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Abstract

We present a class of two-dimensional randomized plaquette models, where
the multi-spin interaction term, referred to as the plaquette term, is replaced by
a single-site spin term with a probability of 1 — p. By varying p, we observe
a ground state phase transition, or equivalently, a phase transition of the sym-
metry operator. We find that as we vary p, the symmetry operator changes from
being extensive to being localized in space. These models can be equivalently
understood as 141D randomized cellular automaton dynamics, allowing the
2D transition to be interpreted as a 141D dynamical absorbing phase trans-
ition. In this paper, our primary focus is on the plaquette term with three or
five-body interactions, where we explore the universality classes of the trans-
itions. Specifically, for the model with five-body interaction, we demonstrate
that it belongs to the same universality class as the measurement-induced
entanglement phase transition observed in 141D Clifford dynamics, as well
as the boundary entanglement transition of the 2D cluster state induced by
random bulk Pauli measurements. This work establishes a connection between
transitions in classical spin models, cellular automata, and hybrid random
circuits.

Keywords: plaquette models, cellular automaton,
measurement-induced phase transition

1. Introduction
Classical Ising spin models with multi-spin interaction have been extensively studied in phys-

ics [1-6]. These models represent a fundamental tool for understanding non-trivial physical
phenomena such as phase transitions, critical behaviors, and glassy dynamics. The symmetries
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associated with spin-flip operations play a crucial role in elucidating the physics of these spin
models.

The shape of the spin-flip symmetry varies among different Ising-type classical spin mod-
els. In the standard Ising model with two-body interactions, there exists a global spin-flip
symmetry. This symmetry arises because the energy remains invariant when all Ising spins in
the model are flipped simultaneously [1]. On the other end, models like the Ising gauge the-
ory [6], where the classical spins are located on the edges of the lattice, have local spin-flip
symmetries associated with each site. In this model, flipping spins connected to a specific site
does not alter the Hamiltonian. This form of symmetry is also known as local gauge symmetry.

In between the ‘global’ and ‘local’ lies the subsystem symmetry and fractal-shaped sym-
metry. The subsystem symmetry operates on low-dimensional subsystems within the entire
system. This symmetry is evident in models such as the 4-body plaquette Ising models [7—
9], where it is possible to flip a line or a plane of spins without altering the form of the
Hamiltonian. This notion of subsystem symmetry can be further generalized into fractal-
shaped symmetry [10], where the spin-flips form a fractal-shaped pattern. One famous example
is the Sierpinski triangular shape spin-flip symmetry in the Newman-Moore model [3].

Motivated by previous works, this work introduces a class of two dimensional g-body Ising
models. We replace these multi-spin interactions randomly with single-site terms. Specifically,
we focus on the cases of g =3 and g =35, and observe that in these random models, varying
the probability 1 — p of single-site terms induces a phase transition in the ground state. We
investigate this transition by analyzing the ground state degeneracy and the associated spin
flip symmetry operators, which transform between different ground states. We find that this
transition can be characterized by a structural change in the symmetry operator. When p > p©,
the symmetry operator becomes non-local and can spread over the entire system. In contrast,
when p < p°, the symmetry operator is localized within a finite region.

Furthermore, we demonstrate that these 2D random spin models can be effectively treated
as 141D randomized cellular automaton dynamics. Through this approach, we show that the
localization transition of the symmetry operator can now be mapped to the absorbing phase
transition. When p > p°, a symmetry operator starting from one boundary at time =1 can
reach the other boundary even after a long time evolution. Conversely, when p < p¢, this
boundary symmetry operator quickly vanishes into the bulk. We find that when g =3, this
cellular automaton dynamics corresponds to a special limit of the Domany-Kinzel cellular
automaton(DKCA) [11, 12], while the dynamics with g =35 is a second-order automaton [13]
with some random constraints. Interestingly, this ¢ =5 model has a notable connection with
the measurement-induced entanglement phase transition (MIPT).

The MIPT has been extensively studied in various hybrid random circuits [14-26]. These
studies reveal a generic phase transition from a highly entangled volume-law phase to a disen-
tangled area-law phase as the measurement strength or rate is varied. The universality class of
these transitions depends on the specific model. Due to the randomness in these circuits, under-
standing these criticalities poses a challenging problem. Numerically, the 1+ 1D hybrid random
Clifford circuit has been well studied due to its efficient simulation on classical computers.

Besides the 1 4 1D hybrid circuits, investigations on the boundary phase transition on holo-
graphic tensor networks [27], the random stabilizer tensor networks [28], as well as those
boundary criticalities induced by bulk measurements on 2D quantum states [23, 29, 30], offer
a fresh perspective on comprehending the entanglement phase transitions.

With the aforementioned context in mind, in this paper, we rigorously establishes the equi-
valence between the phase transition of the symmetry operator in the 2D classical random
spin model with g =5 and the boundary entanglement phase transition induced by bulk Pauli
measurements on 2D cluster states. This boundary transition can be effectively mapped to a
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1+1D hybrid Clifford circuit. Numerical investigations confirm that the transitions in all three
models belong to the same universality class. Notably, the dynamics of the symmetry operator
offers a novel perspective for understanding the phase transition in the 141D hybrid Clifford
circuit.

The subsequent sections of this paper are structured as follows. In section 2, we present the
fundamental concepts of random plaquette models (RPMs), including symmetries and quant-
ities designed to elucidate the structure of the symmetry group, such as symmetry entropy
and mutual information. Moving on to section 3, we examine the ground state phase trans-
itions in RPMs without boundary, characterizing these transitions in terms of the structure of
the symmetry group. In section 4.1, we discuss the boundary phase transition of the RPMs
defined on the cylinder, showing that it can be treated as the dynamical phase transition in
randomized cellular automata. This section further establishes the equivalence between Pauli
measurement on a stabilizer state and the plaquette models. Moreover, we argue that the phase
transition of the random Ising model with g =35 falls in the same universality class as the
boundary phase transition induced by bulk Pauli measurement on the 2D cluster state and the
1+1D measurement-induced phase transition in random Clifford circuits. Section 5 devotes
to the conclusion and discussion.

2. Preliminaries

We examine a class of g-spin Ising models defined on two-dimensional lattices:

Hlo]= —Zqu H Ois (1)

iemy

where o; € {—1, 1} represents an Ising spin operator at ith site and [ ], em, T describes a group
of g neighboring spins that are linked together, referred to as the m,th plaquette term. The
Hamiltonian sums over all these plaquette terms. We set the coupling constant uniformly
with J,,, = 1. It is worth noting that we could also consider a random coupling strength
with J,,, = £1, and the ground state physics explored in this paper would remain the same.
However, for simplicity, we focus on J,nq = 1 in this work. One well-known instance is the two-
dimensional Ising model, where each plaquette term is a two-body interaction, and its ground
state is twofold degenerate. This model also displays a finite-temperature phase transition.

In this work, we focus on two spin models with plaquette terms representing three-body
and five-body interactions, respectively, defined on a square lattice. At each site, we associate
athree/five-body interaction, as shown in figure 1(a). We then randomly replace some plaquette
terms with single spin terms, resulting in two RPMs.

The first model is the random triangular plaquette model (RTPM), where each plaquette
term is drawn from a binary distribution:

_J P3 q=A
wl Il {1_p3 = @)

i€my

where pj3 is the probability of the three-body term denoted as ‘g = A, and 1 — p3 is the prob-
ability of taking the single site o, denoted as ‘g = e, as illustrated in figure 1(a). This model
converges to the Newman-Moore model in the limit p3 — 1.
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Figure 1. Interaction pattern of the RPM models.

Another model we investigate is the random X plaquette model (RXPM), the random coup-
lings of which are taken from

ps q=-+
| IlUi — 3
{1—175 q==e @)

iemy

where ps is the probability of the five-body coupling, denoted as ‘¢ = +,” and 1 — ps is again
the probability of taking the single site o, denoted as ‘g = o, as illustrated in figure 1(b).

2.1 Ground state physics

The ground states of these models must satisfy all of the ], o; =1 defined in the
Hamiltonian. There is one trivial ground state where all spins o = 1. To find other non-trivial
ground states, we reformulate this problem in terms of a parity check problem. Through the

mapping o = (—1)* (with x € {0, 1}), each term is mapped to a parity check

> Pyix =0mod2 )

where Ppi=1 if site 7 is in the m,th plaugette, otherwise Ppy,i=0. The index m, /i runs from
1to Q/N, with Q being the number of plaquettes and N being the number of sites.
This problem can then be compactly rewritten as

PT =0 mod 2, &)

where P is a Q x N parity check matrix and in RTPM/RXPM models, the number of ones per
row can either be 1 or 3/5. The solution space is spanned by column vectors of matrix 7 that
is N x M. The matrix is written as

T=(¥1,%,...,.%). (6)

where each column X;— s in the T matrix represents an independent solution of the linear
system in equation (4), and M is the total number of independent solutions. Each ground state
X5 = Ziw:l ;X is labelled by a binary vector &@ = («, .. .,ay) and there are 2 such states.

The T matrix can be directly solved by the standard Gaussian elimination in the following
manner. By row reduction, properly relabeling the column indices and removing the rows that
are all zeros, we have

P=(I,|C), @
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where I, denotes the » x ridentity matrix and Cis ar x (N — r) binary matrix, with » = rank P.
It is then obvious that

C
T:(W), ®)

(1, C) <If4> =C+C=0mod?2, ©)

as

where M = N — r, and here and in the remaining parts we use rank to refer to the binary rank.
This algorithm can be realized in polynomial time. Similar problems arise in classical error-
correcting codes [31] and the XORSAT problem [32]. In classical error-correcting codes, the
T matrix describes the logic space of classical information, while in XORSAT, the solution
space T exhibits interesting phase transitions.

2.2. Spin-flip symmetries
We define the spin-flip symmetry gz € G as a tensor product of local spin-flips X;
N
ge=]]X" withx; =0,1 (10)
i=1
that does not change the energy given by equation (1):
Hlo]|=H|go], (11)
where the spin-flip X; flips the classical spin on site i as follows:
X,‘O’,‘ = —0j. (12)

Here again we use index-i to label the lattice sites.

If X, is a solution of equation (4), then gX,, is also a solution, since the spin-flip symmetry
g does not change the energy given by equation (1) by definition. Thus, we can associate each
X,, with a g,, € G by the spin-flips that connect the trivial ground state Xy, where o; = 1 for all
i, and a non-trivial solution X, of equation (4):

Xn = gz, X0, &z, €G. (13)

The spin-flip symmetry operator can now be written in a more specific form as
N i
gr, = [ [ X" (14)
i=1

where xfn is the ith entry of vector X,,.
The ground state properties are now encoded in the structure of the spin-flip symmetry
group. The total number of group elements is now

G| =2" (15)
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as there are a total of 2M ground states, and the number of independent generators is obtained
via

# of gen. =log|G| =M. (16)

Here and in the remaining parts of this work, we take log to be 2-based. Another important
aspect of G is that it is abelian, which indicates that for any subgroup G4 C G, we are able to
find a group quotient G/G,, the number of elements of which satisfies

log|G/Ga| =10g(|G|/|Gal)

(I7)
— log |G~ log|Gl.

and for any subregion D
log |G| —log|Gp| = rank T (18)

where 17 is the submatrix of 7" taking only entries associated with domain D. These charac-
teristics of group G will be extensively used in the following sections.

2.3. Characteristics of symmetry operators

In this section, we introduce several quantities to further characterize the ground state spin
configurations, or equivalently the structure of the symmetry operators of the RPMs.

Firstly, we define the configuration entropy as the log of the dimension of the full solution
space X of equation (4), which is equivalent to the rank of the matrix T

Scr = rank T =log|G]. (19)

This quantity also refers to the number of independent generators of the symmetry group G.
To capture the non-locality of the symmetry operator, we introduce the symmetry entropy
with respect to a subregion A:

symSy =log|G/ (G4 - Gy) |
= log|G| —log |G| —log |Gy (20)
=rank T +rank T3 —rank 7,

where G, /A is a subgroup of G containing only elements located inside domain A or its com-
plement A, and T, /A is submatrix of T containing entries associated only with sites in region

A/A. The symmetry entropy symS, thus counts the number of symmetry operators shared by
both A and A.

Similar to symSy, we can define another quantity to characterize the spatial structure of the
symmetry operator. This quantity is defined as follows:

symlg|c = log |GC/ (Gg . Gg) |
=log|Gc| — log|Gac| —log|Gac| + log |G| 20
=rank T4 +rank T —rank Typ

where we divide the system into three subsystems A, B and C with G¢ = G/Ge, GS =
Gac/Gc, and Gg = Gpc/Gc. Here, in the second line, we use equation (17), and in the third
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line, we use equation (18) together with the fact that rank T = log |G|. This quantity sym/,zc
computes the number of symmetry operators that have non-trivial support on both subsystems
A and B.

3. Phase transitions in RPMs

We place RTPM and RXPM models on the torus by implementing periodic boundary con-
ditions. We observe that both models exhibit phase transitions as the probabilities p3/ps are
varied, which are characterized by the structure of the symmetry operator. When p3 = ps =1,
both models possess fractal-shaped symmetry operators, with one example shown in figure 2.
As we depart from this fractal point, the symmetry operator becomes more extensive, occupy-
ing O(L?) number of sites, as present in figure 3. Further reduction of p3 /ps results in another
phase transition. Specifically, for the RTPM model, when p3 < p, the symmetry operator dis-
appears. In contrast, for the RXPM model, symmetry operators persist but only occupy a finite
number of sites. We proceed to analyze these phase transitions in both models quantitatively
using the quantities introduced in the previous section.

3.1 Random triangular plaquette model (RTPM)

We perform numerical computations to determine the configuration entropy of RTPM as a
function of p3. This quantity represents the logarithm of the ground state degeneracy or the
number of symmetry operators. We find that when p3 is large, the configuration entropy Scf
remains an O(1) constant and decreases to 0 as p3 decreases. The critical point p3 = 0.81 is
marked by crossing point of S¢; calculated in different L present in figure 4(a).

As shown in figure 4(b), around the critical point, we observe that S¢¢ for different system
sizes collapse onto a single function according to the following scaling form:

See~f (L7 (0= po)) 22)

where p§ ~ 0.81 and v3 ~ 1.21. Here we take the torus to be of size L x L* with the geometry
shown in figure 5(a). The parameter z = 1.697 is used to capture the anisotropy of RTPM in
these two directions. The physical meaning of z and the numerical method to calculate this
quantity will be further discussed in section 4.1. The successful collapse of the data implies
that in the limit L — oo,

const. > ps
Se ~ Py=pbs (23)
0 p3<ps

The ground state has finite degeneracy when p3 > p§ and has no degeneracy when p3 < p5.

Moreover, we explore the spatial structure of the symmetry operators by computing
symlyp|c. This quantity is defined in equation (21) and counts the number of symmetry oper-
ators which have non-trivial support on both A and B. Specifically, we take the geometry as
shown in figure 5(a), where A and B are two antipodal line-shaped domains. When p3 > p5,
all generators of the spin-flip symmetry are non-local, and there are O(1) of them, resulting
in symlypjc = St ~ O(1). Conversely, for p; < p§, there is no ground state degeneracy, and
hence no symmetry operator is shared by A and B, leading to syml,pc = 0.

Through the above analysis, we observe that Scr and symlp|c are identical in both phases.
This is confirmed by the result in figure 5(b), where we take the same data collapse for

7
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Figure 2. The phase diagram and snapshots of the symmetry operator of RTPM and
RXPM. Blue-colored sites host the spin-flip while the green background represents
zeros. The snapshots are taken at p3;5s = 1,0.9,0.5, and the spin-flip symmetry oper-
ator g is randomly drawn from the full symmetry group G.

1000 1000
500
— 100 ]
O — oy~ a2 O
SARL =
p3
109 =0.77 « 0.7
20 30 40 506070 20 30 40 506070
L L
(a) RTPM operator size (b) RXPM operator size

Figure 3. Typical operator size of the spin-flip symmetry operators on a L x L torus. The
operator size w(G) of group G is defined by the Hamming weight of the representation
vector Xy, of a randomly chosen g, € G, and (.. .) denotes the average of the interaction
patterns of RPM models.

symlyp|c. The non-local structure of the symmetry operator is also confirmed by the inde-
pendence of symS, as a function of the subsystem size, as demonstrated in figure 6(d).

3.2. Random X plaquette model (RXPM)

For RXPM model, which is isotropic in both the horizontal and vertical directions, we place
this model on an L x L square torus. As we tune ps from 1 to 0, a phase transition occurs,
as indicated by the configuration entropy density Scr/L? shown in figure 4(d), which suggests
that
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Figure 4. The data analysis for configuration entropy S¢¢ of RTPM defined on a L x L*
torus with z=1.69 and RXPM defined on a L x L torus.

o(1) Ps > s
Ser { O(L)  ps<pi’ (24)

When 0 < ps < p§, the extensive configuration entropy suggests exponential ground state
degeneracy in this phase. The phase transition is also captured by the scaling of the symmetry

entropy of a subregion A:

o(1) Ds > DS
Symsa {ouA) s <pl 25)

where /4 denotes the boundary length of subregion A, as present in figure 6(e). When p > ps,
the number of symmetry operators |G| ~ O(1), and the symmetry operator g € G is non-local,

9
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Figure 5. symlpc of strip domain A, B and C = AB.

contributing to a constant symmetry entropy of any subregion A. As for p < ps, the symmetry
operators become local and there are exponential number of them, resulting in an area-law

scaling of symS,. At criticality ps ~ 0.743, we observe that

L L
symSy /L ~ ¢log — sin (WLA) +b (26)
T

with ¢ ~ 3.6 x 1072 and b being some non-universal constant,as shown in figure 6.
To further investigate the structure of the symmetry operators, we compute the symmetry
mutual information sym/l,p of two disjoint antipodal regions shown in figure 5(a). As shown

in figure 5(d), syml,p collapses to

symiag ~ g (L'/"* (ps = 5) ) @7)
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¢=69x10"3 RXPM.

Figure 6. Data analysis of symmetry entropy symS, of subregion A.

with v5 = 1.3 and p§ ~ 0.743. This finding suggests that when ps < p§, symlsp approaches
zero in the limit L — oo, indicating that the symmetry operators are local.

From the above analysis, it is evident that although both the RTPM and RXPM models
exhibit phase transitions, they differ significantly, especially in the phase where p3/5 < p§ /5
and at criticality. In the following sections, we will deepen our understanding of the transitions
in both models by introducing various boundary conditions.

4. Boundary physics and cellular automaton dynamics

In the previous section, we examine the localization phase transition of bulk symmetry oper-
ators in RPMs placed on a torus. Here, we shift our focus to models placed on geometries
with boundaries. Specifically, we consider RPMs on cylinders with two boundaries, subject
to various boundary conditions. Our objective is to study the behavior of symmetry operators
originating from the boundary and how they can be used to characterize phase transitions. To
achieve this, we introduce a dynamical approach that maps this 2D model to 1D random cel-
lular automaton dynamics. Through this mapping, we demonstrate that the localization phase
transition can be equivalently described as a dynamical absorbing phase transition.

We consider two types of boundaries: fixed and free. In the fixed boundary, all boundary
spins o must be +1, while in the free boundary, no constraints are imposed on the boundary
spins. The free boundary condition effectively removes Ly constraints from the parity check

1
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Atop Abd

AbOt o = 1

(a) free boundaries (b) Half-free boundary

Figure 7. RPM defined on cylinder with two boundaries. Black vertical lines with the
arrows are glued together. Blue/Red line refers to free/fix boundary respectively. Along
the fixed boundary, spins are required to be o = +1.

Table 1. The critical exponents of RXPM/RTPM boundary criticality are presented.
Here, v refers to the boundary exponents 14 and vs. The boundary exponent vy is related
to the bulk exponent v3 (as extracted in the previous section) by the relation v5 = z X vs.

Model z 1P K v c A
RTPM 1.697 0.692 0.075 2.43 — —
RXPM 1 1.53 0.125 1.3 3.05 2

matrix P in equation (4), resulting in O(2%) spin-flip symmetries originating from the bound-
ary, where Ly is the length of the free boundary. We consider two combinations of boundary
conditions, as illustrated in figure 7: one with only one boundary free and the other fixed, and
another with both boundaries free.

We observed a phase transition of the boundary symmetry operator for both the RTPM
and RXPM. We demonstrate that the boundary phase transition in RTPM corresponds to the
dynamical phase transition of the DKCA [11, 12]. In contrast, the boundary phase transition in
RXPM belongs to the same universality class as the measurement-induced phase transition in
the 1 4 1D hybrid Clifford circuit [15, 21]. The critical exponents are summarized in table 1.

4.1. Spin-flip symmetry and cellular automaton dynamics

Prior studies have demonstrated that spin-flip symmetry operators of plaquette models can be
derived through specific one dimensional classical cellular automata [10, 33—35]. In this part,
we first revisit the relationship between deterministic cellular automata (DCA) and plaquette
models without randomness. Subsequently, we map the RTPM and RXPM models to two
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Figure 8. Update rules for RPMs.

distinct types of randomized cellular automata: the probabilistic cellular automaton (PCA)
and cellular automaton with random impurity (CAwRI).

4.1.1. Deterministic cellular automaton (DCA) dynamcis.  Previously, we have shown in
equation (14) that each spin-flip symmetry operator in G

o~ {a- Tt} @)

can be characterized by a binary vector X; with k running from 1 to |G|. Here (i, ) labels a site
in the 2D lattice. This can be alternatively understood as a spacetime configuration generated
by a cellular automaton at time 7 on lattice site i .

We first start with the Newman-Moore model with 3-body interaction. The constraint
imposed in the symmetry operator can be expressed as

i a0 =0, k. (29)

This can be treated as an automata updating rule x” — x7 !

T+1 _ 7 T
Xpi o = X T X i1 (30)

which is the rule-18 automata [36] that generates the Sierpinski triangle.
Following similar logic, for the X plaquette model, we have the automata updating rule

T+ _ T T T 7—1
Xei = Xpim1 X T X T (31)

In this dynamics, the value of x”*! is determined by the configurations of the two preceding
layers x™ and x” . This automaton is the reversible second-order automaton shown in [13].

4.1.2. Randomized cellular automata (RCA).  We now discuss the randomized cellular auto-
mata dynamics corresponding to RTPM and RXPM. Here we take the spatial/temporal direc-
tion shown in figure 8.
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4.1.2.1. RTPM and Probabilistic cellular automaton (PCA) dynamics. For RTPM, if we treat
the vertical direction as the time direction shown in figure 8(a), it can be mapped to a 141
dimensional classical cellular automata dynamics. The update rule is defined as

£(1]00) =0 | £(0]00) =1

£ (1[10) = p3 | p(0]10) =1 —p3 (32)
£ (1101) = p3 | p£(001) =1 —p3

p(111) =0 | p(0[11) =1

where u(xiTJrl |x7x], ;) denotes the probability of site i taking value T[“ at time 7 + 1 under

the condition that x] and x7, | takes some certain value at time 7. This update rule is the same
as the one in Wolfram rule 102 and is a special limit of the Domany-Kinzel model [11, 12,
37]. We notice that 14(0]|00) = 1, effectively inhibiting the emergence of the symmetry operator
originating from the bulk.

4.1.2.2. RXPM and cellular automaton with random impurity (CAwRI). ~ For RXPM, we again
take the vertical direction as the time direction shown in figure 8(b). When the random inter-
action takes the five-body form, the update rule is
T+1_7'_|_T +T _’_7'71 33
Xei =Xk T X1 TXi—1 X - (33)
The single-site term can be viewed as an impurity in the automaton dynamics, imposing a
constraint on the 7 matrix, i.e.

X =0, V(i,7) € Ay, (34)

where A; are these impurity sites. Furthermore, this constraint leads to the generation of a new
symmetry operator, starting at (i,7 + 1).

To find the symmetry operators satisfying the above constraint, we propose an algorithm
to compute all generators of the symmetry group. Here’s the approach: Assuming we have
already obtained the symmetry group G at t = 7 generated by g/. We now want to add one
more layer as shown in figure 9 and compute the generators g,:“ of G™!. For the five-body
interaction centered at r = 7, x,:jl follows the update rules defined in equation (33). However,
if we apply an on-site o, -, one requires xg;i =0.

We denote generators that satisfy this constraint as 2! = {g} } and those that fail to meet
this constraint as Q* = {g2}. For the generators that do not meet this constraint, we select the
first one g7 € 22 from the unsatisfied set and modify the remaining generators to

& =2g8 (35)

so that the associated x; ; = 0. We then remove g7 from the G™. Moreover, the on-site inter-
action induces a free spin at t = 7 + 1, introducing an extra spin flip symmetry X;. The group

generators for the 7 + 1 layer system are now
G = (g, & Xirp1)- (36)

Note that the generators constructed in this manner may not be independent. To resolve this,
at the end of the evolution, it is necessary to apply Gaussian elimination to eliminate any
redundancies. In this algorithm, the initial condition at r =1 is chosen as

14
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layer on-site term, denoted by the green dot on
the 7th layer, induces a single site spin-
flip X on the (7 + 1)th layer denoted as
the yellow dot.

Figure 9. The cellular automaton dynamics of the RXPM model.

G' = (Xi1,Xi2) (37

withi = 1,--- L. Here two layers of free spins are needed to evaluate the third layer.

4.2. Dynamical phase transitions and the boundary physics

Due to the existence of the boundary, the symmetries g € G are now categorized into two types:
those with nontrivial support on the boundary and those supporting trivially on the boundary.
We define symmetries g € G supporting trivially on the boundary as the bulk symmetry g*.
The bulk symmetries form a group G?* C G. In section 3, we have analyzed the transitions
in these bulk operators. In this section, we are interested in these operators with non-trivial
support on the boundary and we study the transitions of these operators. They form a group
and can be obtained as the quotient

G" = G/G™. (38)
The size of G can be obtained by
rank7?? = rankT — log |G™| = log|G"|, (39)

following the same logic as in equation (18). One may regard G** as the disconnected con-
tribution to the boundary. Here the submatrix 7%¢ is obtained by directly truncating the full
tableau 7 in equation (6), taking only entries associated with the boundary.

For the cylinders with free boundary condition on both ends, we are interested in these
boundary operators which can have non-trivial support on both boundaries. This form a sub-
group of G* and the number of symmetry generators of this group is now given by

sym/ = log |G™/ (GG |

top

= rank 7% + rank7?%, — rank 7%,

top

(40)
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where Tiop /1o Tepresents the submatrix of T taking only entries related to the top or bottom
boundaries. From the viewpoint of cellular automaton dynamics, the matrices Tiqp /bor are NOW
the initial/final state tableau 7' /. of the cellular automaton dynamics.

The definition of boundary symmetry G*? also extends to the cylinder with one fixed bound-
ary shown in figure 7(b), where the boundary symmetry operators only start on the free bound-
ary. These boundary symmetry operators can also be used to characterize the phase transition.
Analogous to the bulk symmetry operator, we now define the boundary symmetry entropy as

symS4 = log |Ghd/ (GZdG%d) ’

(41)

= rank7%¢ + rankT%‘l — rank 7%,
which quantifies the number of group generators that have both nontrivial support on the
boundary domain A and its boundary complement A. We can further define the boundary
mutual information as

syml5% = symSh? + symSh? — symSh% (42)

for two subsystems A and B on the boundary.

In what follows, we investigate the boundary phase transition using the symmetry measures
defined here. Through numerical analysis, we demonstrate a transition from an active phase
where boundary operators can penetrate deeply into the bulk and exhibit extensive support
there, to an absorbing phase where boundary operators become localized near the boundary,
as we vary the parameter p3,s in the RPMs. Remarkably, the critical point pé"/'s closely aligns
with the one identified in the bulk localization transition, suggesting that these transitions are
indeed identical.

4.2.1. Free boundaries on both sides. ~ We begin by initializing a symmetry operator at the
top boundary and analyze its evolution over time.

As we increase the probability of the single-site term, the fraction of zeros in this operator
becomes more prevalent. Eventually, when p < p€, the entire operator rapidly decays to zero
within the bulk of the system, and becomes localized near the top boundary. We refer to this
as the absorbing phase.

In both models, we observe that for p > p€, the operators can rapidly spread throughout the
entire system due to the update rule determined by the three-body or five-body interaction. The
occasional single-site term, which enforces the corresponding site to remain zero, is unable to
hinder the operator’s growth. Even after a prolonged time evolution, the operator can reach the
bottom boundary. We refer to this as the active phase.

From this perspective, it is natural to introduce sym/, as defined in equation (40), between
the top and bottom boundaries to characterize this absorbing phase transition. Our numerical
findings indicate that while both models undergo phase transitions, they belong to distinct
universality classes.

4.2.1.1. RTPM effective dynamical transition. ~ The scaling of sym/ with the effective time L,
and boundary length L captures different phases of the RTPM with free boundary conditions
on both ends as shown in figure 10. As shown in figure 11(a),

C
syml ~ P3 >Pi
Lexp(—dL:) p3<p§
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Figure 10. RTPM with free boundaries (dark blue dots) on top and bottom layers. The

bulk three-body couplings are illustrated as green triangles and the single-site terms are
illustrated as green dots.
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Figure 11. sym/ between top and bottom boundaries.

where d > 0 is some non-universal number, and p§ = 0.81. When p3 > p$, the update rule cor-
responding to the three-body interaction dominates. In this regime, symmetry operators origin-
ating from one boundary can propagate to the other boundary even when L, >> L (figure 12(a)).
This behavior leads to a plateau observed in figure 11(a). On the other hand, for p3 < p§, the
frequent single-site forces the symmetry operator to take trivial values and therefore the oper-
ator starting from the boundary quickly vanishes as shown in figure 12(c). This results in an
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(b) ps =0.81 (c) ps=0.75

Figure 12. Space-time configuration of the RTPM-PCA evolution. Time flows from top
to bottom. Each blue site hosts a spin-flip operator. Gray sites label the support of the
full boundary group G*“.

exponential decay in sym/, and thus the two boundaries are not connected by the boundary
symmetry operators when L, > L.

The critical behavior of sym/ is presented in figure 11(b), where sym/ collapses to a uni-
versal scaling function:

syml ~ h(L,/L%), (44)
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Figure 13. RXPM with free boundaries (dark blue dots) on top and bottom layers. The
bulk five-body interactions are illustrated as green squares and the single-site terms are
illustrated as green dots.

where the scaling function takes the form
Wor': e <1
h(0,)~<3 T T 45
(6-) {exp(hIZWGT) 0r>1 @)

with dynamical exponent z = 1.697, early time exponent A’ = 0.692, and late time exponent
h' = 0.075. The dynamical exponent 7 is very close to the one computed in [38].

4.2.1.2. RXPM effective dynamical transition. =~ For RXPM with free boundaries shown in
figure 13, when the five-body coupling terms dominate, the symmetries are non-local, and
the top and bottom boundaries are connected by non-trivial symmetry generators as shown in
figure 14(a). In contrast, in the area-law phase, the symmetry operators are local, resulting in
an exponential decay in sym/. The scaling of mutual information sym/ between the top and
bottom boundary is again

L D5 > p5
m/ ~ - 46
sy {Lexp(—dLT) s < ps (46)

with d > 0 being some non-universal exponent. As shown in figure 15, at criticality, sym/
collapse to a universal scaling function

syml ~ h(L,/L), 47)
and the critical scaling function takes the form

Tho9-1 0, <1

h(0r) ~ {exp (—=h'2mb;) 6,>1 (48)
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Figure 14. Space-time configuration of the RXPM-CAwRI evolution. Time flows from
top to bottom. Blue sites host spin-flip symmtries associated with the boundary, the
orange sites carry spin-flips related to the bulk, and the grey sites support the full sym-
metry group.

Here, we have early time exponent 4° = 1.53, and late time exponent 4! = 0.125.

4.2.2. One boundary free and the other fixed. =~ The boundary phase transition is also cap-
tured by the boundary symmetry operator of a symmetry with half-free boundary condition,
as shown in figure 7(b). In this case, the boundary symmetry only relates to the free boundary.

20
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Figure 15. Symmetry mutual information between the top boundary and the bottom
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Figure 16. RTPM with free boundary on top (dark blue dots) and fixed boundary on
bottom (red dots). The bulk three-body interactions are illustrated as green triangles and
the single-site terms are illustrated as green dots.

4.2.2.1. RTPM boundary transition. ~ We investigate the boundary phase transitions in RTPM
with half-free boundary as shown in figure 16. The symmetry operators are evaluated via the
randomized updating rule presented in equation (32). The fixed boundary condition is realized
by imposing constraints on the state-vectors in the following manner.

We encode the initial conditions of the RTPM automaton into a L x L matrix 7°, where each
row vector in matrix T° represents an initial condition. For simplicity, one can take 7° = I,
the identity matrix, where each initial condition only contains one non-trivial entry. Evolving
70 L, times, we obtain the final state matrix 77, where each row vector is related to the initial
state vector. The full boundary tableau

™ = (1| T7) (49)
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comprises two parts, the initial state tableau T and the final state tableau 7.

The fixed boundary condition requires that the generator must satisfy x” = 0 at the final
time. When p3 < pg’d, if L. is large, the generator rapidly decays to zero in the bulk, automat-
ically satisfying 77 = 0. However, when p3 > p’3’d, the symmetry operator starting from one
boundary can reach the other boundary even after the long time evolution. To identify the sub-
space of symmetry operators for which x™ = 0, we use the standard row reduction techniques.
After the row reduction, the state matrix takes the form

(0 O
7hd — <Q1 ) > 7 (50)

This phase transition is reflected in the scaling of syml,p and entropy symsS, of the boundary
symmetries associated with the free boundary. We find that the boundary symmetry sym/,p of
two antipodal boundary domains A, B with Ly = Ly = L/8 collapses to a universal function

sym ~ g ((ps = p5) L'/ 51)

with p§ ~ 0.81 and v ~ 2.43, as shown in figure 17(a). This collapse indicates a boundary
phase transition as we tune the coupling parameter p3. Here the exponent ] is related to v3 ~
1.21 obtained previously in the following manner

1/3’ =zX 13 (52)

with z=1.697 being the effective dynamical exponent extracted in the previous section.
When p3 > pS5, we have sym]fd9 > 0, indicating that the boundary is long-range correlated
and the boundary symmetry operators are non-local. For p3 < pé’d, symIZ‘é = 0, meaning that
the boundary symmetry operators are local and the boundary is short-range correlated. The
boundary transition is further reflected in the scaling of half-boundary symmetry entropy

L P3 > P
SymS7y, ~ 50 P3 =D5 (53)
exp(—bL) p3 <p5

with so ~ 3 and a,b > 0, as shown in figure 17(c). For p3 > p$, the non-local symmetry oper-
ators contribute to the power-law scaling of the symmetry entropy, while at p3 < p, the sym-
metry entropy is exponentially suppressed by system size L. In the active phase where p3 > p5?,
symSlL"j2 exhibits a sublinear power-law scaling with a ~ 0.5. This finding is consistent with
the scaling behavior of the bulk symmetry operators on the cylinder geometry, indicating that
while they are non-local, they are not extensive. Snapshots of symmetry operators for different
values of p3 are shown in figure 18. This is different from the scaling behavior on the torus
geometry as shown in figure 3(b) and the physics of such a difference is left for the future
work.

4.2.2.2. RPXM boundary transition. ~ For RXPM, the free boundary is selected as shown in
figure 19. Different from that of RTPM, it contains two layers of spins. Again, we fix the last
layer of boundary spins to be 0 = +1. Figure 20 presents snapshots of symmetry operators
corresponding to various values of ps.

We observed a boundary phase transition as we tune the bulk coupling parameter ps, as
present in figure 21(b). When the five-body bulk couplings dominate, ps > p¢, the symmetries
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Figure 17. Boundary phase transition of RTPM.

23



J. Phys. A: Math. Theor. 57 (2024) 435003 H Liu and X Chen

(a) p3 =09 (b) p3=0.81 (c) p3=0.75

Figure 18. Space-time configuration of the RTPM-PCA evolution. Time flows from top
to bottom. The bottom boundary is fixed, labeled by red. Each blue site hosts a spin-flip
operator, and the initial condition is a single spin-flip X reside in the middle. Grey sites
label the support of the full boundary group G**.

in the system are extensive and non-local, resulting in a volume law scaling in the boundary
symmetry entropy symSZd/2 ~ L. On the other hand, when ps < p§, the symmetry operator
breaks into small clusters with finite length, resulting in an area-law scaling of the boundary
symmetry entropy symSZ‘;z ~0(1).
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Figure 19. RXPM with free boundary on top (dark blue dots) and fixed boundary on
bottom. The bulk five-body interactions are illustrated as green squares and the single-
site terms are illustrated as green dots.

The critical point is further characterized by the peak of symSZ‘j2 as we tune the coupling

parameter ps. As shown in figure 22(b), symSﬁ‘}2 collapses to a universal function

symlyh ~ h ((ps —ps)LY ”5) (54)

with p§ = 0.743 and v5s = 1.3.
At criticality ps = p¢ = 0.743, the symmetry entropy scales logarithmically

L
symSZd ~ clogsin <7TLA> , (55)
with ¢ ~ 3.03 as shown in figure 23(a). The symmetry mutual information sym/%% scales as
SYmIyh ~ X (56)

with A =2, and yp being the cross-ratio

_ X12X34
X13X24

L
XAB , withx; = p sin <%|xi —xj|) , (57)

where x;—1 234 are endpoints of non-overlapping subregions A = [x1,x;] and B = [x3,x4]
present in figure 22(a).
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Figure 20. Space-time configuration of the RXPM-CAwRI evolution. Time flows from
top to bottom. Blue sites host spin-flip symmetries associated with the boundary, the

orange sites carry spin-flips related to the bulk, and the grey sites support the full sym-
metry group.

4.3. Plaquette models, stabilizer state measurement, and boundary entanglement structure

This part discusses the connection between RXPM, stabilizer state measurement, and the
measurement-induced phase transition in hybrid Clifford dynamics. We show that Pauli meas-
urements on a stabilizer state can be understood in terms of the Plaquette models, and its spin-
flip symmetry characterizes the entanglement structure induced by the measurement. We use
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Figure 22. RXPM sym/5% data collapse.

the cluster state defined on the square lattice as an example to illustrate this connection further.
As previously shown in references [23, 30], measuring the bulk qubits on the square lattice
cluster state will induce an interesting entanglement structure on the boundary. In this section,
we further show that the boundary spin-flip symmetry group of RXPM can fully characterize

this entanglement structure.
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Figure 23. RXPM boundary criticality data (p5 = 0.743).

4.3.1. Plaquette models and measuring the stabilizer state. ~ The stabilizer state is a special
quantum state where all information is conveniently stored in a stabilizer tableau. It plays
a critical role in simulating Clifford circuits, and an efficient classical algorithm for this is
outlined in [39].

A stabilizer state |¢)s adheres to the condition:

|9)s =gld)s g€ S CPy. (58)

Here, g is the group element of the stabilizer group S, and Py denotes the N-qubit Pauli group.
In the following, we represent such group by its generators {g;_; v}

S:<g1ag27'~-7gN> (59)

where (...) denotes the group generated by ...
Performing a Pauli measurement on such a quantum state induces a change in the stabilizer
group S — S’. To elucidate this change, we introduce the commutator matrix P:

0:g;=(—1)"g0; (60)

where O; = X;,Y;,Z; is a Pauli support on site-i serving as the measurement observable, and
gj is the jth generator of the pre-measurement stabilizer group S. This P matrix encapsulates
the commutation relation between the pre-measurement stabilizer group and the measurement
observable. The post-measurement stabilizer group S’ comprises combinations of generat-
ors from the pre-measurement stabilizer group S and the measurement observables {O;}.
Formally:

o
S'= <O,~, g =]]g" gm>- (61)

J

as the post-measurement quantum state collapse to one of the eigenstates of the observable
O;. Here x} = 0,1 characterizes the stabilizer generators induced by the measurement and g,
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denotes pre-measurement stabilizers that commute with all the observables, [g,,, 0;] = 0 for all
i,m. From here and in the remaining part of this section, we use / to label the post-measurement
stabilizer group and its elements.

To maintain the abelian nature of the stabilizer group, it is imperative that

[0i,81] =0, (62)
which can be further written as

1= (-1)="] o/ =0, (©3)
signifying that

> Py =0mod2 Vik. (64)
J

This equation is the same as equation (4), which is used to capture the ground state physics
of the plaquette models. Taking advantage of this equation, we may directly write down the
corresponding plaquette model Hamiltonian

Hlo]==Y "1, I] o (65)
q

iiPu=1

where the product [ [, , _, is over non-trivial entries i of the gth row of the matrix P. The Pauli
Lai=

measurement process is thus related to the Plaquette models. Each of the post-measurement

stabilizer

X
gi=]]g" (66)
J

is thus related to the spin-flip symmetry operator in the plaquette model via the vector X; =

(xh,. ).

4.3.2. Bulk measurement induced boundary entanglement. =~ We now consider a specific
setup where a d-dimensional quantum stabilizer state is obtained via measuring the bulk of
a d + 1-dimensional stabilizer state. An example for d =1 is presented in figure 24. This type
of system has been previously studied in [23, 30, 40, 41]. These systems are also referred to
as measurement-based quantum computers (MBQC) [42, 43], as the entanglement structure
of the post-measurement state is controlled by the bulk measurement direction. We now show
that the entanglement structure of such a quantum system can be understood via the structure
of the boundary spin-flip group of the corresponding plaquette models.

As shown in equation (61), the post-measurement stabilizer group consists of three parts: the
measurement observables {O; }, the measurement-induced stabilizer g;. In the MBQC setup,
if we further assume that the bulk measurements are single-site Paulis O; = X;, Y;,Z;, and no
stabilizer lives solely on the boundary, the corresponding stabilizer group is then

5'=(gl,01). ©n

The non-trivial entanglement structure of the unmeasured boundary is thus captured by g/’s.
The {g/} are naturally separated into two types as present in figure 24: (1) the bulk stabilizers,
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Figure 24. Measuring the bulk of a 2D quantum state on a 2D manifold results in a 1D
quantum state living on the manifold boundary. The measurement-induced stabilizers

are separated into two types: 1. Bulk stabilizers g,él. 2. Boundary stabilizers g,iz. The
entanglement structure of the boundary state is captured by the boundary stabilizers

12
8 -

those support trivially on the boundary labeled by {g,ﬁl} and (2) the boundary stabilizers,

those have non-trivial support on the boundary labeled by {g,ﬁ2}. Obviously, the first type can
be directly decomposed into the bulk measurement observables

g =]]o- (68)
The post-measurement stabilizer group is then

S'=(g’,0)), (69)
an;l non-trivial boundary entanglement structure is then fully captured by the boundary part
g

Formally, the bulk stabilizers form a subgroup of the full stabilizer group S'" = { g,ﬁl }c S,
and the boundary part S = {g,f} is the group quotient

s =s/8". (70)

Taking advantage of the relation between the post-measurement stabilizers and the spin-flip
symmetry obtained in equation (66), and the bulk-boundary correspondence of symmetries
given in equation (38)

de — G / Gbk
it is now obvious that the bulk stabilizers S| correspond to the bulk spin-flip symmetry G%*

and the boundary stabilizers S then correspond to the boundary spin-flip symmetry G**.
Recall that the entanglement entropy of the stabilizer state [44]

1
Sa = Elog‘SAﬂ (71)
where log |S,7| counts the rank group quotient

where S, /i C S are the subgroup of stabilizers that operate only on domain A /A.
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>

(a) 2D domain: domain A, Ay is enclosed (b) 1D boundary domain: A, Ay is
by red/green line enclosed by the red/green dashed line

Figure 25. Relation between domain A and Ag.

As shown in equation (65), the stabilizer group S’ and the plaquette model spin-flip group
G are related via the binary vector set {x;}. As by assumption g;’s are local operators, the
entanglement entropy of the boundary state |1)) gy, is then related to the boundary symmetry
entropy sym up to an area-law deviation in the following manner

1
Sy = 5symsﬁ;d +0(Ly), (73)

where 14 is the size of the boundary of domain A. For a 1D domain, its boundary I4 ~ 1. This
deviation O(l4) originates from the difference in the local subgroup size log|G4| and log|S/|,
which can be directly calculated as

4 =log|Ga| —log|Sj|
= log|Ga| —log|Ga,|

= rank Tz~ —rank T (74)
<rank Ty, < min{|G|, 14}
Sl

where in the second line Gy, is isomorphic to the local stabilizer group S, as generators g;’s
are local we have Ag C A and |A\Ag| ~ l4, and the geometry of domain A and Ay is presented
in figure 25. In the third line, we used the fact that

log|Gp| = rank T — rank T3 (75)

for any domain D with N being the total number of sites. In the fourth line, we used the rank
inequality that for any matrices A and B

rank A + rank B > rank [A | B], (76)
and in the fifth line for any a x b matrix A

rank A < min{a,b}. 7
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8
|

Figure 26. Y measurement induces 5 non-zero entries in the corresponding row of the
matrix P, corresponding to site i and its four neighboring sites (highlighted in Green).
Z measurement only induces one non-zero entry result in the corresponding row of the
matrix P (green dot enclosed by the dashed line).

4.3.3. RXPM, MBQC boundary, and Clifford MIPT.  Building upon the mappings described
above, we are now ready to show the equivalence between the boundary symmetry phase
transition observed in RXPM and the measurement-induced boundary phase transition on a
two-dimensional cluster state.

For the square lattice graph state, the stabilizer generators are given by

g =X ]2 (78)

JEN;

where N; is the set of four neighboring sites of site i. We measure all of the bulk qubits in ¥
or Z directions. As present in figure 26, the single site Y measurement anti-commutes with
five g; and corresponds to the five-body interaction. On the other hand, the Z measurement
corresponds to the single-site term, as this single Z only anti-commutes with one g;.

The generators of the post-measurement stabilizer state correspond to the boundary sym-
metry operators of RXPM. In addition, the entanglement entropy of the boundary stabilizer
state is equivalent to half of the boundary symmetry entropy symS4? with respect to subregion
A up to a finite constant.

The critical exponents extracted in the RXPM model (this work), the Y/Z bulk
measurement-induced boundary criticality on a 2D square lattice cluster state [30], and the
measurement-induced phase transition in random Clifford circuits [15, 18, 21, 26] are shown
in table 2. We propose that these criticalities belong to the same universality class, supported
by the proximity of exponents. Here, ¢ and 4° for RXPM and Clifford MIPT/MBQC (square)
differ by a prefactor 2. The reason lies in the definition of stabilizer entanglement entropy and
symmetry entropy shown in equation (73).
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Table 2. Critical exponents of RXPM boundary, random Y/Z measurement MBQC on
the square-lattice boundary [30] and Clifford MIPT [15, 18, 21, 26]. Here, we drop the
subscript of vs for the RXPM model.

Model z " ! v c A
RXPM 1 1.53 0.125 1.3 3.05 2
MBQC(Square) 1 — — 1.3 1.6 2
Cliff. MIPT 1 0.76 0.125 1.3 1.6 2

5. Conclusion and discussion

In this work, we introduce a class of classical spin models with g-spin Ising interactions
defined on the two-dimensional lattice. These interactions are randomly replaced with single-
site terms with probability 1 — p, leading to what we term RPMs. We investigate the ground
state phase transitions of these models by analyzing the behavior of the spin-flip symmetry
operators. Specifically, we concentrate on two instances: the RTPM with ¢ =3 and the ran-
dom X-plaquette model (RXPM) with ¢ = 5. Our analysis reveals that for p > p., the symmetry
operators become non-local, spanning the entire lattice. Conversely, for p < p., the symmetry
operator localizes within a finite region. To characterize these localization phase transitions,
we develop various tools tailored to the behavior of these symmetry operators.

We also present a dynamical perspective to elucidate the phase transitions in the localization
of the symmetry operator. We demonstrate that the symmetry operator, when initiated from
a one-dimensional boundary, evolves according to an update rule determined by the specific
interaction form. By employing this approach, we construct classical 1+1D random cellu-
lar automata and illustrate that the propagation of the symmetry operators, starting from one
boundary and moving into the bulk, can undergo an absorbing phase transition. In particu-
lar, we establish that the RTPM corresponds to a special limit of the Domany-Kinzel model.
Regarding the RXPM, we determine that it possesses a dynamical exponent z = 1 at criticality
and exhibits an intriguing connection with the recently discovered MIPT.

The connection between them is twofold. First, our model offers a classical counterpart
to the MIPT, akin to other proposals discussed in [45-49]. Here, the single-site constraint
plays the role of the measurement in our model. Second, we establish an equivalence between
the boundary symmetry phase transition of the RXPM and the boundary entanglement phase
transitions induced by the bulk measurement in the cluster state defined on the square lattice.
The latter can be effectively treated as the entanglement phase transition in a 141D hybrid
Clifford circuit [15], as previously demonstrated in [30]. By numerically comparing the critical
exponents in these three transitions, we demonstrate that the phase transitions in these three
models belong to the same universality class, as presented in table 2.

We conclude this work by highlighting several promising directions for further research.
Firstly, the physics explored in this paper can be generalized to other 2D models with multi-
spin interactions or even some non-local spin models. It would be interesting to explore the
universality classes of potential phase transitions in these spin models.

Secondly, the symmetry operator defined in our classical spin model is equivalent to the
logical operator in classical LDPC codes [31, 50]. Exploring our transition from the perspect-
ive of classical error correction and even promoting it to the quantum version could be an
interesting direction.

Thirdly, our model offers a new theoretical framework for understanding the MIPT in
hybrid Clifford circuits. Generalizing our approach to more complex classical spin models
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could deepen our understanding of the MIPT in Haar random circuits, which is currently only
comprehended in specific limits or at a mean-field level [19, 21, 51].

Fourthly, it is known that the Newman-Moore model with three-body interaction or, more
generically, the plaquette models do not have a thermal phase transition but do exhibit inter-
esting glassy dynamics at finite temperature [3, 52-56]. Substitute the multi-body interac-
tion terms with single-site terms would suppress the glassy behavior at finite temperatures.
Therefore, it would be interesting to explore the finite temperature physics of the models dis-
cussed in this paper and their potential glass phase transitions.

Lastly, our model bears some resemblance to the XOR-SAT problem, where two transitions
have been identified by varying the number of random non-local constraints [57, 58]. Our
model appears to be a local version of XOR-SAT, and exploring the connections between
these two models could be interesting.
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