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Abstract—In this paper, we derive a theoretical upper bound
on the generalization error of reservoir computing (RC), a special
category of recurrent neural networks (RNNs). The specific RC
implementation considered in this paper is the echo state network
(ESN), and an upper bound on its generalization error is derived
via the empirical Rademacher complexity (ERC) approach.
While recent work in deriving risk bounds for RC frameworks
makes use of a non-standard ERC measure and a direct applica-
tion of its definition, our work uses the standard ERC measure
and tools allowing fair comparison with conventional RNNs. The
derived result shows that the generalization error bound obtained
for ESNs is tighter than the existing bound for vanilla RNNs,
suggesting easier generalization for ESNs. With the ESN applied
to symbol detection in MIMO-OFDM (Multiple Input Multiple
Output-Orthogonal Frequency Division Multiplexing) systems,
we show how the derived generalization error bound can guide
underlying system design. Specifically, the derived bound together
with the empirically characterized training loss is utilized to
identify the optimum reservoir size in neurons for the ESN-based
symbol detector. Finally, we corroborate our theoretical findings
with results from simulations that employ 3GPP standards-
compliant wireless channels, signifying the practical relevance
of our work.

Index Terms— Reservoir computing, echo state network, deep
neural network, generalization error, receive processing, MIMO-
OFDM, symbol detection.

I. INTRODUCTION

EEP Neural Networks (DNNs) [2] have delivered

remarkable empirical performance on multi-dimensional
grid-type datasets. Examples of these include image recogni-
tion [3], speech recognition [4] and language translation [5],
to name a few. More recently, in the context of wireless
networks, artificial intelligence (Al)-enabled cellular networks
have been envisioned as the critical path towards realizing
Beyond-5G networks [6]. In current 4G/5G systems, symbol
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detection methods are based on modeling the underlying
wireless link and applying model-based signal processing
techniques [7]. However, due to the dynamic nature of the
underlying wireless channels (e.g. mmWave and Terahertz
channels for Beyond-5G), it becomes extremely difficult to
analytically model such behavior in a tractable and accurate
manner. Furthermore, Beyond-5G (B5G) systems will be
required to perform high speed transmit symbol detection at
the receiver while supporting user mobility upto 500 km/h.
In such scenarios, learning-based approaches to symbol detec-
tion, particularly those using neural networks can offer a
promising alternative, in contrast with traditional model-based
approaches which typically rely on accurate Channel State
Information (CSI) which is not possible to obtain in the low
Signal to Noise Ratio (SNR) regime. Additionally, end-to-end
system non-linearities, e.g. due to Power Amplifiers in the
transmitter or due to finite quantization resolution of analog-
to-digital converters in the receiver can make traditional sig-
nal processing approaches to symbol detection challenging.
Offline training driven DNN strategies such as DetNet [8],
MMNet [9] have shown promising symbol detection perfor-
mance in wireless channels, in some cases outperforming con-
ventional model-based methods [9]. Since temporal correlation
is inherent in wireless communications and recurrent neural
networks (RNNs) are universal approximators of dynamic sys-
tems under fairly mild and general assumptions [10], we focus
on the family of RNNs for symbol detection.

In this paper, we theoretically analyze reservoir computing
(RC) [11], which is a special paradigm within the RNN family.
RC avoids the back-propagation through time (BPTT)-incurred
issue of vanishing and exploding gradients [12], which is
encountered while training conventional RNNs. Furthermore,
the training of RC is only conducted on the output layer of the
particular RC network while its input layers and hidden layers
are fixed after being initialized from a certain pre-determined
distribution. Thus, the amount of training needed can be signif-
icantly reduced, leading to improved sample complexity. This
makes the RC framework a promising candidate for wireless
networks where online training data is extremely limited and
physical layer operations are highly latency-sensitive, making
conventional RNNs that have a prohibitively high training
complexity almost unusable. Furthermore, RC-based receivers
have been shown to outperform state-of-the-art model-based
strategies as well as other NN-based receive processing in a
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variety of realistic environments, making it a promising NN-
based technique for symbol detection in Beyond-5G (B5G)
networks.

A. Our Contributions

With the growing prevalence of RC-based wireless sym-
bol detectors, developing a principled understanding of the
effectiveness of these approaches is critical in closing the
existing knowledge gap in the theoretical insights into neural
networks and RC in particular. Gaining a fundamental and
clear understanding into the generalization performance of
ESN-based detector architectures is key in designing such
systems for symbol detection where the training data in the
form of pilots is extremely limited. This work derives a gener-
alization error bound for the single-layer ESN using tools from
statistical learning theory and adapts it to develop a theory-
guided procedure for optimum reservoir design in single-layer
ESN-based detectors. This work, along with our most recent
work in [13] which assigns model interpretability to single-
neuron reservoir ESNs, contributes to the growing body of
knowledge that will be crucial in developing “designable”
machine learning solutions that go beyond a black-box view
and rely on trial and error for model optimization. The main
contributions of this work are summarized as follows:

o Using tools from statistical learning theory, we derive an
upper bound on the generalization error for a single-layer
(single reservoir) echo state network (ESN), which is a
specific form of reservoir computing (RC).

e In the MIMO-OFDM symbol detection application,
we prove analytically that the ESN training loss is
a monotonically decreasing function of the reservoir
size, which is a key hyperparameter that is tuned for
performance.

o The derived generalization error bound is used in con-
junction with the characterized training loss to develop a
systematic procedure for the design of an optimum ESN-
based symbol detector for MIMO-OFDM systems. This
avoids the conventional trial and error process involved in
hyper-parameter tuning of similar neural network-based
methods.

The remainder of this paper is organized as follows. In Sec. II,
we discuss existing work on generalization error bounds, par-
ticularly of RNNs and also review state-of-the-art NN-based
approaches for wireless symbol detection, with an emphasis
on RC-based methods. The problem setup and derivation
of the generalization error bound for ESNs is elaborated in
Sec. III. The MIMO-OFDM system model, applying ESNs for
symbol detection and the optimum ESN-based detector design
is introduced in Sec. IV. Sec. V provides numerical evaluation
of the introduced procedure and corroboration with simulation
results. Finally, Sec. VI concludes the paper.

Notation: We use the following notation throughout this
paper: C is a matrix, c is a column vector, c¢ is a scalar; ()T
and (-)f denote transpose and conjugate transpose respec-
tively; ()T denotes the Moore-Penrose matrix pseudoinverse;
|IC||F is the Frobenius norm of C, and ||C||2 is its spectral
norm; |[c||, is the p-norm of c. [c | d] and [c | d]T
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denote horizontal and vertical concatenation respectively of
column vectors; Iy is the N x N identity matrix; Opsx n iS
the M x N all-zeros matrix; 7,(c) denotes a n x n lower
triangular Toeplitz matrix with the first column c. We use
short-hands ‘TD’ for ‘time-domain’, ‘Tx’ for ‘transmit’ and
‘Rx’ for ‘receive’.

II. RELATED WORK
A. Generalization Bounds for Recurrent Neural Networks

Generalization of neural networks, i.e., intuitively the dif-
ference in their performance between the training stage and
the testing stage, has been a topic of deep investigation,
including determining upper bounds on this generalization
error for various neural network architectures. A more formal
definition of generalization error and the problem formula-
tion of finding its upper bound is provided in Sec. III-B.
The generalization error of deep learning frameworks has
been studied via many approaches including: 1) Model-based
approaches such as: the Vapnik-Chervonenkis (VC) dimension
theory [14], the Rademacher complexity approach [15], the
Probably Approximately Correct (PAC)-Bayes theory [16];
and 2) Approaches that utilize learning theory-based metrics
such as stability [17] and robustness [18]. Alternate approaches
for deriving generalization bounds, such as norm-based meth-
ods, have been studied in [19]. Using these approaches, there
have been a wide array of studies investigating the expressive
ability of DNNs [20], the depth efficiency [21] for feedforward
neural networks, and the generalization ability of specific
neural network types such as convolutional neural networks
(CNNps) [22].

Currently, there is limited research in the direction of gener-
alization bounds of RNNs. A generalization bound for vanilla
RNNs has been established in [23] using the PAC-Bayes
approach. This bound contains the network size parameter
J and increases as the square of the input sequence length
t. Tighter generalization bounds for vanilla RNNs and its
variants, including Minimal Gated United (MGU) and Long
Short Term Memory (LSTM), have been derived in [24], where
the bounds are tighter by a factor of t2 compared to [23]. This
work also utilizes the PAC-Bayes framework, incorporating the
spectral norms of the RNN’s weights matrices. [25] investi-
gates RNN generalization bounds using the matrix 1-norm and
the Fisher-Rao norm to get a tighter bound. With these tech-
niques, network size parameters do not appear in the bound.
However, this bound only applies to vanilla RNNs employing
ReLU activations. More recently, there has been work [26]
investigating the risk bounds of RC frameworks, including
ESNSs. In contrast with our work, however, it makes use of a
special ‘Rademacher-type’ complexity measure instead of the
standard empirical Rademacher Complexity (ERC) approach,
thereby making it difficult to provide a fair comparison with
available bounds for vanilla RNNs and making its extension
to deeper structures potentially intractable. This work, on the
other hand, uses the standard ERC measure, allowing tractable
analysis and extension to deep ESN structures and makes
way for a fair comparison with vanilla RNNs. In this work,
we derive a theoretical upper bound on the generalization error
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of the ESN and show that it is tighter than the best known
bound for vanilla RNNs, thus implying easier generalization
under limited training.

B. Neural Network-Based Wireless Symbol Detection

There has been considerable work done recently in applying
deep neural network (DNN)-based strategies for symbol detec-
tion in wireless receivers. Multi-layer perceptron (MLP)-based
symbol detection strategies have been introduced in prior
works such as DetNet [8], MMNet [9], OAMPNet [27], and
HyperMIMO [28], whereby each work uniquely incorporates
trainable parameters from conventional iterative algorithms.
While these approaches can achieve promising performance,
they typically require large amount of training data, making
them hard to utilize in cellular systems, e.g., LTE-Advanced
and 5G NR, where training data is extremely limited. Addi-
tionally, they also usually need perfect CSI which is difficult,
if not impossible, to obtain in practice.

Owing to the lightweight training characteristic of RC-based
approaches, they offer a promising alternative to tackle the
scarcity of over-the-air training data. ESNs were first applied
as a symbol detector in MIMO-OFDM systems in [29].
Subsequent improvements in the ESN architecture such as
the ability to handle a ‘windowed’ input were performed
in [30] giving demonstrated performance gains. A novel
deep RC structure RCNet was introduced in [31], while
RC-Struct in [32] leverages the time-frequency structure of
the OFDM waveform, both showing significant performance
improvements over conventional signal processing techniques
and other established learning-based approaches. Also, [33]
focused on tracking channel change and updating RC weights
adaptively within a subframe in high mobility environments
with scattered pilots in Wi-Fi systems, while demonstrating
superior performance on a real hardware testbed. A key
advantage of the aforementioned RC-based methods compared
to vanilla NN-based detectors is that the network training
in the former is fully online leading to a significantly lower
computational complexity. This also allows RC-based methods
to be much more robust to changes in dynamic transmission
mode and wireless environments as the underlying detector
is trained completely online in every new subframe. In the
same spirit as prior works, this paper provides a theoretical
grounding towards understanding generalization abilities of
RC-based symbol detectors and uses that insight in the design
of an optimum RC-based symbol detector for MIMO-OFDM
systems.

III. GENERALIZATION OF ECHO STATE NETWORKS
A. Data Space and Network Definition

In this section, we set up the problem of generaliza-
tion of single reservoir ESNs and define it formally. Our
learning problem can be defined by the tuple (Z,P,H,{),
where:

e X and Y are the input and output spaces respectively.

In our case, X € RP*T represents a time sequence of
length 7. The output space is Y € R or Y € {0, 1}¥,
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Fig. 1. A single-layer (single reservoir) Echo State Network (ESN). Dashed
lines represent optional connections.

depending on whether the network is being employed for
a regression or a classification task respectively.

e Z =X x ) represents the joint input-output space. P is
the space of all probability distributions defined on Z. H
is the space of all predictors h : X — ) where h denotes
the network function. The loss function £(-) is defined as
{:YxY—R.

Let us define the input and output data along with the
details of the ESN structure. Define an input sequence U =
[u(1),u(2),--- ,u(7T)] of length T such that u(t) € R and
U cRP*XT t =1,2,---,T. Note that each data sample u(t)
in U is a (column) vector of dimension D. For every training
sequence U, a label (ground truth) sequence S is available
for training the network, where S = [s(1),s(2), - ,s(T)]
such that s(t) € RX for a regression task and s(t) €
{0,1} for a classification task. The training set ZV of size
N is then defined as the set of input-label tuples ZV :=
{(Uy1,81),(Us,S3),--+,(Un,Sn)}, where ZV is generated
ii.d. according to some (unknown) probability distribution
P e P. A single-layer ESN, i.e., with a single reservoir
containing M neurons with random and sparse interconnec-
tions and a single output (readout) weights matrix is depicted
in Fig. 1. The dashed lines from the input to the output
denote ‘skip’ connections, originally introduced in [3] and
a concatenated version introduced in [34], which will be
elaborated in Sec. IV-B.

In the following, we define the input, output and the model
weights for the ESN.

o Xes(t) € RM is the state vector at the discrete time index
to Xies = [Xres(1), -, Xpes(T)] € RMXT s defined as
the “reservoir states matrix” of the individual states across
time from ¢ = 1 to the end of the input sequence ¢t =T
stacked sequentially.

e Xin(t) € RP denotes the ESN input and y(t) € RX
denotes the ESN output.

e W, € RMxD g the input weights matrix, Wy, €
RM>M s the reservoir weights matrix, W, € RE*M
is the output weights matrix, and Wy, € RM*K ig the
feedback weights matrix when teacher forcing [35] is
enabled.

Let t = {1,2,---,T} denote the discrete-time indices in
a particular input sequence U. For a single-reservoir ESN
structure, its input x;,(¢) is simply u(¢). If o(+) is a pointwise
non-linear activation function, the state update equation and
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the output equation are respectively:

Xres(t) = U(Wresxres (t - 1) + Winxin(t) + Wﬂjs(t - 1))7
(D
y(t) = WouXes (t) 2

In this setup, Wi,, Wy and Wy, (if teacher forcing is
enabled, otherwise Wy, = 0) are initialized from a certain
pre-determined distribution, e.g., the Uniform or Gaussian
distributions, and then kept fixed throughout the training
and inference (test) stages. For example, each element of
Wi, Wy and Wy, can be initialized independently from
U(-1,1), N(0,1) or another distribution of choice. Unlike
vanilla RNNs and its variants where all network weights are
trained using BPTT, the only trainable network parameter in
the ESN is Wy, which is trained using a pseudoinverse-
based closed-form linear update rule. This greatly reduces
the number of trainable parameters as well as the training
computational complexity, lending well to applications with
limited training data availability. Additionally, the sparsity of
W, is controlled via the hyperparameter named ‘sparsity’
(denoted as k), which represents the probability of an element
of W, being zero. The internal reservoir structure depicted
in Fig. 1 depicts this random and potentially sparse nature of
the interconnections between the neurons.

B. Problem Formulation

Given a tuple of an input sequence and the corresponding
ground truth (u(t), s(t))thl, we define U, € RPX! by
concatenating {u(1),u(1),--- ,u(t)} into the columns of Uy.
Denote F; = {f; : Uy — y(t)} as the class of mappings from
the first ¢ inputs to the ¢-th output y(t) = y;, computed by
the ESN structure. We also use s; := s(t) interchangeably for
brevity of notation.

Unlike using a gradient-based algorithm such as Back-
Propagation Through Time (BPTT) for training vanilla RNNs,
only the readout (output) layer of the ESN needs to be trained,
and this can be done by solving a simple problem such as
minimizing an {5-loss via Least Squares (LS), which has
a simple closed-form solution involving the reservoir states
matrix’s pseudo-inverse. An example training algorithm for the
output weights matrix involves the Alternating Least Squares
(ALS) method, such as that employed in [31], where the ESN
is used for wireless symbol detection. Additionally, for the
theoretical analysis in this paper, the loss function ¢(-) is only
required to be bounded and Lipschitz continuous in f; € F3,

ie., for {(z1,y1), (x2,y2)} € X x Y,
(fe(z1), y1) —€(fe(22),y2)| < pel fi(21) = fe(z2)],  (3)

where p, is the Lipschitz constant for ¢(-). Depending on
the type of task considered, £(-) can be chosen accordingly.
Note that we do not impose the smoothness constraint on £(+).
In regression tasks, the loss function considered is the £,,-norm
(p € Z.), where typically p = 2. The output for a new ‘test’
input sequence U’ is then simply f;(U’).

We now proceed to set up the learning problem. A learning
algorithm A; is defined as a mapping A4; : ZV — F,, ie.,
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A(ZN) = f; € F;. Then, the risk of f; is defined as:
L(f:) =Ez(¢(f:(U),Se)), “4)

where the expectation is taken over the joint distribution of
the input-output space P € P. The minimum risk is L} :=
infy ex, L(f:). Since P is unknown, it is not possible to
compute the risk L£(f;). Instead, we calculate the empirical
risk based on the training dataset as follows:

N
1
N(fi) = ;ﬁ(ftmt), S:)- 5)
Given (4) and (5), a learning algorithm A, is said to generalize,
if for any € > 0, the following holds as N — oo [36]:

Pr(IL(f:) = Ln(fi)l =€) — 0, (6)

where in (6), the probability is defined over the randomness
of the training set ZV. In this work, our goal is to derive gen-
eralization bounds, under any probability distribution P € P,
for an algorithm A; that learns an ESN. To this end, we adopt
the empirical Rademacher complexity (ERC) approach. The
ERC is a measure of the “richness” of a function class H,
defined as [36]:

N

Rn(H) :=E~ | — sup el(h(U,),Sn)|, ()
~(H) NNheH; (7(Un), Sn)

where €V := [e1, €, -+, en] is a vector of i.i.d. Rademacher

random variables, i.e., each ¢; € {1,—1} with probabilities
{3, 3} respectively for j =1,2,--- , N.

For any learning problem (Z,P,H,l), the ERC Ry (H)
bounds generalization as follows:

Theorem 1 ([36]): For any probability distribution P € P
and any training set of size N, with probability at least (1—0)
ford € (0,1),

log(5)
2N
Eq. (8) holds for any h € H. Based on Eq. (8), our goal

boils down to deriving an upper bound to Ry (F;), with F
being the class of single-reservoir ESNs.

[£(h) = Ln(h)| < 2Bz~ [Ry(H)] +

(®)

C. Main Results

In order to establish the main results of this paper, we first
make the following mild assumptions for t = 1,2,--- T that
are common in learning theory literature [36].

Assumption 1: The input data is bounded,
lu(®)ll, < Bx,.

Assumption 2: The ground truth and the output data are
bounded, i.e. ||s(t)||, < Bs.

Assumption 3: The spectral norms of the weights matrices
are bounded, ie., |Wiyly, < Bw,, [Wily < Bw,,
||WvutH2 < Bw,» Wﬂ?”z < BW_/b~

Assumption 4: The activation function o(-) is Lipschitz-
continuous with Lipschitz constant p. Additionally, we assume
0(0) = 0. This holds for commonly used activation func-
tions such as ReLU and hyperbolic tangent (Tanh) where,
ReLU(-) = max{-,0}.

ie.,
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We are now ready to state the main result of this paper in
Theorem 2 as follows.

Theorem 2: Let Fy = {fi : Uy — y(t)} be the class of
single-reservoir Echo State Networks (ESNs). Under Assump-
tions 1-4, for every f; € Fy and t < T, its ERC is bounded
by:

4 MK log (%/ﬁ)
RN(]:t) < N + 24r N 7 ©)
where J = M2+ K2 r = pBBw,a, B =
(Bw, Bx, + Bw, Bs) and a, = “0wn) 21,

D. Proof Strategy

In this section, we sketch the proof of the result obtained in
Theorem 2, while stating and proving consequential lemmas
along the way that build up to it. Our strategy is as follows:

1) For the single-reservoir ESN, formulate the Lipschitz
continuity of its output w.r.t. the model parameters,
i.e., reservoir states matrix, input weights matrix, output
weights matrix and the feedback weights matrix.

2) Find an upper bound on the covering number of the
function class F;.

3) Using the concept of chaining and Dudley’s Entropy
Integral, upper bound Ry (F3):

« Specifically, we consider two different sets of train-
able network weights matrices: W, and W .
Unlike conventional RNNs, only the output weights
are trained in ESNs, while keeping Wi, and Wi
fixed according to a certain distribution.

« For the same activation functions as well as the same
input data, let the ¢ output be y(¢) and y’(¢) when
the two weights matrices are used respectively.

In what follows, we state lemmas which provide the tools
required to prove Theorem 2. First, we characterize the Lips-
chitz property of ||y (t)||, in Lemma 1.

Lemma 1: Under the Assumptions 1-4 and for a given
yv(t)|l2 is Lipschitz-continuous in W o, ie.,

[y(t) =¥ (D)ll2 < Ures,t [Wour — Wo,llrs

where Uy = p(Bw, Bx, + Bw,Bs )%

Proof: In order to prove the Lipschitz-continuity of the
output y(¢) of the ESN, note that

ly(t) — y/(t)Hz = || WourXes(t) — W(/mtxres(t)H2

= [|(Wou — W(I)ut) XreS(t)”2

(a)
< ||XreS(t)||2 [|[Wou — W/

0ut||2 J

(10)

where (a) holds by the Cauchy-Schwarz inequality. Next,
we bound ||xs(t)||, by establishing a recursive relation
between ||Xyes(t) ||y and |[Xes(t — 1)||5. Recall that

[[%res (1) ||2

0'<Winxin( ) + Wresxres(

) + Wbe(t - 1))

2

(a)
= 'OHWinXin ) + WiesXres(t — 1) + Weys(t — 1)”
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©]
g p<y|wmxm O, + [[Wreskee(t = 1],

[ Was(t - 1)HQ>

©)
< (Il a0 + [ W e~ 1)1
+ Wi, ||t

)
(d)

< p(BW Bx, + Bw, Bs + Bw,

res

e — 1>|2). an

Here, (a) follows from the fact that o(-) is Lipschitz-
continuous with constant p, (b) follows from the triangle
inequality, (c¢) follows from the Cauchy-Schwarz inequality
and (d) follows from Assumptions 1-3. Applying (11) recur-
sively with the initialization X.5(0) = Opzx1, We get

t—1
[%res()ll2 < p (Bw, Bx,, + Bwy, Bs) Z pBWres

-1
= p (Bw, Bx,, + Bw, Bs) 7('0 me) — (12
Wies
Therefore,
||Xres(t)H2 S Ures B2 (13)
where Uest = p (Bw, Bx,, + Bw;, Bs) % Subsitut-
ing this in (10), it follows that
lly(t) — yl(t)||2 < Uk, |Wou — W(/)ut||2
(a)
S Ures,t ||W0ul - Wéut“F ) (14)

where (a) follows since [|[W], < [[W| for a matrix W,
concluding the proof of Lemma 1. |

Next, we bound the covering number of the class F;.
Let N (]—'t, €, dist(-, )) denote its covering number. Then, the
following result provides an upper bound.

Lemma 2: For ¢ > 0, under Assumptions 1-4,
N (Fs, e, dist(-,-)) is bounded by
N(fh €, dl.S[(', ))

¢ MK
VJp (Bw, Bx, + By, Bs) C2w=) 1
(oo, Vo0 Br BB S\ T
€
15)

where J =/ M? + K2

Proof: In order to construct a covering C (H, €, dist(-, )) ,
it is required that for any h € H, there exists A’ € H for any
input data {u(t)}’_, that satisfies

sup [[h(u(t)) — 7' (u(t))ll; <

This is equivalent to sup ||y (¢) —
we know that

'(t)]|, < e. From Lemma 1,

sup HY(t) - y/(t)Hz < Utes it ||Wout - W:)ulHF .

Therefore, it suffices to construct a matrix covering for

C (Wout,ﬁ,||~|| F) Here, we use the following result
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from [24] on the covering number of matrices with a bounded
Frobenius norm, stated as Lemma 3 below.

Lemma 3: Let G = {V € R1*42 ; ||V||, < A} be the set
of matrices with a bounded spectral norm \ and € > 0 be
known. The covering number N (G, ¢, ||-|| ) is upper bounded
as

N(g767 HHF) <
The proof of this result uses the concept of a packing

number of a set and can be found in [24]. Applying the result
from Lemma 3 to Wy, we get

N (H, e, dist(-,-)) <N (wouhUe, ||.|F>
res,t
< (1 +2m1n{ M, K}BWomUres,t>
€

. dida
<1+2mln{\/§ \/072}/\> a6

(1 + 2By, min{vVM,VK}

(PBwi)' =14\ MK
y p (Bw, Bx, + Bw,, Bs) g
€
B, )i—1\ MK
@ (1 2B V'Jp Bw, Bx,,+Bw;, Bs) (ppwai)_1
- out 6 ’
(17

where J = +/M? + K?2. This particular formulation of J
results in J > max{M, K} and thus (a) holds, concluding
the proof of Lemma 2. (]

Also, note that for small € > 0 and after taking the logarithm
on both sides, we get the following result which will be useful
in the proof of Theorem 2.

log NV (H, e, dist(-,-)) < MK

v Jp (Bw, Bx,, + Bw;,Bs) (ppBBVVVJ:;ﬂ ¥

x log | 2B,
€

(18)

More recently, work in [37] has provided an upper bound
on the covering number of a single reservoir ESN with an
alternate definition [38] of a cover set. This definition takes
into account the number of training sequences N and works
with the range of available functions in F; instead of the range
of those function outputs. The subsequent result is expressed
in the following lemma.

Lemma 4: For ¢ > 0, under Assumptions 1-4,
N (Fy, €, dist(-,-)) is bounded by
. T%K
log N (Fy, €, dist(-,-)) < log(2M K), (19)

where rep = pBVV,-n,FBX,-n,FBVV,,u,,Fat and BWM,Fr BXm,F’
Byw,,,.r are defined as ||W,||p < Bw,, r, |U|lr < Bx,, F,
IWoullr < Bw,,..r» |Wesllr < Bw,..,,r and a; is as
defined in (9).

Finally, employing Dudley’s Entropy Integral, we can arrive
at an upper bound for the ERC of the single-reservoir ESN.
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For the purpose of our analysis, we use a slightly modified
version of Dudley’s Entropy Integral found in [38], which is
restated in Lemma 5.

Lemma 5: For a real-valued function class H with a
bounded output, i.e., assuming values in the range [—r,r],
the ERC is bounded as
27"\/7

Ry (H) < inf

da 12 JoEN T
inf <\/ﬁ+N log N (H, €| - | de) :

(20)

Using the bound obtained on N (F,e€,dist(-,-)) in
Lemma 2 and substituting it in (20), we can obtain an
upper bound for Ry (F;) as desired, which is stated in
Theorem 2. The complete proof of Theorem 2 can be found
in Appendix A. In addition, we also utilize the ESN covering
number bound from Lemma 4 which is derived using the
alternate cover set definition from [38]. A modified ERC
bound similar to Theorem 2 is derived in Appendix C along
with its asymptotic generalization gap which is utilized for
optimum ESN-based symbol detector design in Sec. IV-E.

E. Comparison With RNN Generalization Bounds

The generalization error upper bound for a single layer ESN
(From Theorem 2) as well as the tightest known ERC bound
for vanilla RNNs [24] are both given in Table 1. Although the
bounds for both RNNs and ESNs scale with the network size,
i.e., the ‘width’ parameter J (number of hidden units for RNNs
and number of reservoir neurons for ESNs), the bound derived
in this work for ESNs is independent of the sequence length .
Note that when a; = O(et), the ESN and RNN bounds will be
of the same order, i.e., O(t). However in ESNs, we configure
W, such that By, < 1 almost always to satisfy the echo
state property [35]. Thus, proper initialization of the reservoir
ensures pBy,, < 1, giving a; = O(1). This represents an
asymptotic improvement (as N — o0) by a factor of /logt
in the generalization gap of ESNs over vanilla RNNs.

IV. SYMBOL DETECTION IN MODERN
WIRELESS NETWORKS

One of the most promising applications of ESNs can be
in standardized wireless communication systems, especially
5G and Beyond-5G (B5G) networks, where online training
resources are extremely limited. Specifically, symbol detection
is a critical classification task in any wireless receiver. The goal
of the ESN-based symbol detector is to recover the frequency-
domain QAM/PSK symbols from the corresponding time-
domain observation. To accomplish this, an online learning
method can be utilized in a supervised learning framework,
where the term “online” emphasizes the fact that the training
data for each subframe is present within the same subframe,
without the need for prior offline training of the ESN. It is
extremely important to be able to conduct symbol detection
completely online since the operation modes of 5G and B5G
can change on a sub-millisecond level leading to completely
different environments from subframe (typically one millisec-
ond) to subframe. For example, in the LTE/LTE-Advanced
(4G) as well as 5G NR cellular standards, the first few
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TABLE I
COMPARISON OF ASYMPTOTIC GENERALIZATION ERROR BOUNDS BETWEEN ESN AND VANILLA RNN

RN(ﬁmm>=O(J¢E£§ig ‘RN(ﬂMm):O<J Eﬁ%@@>

(/N,) OFDM symbols within each subframe are pilot symbols
known to the receiver that are used for synchronization and
channel estimation in a conventional receiver. These pilot sym-
bols are particularly limited and so the key challenge becomes:
How to achieve good generalization performance with the
extremely limited training dataset for symbol detection? With
ESN-based symbol detection, the pilot symbols can be used
as labels or ground truth to train the underlying ESN. Thus,
no additional offline “training overhead” is required, unlike
most existing neural network-based detection schemes. The
system model for a MIMO-OFDM wireless communications
system is described next.

A. MIMO-OFDM System Model

The TD Rx signal in a MIMO-OFDM system is x( m =
ZNt H(mn (") + n(m) where:

. xgm) € (C(NLWN*). i TD OFDM symbol on the m™ Rx

antenna out of [NV, total Rx antennas.

ign) € CWotN<): i TD OFDM symbol from the n®

Tx antenna out of N; total Tx antennas.

. Hgmn) € CWatNe)x(Np+Nee): Matrix of channel
impulse response (CIR) coefficients between the n"
Tx antenna and the m® Rx antenna for the ™
OFDM symbol. Ny is the number of OFDM subcar-
riers and N, is the length of the cyclic prefix (CP).

L.(< Ngp) is the number of delay taps in the CIR vector
T
hl(.m”) = [h(m") Rl L h(LTf)u} € CL+*1, Note

= |0 M1
that HE’rnn) = TNyt No) <[h§7rbn) | O(Ncp-l-Nsc—Lt)Xl]T)
is a lower triangular Toeplitz matrix.

e n\™ € CWatNo)x1: White Gaussian Noise (WGN)
added to the ™ OFDM symbol added at the mth Rx
antenna, such that n ~ N(0,021), where o2 is the
noise variance.

B. ESN Dynamics for MIMO-OFDM Symbol Detection

Adapting the ESN dynamics to the symbol detection prob-
lem, the state update and output equations can be written as:

Xres (t) = U(Wresxres(t - 1) + Winx(t))a

y(t) - Woutz (t) 5

where z(t) = [Xes(t)T, x(t)T]T € CM+Nr)*1 is the concate-
nated vector of the ESN internal state and the input at time .
Note here that we concatenate the input x(t) to the “hidden”
layer’s output, in this case X.s(t) to compute the output,
in accordance with the concatenation-style ‘skip’ connection
introduced in [34]. This is unlike the dynamics of Eq. (2),
where the input was not directly concatenated with the state
in the output computation step. Teacher forcing is disabled,

2n
(22)

i.e., Wy = 0. The ESN parameters in the context of MIMO-
OFDM symbol detection can be defined as follows:

e x(t) € CN»*1 is the input to the ESN at time ¢ on all
N, antennas; y(t) € CV¢*! is the output of the ESN at
time ¢ on all N; antennas.

e W;, € CM*Nr is the input weights matrix, Wy, €
CM*M s the reservoir (recurrent) weights matrix, and
Wy € CNex(M+N2) g the output weights matrix.

Due to the inherent transmit power constraint in practical
wireless communication systems and the ESN parameter
initialization process which satisfies the echo state property
(ESP), Assumptions 1-3 from Sec. III-B still hold for the
ESN input and output and the parameter weights matrices.
The training phase of the ESN comprises finding the optimal
output weights matrix W, via linear regression, such that the
mean squared error between the ESN output and the actual
transmitted signal (ground truth) is minimized. This can be
described as:

—1 Nep+Nge—1

w(,m—argmmz DR ORECLE

~ 2 12
i :argminHY—XH
Wout F Wou F
(23)

where Y; = [yi(1),yi(2),---,¥i(Nep + Nso)] €
CNex(Nep+Nse) s the matrix form of the ESN output, covering
all (N¢p + Nyc) samples of the i OFDM symbol. Similarly,
the matrix form of the transmitted signal (target/label) is f(,- =
[%:(1),%(2), - ,%i(Nep + Nio)] € CNexNeptNee)  Finally,
collecting all the N, pilot OFDM symbols in the training
set, Y = [Y1,Yy, -, Yy,] € CNoXNoWeptNec) and X =
(X1, Xy, ,XNP] € CNexNp(NeptNse) - Also during the
training phase, the concatenated reservoir state vector z(t) is
recorded at each time step ¢ and stacked to form the “reservoir
state matrix” according to Z; = [z;(1),2;(2),--- ,2;(Nep +
Ny)] € CM+N)x(No+Ne)  Then, the reservoir states are
collected across the NV, pilot/training OFDM symbols in the
matrix Z as Z = [Z,,Z,,--- ,Zn,] € CMA+N:) X Np (NeptNie)
Finally, the optimal \/7\V0ut is found using the solution of the
least squares regression problem [35] of Eq. (23), i.e.,

Wou = XZH, (24)
where Z' is the Moore-Penrose pseudoinverse of Z, defined
as ZT = 727 (ZZH)f

With regards to the input of the ESN for TD regression, it is
empirically shown in our recent work [39] that the temporal
correlation caused by the channel is embedded contiguously
in both the CP and the non-CP (payload) part of the Rx
TD OFDM symbols. Thus, removing the CP before being
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input to the ESN creates a discontinuity in the original
temporal correlation, resulting in the information learnt by the
ESN being incomplete and the test BER (P ) being high.
Therefore, we retain the CP in the input to the ESN in the
training procedure setup of Eq. (23).

C. Analyzing Trends in the ESN Training Loss

The input-output relation of the ESN can be written
in matrix form as Y = W0 (WZ + Wi, X), where
X e CNrxNp(NoptNie) g the matrix of received time-domain
OFDM symbols over the training set. After the ESN is trained,
i.e.,, Wy is determined using Eq. (24), the above matrix
equation becomes Y = XZio(WsZ + Wi, X). Then, the

training 1oss Ly 1S

1 > 1 S
‘Ctrain = FPHY_XH%‘ = EHYT_XTH%'
1 ~ ~
= - IVXT = X7 (25)
p

Nep+Nue) X Npp (Nep+ N

The square matrix V & CVe( ) is given by

V = (Z10(WiZ + Wi, X)) "

= (0 (WeoZ + W, X)) (ZD)" = AB,  (26)

where A = (U (Wresz + WinX) )T S CNP(NCP+NSC)X(1VI+N"‘)
and B = (ZT)T € CM+N)xNp(No+Ne)  We know that a
matrix V,,xm has rank v if it can be factorized as V,,x, =
A, % Byxm. Since one of the dimensions is much larger than
the other in both A and B, i.e., N,(Nep + Ny) > (M + N,),
by definition, rank(V) = (M + N,.). Going back to Eq. (25),
we can see that Ly, — 0 when V. — I,,,4,,. One of the
necessary conditions to satisfy this is that V must be full rank,

e., (M + N,) must approach N,(Ng, + Ni). Since N, is
a system parameter and thus fixed, we can conclude that the
training loss Ly.i, decreases monotonically with the reservoir
size M, i.e., number of neurons in the reservoir. We will show
this experimentally in Sec. V.

D. Simpler ESN Dynamics for MIMO-OFDM Symbol
Detection

A simpler ESN dynamics model in the symbol detection
application can be written without the state vector being
concatenated to the input, i.e., without the skip connection.
following the dynamics of Eq. (1) and Eq. (2) with Wy, = 0.
The previous derivation in Sec. IV-C for the trend in Ly, is
still valid with Z being replaced by X.s and W, € CNexM |
Note that this is the same ESN model for which an upper
bound on the generalization error was derived in Theorem 2.
The main motivation for using the concatenated ESN model
from Sec. IV-B especially for wireless symbol detection is
two-fold:

1) Significantly lower P ain and P e, i.€.,

formance for given channel statistics.

2) Greater robustness of L and thereby P, s to change

in the reservoir size M.

superior per-

We show the above outcomes with and without input concate-
nation to the state experimentally in Sec. V. The generalization
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bound derived in Theorem 2 and that derived in Appendix C
using the alternate cover set definition, both change slightly
when using the concatenated dynamics model of Eq. (22).
This minor change in the ERC bound in either case under the
concatenated model is outlined in Appendix B. Its effect on
the asymptotic gap is provided in Sec. IV-E.

E. System Design Guidance

The objective of the ESN-based symbol detector design
process is to optimize the reservoir size M such that the test
BER (P cst) is minimized. This is because P s is one of
the main key performance indicators (KPI) quantifying the
reliability of a symbol detector deployed in practice. However,
directly minimizing P} s, Which can be characterized as an
{p-norm, may not necessarily result in a convex optimization
problem. Therefore, we focus on the test “loss” Ly instead,
which makes the optimization problem convex since Lieg
is defined as a function of an fo- -norm. Similar to Ltram,
Liest is defined as Ly = N Y — X||F, where Y and X
are respectively the ESN output and the transmitted OFDM
symbols in the testing set (payload) consisting of N; OFDM
symbols (typically the last N; OFDM symbols in a subframe).

In the optimum design process, we assume that the statistics
of the wireless channel are known to us during the design
procedure. This includes knowledge of the empirical distribu-
tions of relevant channel parameters including but not limited
to: i) Number of (dominant) multipath components, ii) Angle
of Arrival (AoA) and Angle of Departure (AoD) angular
spreads, iii) Number of clusters, and iv) Path loss for each
path. Since the received time-domain symbols x )V m =
(1,2,--- ,N,.) are a function of the wireless channel HE ),
the optimum ESN design procedure must take into account
channel statistics. This can be done by evaluating the expected
value of the training loss Ep[Lyain], Where the expectation
is taken w.r.t. the realization of the channel H,. Typically,
arriving at an analytical expression for Eg[Lyan] can be
challenging, especially with the non-linear activation o(-) in
the ESN dynamics equation. To overcome this issue, we can
get an empirical approximation for Eg[Lii], for which a
large number of channel realizations e.g., ~ 10 or higher,
from a known channel statistical distribution can be used. The
empirical distributions of important channel parameters can be
typically measured in the field, or are available in standards
documents such as those from 3GPP, e.g., the Extended
Pedestrian-A (EPA) model, Clustered Delay Line (CDL) mod-
els, etc. Alternatively, simulators such as QuaDRiGa [40]
enable performance evaluation with 3GPP-compliant channel
models and scenarios adhering to realistic electromagnetic
environments, thereby allowing the computation of E g7 [Liin]-

The second part required for optimum ESN design is a
numerical approximation of the generalization error bound,
i.e., the difference between L, and Ly. We approximate
Lgap asymptotically (N — o00) for Lgp, where only the
dominant term is retained in Eq. (9), i.e.,

50 \/MNt log /M

27

gap -
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Here, the value of (3 depends on whether the state-
input concatenated or non-concatenated model is used.
For the non-concatenated model, § is given by g =
24Bw, Bx, Bw,, a0 while for the concatenated model 8 =

24BWOH( \/(BVVinBXinaO)2 + Bg(in

Nep+Nse _ . ..
ayg = (pBwe) 07 -1 Using the alternate definition of the

PBW,e —1
cover set from [38], the alternate asymptotic approximation
for the generalization gap Egap is given by (full derivation in
Appendix C):

Ly =50 (log;fg v)

(see Appendix B), and

N log(QMNt>> , @8

where 5/ = 24pBVVin,FBXin,FBWom,Fa0 < ﬁ\ / NTNPM.
Finally, the overall optimum ESN-based detector design pro-
cess, i.e., finding the best M,y that minimizes P es, can be
summarized as: 1) For each potential value of M, numerically
evaluate E g [Lyain], 2) Add the theoretical derived generaliza-
tion gap upper bound L, or Ly, to the numerically evaluated
E 11 [Lisain] to get an upper bound on L, and 3) Find the value
of M that minimizes L.

F. Complexity Analysis

We also perform complexity analysis for both the con-
catenated and the non-concatenated ESN detector models and
especially their comparison with a conventional method, e.g.,
LMMSE channel estimation with LMMSE symbol detection.
For this analysis, assume Ny, = Ny = N, is the number of
antennas each at the transmitter and the receiver. In our previ-
ous work [30], we have shown that the training complexity in
terms of FLOPS for the ESN is O(M Ny N2, + M? Ny N +
M?), while its testing complexity is only O(M N Nypy).
On the other hand, the overall complexity for LMMSE channel
estimation with symbol detection is O(N2ZN2, + N N2,).
This suggests that when M is small and Ny is large, the
ESN symbol detector has a significantly lower overall compu-
tational cost than the conventional LMMSE symbol detector.
The implications of this for both the concatenated and the
non-concatenated ESN models are discussed in Sec. V.

V. SIMULATION RESULTS

In this section, we simulate the performance of the ESN-
based symbol detector in a MIMO-OFDM system. The
primary objective here is to first, empirically validate the
derived generalization error bound, especially in compar-
ison with vanilla RNN variants when both are used for
MIMO-OFDM symbol detection. Second, we validate the
theory-guided system design procedure with the empirically
observed optimum reservoir size for both the concatenated
and the non-concatenated ESN models. The optimum design
guidance is evaluated under two realistic wireless chan-
nel conditions namely, i) 3GPP-specified EPA (Extended
Pedestrian-A) channel [41] with a maximum Doppler shift
of 20 Hz, and ii) ‘3GPP_3D_UMa_NLOS’ (Urban Macro)
and ‘BERLIN_UMa_NLOS’ scenarios, both generated with
the 3GPP-compliant QuaDRiGa simulator [40]. The Ilatter
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Fig. 2. Comparison of empirical generalization gap between ESN and Gated
Recurrent Unit (GRU) for N = 4 training “sequences” (pilot OFDM symbols)
in MIMO-OFDM symbol detection.

QuaDRiGa scenario is based on terrestrial macrocell mea-
surements performed in Berlin, Germany. The MIMO-OFDM
system settings, QuaDRiGa channel scenario settings and the
ESN hyperparameter values are outlined in Table II.

A. Generalization Bound Comparison

In this section, we compare the empirical generalization
gap (Egap = Lest — Liain) between the single-layer ESN
symbol detector (non-concatenated version) and a conventional
RNN variant namely, the Gated Recurrent Unit (GRU). From
Fig. 2, we can see the ESN generalizes much faster with
Egap being at least one order of magnitude greater for the
GRU for small M (e.g., M < 50), while being almost two
orders of magnitude greater for higher values of M (> 100).
This empirical result confirms the insight drawn from our
theoretical generalization error gap for ESNs and RNNs, and
its direct implication for MIMO-OFDM symbol detection,
namely that vanilla RNN variants exhibit severe underfitting
due to the scant training data in the form of pilots and display
a large generalization error, leading to poor test performance.
Exhaustive comparisons with multiple RNN variants have been
detailed in our prior work [31].

B. Validating Theoretical Design Guidance

In this section, we corroborate the optimum ESN design
suggested by theory, i.e., Etegt = Ey[Lirain] +£gap, where Lgap
is either Egap or Lgap, with the actual performance metric dur-
ing test, i.e., P . Next, we compute the test loss for design
guidance Etest, where Ep[Lyain] is evaluated numerically for
a given channel distribution, and Lg,, is calculated using the
asymptotic expressions of Eq. (27) and Eq. (28). To approx-
imate Ep[Liain], we use 5000 different channel realizations,
ie., IEH[ﬁlrain] ~ ﬁ ZiOO_Ol Etram s where Liain e is the
training loss evaluated for the n'" realization from the channel
scenario under consideration. Pb,tesl is simulated with 1000
Monte-Carlo simulation runs. The range of M is [4,1024] in
Fig. 3 and [512,2048] in Fig. 4.

First, note from both Fig. 3 and Fig. 4 that for both
channel models, E g [Lin] decreases monotonically with M,
which is completely aligned with our theoretical justification in
Sec. IV-C for this trend. Secondly, from Fig. 3 for the concate-
nated model (with skip connection), the theoretical guidance
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TABLE II
SIMULATION PARAMETER SETTINGS

MIMO-OFDM Settings QuaDRiGA Channel Parameters ESN Parameters
N 4 Scenarios ‘3GPP_3D_UMa_NLOS’ |
‘BERLIN_UMa_NLOS’ P

N, 4 UE Speed 5 km/hr K 0.4

Ny 1024 UE antenna height 1.5 m Bw,... 0.2

Nep 160 BS to UE distance 4(10,500) m Bw,.. 0.665

Np 4 BS antenna height 25 m [ (concatenated) ~ 18

Ny 9 BS antenna type 2 x 2 UPA [ (non-concatenated) ~5
Modulations  QPSK, 16-QAM Ey/No 15 dB

Concatenated model, EPA and QuaDRiGa channels - Theorem 2

=©-10g Epr[Lirain] (EPA, 16-QAM) 1
=108 E7[Lirain] (3GPP 3D UMa NLOS, 16-QAM)
~0-10g Eyr[Lirain] (BERLIN UMa NLOS, QPSK)

+Pb rest (EPA 16-QAM)
0Py et (3GPP 3D UMa NLOS, 16-QAM)
-8~ P, ;. (BERLIN UMa NLOS, QPSK)

(EPA, 16-QAM)
(EPA, 16-QAM)
(3GPP 3D UMa NLOS, 16-QAM)
o) (3GPP 3D UMa NLOS, 16-QAM)
so) (BERLIN UMa NLOS, QPSK)
pon) (BERLIN UMa NLOS, QPSK)

0 200 400 600 800 1000 0 200 400 600 800 1000
Reservoir size M (neurons)

Fig. 3. State-input concatenated model (with skip connection) ESN symbol detector simulated in EPA and QuaDRiGa channels.

Non-concatenated model, EPA channel - Theorem 2

. . 2.8
0108 E11 Lirain] (16-QAM)
—3-log Bir[Livuin] (QPSK) 2.7
2.6
2.5
2.4
500 1000 1500 2000 500 1000 1500 2000
2.95 .
R, e
“B. - he= Py rest (16-QAM)
2.95 e Y. S -e-PLff (QPSK)
XV
2.85} L anahd
: —5F- -’V--V" -

0105 Liew (L) (16-QAM)

2.8 {18108 Zuni(Lhop) (16-0AM)

=10 Lyext(Lyep) (QPSK) —W 10-2 7 \
275 -10g Licat (Lhor) (('?PSK) . . < A o .
500 1000 1500 2000 500 1000 1500 2000

Reservoir size M (neurons)

Fig. 4. State-input non-concatenated model (without skip connection) ESN symbol detector simulated in EPA channel.

matches well with the actual simulated test BER, i.e., Py st P et ~ 0.2 for the QuaDRiGa channel scenarios compared
is minimized at My, = 4 in all cases using the theoretical to the EPA channel is also seen in our prior work [32], where
design guidance provided by either Ly, or Efgap. The higher other methods such as MMNet [9] perform much worse in the
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challenging (ill-conditioned due to correlation) QuaDRiGa-
generated channel scenarios. Additionally in Fig. 4, we also
present the results under the EPA channel utilizing the sim-
pler ESN dynamics model as outlined in Eq. (2). The non-
concatenated ESN model (without skip connection) results in
a prohibitively high Pp s ~ 0.4 for M € [4,2048] under
the QuaDRiGa-generated channel scenarios, so that such a
detector cannot be used reliably in practice. We can observe
the following from Fig. 4:

« Not concatenating the state vector with the input in the
ESN output equation, i.e., no ‘skip’ coan:ctions [34],
results in significantly higher E g [Lyain], Lt and thus
P, b,test-

e The optimum reservoir size Mop that minimizes P st
with the non-concatenated model is much higher com-
pared to the concatenated model (with skip connection).
The optimum M, suggested by Lg,, from Theorem
2 matches with the value obtained experimentally from
Py test, both occurring at Mg, = 1408 for 16-QAM as
well as QPSK. The optimum M,y suggested by Eéap

derived using the alternate cover set definition occurs at

Mg, = 1152, deviating only 5.3% from the actual lowest

Py er which occurs at M = 1408.

In practical standardized communication systems, link and
rank adaptation mechanisms are employed based on CQI
(Channel Quality Indicator) feedback from the receiver to
the transmitter to maintain the reliability of the wireless
link. Fig. 3 shows that P, s < 10~! for the concatenated
model with the transmitter using QPSK modulation for the
‘BERLIN_UMa_NLOS’ channel scenario. Similarly, Fig. 4
shows that P oy < 10~2 is achievable using QPSK modu-
lation with the non-concatenated ESN model under the EPA
channel scenario. These link and rank adaptation mechanisms,
coupled with the use of strong channel coding schemes such as
LDPC codes, ensure that the achieved link BER is well below
10% to comply with 3GPP standards' [42], [43] even with
higher-order modulation schemes as shown in our previous
work [32].

In terms of computational complexity, Fig. 3 shows that
for the concatenated model, My < Ny, leading to its
overall complexity being much lower than a conventional
LMMSE detector based on our analysis from Sec. IV-F. On the
contrary, Fig. 4 shows that for the non-concatenated ESN
model where My, is on the order of Ny, its overall complexity
becomes O(NZ2) while that for the LMMSE detector is still
O(NZ2). Note however, that this is still significantly lower than
the computational complexity of other offline learning-based
approaches such as MMNet [9]. Furthermore, even though
RC-based architectures in our previous works [30], [31], [32]
use state-input concatenation, i.e., ‘skip’ connections [34], our
theoretical system design guidance agrees well with simulation
for both models, with and without concatenation. This shows
the practical impact of our theory-guided optimal design on
general RC-based MIMO-OFDM symbol detectors.

IFor example, the UE CQI (Channel Quality Indicator) calculation is based
on a target coded BLER (Block Error Rate) of 10% [42], while the radio link
monitoring out-of-sync BLER is also set to 10% [43].
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VI. CONCLUSION

In this paper, we have derived a theoretical upper bound on
the generalization error of Echo State Networks using tools
from statistical learning theory. The derived bound is adapted
suitably in terms of practical system parameters when the ESN
is utilized as a symbol detector in a MIMO-OFDM wireless
transceiver system. The monotonically decreasing trend of the
training loss as a function of the reservoir size in neurons is
theoretically justified. Combining the derived generalization
error bound with the empirically characterized training loss,
a systematic procedure is developed to design the optimum
ESN-based symbol detector under given channel statistics,
thereby avoiding the traditional practice in machine learning
of hyper-parameter tuning via trial and error or grid search
methods. We corroborate this procedure with experimental
results obtained via simulations that employ realistic and
standards-compliant wireless channel models. This provides
valuable system design guidance and highlights the practical
impact of our results.

APPENDIX A
PROOF OF THEOREM 2

First, we verify the fact that F; does indeed take values
[-r, r]. To show this, consider

ly@)ll, = HWoutXreS(t)Hz < ||W0utH2 HXreS(t)HQ'
From Lemma 1, we Kknow

¢ that  [[xes(t) [, <
p (Bw, Bx,, + Bw;,Bs) %. Therefore,

(29)

PBWies —
B t—1
90l < PBia (B, B, + B, Bs) o) L
pBw,, —1
(30)
ie, |ly®)|, < pBBw,a: = r, where B =
(Bw:, Bx,, + Bw;, Bs) and a; = %. To prove the

main result, we use the upper bound derived on covering
number for ESNs in Lemma 2. We first evaluate the integral
in (20), i.e.,

2rv'N

V IOgN(H,G, || ’ H)dﬁ
: 27‘\/ﬁ
§/ VMK

2Bw,,V'Tp Bw, Bx,+Bw, By L)L
x |log fes de,
€

< 2rvV/N

VT p (Bw, Bx, +Bw, Bg) Lt

x IMKlog |2Bw,,
o

€1y

Selecting o = \/% and using the above result in (20) with the
substitution for r, we arrive at (32), as shown at the top of the
next page.
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4
N

Ry(H) <

ﬂ

B t_1
o8 (23 weuVINp (Bu, B, + Bui, Bs) W) |

B (32)

res

Substituting back with r, we arrive at the final form of
Theorem 2, concluding its proof.

Ry (F) < N + \ﬁ\/MK log (ZT\/JN) 0
APPENDIX B

ERC UPPER BOUND FOR THE CONCATENATED
ESN MODEL

Here, we derive an upper bound on the ERC for the
state-input concatenated ESN model (with skip connec-
tion). The difference between this model and the simpler
non-concatenated ESN model is that the output is given
by (22) in the former compared to (2). Therefore from (13)
and since z(t) = [x.s(t)T,x(t)T]T, we have |z(t)|,

Vs @2 + O < /U2, + B%, . Thus, we can

rewrite the ERC bound in (32) as

4 24r
<—+ —=VMK
N VN

x \/log (2Bwa VIN\JU,, + B, ). (33)

Rn(H)

The asymptotic approximation Lgap or Lg,, would therefore,
be the same as (27) or (28) respectively, except that we would

have 3 = 2By, \/(Bw, Bx,a0)’ + B%, O

APPENDIX C
ERC UPPER BOUND USING ALTERNATE COVER SET
DEFINITION

From Lemma 4, we have log/\/’(]-},qdist(-,-)) <

(2MK). As before, we first evaluate the integral
in (20) by substituting the above, i.e.,

2rv'N
/ Vg N(Fi, e, dist(-, -) ) de

2rv/' N
= /
«

2r\/ﬁ 1
TF\/Klog(QMK)/ ~de,
€
(0%
2 VN
rpy/K log(2MK) log | =

log(2M K')de

Setting o = TN this becomes

2r\/ﬁ
Viog N(Fy, e, dist(-, -))de

< ry/Klog(2M K)log(2rN).

(34)

We arrive at the alternate version of the ERC upper bound by
substituting (34) in (20), i.e.,
4  12rplog(2rN)
RN(F) < =+ ————
N(F) < N N
Finally, the asymptotic generalization gap (as N — o) based
on the alternate cover set definition from [38] which can be
used for optimum detector design is

Klog(2MK). (35)

log(2rN

E;dp = ﬁ/O <éjv) Nt IOg(QMNt)> s (36)
where 3 = 24pBWm,FBX”“FBWW,LFCL(). We know that
Bw,,» < VN,Bw,,, Bx,, » < VNBx,, and By <
VM. Thus, for N = N, training “sequences” and since

r=0(p),

1 N,

Lhp = /N, N,MBO < o&(5 ) N, log(2MNt)>. (37)
|
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