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In quantum many-body systems, interactions play a crucial role in the emergence of information scrambling.
When particles interact throughout the system, the entanglement between them can lead to a rapid and chaotic
spreading of quantum information, typically probed by the growth in operator size in the Heisenberg picture.
In this study, we explore whether the operator undergoes scrambling when particles interact solely through a
single impurity in generic spatial dimensions, focusing on fermion systems with spatial and temporal random
hoppings. By connecting the dynamics of the operator to the symmetric exclusion process with a source term, we
demonstrate the presence of an escape-to-scrambling transition when tuning the interaction strength for fermions
in three dimensions. As a comparison, systems in lower dimensions are proven to scramble at arbitrarily weak
interactions unless the hopping becomes sufficiently long-ranged. Our predictions are validated using both a
Brownian circuit with a single Majorana fermion per site and a solvable Brownian SYK model with a large local
Hilbert space dimension. This suggests the universality of the theoretical picture for free fermion systems with

spatial and temporal randomness.
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I. INTRODUCTION

Generic interacting many-body systems can serve as their
own bath, a pivotal element for the manifestation of quan-
tum thermalization in isolated systems [1,2]. This involves
the obscuring of all local initial conditions within the entire
system after prolonged evolution, measured by the growth in
operator size [3-9]. In this process, interactions play a crucial
role. In the absence of interactions, excitations with infinite
lifetimes can carry quantum information, remaining free from
dissipation [10]. This occurs because quadratic Hamiltonians
conserve the number of field operators, thereby preventing the
growth of operator size. However, in the presence of interac-
tions, a single excitation can undergo scattering, giving rise
to multiple excitations. This iterative process leads to a rapid
increase in complexity for simple initial operators subject to
the Heisenberg evolution [11-32].

Recently, new insights into this problem have been gained
from the study of fermionic systems that only interact through
a single impurity [33]. The key question is whether a single
impurity can effectively scramble the entire system. While one
might typically anticipate that introducing a local impurity
into a large many-body system does not lead to significant
changes in bulk dynamics, it becomes apparent that even
with just a single interaction, the Hamiltonian is no longer
quadratic, thus permitting the growth of operator size. In-
deed, previous study unveils the emergence of information

“Contact author: PengfeiZhang.physics @ gmail.com
fContact author: chenaad@bc.edu

2469-9950/2024/110(23)/235110(9)

235110-1

scrambling in 1D systems with spatial and temporal random
short-range hoppings for arbitrary weak interaction strength
at the impurity [33]. (Many other papers have investigated
similar setups—nonequilibrium dynamics in the presence of
boundary perturbations. See Ref. [34] for a review on classical
stochastic processes and see Ref. [35] for a review on quantum
systems. Here, we study this from the perspective of quantum
information. We also note a paper that studies information
scrambling in an integrable Kondo model [36].) In this setup,
both the operator and entanglement exhibit diffusive scaling,
stemming from the random walk characteristics of fermion
operators on the 1D lattice. However, it is acknowledged
that the properties of random walks are greatly influenced
by the connectivity among different sites across various
geometries.

Building upon this insight, we delve deeper into investi-
gating the growth of operator size within such systems across
arbitrary dimensions. Utilizing a phenomenological percola-
tion model on trees, we identify a notable distinction between
systems in 3D and lower dimensions, summarized in Fig. 1.
In 3D, interactions do not lead to a persistent growth of
operator size unless their strength exceeds a critical value.
Within this nonscrambling regime, the operator quickly es-
capes from the impurity, following the Pélya’s theorem, and
we term this as the escape phase. For stronger interactions,
the operators near interacting sites can scramble into nonlocal
operators, analogous to the scenario in lower dimensions with
short-range hoppings. Additionally, when the hopping range is
long enough, we also identify similar dynamical transitions in
lower dimensions through the utilization of Lévy flight prop-
erties. Our predictions are demonstrated by both numerical
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FIG. 1. (a) The schematics of our model in D = 3 with a single
Majorana fermion per site. The model includes a solitary random
interaction with strength J and Brownian hopping that decays as
1/ r’* for a > 0. The case of short-range hopping corresponds to
o — 00. [(b) and (c)] The phase diagram of the model. Here, we
extend the dimension D to an arbitrary real number. In the case 1
regime, arbitrarily weak interaction can scramble the entire system,
whereas in the case 2 regime, a critical interaction strength is neces-
sary to realize the scrambling of operators near the interacting sites.

simulations based on a small N Brownian circuits [28-32]
and analytical calculations in a solvable large N Brownian
Sachdev-Ye-Kitaev (SYK) chain [37-44]. This suggests uni-
versality regardless of the dimensionality of the local Hilbert
space.

II. BROWNIAN CIRCUITS

To be concrete, we first examine Brownian circuits with
nearest-neighbor hoppings in a generic dimension D, where
operator dynamics can be mapped to a classical stochastic
process. As we will demonstrate, the physical picture obtained
in this model is also applicable to Brownian SYK models
with large Hilbert space dimensions. Our focus is on Brow-
nian circuits of Majorana fermions. Each site hosts a single
Majorana mode x, with canonical anti-commutation relations
{Xx» Xy} = 28xy. The Hamiltonian reads

dH(6) =i) dVey Xexy +dJ | | xe, ()

(xy) xeo

where the first term denotes the hopping of the free fermion
between neighboring sites and the second term is the interac-
tion term. Here O labels four sites in a single plaquette near the
origin, as illustrated in Fig. 1 with D > 2. For D = 1, we can
simply pick four contiguous sites near the origin. Independent
Brownian variables dV, , and dJ satisfy the Wiener process,
with

de,dex’,y’ =Vdt 5xx’8yy/, ﬁ = Jdt. 2)

In a short time interval dt, the unitary evolution is given
by dU =e " We are interested in the operator dy-
namics, governed by the Heisenberg evolution O(r + dt) =

dUTO(t)dU. To study the growth of operator size, we in-
troduce a complete orthonormal basis of Hermitian operators
{B.} = {i‘f(‘]’”/z)(xl Xx, - - - Xx,}- Each Majorana string B, can
be labeled by its height h,, defined as h,, =1 for x €
{x1,x2,...,x,} and otherwise h, , = 0. The size of B, is
further defined as n, = > h, «

We expand O(t) in this set of basis operators as O(t) =
> M a,(t)B,, where «,(t) represents the wave function for
the operator evolution. In Brownian circuits, the phase of
a,(t) is averaged out due to the temporal randomness, and the
evolution can be formulated in terms of a classical stochas-
tic process described by the probability distribution f, (1) =
|aM(t)|2, which is normalized »_ u fu() =1 due to unitarity
[7,9]. The size of O(t) is defined as N(t) = Zu n, fu(t). By
generalizing the analysis in Ref. [33], this dynamics describes
a symmetric exclusion process (SEP) with a single source
term at the origin [45,46]. The governing master equation for
this dynamics, along with its derivation details, are provided
in Appendix. Based on this master equation, we conduct nu-
merical simulation using the following update rules.

(1) We implement an unbiased random walk for each par-
ticle independently.

(2) Each time when one particle returns to the origin, we
branch it by adding n; particles with a probability p;.

In the original model (1), we expect n; =2 and p; o< J/V.
The system is initialized by putting a single particle at the
origin, and the operator size growth is studied by counting the
number of particles.

We note that in 1D and 2D, an operator originating from the
origin exhibits diffusive spreading, independent of the param-
eter p;, eventually encompassing the entire space. Complexity
arises in 3D, where for large p;, the operator continues to grow
over time. However, decreasing p can mitigate its growth.
Notably, for p < p., during time evolution, the operator’s
size saturates to a finite constant, indicating the presence of
a scrambling transition as p; varies.

To understand the presence or absence of the transitions
across various dimensions, we recognize that the dynamics
can be modeled as percolation on a tree. As shown in Fig. 2(a),
in this model, each vertex is branching into n vertex, with
each edge subject to removal with probability 1 — p. It is
known that this model exhibits a percolation transition at
pn = 1 [47]. When pn > 1, the root is connected to an infinite
number of the vertices in the tree. Conversely, if pn < 1, the
root connects to only a finite number of vertices in the tree.
Our model maps to the percolation model as follows: each
edge represents a particle from the origin, with each vertex’s
branching number estimated as n = n;p; + 1. Edges from a
vertex are removed together with probability 1 — p, if the
particle doesn’t return to the origin. Here p, represents the
return probability of a random walker to return to its starting
point. The transition of this model is expected to occur at
prn=1.

Givenn = n;p; + 1 > 1, observing a scrambling transition
requires p, to be less than 1. In 1D and 2D, where the ran-
dom walker returns to its starting point with probability one,
there is no scrambling transition, and the model remains in
the scrambling phase as long as p; > 0. On the other hand,
according to Pélya’s theorem [48,49], the 3D random walker
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FIG. 2. (a) Schematics of the effective percolation model on
trees: each edge represents a particle at the origin, which is removed
with a probability of 1 — p, if it escapes. Each remaining edge
branches into n = n;p; + 1 edges. (b) Particle number N as a function
of time ¢ in log-lin scale in 3D. We average over 10 000 samples.
We observe a transition of particle number between p; = 0.63 and
pi = 0.66. The theoretical prediction of p¢ is 0.646.

will return to its starting point with probability p, =~ 0.341. A
brief review of the derivation is presented in the supplemen-
tary material for clarity. The probability of returning being
less than one allows us to induce a scrambling transition
at some finite p{, such that (n;p§ + 1)p, = 1. For p; < pf¢,
particles escape from the origin, leading to saturation of the
operator size. Specifically, we find p ~ 0.646 for n; =3,
which aligns with the results from 3D classical particle model
simulations illustrated in Fig. 2(b).

We can generalize the above discussion to fermion opera-
tors that are initially not located at the origin. As demonstrated
in the supplementary material, the probability of reaching the
origin is inversely proportional to the distance r from the
origin. This suggests that these operators have a reduced prob-
ability of reaching the origin. Nevertheless, upon returning to
the origin, they may undergo scrambling if p; > p§.

III. BROWNIAN SYK MODEL

We now develop an analytically solvable large-N model
capable of demonstrating a scrambling transition. Specifi-
cally, we consider the Brownian SYK model [42,43] with a
single interacting impurity. In this model, we have N Majo-
rana fermions . ; with i € {1, 2, ..., N} on each site, which

satisfies {xx,i, Xy,j} = 20xy6;;. The Hamiltonian reads

dH@W) =i ) dVY xxixe

(xy).ij

+7 Y i X0i X0 - X0, (3)

i1 < <<y

where the second term represents a g-body interaction on
the impurity with ¢ > 4. Brownian variables with different
indices are independent and satisfy

(dJiii,)’ = (g — DMt /4NT",

“
The model can be analyzed using the large-N expansion.
Focusing on its real-time dynamics, we first introduce the
retarded Green’s functions G,’f(t) = —i0(){{xx.i (@), xx.:(0)}),
where 6(t) is the Heaviside step function. In SYK-like mod-
els, the self-energy is dominated by melon diagrams, which
gives ZR(w) = i(zV + J8,0)/4 = iTy /4. Here, z = 2D is the
coordination number for the square lattice and T, represents
the quasi-particle lifetime on site x. Transforming into the
time domain, we find GX(t) = —2ie~T"/2,

In large-N systems, due to the large on-site Hilbert space,
the operator size usually experiences exponential growth in
the early-time regime, characterized by a rate known as the
quantum Lyapunov exponent s. Consequently, we are exam-
ining whether the system undergoes scrambling by assessing
the existence of a nonvanishing s¢. It is known that the aver-
age size is related to out-of-time-order (OTO) commutator as
[9,15]

(@Vi)? = vdi/an,

1
Ne(6) = 7D {10=0.0), xe s O}, (5)

J

where we introduce a subscript x to denote the location of the
operator. In SYK-like models, the self-consistent equation for
the OTO commutator arises from the ladder diagram [39,50]

Netr) = — / dt’ GE(t,)

v J(q—2)
X ZZNy(t2)+ 1

(xy)

8x,0Nx (12) . (6)

Here we neglect the inhomogeneous terms since it does not
contribute to the asymptotic behavior. In Brownian models,
this is equivalently expressed as a differential equation:

dN,
dt

=V|aNe =Y Ny | =J(g—2beoNe. ()
(xy)

The first term describes the diffusive spreading, while the
second term is a source term at x = 0, which can potentially
result in an exponential growth of N,. This equation takes
the form of the imaginary-time Schrédinger equation on the
lattice with an attractive delta potential with depth ~J at
the origin. Assuming N, (¢) = exp(s«t )N, for sufficiently long
time ¢, we recognize that a positive Lyapunov exponent ¢
corresponds to a bound state with energy —s¢. The solution
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FIG. 3. Results for the quantum Lyapunov exponent s as a func-
tion of interaction strength J/V in different dimensions D € {1, 2, 3},
obtained by solving Eq. (8). The result is consistent with the theo-
retical prediction that a scrambling transition occurs at the critical
strength given by J(g — 2)/2DV = (1 — p,) = 0.659.

is given by the Lippmann-Schwinger equation

v [ dP%k 1
Jg—2) ) Q)P sx/V+2D-Y 2cos(ky)’

®)

Here, o labels different spatial directions o € {x,y,...}. We
focus on the regime with a shallow bound state s/V « 1,
where we can transition to the continuum limit by expanding
1 — cosk ~ k?/2. In this limit, Eq. (8) aligns with the stan-
dard Schrodinger equation with a quadratic dispersion. It is
well-established that in 3D, a finite depth of the potential is
required to sustain a bound state. In contrast, in 1D or 2D, a
bound state emerges under infinitely weak attractions, leading
to exponential growth in operator size. We can further make a
direct connection between the bound state problem and the
random walk picture in the last section. To determine the
critical point J,, we set 3r = 0 on the right-hand side (R.H.S.)
of (8). Then, as reviewed in the supplementary material, it can
be related to the returning probability p, by RH.S. = [2(1 —
p-)D17L. In particular, p, = 1 for D < 2 originates from the
divergence of the integral ~ [ kP~'dk/k*. The critical point
J is then given by J,/V = 2D(1 — p,)/(q — 2), a close ana-
log of results in Brownian circuits. For D = 3, this predicts
J(g —2)/2DV = (1 — p,) = 0.659. We can further obtain the
quantum Lyapunov exponent by solving Eq. (8) exactly, using
the analytical results for lattice Green’s functions [51]. The
result is plotted in Fig. 3 for D € {1, 2,3}. In 3D, we can
clearly observe a transition from escape phase with x = 0 to
scrambling phase with x > 0.

IV. LONG-RANGE HOPPING

We now generalize our results to systems with long-range
random hoppings [30,31,52-56]. Since we have demonstrated
that both N = 1 Brownian circuits and the large N Brownian
SYK model share the same phase diagram, here we take the
Brownian SYK model as an example. The hopping term in the

Hamiltonian now becomes

dHy(®) = )

xXAy,ij

i .
5 AVl Xxidyjs ©
2 -yt

which dVy, still has variance (4). Carrying out the similar
calculation as in the last section, we find firstly the decay
rate becomes [, = Zy S M% + J&yx 9. Therefore, to en-
sure the convergence of the decay rate, we focus on o > 0.
Otherwise, the model is effectively all-to-all connected, whose
scrambling dynamics in the presence of a singular interaction
has been analyzed in Ref. [33]. Secondly, the random walk is
replaced by a Lévy flight. This is reflected in the Lippmann-
Schwinger equation, which now leads to

Voo / d’k 1
Jg=2) ] @m)P Y Ly 7Pl = cosk - y)I

To determine whether the R.H.S. diverges, we first perform
the small k expansion of the denominator, which gives

if a<?2,

if @>2 10

DI PI = cosk - y)] = {l,iz
As a result, the returning probability of the Lévy flight is
1 for D < o when o € (0,2) and D < 2 when « € [2, 00).
This defines the parameter regime referred to as case 1 in
Fig. 1. Conversely, when the integral converges for higher
dimensions, an escape-to-scrambling transition typically oc-
curs, denoted as case 2 in Fig. 1. In particular, for @ > 2, the
phase diagram is the same as the short-range hopping case.

V. DISCUSSIONS

In this study, we investigate the information dynamics in
free fermion systems with spatial and temporal randomness
that interacts through a single impurity. Our findings reveal
that a solitary interaction can trigger a scrambling phase tran-
sition depending on the system’s dimensionality and hopping
range. We establish a universal phase diagram by employing
both N =1 Brownian circuits and large N Brownian SYK
models. In high dimensions or with a long hopping range,
the model undergoes an escape-to-scrambling transition upon
tuning the interaction strength J. Within the scrambling phase,
operators proximate to the interacting site can scramble into
an extensive operator under time evolution. On the other
hand, in low-dimensional systems with a short hopping range,
even arbitrarily weak interactions lead to the scrambling of
the entire system. We expect that these problems can also
be characterized by other information quantities, such as the
entanglement entropy and mutual information [33].

The dynamical transitions of information scrambling have
been observed in various contexts. Specifically, Refs. [57,58]
identify an environment-induced scrambling transition in sys-
tems embedded in environments. One can also treat Majorana
fermions in bulk as an environment, achieving the transi-
tion by increasing the system-environment coupling V. In
Refs. [57,58], the information never returns to the system
once it enters the environment, corresponding to p, = 0.
Our analysis in this work proposes a refinement of the pic-
ture for environments with memory. (A more recent preprint
[59] studied the scrambing transition where the information
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backflow can be tuned. Consistent with our results, they didn’t
find scrambling transition in low dimensions when the infor-
mation backflow was nonzero, corresponding to p, = 1.) The
discussions in our paper are also pertinent to the intriguing
question of whether a single thermal island can thermalize the
entire system, a query crucial for understanding the existence
of many-body localization phases. To address this question,
it is imperative to extend the current discussions to models
with static hopping strength, where localization is feasible.
Nevertheless, the theoretical analysis in such cases becomes
considerably more challenging, and we defer this task to fu-
ture works.
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APPENDIX A: MASTER EQUATION
IN BROWNIAN CIRCUITS

In this section, we give a detailed derivation of the master
equation in Brownian circuits. The Hamiltonian reads

dH(t) = i) dVeyxexy +dJ | | -

(AD)
(xy) xeO
where dV; , and dJ satisfy the Wiener process, with
AVeydVey = VdtSedyy, dJ? =Jdt,  (A2)

and O labels four sites in a single plaquette near the origin as
illustrated in the main text. We can expand the evolution of
the operator O(t) to second order:

dO(t) = MDY H D — O(1)

1
=[idH(t), O(t)] + z[idH(t), [idH(t), O@)]]

= i[dH(), O(t)] — %{dH(t)dH(t), o)}
+ dH(t)O(t)dH (1)

=i[dH(t), (t)] — ZO(r)th — O(t)Jdt
(xy)

Y %0 xxs Ve + [ 100 [ | xeddr.

(xy) xeno x'ed

(A3)

We introduce a complete orthonormal basis of Hermitian

operators {B,} = {i2@a=1/2 Xx) Xxy - - - Xx,} @nd the expansion

coefficient o, (¢) is
o, ()

tr(B,O(t)). (A4)

= (BB,

Its time evolution is given by

da,(t) = ;tr(BudO(t))

tr(B2)
i
= @tr(Bu[dH(t), o))

— Z a, (OVdt — a,(1)Jdt
(xy)

1
- — Z tr(By xx Xy O () xx Xy )V dt
tr(B )
w7 (xy)

1
TN B x x' s A
+ tr(Bi)tr< w00 [] x )Jdt (A5)

xea x'end

here,

1
&) D (B xe xy O) X xy)V dlt
7 (xy)
1
= —— ) (e XyBuXe xy O))Vt
tr(Bi) o
= - Z q;t,x,yau(t)tha (A6)

(xy)

1
@tr<BM [[x00]] Xx/>Jdt

xeo x'en

[Tx8.]] xxO(n) Jd1

‘en xeo

1
w(B)

= G [l O I, (A7)

where g, xy =11 Y, Xy € B OF Xy, Xy & By quxy = —1
if xx € By, xy ¢ By or xy € By, xx ¢ By, and Gl 1 = 1
if | X € [[yeaXx | x €Bu | =0 mod 2; gy, = —1if
| X € [Lyeo X« | X € By | =1 mod 2; here |C| is the cardi-
nality of set C. We finally get

de, (1) = ——te(B[dH (1), O(1)])

u(B?)
=Y au(t)Vdt — ey (1)Jdt
(xy)
+ Y Guaeyeu OVt + g1 e (t)]dt
(xy)

= Ltr(BM[dH(t), om) -2

u(5})
>

(e gury=—1}

a, (OVdt — 25 e, (1)Jdt.

9pTren xx

(A8)
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Define f),(¢) to be the average probability at time ¢

fu(t) = |05u(t)|2 = Oli(t), (A9)
the evolution is given by
df, (1) = 20, ()dat, (1) + do, (1)dot,, (7). (A10)
We have
dfy(ty=—=4 > fuVdr =48, _if,(0)]dt
{(xy>|‘h.x,y:*1}
1 2
- tro (OB, dH (1)])
w(8)
=—4 Y fu@Vdt—48, _fut)]dt
(e g xy=—1}

t (B, [B/u Xny])f(Blh Hvdt

+ZZ
_ Z tr2(1Bz)tr2 (Bv |:BM, l—[ Xv"j|>f(Bu, )Jdt

xeno

=—4 > fu@Vdr =45, _if(0)]dt
{(xy>|q;t,x,y=_1}
+4 > (B, t)Vdt
{(xyHCIu,x,y:_]]:{V”Bu)(x)(ylleu”

+4 >

{(VI1Bu [Tyeo xxI=1Bul}

Sq“‘n)renXxv_lf(BV9 t)]d[,

(A11)

where the first equality uses the cyclicity of trace
tr(B,[dH (1), O(t)]) = tr(O(t)[B,, dH(t)]). (A12)

Now we can consider the operator height distribution function
F@,1) = [0 (0P In, =n- (A13)

which satisfies the master equation

df(h,1)
ot

=4 Snen. V1) —dbyo . \Jf(h.1)
(xy)

+ 4 Z th@hy,]Vf(h De D ey, 1)
(xy)

®
+485 I f (h D) e t)

xen

=4V ) Snen1(f(h@ e ey, 1) — f(h,1)
(xy)

@
+485s (f (h DY e t) — f(h, t)>,

xen
(A14)

where e, represents a vector that takes the value 1 on site x
and O at all other sites. The sum & is taken modulo 2.

FIG. 4. A two-dimensional random walk starts from the origin at
time 0 and reaches position x at t = 24. The path is reducible that
can be decomposed in three irreducible ones: the black path which
contributes to g4(x) withx = (2, 2), and the blue and red paths which
contribute to ¢gs(0) and ¢, (0), respectively.

APPENDIX B: THE RETURN PROBABILITY
OF A RANDOM WALK

The return probability of a random walk is the cumula-
tive probability up to time infinity that the walker comes
back where it starts. In 1921, Pélya [48] proved that for a
simple random walk, the return probability is 1 when the
dimension d < 2, and strictly less than 1 when d > 3. This
section reviews the computation of the return probability for
a (potentially long range) random walk in a d-dimensional
cubic lattice using Fourier transform.

To set the stage, let the walker start from the origin 0
of the lattice Z“ and perform a (Markovian) random walk.
For each time step, there is a probability distribution f(x)
that determines the displacement x. Define g,(x) to be the
probability of the walker to reach position x for the first time
att = n. The probability the walker ever returns to the origin
aftert =0is

Preturn = an(o) (Bl)

n=0

For consistency, we require g,(0) = 0. Slightly generalizing
of the notion, the return probability of walker ever reaching
position x is

Prewm () = Y _ ga(x). (B2)

1. The recursion relation

The probability g, (x) is given by an irreducible path with
the constraint of arriving at x for the first time. It is much
easier to figure out the probability p, (x) of unconstrained path
that arrives at x at time ¢. Our initial condition is po(x) = &x.¢.
The probability p,(x) corresponds to reducible paths which
can be decomposed into irreducible paths for each visit of
x, see Fig. 4. This decomposition can be encapsulated into
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a recursion relation

n

Pala) = an_kw)qkm{’; 0 120 ®

k=0

In words, the probability of arriving at x at time ¢ is the sum
of probability of arriving at x for the first time at time k and
the probability of not moving for the rest n — k steps.

We can solve g from p through the generating functions
P(z,x) =Y ;2o pa(x)Z" and Q(z,x) = Y .2 qu(x)Z". The re-
cursion relation in Eq. (B3) translates to

P(z,x) — 6x,0 = P(z,0)0(z, x). B4
Therefore
l— 1= x=0
0(z,x) = P.0) ) (B5)
{—iiizzi x#0

The return probability is

1— + X =
w0 Pn(0)
Preun(®) = Q(L,x) = { s 2007 . (B9
Ziio Pa(0) X 75

2. Solution of the reducible probability

For the random walk we consider, the probability satisfies
a master equation:

Y Fe—x)paa@). (B7)

x'eZ4

pn(x) =

The convolution becomes a product in Fourier space. Define
the Fourier transform,

Pull) =) ¢ p,(x),
xeZ
4 dk;
palx) = / P (B8)
[0, 274 }_[ 2

Then with the initial condition py(k) = 1, the master equa-
tion Eq. (B7) becomes

Palh) = fe)" poth) = fk". (B9)

Hence

4 dk;
n = _j~kn—ik<x B10
pri) /[‘O,Zn]d E 2 Sl ( )
and

n —zk~x. Bl1
;P W= /[0 21 1_[ 271 1— f(k) (B11)

3. Simple random walks

Let us specialize to simple random walk on Z<, which
means the probability is isotropic in each lattice direction. The
transition probability in Fourier space is

1
7 Zcos(kj).
=1

For small k, the leading order expansion gives f(k) ~ 1 —
5 k2.

The return probability preqm(0) is 1 when 2210 pn(0)
diverges. From the power counting of Eq. (B11) around k =

k| ~0
dk; 1 a1
/ H2nk2~_/k ks
[0,27]4

we can see that the integral diverges for d < 2 and is finite for
d > 2 (meaning d > 3 for integer dimension), thus verifies
Pélya’s theorem.

For d = 3, the return probability is

1

flk) = (B12)

(B13)

Preturn (0) = 1

-/[0 273 1_[} 1 271 1—%(cosk1+cosk7+cosk3)

~ (0.340537.

(B14)
We can also analyze the scalings of x = x for preqym (x)

dk 1 —lkx d—1 1 —ikx 1
/0 2ﬂ]d 1_[ 2 k2 - /k dkﬁe - xd=2 '

(B15)

4. Lévy flight

A d-dimensional Lévy flight has a transition probability
with long range tail

1
fx) ~ W a € (0,2]. (B16)

In Fourier space,

fl) ~ 1 —#k|* (B17)

for small k = |k]|.
The analysis of prewrn (0) and prewrn (X) can be carried over.

1
preturn(O)kad ldk_

kot
which is convergent when d > «. In other words, the return
probability is 1 when « > d and less than 1 when @ < d.
For the latter case,

1 .
Dreturn (X) ~ /kd_ldkk_ae_lkx ~

(B18)

= (B19)
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