the ecologists, research used the end-to-end 
forecasting system to quantify fundamental controls of 
ecosystem predictability,6 determine the relative fore-
castability of different freshwater variables,13 and iden-
tify the dominant sources of uncertainty in ecosystem 
forecasts.14 In addition to basic ecology questions, the 
team has also conducted “experiments” with different 
configurations of the freshwater forecasting system to 
answer methodological questions on the optimal fre-
quency of data assimilation15 and model structure.16

From Laboratory to Locale
The need for interdisciplinary collaboration and prac-
tical water quality forecasting led the team to address 

FIGURE 1. Overview of water quality forecasting workflows resulting from the translational process. 1) Sensor data are collected 

and preprocessed at the edge, then 2) time-series data are transferred to Git repositories and made available to 3) event-driven 

functions deployed as containers by FaaS cloud providers. FaaS functions use S3 storage for 4) data transfers throughout the 

workflow and for 5) visualization.
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these research questions beyond the confines of indi-
vidual laboratories. Starting from a foundation of trust 
and shared knowledge from technical exchanges and 
team-building social interactions, our process of trans-
lational research was based on iterative cycles of code-
sign and coproduction to develop prototypes suitable 
for deployment in practice. Key aspects of these cycles 
have been as follows: 1) field visits and practical demon-
strations helped team members build intuition and a 
sense of possibilities (and challenges) in cross-domain 
work. For example, in reservoir field visits, the CI experts 
learned about environmental sensors and data they 
produce, as well as the practical constraints on power, 
compute, and networking of edge devices in the field. 
Conversely, the ecology and forecasting domain experts 
learned about virtualization, containers, and cloud com-
puting by exploring these systems in hands-on tutorials 
that were specifically developed for the ecologists on 
the team, which gave an appreciation of how these soft-
ware approaches work, as well as their limitations. 2) A 
culture of inclusion of different perspectives and voices 
across the spectrum of team members (undergraduate 
and graduate students, technicians, post-docs, and 
faculty) in all-hands meetings. This culture enabled all 
members to participate, which is critical for grounding 
team decisions. For example, all-hands team discus-
sions helped guide: The configuration of in situ edge 
gateway hardware, software, and networking; use of 
different cloud storage modalities (Git for reliably trans-
ferring time-series sensor data “deltas” from the edge; 
S3 for FaaS data); and the choice of GitHub Actions and 
Docker containers as a primary target for serverless de-
ployment. All decisions were made to respect the needs 
of the field crew maintaining equipment at a lake, the 
ecologists who use data and develop forecasts, and 
the CI research and development team. 3) A focus on 
usability in which technical decisions were weighed 
not only with respect to performance, but also the ef-
fort needed to develop, deploy, and manage systems, 
which has significant implications for whether a given 
approach can be adopted. As a first step, the focus on 
usability has helped ensure that designs are effectively 
usable within our own team, while keeping in mind the 
longer term goal of broad applicability and usability.

Throughout iterative codesign, a recurring goal 
was to accomplish tangible milestones and deliver 
usable prototypes—aiming for simplicity in the begin-
ning and incremental progress in each iteration. This 
ethos has allowed the team to achieve concrete re-
search goals early and then build on experiences and 
lessons learned to improve and generalize from proto-
types to scalable systems that can be widely adopted 
by the community. One concrete example has been 

the development of the core forecasting open source 
software module of our project, FLARE.14 The first iter-
ation of FLARE benefited from, and brought the team 
together, around the foundation of using containers 
for reproducible deployment. A second iteration add-
ed support for natively accessing S3 cloud storage 
from the containers. The next iteration introduced the 
use of an open source platform (Apache OpenWhisk) 
for FaaS deployment. A subsequent iteration integrat-
ed GitHub Actions, as well as the use of Apache Ar-
row for efficient data access. The next iteration led to 
the design of FaaSr, an open source software package 
that generalizes the FLARE approach to FaaS-based 
execution of workflows with functions written in R and 
data stored in S3/Arrow across multiple platforms.12

Engaging Community
While joint participation early on in interdisciplinary re-
search meetings helped establish a shared team-science 
foundation, once the translational process began to 
move from laboratory to locale, engagement from differ-
ent communities enabled interactions that were invalu-
able in helping shape our activities, as follows:

 ❯ Managers: Our team has met regularly with the man-
agers that oversee our focal reservoirs to receive 
iterative feedback on water forecast design and de-
livery. For example, following manager request, daily 
reservoir forecasts were emailed to the managers 
at a set time in the morning to coincide with a staff 
shift change at the water treatment plant.

 ❯ Public: We hosted workshops in which we shared 
draft forecast visualizations with watershed 
community members to understand how they 
might use forecasts to guide their decision-making 
about lake use. This feedback has shaped visu-
alization prototypes developed in collaboration 
with watershed association staff.

 ❯ Ecology and forecasting: Through collaboration 
with researchers around the world, our end-to-
end forecasting system has now been adapted 
and deployed at other lake sites outside of our 
oversight to generate automated forecasts. For 
example, we have collaborated with National 
Ecological Observatory Network (NEON) scien-
tists to remotely deploy FLARE without disrupt-
ing their existing data streams.6 These NEON 
lakes forecasts contributed to a community- 
developed forecasting competition focused on 
examining different modeling approaches for 
forecasting water quality.17 Similarly, we have 
trained visiting students to deploy FLARE at 
lakes in Australia and Ireland.
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 ❯ Cyberinfrastructure: We have hosted demon-
strations and collaborations in the computer 
systems community to share techniques learned 
from EdgeVPN to other domains, including smart 
cities and federated machine learning, as well as 
FaaS-based scientific workflows.

Feeding Back Into Research
The field deployments and engagement with the broad-
er community have provided context to both build new 
capacity and open further lines of research inquiry. For 
example, initial FLARE development focused solely on 
water temperature in reservoirs, but new deployments 
required FLARE to support additional water quality vari-
ables (e.g., dissolved oxygen13). Incorporating addition-
al water quality variables in our end-to-end forecasting 
system increased our memory requirements beyond 
available GitHub Action resources. Consequently, we 
needed the capacity to change computation resources 
in response to a particular FLARE configuration, moti-
vating the development of FaaSr.

Supporting the Translational Process
Support for our projects has come primarily from the 
U.S. National Science Foundation, through programs 
that foster interdisciplinary collaboration, e.g., Smart and 
Connected Communities (SCC), Cyberinfrastructure for 
Capacity in Biological Research (CIBR), Software Infra-
structure for Sustained Innovation (SSE/CSSI), and Rules 
of Life (RoL). This funding has been critical for supporting 
early career trainees and ensuring continuity over time, 
and we believe that these types of programs are nec-
essary for successful translational, interdisciplinary re-
search. Funding from competitive grants is not sufficient, 
however, as there is also a significant time and resource 
investment to build and maintain shared capacity. Two 
of the major roadblocks to translational computer sci-
ence8 are as follows: 1) fewer funding opportunities and 
2) typical publication venues may not value translational 
outputs in the same way as basic research. This loops 
back to the beginning of our process: While tangible out-
comes of funding and publications are crucial, the intan-
gible team science aspects of trust and shared commit-
ment are key to sustaining the research team over time.

IMPACT
Impacts include the training of students and early ca-
reer researchers through our interdisciplinary collab-
oration, the creation of many valuable environmental 
datasets and computer systems, and the development 
of automated daily forecasts for managers and other 
community members. If a water manager receives a 

forecast that indicates that water quality impairment 
is likely to happen in the upcoming week, they can act 
today to preempt or mitigate the impairment by, e.g., 
implementing management interventions (e.g., algae-
cide application), changing water treatment process-
es, or altering staff schedules. Impact also includes 
open source software7,11,12 catalyzed by laboratory re-
search and hardened by practical deployments.

LESSONS LEARNED AND  
RECOMMENDATIONS

There are several effective ways of fostering research 
at the interface of ecology and computer science.9 A 
key lesson we learned is that translational, interdisci-
plinary research builds upon a foundation of shared 
language and knowledge, mutually developed goals, 
trust, patience, and open communication. This trust, 
in turn, requires a long-term time investment, contin-
uous interactions, and representation across different 
career stages (undergraduate and graduate students, 
technicians, postdoctoral researchers, and faculty).

CONCLUSION
While initiating these engagements can seem daunt-
ing, there are several tangible actions that computer 
science researchers interested in translational re-
search can take to start. First, step out of disciplinary 
comfort zones and proactively attend conferences and 
research coordination network meetings where there 
can be opportunities to meet, socialize, and begin to 
appreciate the CI and systems challenges faced by 
scientists in different domains in which you are inter-
ested. This awareness helps both to build rapport and 
trust and identify collaborative opportunities. Second, 
conceptualize and codesign what could become the 
first concrete implementation of a system that applies 
an interesting CI approach to solve a well-defined ap-
plication problem. This codevelopment helps identify 
common fertile ground to build shared knowledge, and 
further solidifies trust. Third, seek funding opportuni-
ties that support taking the kernel of an idea and a pro-
totype to solve a larger, more general problem. Funding, 
even at small scale, is key to providing resources need-
ed for nurturing a team longer-term. Fourth, consider 
ways in which addressing specific challenges of a tar-
get user community can feed back into new research 
questions in computer science. This approach can help 
sustain the collaboration by creating opportunities for 
new projects and funding across disciplines. Finally, an 
interdisciplinary culture of training is needed—it takes 
time, but the goal is to develop the next generation of 
leaders at the intersection of computer science and 
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application domains that will further enhance and de-
velop translational computer science research.
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