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Abstract

ML-SUPERB evaluates self-supervised learning (SSL) models
on the tasks of language identification and automatic speech
recognition (ASR). This benchmark treats the models as fea-
ture extractors and uses a single shallow downstream model,
which can be fine-tuned for a downstream task. However, real-
world use cases may require different configurations. This
paper presents ML-SUPERB 2.0, which is a new benchmark
for evaluating pre-trained SSL and supervised speech models
across downstream models, fine-tuning setups, and efficient
model adaptation approaches. We find performance improve-
ments over the setup of ML-SUPERB. However, performance
depends on the downstream model design. Also, we find large
performance differences between languages and datasets, sug-
gesting the need for more targeted approaches to improve mul-
tilingual ASR performance.

Index Terms: self-supervised learning, efficient fine-tuning,
model adaptation, multilingual speech recognition, benchmarks

1. Introduction

Modern multilingual speech models have the capacity to model
hundreds or, in some cases, over a thousand languages [1-9],
enabled by different training objectives, model architectures,
and sources of training data. Importantly, the performance of
these models is often evaluated using different experimental se-
tups, which limits the extent to which their performance can be
reliably compared. Several standardized evaluation setups and
benchmarks have been proposed to evaluate the performance of
pre-trained multilingual speech models [10-12].

The most comprehensive benchmark in terms of language
coverage is the Multilingual Speech Universal PERformance
Benchmark (ML-SUPERB) [13], which covers 143 languages
and includes multiple downstream tasks: monolingual ASR,
multilingual ASR, and language identification (LID). Like the
original SUPERB [14], which only considers English speech,
ML-SUPERB is set up to evaluate the performance of self-
supervised learning (SSL) models. This evaluation is performed
by freezing their representations and treating the models as fea-
ture extractors. These features are used as input to a lightweight
downstream model, which can be fine-tuned for any of the
downstream tasks. To minimize the impact of the downstream
model on the overall measured performance, a simple two-layer
Transformer-based decoder is used. ML-SUPERB was pre-
sented as a challenge at ASRU 2023, attracting 12 model sub-
missions and 8 new language submissions [15-25].

Although the design of ML-SUPERB allows for efficient
evaluation of multilingual SSL models across a large number
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of languages, it only considers one fixed downstream model de-
sign. This is problematic, as past work has found that the choice
of downstream model can affect the rankings of SSL models
across downstream tasks [26, 27]. Also, the choice of down-
stream model designs can be affected by application require-
ments and users’ budgets, which further motivates benchmark-
ing with more flexible constraints.

In this paper, we present ML-SUPERB 2.0, which re-
visits ML-SUPERB’s original design.  Specifically, ML-
SUPERB 2.0 includes larger-scale downstream models, SSL
model fine-tuning (including partial fine-tuning strategies), ef-
ficient pre-trained model adaptation techniques (adapters [28]
and LoRA [29]), and supervised pre-trained models (Whis-
per [3] and OWSM 3.1 [30]). Also, we enrich ML-SUPERB’s
evaluation metrics to place greater focus on robustness across
languages and describe variation across datasets. All code and
data used to develop ML-SUPERB 2.0 are publicly available.!

2. Investigation Details

ML-SUPERB 2.0 considers a variety of architectural variations,
pre-training and fine-tuning approaches, described in the next
four sections. We then discuss the changes in the evaluation
metrics, which allow us to investigate performance differences
across languages and datasets.

2.1. Downstream Architectures

Past work has found ASR performance differences between
downstream architectures when comparing representations
from pre-trained SSL models [26, 31]. These findings moti-
vate a systematic comparison to better understand their impact
on ASR performance. Therefore, ML-SUPERB 2.0 considers
both CTC-based (CTC) and hybrid CTC/attention-based (CTC-
ATT) frameworks as adopted in [26, 32-34], and within each
framework, compares three architectures, namely the Trans-
former [35], Conformer [36], and E-Branchformer [37]. In pre-
liminary experiments, we compared these architectures to oth-
ers (e.g., bi-LSTMs, transducers), and these three were chosen
for their better performance or faster convergence.

2.2. Model Fine-Tuning

Fine-tuning is a common practice to adapt pre-trained SSL
models to a downstream task. While fine-tuning is effective,
it traditionally requires updating all model parameters, which
is costly. Partial fine-tuning is an alternative that strikes a
balance between training efficiency and performance [38, 39].
ML-SUPERB 2.0 includes fine-tuning for the CTC/CTC-ATT

'https://github.com/espnet/espnet/tree/
master/egs2/ml_superb/asrl
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frameworks, using either full fine-tuning or partial fine-tuning,
which focuses on the bottom, middle, or top layers of the mod-
els, while keeping the other layers fixed.

2.3. Efficient Model Adaptation

Efficient model adaptation approaches offer a parameter-
efficient alternative to full fine-tuning [28, 29, 40, 41]. In par-
ticular, the use of adapter models has been found to be com-
petitive with, and sometimes improve upon, full fine-tuning, es-
pecially in low-resource settings [39, 42—44]. These adapter
models are small neural modules added between layers of a pre-
trained model, which enable efficient fine-tuning by only learn-
ing the adapter module parameters. ML-SUPERB 2.0 evaluates
the performance of adapters using the CTC/CTC-ATT frame-
works. Specifically, we insert two adapter layers into each layer
of the pre-trained SSL models, leaving the rest of the model
unchanged (i.e., following the setup of [28]). ML-SUPERB 2.0
also evaluates Low-Rank Adaptation (LoRA). LoRA freezes the
pre-trained SSL models and injects low-dimensional layers to
be added to the outputs of the projection matrices within the
multi-head attention mechanism.

2.4. Supervised Pre-Trained Models

Scaling up supervised models has resulted in ASR perfor-
mance that is competitive with SSL models on several evalu-
ation datasets [3, 45]. ML-SUPERB 2.0 evaluates two recent
supervised models, namely Whisper and OWSM 3.1, to relax
the constraint of evaluating SSL models only. We use the CTC
framework to evaluate the encoder and the CTC-ATT frame-
work to evaluate both the encoder and decoder of these models.
Also, we evaluate the partial fine-tuning setup described in Sec-
tion 2.2 within the CTC framework and use it exclusively within
the CTC-ATT framework to limit the number of tunable param-
eters on the ML-SUPERB 2.0 dataset.

3. Experimental Design

ML-SUPERB 2.0 evaluates both multilingual ASR and LID.
The objective is to concurrently predict a language identifier
token and transcribe the spoken content. ML-SUPERB 2.0 does
not include ML-SUPERB’s monolingual ASR track.

3.1. General Setup

ML-SUPERB 2.0 updates ML-SUPERB’s dataset by correct-
ing annotation mistakes,” resulting in ~300 hours (85 hours for
validation and test sets) drawn from 142 languages across 15
datasets. Some languages occur in more than one dataset. A 1-
hour subset was drawn for each language-dataset pair, and the 1-
hour subsets were combined to obtain the training dataset. Sim-
ilarly, 10-minute subsets were drawn for each language-dataset
pair, and these serve as the development and test datasets. A
subset of 20 languages is reserved for few-shot (FS) learning
experiments, whereas the normal experiments refer to other 122
languages. In the FS setting, five randomly selected utterances
per language are used for training, while the 10-minute subsets
for those languages are used for development and testing.

All experiments are performed using ESPnet [46] with SSL
models support from S3PRL [14]. Among the SSL models

2We removed Highland Puebla Nahuatl from the Mexican endan-
gered languages corpus and Norwegian from the NST corpus because
of their mismatched annotations, and corrected the language label for
VoxPopuli Italian.
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available, we evaluate XLLS-R [1] and MMS [2] due to their su-
perior performance on ML-SUPERB.? As in ML-SUPERB, we
compute a weighted sum of the layers of the SSL models and
the encoder of the supervised models, and use it as input to the
downstream models. This is applied to each of our experiments.

In line with the spirit of ML-SUPERB, ML-SUPERB 2.0
limits the number of tunable parameters to 100 million for each
evaluated configuration. This constraint ensures that large-scale
models can be evaluated across a diverse range of computing
environments, improving the accessibility and practicality of
ML-SUPERB 2.0.

3.2. Downstream Architectures

When evaluating the different architectures within the CTC and
CTC-ATT frameworks, we base our hyperparameter selection
on prior research [32-34]. In particular, we keep the number
of parameters of the downstream models below 100 million and
tune only the learning rates. For the CTC framework, the layer
configurations are as follows: 24 layers for the Transformer-
based model, 14 for the Conformer-based model, and 12 for the
E-Branchformer-based model. For the CTC-ATT models’ en-
coders, we use 15 layers for the Transformer-based, 8 for the
Conformer-based, and 7 for the E-Branchformer-based models.
The Conformer-based model has a kernel size of 15, whereas
the E-Branchformer’s multi-layer perceptron uses a kernel size
of 31 and a dimension of 3072. Common configurations across
all models include an 8-head multi-head attention module with
512 hidden states and 2048 projection units, a batch size of
8 with gradient accumulation every four steps, a learning rate
chosen from the range [10’3, 10’4, 10~°] with 25,000 warm-
up steps, and a dropout rate of 0.1. For the decoders, a Trans-
former decoder with 8 layers is used for all models. For hybrid
training, the CTC and attention decoder weights are set to 0.3
and 0.7 respectively.

3.3. Model Fine-Tuning

ML-SUPERB 2.0 evaluates fine-tuning approaches using XLS-
R and MMS, which both have 24 layers. The partial fine-tuning
approach targets layers 1-6 (bottom), 9—-14 (middle), or 19-24
(top). This way, the number of updated parameters does not ex-
ceed 100 million. Besides partial fine-tuning, we also examine
full fine-tuning, which is provided only for comparison.

To explore the impact of different downstream training ob-
jectives, we evaluate both the CTC and CTC-ATT frameworks.
The CTC framework uses a 2-layer Transformer-encoder as in
ML-SUPERB [13]. For the CTC-ATT framework, we adopt a
small-scale downstream model from the configuration in [33] to
ensure that there are fewer than than 100 million tunable param-
eters. Specifically, the model consists of a 2-layer Transformer-
based encoder and a 4-layer Transformer-based decoder. Each
encoder block has an 8-head multi-head attention module with
256 hidden states and 1024 projection units, and each decoder
block contains a 4-head multi-head attention module with 256
hidden states and 2048 linear projection units. The other hyper-
parameters are similar to those used for the experiments com-
paring downstream architectures.

3.4. Efficient Model Adaptation

We evaluate the use of adapters and LoRA within both frame-
works and follow the setup described in Section 3.2. The con-

3We use model variants with 24 layers and ~300 million parameters.



figuration of the adapter models and LoRA follow previous
work [44]. Specifically, the adapter layers have a dimension of
64, and we set the LoRA rank and its constant scaling factor o
to 16. The LoRA module is used across all query and key vec-
tors within the multi-head attention module of the pre-trained
SSL models. To accommodate the additional parameters intro-
duced by the adaptation layers, we reduce the number of layers
in the encoder of the downstream models by one.

3.5. Supervised Pre-Trained Models

ML-SUPERB 2.0 evaluates the medium-sized variants of Whis-
per and OWSM 3.1, since these are closest in size to the
evaluated XLS-R and MMS models.* We include two ex-
perimental setups using these models, namely one using only
their pre-trained encoder within the CTC framework, and an-
other that evaluates both the pre-trained encoder and decoder
within the CTC-ATT framework. For the CTC framework,
ML-SUPERB 2.0 investigates the performance of both the
frozen pre-trained encoder using a Transformer-based down-
stream model and partial fine-tuning of the pre-trained encoder.
The experimental setup is similar to that for the CTC frame-
work described in Sections 3.2 and 3.3, with the exception of
fine-tuning only the top layers of the encoder (i.e., layers 19-
24) to limit the number of updated parameters to 100 million.
In the CTC-ATT framework, we do not add additional down-
stream models. The encoder remains frozen and we also use the
same settings (i.e., medium-sized model variant) as in the CTC
framework. Moreover, fine-tuning only targets the top layers of
the decoder (i.e., layers 19-24).

3.6. Evaluation

For each configuration of the benchmark, ML-SUPERB 2.0
computes the LID accuracy and character error rates (CER) on
the test dataset. Specifically, we first compute a per-language
CER as the macro-average of CERs across all of the (one or
more) datasets per language. We then compute the macro-
average of the per-language CERs and the standard deviation
(SD) of the language-specific CERs. We report these for both
the normal and few-shot (FS) settings. The LID accuracy scores
are only reported for the normal setting. Inspired by past work
on fairness in machine learning [47], we also report the worst-
performing language (WL), i.e. the one with the highest CER in
the normal setting, for each configuration, in an attempt to en-
courage research on methods that leave no language “behind”.
Lastly, we investigate the CER range between multiple datasets
in the same language, when available, to separate the effects of
domain or acoustic differences. We perform this analysis using
the best-performing model and configuration of the benchmark
given the CER in the normal setting. We describe the language
that shows the highest range in CER among its datasets.

4. Results and Discussion
4.1. Comparisons Between Models and Settings

Downstream Architectures: The results for different down-
stream architectures are presented in Table 1. The table shows
that there is no superior model across all evaluated configura-
tions. However, the E-Branchformer-based models outperform
their Transformer-based and Conformer-based counterparts in
almost all cases. This result aligns with trends noted in pre-

4The Whisper and OWSM 3.1 model variants have 769 and 1017
million parameters, respectively.
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Table 1: Results of the downstream architecture experiments,
showing the downstream model, number of model parameters
(tunable parameters in parentheses), LID accuracy (ACC), ag-
gregated CERs and few-shot CERs (FS) with standard devia-
tions, and CERs for the worst-performing language (WL). T.,
C., E-B. are abbreviations for Transformer, Conformer, and E-
Branchformer. + indicates the use of the CTC-ATT framework.
t refers to the original ML-SUPERB setting [13].

Models ‘ Method ‘ Param. (M) ‘ ACC ‘ CER
| | |  Normal FS WL
XLS-R | T.f 323.7(63) | 909 | 248+12.1 3444211 751
MMS | Tt 321.8( 63) | 90.3 | 247+123 310+186 676
T. 408.5(91.1) | 937 | 207+ 108 3334208  68.0
C. 4089 (91.5) | 823 | 229+ 128 334+205 869
«isr | EB 409.6(922) | 941 | 182+£10.6 323+209 695
T 416.0(98.6) | 93.6 | 192+119 33.6+21.0 762
cr 4163(989) | 837 | 23.9+19.1 348+226 1029
E-B | 417.1(99.7) | 947 | 1694107 323+21.1 638
T 406.6(91.1) | 93.6 | 2.0+ 112 31.7+193 674
C. 407.0(91.5) | 853 | 227+ 142 31.7£177 946
vms | E-B- 407.7(922) | 93.0 | 204+10.6 31.0+191 615
T* 414.1(98.6) | 943 | 188+ 11.8 31.9+190 73.1
[Ny 414.4(989) | 84.0 | 238+ 167 33.6+185 106.1
E-B | 4152(99.7) | 952 | 166+ 11.8 32.6+204  69.8
Table 2: Results of the fine-tuning experiments, showing the

method, number of model parameters (tunable parameters in
parentheses), LID accuracy (ACC), aggregated CERs and few-
shot CERs (FS) with standard deviations, and CERs for the
worst-performing language (WL). + indicate the use of the
CTC-ATT framework. t refers to the original ML-SUPERB set-
ting [13].

Models ‘ Method ‘ Param. (M) ‘ ACC ‘ CER
‘ ‘ ‘ ‘ Normal FS WL
XLSR | -f 323.7( 63) | 909 | 248+ 12.1 3444211 75.1
MMS A 321.8( 63) | 903 | 247+123 31.0+18.6 67.6
1-6 323.7(90.3) | 91.7 | 205+ 12.8 294 +178 74.0
9-14 323.7(90.3) | 93.0 | 185+ 128 31.3+213 73.2
19-24 323.7(90.3) | 914 | 2204+ 132 31.8+208 74.8
XLS-R 1-24 323.7(323.7) | 943 | 158+ 124 28.6+202 70.2
1-6* 3334(99.9) | 84.0 | 30.5+228 3544181 119.1
9-14* 3334(99.9) | 932 | 227+ 183 322+187 96.0
19-24* | 333.4( 99.9) | 89.8 | 25.6+19.5 322+184 1015
1-24* 333.4(3334) | 941 | 168+143 295+172 79.0
1-6 321.8( 90.8) | 93.8 | 188+ 12.0 31.0+£208 75.6
9-14 321.8( 90.8) | 956 | 155+103 27.7+16.7 62.7
19-24 321.8( 90.8) | 934 | 194+ 146 285+178 96.2
MMS 1-24 321.8(321.8) | 87.7 | 274+ 13.6 31.7+188 80.5
1-6* 331.4(100.5) | 93.6 | 254+ 164 359+19.6 91.2
9-14* 331.4(100.5) | 95.7 | 17.6 146 289+ 168 89.5
19-24* | 331.4(100.5) | 92.1 | 232+21.6 285+175 119.7
1-24% 331.4(331.4) | 955 | 159+ 150 30.2+20.7 81.6

vious work [34], confirming the strong performance of the E-
Branchformer model for LID and multilingual ASR.

When comparing the CTC and CTC-ATT frameworks, we
find that CTC performs slightly better in the few-shot setting,
while CTC-ATT (i.e, rows with a plus) is stronger in the normal
setting. The findings suggest that the CTC framework might
have better generalization capabilities when limited amounts
of data are available. Comparing these results to the shallow-
downstream baseline from ML-SUPERB (i.e., first two rows),
we find an improvement in LID and ASR performance in the
normal setting. However, the shallow-downstream baseline,
based on MMS, still performs competitively in the few-shot set-
ting. With roughly 6 million tunable parameters, the baseline’s
performance echos the insight from the 2023 ML-SUPERB
challenge [15]: scaling up models does not necessarily trans-
late to improved performance on multilingual speech tasks.

In sum, our results reinforce findings in past work [26] that



Table 3: Results of the efficient model adaptation experiments,
showing the method, number of model parameters (tunable
parameters in parentheses), LID accuracy (ACC), aggregated
CERs and few-shot CERs (FS) with standard deviations, and
CER:s for the worst-performing language (WL). + indicate the
use of the CTC-ATT framework. T refers to the original ML-
SUPERB setting [13].

Models ‘ Method ‘ Param. (M) ‘ ACC ‘ CER
‘ ‘ ‘ ‘ Normal FS WL
XLSR | - 3237( 63) | 909 | 248121 344+£21.1 75.1
MMS - 321.8( 6.3) | 903 | 247+123 310+ 18.6 67.6
LoRA 410.1( 92.7) | 944 | 203+107 332+212 63.0
XLS-R Adapter 411.7( 943) | 942 | 20.6 108 33.7+£208 67.3
LoRA™ 4158 ( 984) | 938 | 19.1 £11.9 33.7+£20.7 69.7
Adapter* | 417.4 (100.0) | 93.4 | 195+ 11.7 333 +£208 723
LoRA 4082 ( 92.7) | 935 | 21.34+£109 31.5+183 658
MMS Adapter 409.8( 943) | 91.7 | 245+11.0 355+189 70.6
LoRA™" 413.7(984) | 942 | 187115 32.6+200 68.0
Adapter* | 415.5(100.0) | 92.3 | 21.9+122 357+195 772

Table 4: Results of the supervised model experiments, show-

ing whether fine-tuning (FT) is performed, number of model
parameters (tunable parameters in parentheses), LID accuracy
(ACC), aggregated CERs and few-shot CERs (FS) with standard
deviations, and CERs for the worst-performing language (WL).
Asterisks indicate that only the encoder is used. T refers to the
original ML-SUPERB setting [13].

Models ‘ FT ‘ Param. (M) ‘ ACC ‘ CER
| | |  Normal FS WL
XLS-R | X' | 3237( 63) | 909 | 248+121 344+211 751
MMS XT| 3218( 63) | 903 | 247£123 310+186  67.6
Xe | 5158(9L1) | 917 | 21.0£125 274+133 829
Whisper | v* | 431.0(90.7) | 839 | 268+150 296+135 935
| v | 762.3(844) | 855 | 256194 350+175 1072
X< | 671.2(884) | 77.8 | 2784226 3L7+173 999
OWSM | v* | 612.1( 884) | 71.0 | 249+ 149 315+169 997
| v ]1016.9(100.8) | 80.5 | 40.0+41.8 40.0+249 3376

pre-trained SSL model rankings for ASR vary with the choice
of downstream architecture.

Model Fine-tuning: The model fine-tuning results are pre-
sented in Table 2. These results suggest that fine-tuning of
the middle layers (i.e., layers 9-14) is more effective across the
evaluated SSL models and training frameworks than fine-tuning
the bottom or top layers. While full fine-tuning mostly outper-
forms partial fine-tuning in the normal setting (it also has the
lowest mean CER on the worst-performing language in most
cases), this is not the case in the FS setting. For instance, full
fine-tuning of MMS leads to a higher mean CER compared to
fine-tuning the middle layers in the FS setting. This suggests
that the choice of fine-tuning strategy is crucial and warrants
further exploration within the context of the benchmark.
Efficient Model Adaptation: The efficient model adaptation
results, detailed in Table 3, also do not reveal a single best
model across the evaluated configurations. However, LoRA
outperforms adapters across SSL models in the normal set-
ting, indicating it is the preferred option within the setup of the
benchmark. When comparing frameworks, the results gener-
ally align with those from the downstream analysis (Table 1).
We find a difference when looking at the LID task, where XLS-
R with LoRA adaptation outperforms MMS within the CTC
framework, while MMS achieves better performance within the
CTC-ATT framework. This suggests that the choice of frame-
work and adaptation method can impact the performance, de-
pending on the task and the SSL model used.
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Supervised Pre-Trained Models: The experiments with su-
pervised pre-trained models are shown in Table 4. The results
indicate that using only the pre-trained encoder from supervised
models leads to better ASR performance than using models with
the original decoder. The performance differences might stem
from challenges in partial fine-tuning of the decoder, or from
the potential biases from large-scale supervised training in ma-
jor languages. Also, we find that supervised pre-trained models
do not consistently outperform the SSL-based models across the
evaluated configurations, which aligns with results reported in
previous work [45]. While this work does not conduct a deeper
analysis into the optimal utilization of supervised pre-trained
models, it highlights this area as a promising direction for fu-
ture research within the ML-SUPERB 2.0 benchmark.

4.2. Variation Across Languages and Datasets

To investigate the impact of different languages on the bench-
mark performance, we report a standard deviation for each re-
ported CER. We find large standard deviations in both the nor-
mal and few-shot settings, indicating that there is substantial
variation among the language-specific CERs. The CER of the
worst-performing language, which we found to be Lao or Min
Nan Chinese in most cases, also highlights the large impact of
language differences, since it is substantially higher than the
mean CER in the normal and few-shot settings.

When investigating performance differences between
datasets within a single language, we find large differences as
well. For the best-performing model and configuration of ML-
SUPERB 2.0, which involves fine-tuning the middle layers of
MMS within the CTC framework, the largest differences in
CER are among the datasets of Urdu. Specifically, we find that
the CER of Urdu from Common Voice [48] is 21.8%, whereas
it is 56.9% on data from Fleurs [49]. Note also that Urdu has
the largest performance difference between its datasets in many
of the other evaluated configurations.

These results motivate future work on creating truly mul-
tilingual model representations, which can transfer to a broad
range of languages and domains.

5. Conclusion

We introduced ML-SUPERB 2.0, an updated benchmark for
multilingual speech pre-trained models, which builds upon and
extends ML-SUPERB. By relaxing many of ML-SUPERB’s
constraints, ML-SUPERB 2.0 opens up new avenues for re-
search, offering a broader scope for exploration within the
benchmark’s setup. We investigated four primary extensions to
ML-SUPERB, namely the use of larger-scale downstream mod-
els, model fine-tuning, efficient model adaptation, and the in-
corporation of supervised pre-trained models. Furthermore, we
enhanced the evaluation metrics of ML-SUPERB to better track
robustness across languages, and described dataset variation us-
ing the benchmark’s best-performing model and configuration.

While each of the four extensions has shown improvements
over the models in the original ML-SUPERB, model fine-tuning
achieves the best performance on both LID and multilingual
ASR. However, the large deviations across languages and the
substantially higher CER for the worst-performing languages
suggest that tailored or language-specific approaches might be
essential to reduce performance variability and improve model
efficacy in multilingual speech processing.
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