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Universal Approximation of Linear Time-Invariant
(LTI) Systems Through RNNs: Power of
Randomness in Reservoir Computing

Shashank Jere
and Lingjia Liu

Abstract—Recurrent neural networks (RNNs) are known to be
universal approximators of dynamic systems under fairly mild and
general assumptions. However, RNNs usually suffer from the issues
of vanishing and exploding gradients in standard RNN training.
Reservoir computing (RC), a special RNN where the recurrent
weights are randomized and left untrained, has been introduced
to overcome these issues and has demonstrated superior empirical
performance especially in scenarios where training samples are
extremely limited. On the other hand, the theoretical grounding to
support this observed performance has yet been fully developed. In
this article, we show that RC can universally approximate a general
linear time-invariant (LTI) system. Specifically, we present a clear
signal processing interpretation of RC and utilize this understand-
ing in the problem of approximating a generic LTI system. Under
this setup, we analytically characterize the optimum probability
density function for configuring (instead of training and/or ran-
domly generating) the recurrent weights of the underlying RNN of
the RC. Extensive numerical evaluations are provided to validate
the optimality of the derived distribution for configuring the recur-
rent weights of the RC to approximate a general LTI system. Our
work results in clear signal processing-based model interpretability
of RC and provides theoretical explanation/justification for the
power of randomness in randomly generating instead of training
RC’s recurrent weights. Furthermore, it provides a complete op-
timum analytical characterization for configuring the untrained
recurrent weights, marking an important step towards explainable
machine learning (XML) to incorporate domain knowledge for
efficient learning.

Index Terms—Reservoir computing, echo state network, neural
network, deep learning, system identification and approximation,
explainable machine learning.

I. INTRODUCTION

HE rise of deep learning methods [1] in recent times has
been unprecedented, owing largely to their remarkable
success in fields as diverse as image classification [2], speech
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recognition [3] and language translation [4], among many others.
Specifically, recurrent neural networks (RNNs) are known to be
universal approximators for dynamical systems under general
conditions [5], making them suitable for applications involving
temporally correlated data. Therefore, RNNs are well suited to
sequential tasks such as sentence sentiment classification [6],
language translation [7], video frame analysis [8], [9] as well
as recently in receive processing tasks such as symbol detec-
tion [10] in wireless communications. More recently, RNNs have
also been adapted to be applied in natural language processing
(NLP) tasks to emulate the remarkable success of transform-
ers [11] while avoiding their high computational and memory
complexity. However, vanilla RNNs exhibit the problem of
vanishing and exploding gradients [12] when trained using the
backpropagation through time (BPTT) algorithm [13]. Long
short-term memory (LSTM) networks [14] alleviate this prob-
lem to a certain degree by incorporating additional internal
gating procedures [15], [16] and thus, deliver more robust per-
formance compared to vanilla RNNs [17]. On the other hand,
LSTMs require significantly more training data due to their
richer modeling capabilities, thereby posing a challenge when
the training data is inherently limited, e.g., in the physical (PHY)
and medium access control (MAC) layers of modern wireless
systems where the over-the-air (OTA) training data is extremely
limited. To balance this trade-off, randomized recurrent neural
networks [ 18] have been a topic of active investigation. A general
randomized RNN consists of an untrained hidden layer with
recurrent units, which non-linearly projects the input data into a
high-dimensional feature space, and a trained output layer which
scales and combines the outputs of the hidden layer in a linear
fashion. Reservoir Computing (RC) [19] is a specific paradigm
within the class of randomized RNN approaches where the echo
state network (ESN) [20] is a popular implementation of the
general RC framework.

In RC architectures including the ESN, typically only the
output layer of the network is trained using pseudo-inversion or
Tikhonov regularization, while the weights of the input layers
and the hidden layers are fixed after initialization based on a
certain pre-determined distribution. This particular feature of
RC significantly reduces the amount of required training making
ituniquely suitable for applications where the number of training
samples is extremely limited. Furthermore, since the recur-
rent weights are randomly generated and fixed, RC completely
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avoids the issues of vanishing and exploding gradients that com-
monly occur in the standard RNN training. Despite its limited
training, RC has demonstrated impressive performance in many
sequential processing applications including NLP tasks, e.g.,
decoding grammatical structure from sentences [21], learning
word-to-meaning mappings [22], in video frame analysis tasks
such as event detection in visual content [23], as well as in stock
market prediction [24]. Recently, RC has found great appeal in
various wireless applications, especially in the PHY/MAC layer
receive processing with extremely scarce OTA training data.
For example, ESNs and its extensions have been utilized to con-
struct symbol detectors for 5G and Beyond 5G multiple antenna
systems [10], [25], [26], [27]. In addition, the ESN has been
applied to effectively combat inter-symbol interference (ISI) and
improve detection performance in a chaotic baseband wireless
communication system [28]. Furthermore, ESN-based deep re-
inforcement learning has been introduced for dynamic spectrum
access in 5G networks to provide improved sample efficiency
and convergence rate over traditional RNN structures [29]. Be-
yond conventional wireless communications, RC has also found
utility in equalization for optical transmission [30] and signal
classification in optoelectronic oscillators [31].

Although RNNs and its variants including RC have shown
superior empirical performance in various sequence processing
tasks, a fundamental theoretical understanding of their effec-
tiveness using classical tools remains largely unexplored. As
discussed in [32], “lack of explainability” is one of the top five
challenges in applying machine learning approaches to appli-
cations with limited training data such as telecommunication
networks, which have traditionally been designed based on a
mixture of theoretical analysis, wireless channel measurements,
and human intuition and understanding. In fact, the traditional
approach has proven amenable for domain experts to resort to
either theoretical analysis or computer simulations to validate
wireless system building blocks. Therefore, it is desirable for
neural network models to have similar levels of explainability
especially when designed for wireless systems, and in general
for applications with specifications-limited or cost-prohibitive
procedures of obtaining training data samples.

A. State-of-the-art in Explainable Machine Learning (XML)

Even though deep neural networks have been effective in
various applications, they are still largely perceived as black-
box functions converting features in input data to classification
labels or regression values at their output. With the growing
real-world application of neural network models in sensitive
areas such as autonomous driving and medical diagnostics,
there is an increasing need to develop a deep understanding
of the inner workings of such models. This has given birth
to the field of Explainable Machine Learning (XML) which
has seen important developments in recent times. A useful
overview of Layer-Wise Relevance Propagation (LRP), which
is an explainability technique for deep neural networks that
uses propagation of relevance information from the output to
the input layers, is provided in [33]. An information-theoretic
approach towards opening the black box of neural networks

was provided in [34] building upon the information bottleneck
(IB) principle. SHAP (SHapley Additive exPlanations), which
is a model interpretation framework built on the principles of
game theory, was introduced in [35]. Outside of neural network
models, the work in [36] introduces the concept of local explana-
tion vectors, applying the technique to support vector machines
(SVMs). While these works introduce useful interpretation and
explanation frameworks, a first principles-based approach that
utilizes a signal processing-oriented understanding is largely
missing or not yet fully developed for most neural network
architectures.

Among studies exploring the theoretical explanations behind
the success of RC in time-series problems, one of the firstis [37],
which introduces a functional space approximation framework
for a better understanding of the operation of ESNs. Another
recent work of note is [38] which shows that an ESN without non-
linear activation is equivalent to vector autoregression (VAR).
[39] makes the case for ESNs being universal approximators
for ergodic dynamical systems. The effectiveness of RC in
predicting complex nonlinear dynamical systems such as the
Lorenz and the Rossler systems was studied in [40], while [41]
investigated the tuning and optimization of the length of the fad-
ing memory of RC systems. Our previous work in [42] derived an
upper bound on the Empirical Rademacher Complexity (ERC)
for single-reservoir ESNs and showed tighter generalization for
ESNs as compared to traditional RNNs, while simultaneously
demonstrating the utility of the derived bound in optimizing an
ESN-based symbol detector in multi-antenna wireless receivers.
Other statistical learning theory-based works such as [43] also
attempt to bound the generalization error for RC using slightly
modified Rademacher-type complexity measures. In our previ-
ous work [44], we introduce a signal processing analysis of the
ESN and present a complete analytical characterization of the
optimum untrained recurrent weight for an ESN with a single
neuron when employed in the wireless channel equalization task.
While the works in existing literature provide interesting insights
using information-theoretic or statistical learning-theoretic prin-
ciples, a lucid signal processing understanding coupled with
complete analytical characterizations using conventional tools
has not been established yet. With this in mind, we aim to
accomplish the following two objectives in this work: i) Gain
a theoretical understanding of why randomly generated reser-
voir weights provide good empirical performance for function
approximation, and ii) develop a systematic methodology to con-
figure this random generation of reservoir weights incorporating
prior information or domain knowledge. With these objectives,
we provide an outline in the next section for the set of problems
considered, the overall approach adopted and the steps taken to
solve them.

B. Our Contributions

The main contributions of this work are summarized below:

1) First, we consider the “atomic” problem of approximating
the impulse response of a first-order infinite impulse re-
sponse (IIR) filter using an ESN consisting of two neurons
in the reservoir with fixed reservoir weights and with linear
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activation. Formulating this as an orthogonal projection
problem, we precisely calculate the corresponding approx-
imation error and derive an exact scaling law that relates
this approximation error to the distance between the ESN’s
poles (i.e., the recurrent reservoir weights).

2) Second, continuing with the impulse response of the first-
order IIR system as the target function, we consider the
problem of approximating its impulse response using an
ESN with multiple neurons having randomly generated
weights. Optimizing the corresponding approximation er-
ror, we derive the optimum probability density function
(PDF) to configure the random generation of the ESN
reservoir weights.

3) Third, we generalize this result by showing that the derived
optimum PDF for approximating a first-order IIR system
is also optimum for approximating general higher-order
LTI systems that can be written as a linear combination of
first-order poles.

4) Fourth, we show that under linear activation, a reser-
voir with random and sparse interconnections between its
constituent neurons has an equivalent representation as a
reservoir with non-interconnected neurons.

5) Finally, via extensive numerical evaluations, we empir-
ically confirm the following: i) Validity of the derived
approximation error scaling law, and ii) Optimality of the
derived optimum PDF for configuring the ESN reservoir
weights when applied to the task of approximating a
first-order IIR and higher-order LTI systems.

The rest of the paper is organized as follows. Section II
presents the problem formulation for the task of LTI system
approximation using an ESN. Section III presents our approach
and analysis to derive the optimum distribution for configuring
the random generation of ESN reservoir weights. Section IV
outlines the training procedure of the ESN and briefly outlines
overfitting concerns in this scenario. Numerical evaluations to
validate the theoretical findings in the preceding sections are
presented in Section V. Finally, we provide concluding remarks
and directions for future work in Section VI.

Notation: R: set of real numbers; U (a, b): uniform distribu-
tion with support [a, b]; N'(, 02): Gaussian (normal) distribu-
tion with mean p and variance o?; E[-]: Expectation operator,
VAR(+): Variance operator; ¢ and C' denote scalars, ¢ denotes a
column vector; || - ||2: £o-norm; (a, b) = b”'a: inner product of
vectors a, b € R™. C denotes a matrix; (.)T: matrix transpose;
(-)!: Moore-Penrose matrix pseudo-inverse. A(C) denotes the
spectrum (set of eigenvalues) of C. p () denotes the probability
density function (PDF) of a random variable «.. Pr(E) denotes
the probability of event F. (a,b) denotes an open interval and
[a, b] denotes a closed interval for a,b € R. W.L.O.G. stands
for “without loss of generality”. We define the following terms
to have this specific meaning in the remainder of the paper: 1)
“Training”: Data-driven optimization of neural network (NN)
model weights via backpropagation-based or single-shot algo-
rithms (e.g., least squares), ii) “Randomly generating”: The pro-
cess of generating NN model weights in an i.i.d. manner by sam-
pling them from a pre-determined and unoptimized distribution,
iii) “Configuring”: The process of generating NN model weights

Input Output
< TN
O~ Reservoir Q)
Wout
O ou »O
Wl'n .
OA O
Fig. 1. Echo state network (ESN) with a single reservoir.

in ani.i.d. manner by sampling them from an analytically derived
distribution taking into account prior information or domain
knowledge.

II. PROBLEM FORMULATION

A. Randomized RNN: RC and the Echo State Network (ESN)

In the context of a randomized RNN [18] and more specifi-
cally an ESN, a general learning problem can be defined by the
tuple (Z,P,H,{), where:

® X and Y are the input and output spaces respectively. In

our case, X € RP*T represents a time sequence of length
T. The output space is ) € RE*T or Y € {0,1} 57T,
depending on whether the network is being employed for
regression or classification respectively in the sequence-
to-sequence setting. In the sequence-to-vector setting, we
have Y € R¥ orY € {0, 1}*. Here, D and K are the input
and output dimensions respectively.

e Z =X x )Y represents the joint input-output space.

e P is the space of probability distributions defined on Z.

® H is the space of all function approximators h : X — )

where I denotes the neural network function.

e The loss function ¢(-) is definedas £ : Y x ) — R.

Define an input sequence U = [u[l],u[2],...,u[T]] of
length T such that u[n] € R? and U € RP*7 for the discrete-
time indices n = 1,2,...,7T. Note that each data sample u(n)
in the time series U is a (column) vector of dimension
D. For every training sequence U, a label (ground truth)
sequence G is available to train the network, where G =
[g[1],g[2],...,g[T]] such that g[n] € RX for a (sequence-to-
sequence) regression task and g[n] € {0, 1} for a (sequence-
to-sequence) classification task. The training set ZV of size
N is then defined as the set of input-label tuples ZV :=
{(Uy,G1),(Uy, Gs),...,(Un,Gy)}, where ZV is generated
i.i.d. according to some (unknown) joint input-output probability
distribution P(-,-) € P. The general setup described above is
applicable to a time series problem with any recurrent deep
learning model. Within the class of randomized RNNs, we
consider a single reservoir ESN containing M neurons with
random and sparse interconnections (among other possibilities)
and a single output (readout) weights matrix. This structure is
depicted in Fig. 1. Next, we define the input, output and the
model weights of the ESN in the following:

* x.s[n] € RM is the reservoir state vector at time index 7.
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® Xies = [Xres[1], - -+ Xres|T]] € RM*T is defined as the
“reservoir states matrix” of the individual states fromn = 1
ton="T.

* x;,[n] € RP denotes the ESN input. y[n] € RX denotes
the ESN output.

e W,;, € RM*P is the input weights matrix, W, € RM*M
is the reservoir weights matrix, Wy € RE*M ig the out-
put weights matrix.

For a point-wise nonlinear activation function o (-), the state

update equation and the output equation are respectively:

Xres ['n] =0 (Wresxres [n - 1] + Winxi, [nD s (1)
y[n} = Woulxres [TL} (2)

In this setup, Wy, and W are randomly generated, i.e., ini-
tialized from a certain pre-determined but arbitrary distribu-
tion, e.g., the uniform or Gaussian distributions, and then kept
fixed throughout the training and inference (test) stages. Unlike
vanilla RNNs and its variants where all network weights are
trained using BPTT, the only trainable network parameter in
the ESN is the output weights matrix W, which is trained
using a pseudoinverse-based closed-form linear update rule.
This greatly reduces the number of trainable parameters, as
well as the training computational complexity, lending well to
applications with limited training data availability. Additionally,
the sparsely interconnected nature of Wi is controlled via
the hyperparameter named ‘sparsity’ (denoted as k), which
represents the probability of an element of W being zero.
The internal reservoir structure of Fig. 1 depicts this random
and potentially sparse nature of the interconnections between
the constituent neurons.

B. Approximating an Atomic LTI System With an ESN

Consider the target LTI system characterized by the following
causal time-domain impulse response:

a, n=0

0. n<o uln], 3)

Sq[n] =

where a € (—1, 1) and u[n] is the discrete-time unit step func-
tion. Thus, the target system to be approximated by the ESN is
described by the time-domain impulse response characterized
by the infinite-dimensional vector s, € R*>. We choose this as
the first case to analyze since the time-domain impulse response
of a large class of general LTI systems can be written exactly
as a linear combination of first order IIR impulse responses of
(3) [45], i.e.,

No
hin] = wisq, [n], (4)
1=1

where w; € R are the combining weights, thereby making the
extension to the general case feasible given the analysis for the
simple case of (3). This is shown in Section III-E.

In this work, we consider a simplified version of the more
general ESN described in Section II-A. Specifically, we consider
a simple reservoir construction where the individual neurons are

_I_

Xin[n] > Xout[n]

Fig. 2. Modeling a neuron in the reservoir with linear activation as a single-
pole IIR filter.

disconnected from each other and only consist of unit delay self-
feedback loops. This translates to W5 being a diagonal matrix.
Next, for tractability of analysis, we consider linear activation
such that o(+) in (1) is an identity mapping. As shown in our
previous work [44], a single neuron with linear activation can be
modeled as a first-order infinite impulse response (IIR) filter with
a single pole. This is illustrated in Fig. 2, where a single neuron
or “node” inside the reservoir simply implements a first-order
autoregressive process AR(1) with a feedback weight a. The
system response for the IIR filter in Fig. 2 is given by

Xouw(z) 1
Xin(2)  1—az U
Finally, we consider the input weights to be unity, as their effect
is absorbed in the output weights when the activation employed
in the reservoir is linear.

With the aforementioned preliminaries laid out, the ESN
design problem for LTI system approximation can be articu-
lated as follows. Consider an ESN reservoir as a collection of
non-interconnected neurons with fixed corresponding reservoir
(recurrent) weights {3,,}M_,, where each 3,, € (—=1,1) to
ensure stability of its impulse response 377, u[n]. Such a reservoir
with non-interconnected neurons has also been considered for
neuromorphic computing in an experimental setting using pho-
tonic hardware [46], thus highlighting its practical applicability.
We would like to choose {f,,}*_, such that their weighted
combination approximates the normalized target H:—“Hz with a
low approximation error, i.e.,

Ho(z) = )

M
S
-~ Z Wmsﬂmv (6)
Toall ~ 2~

where sg, [n] = B, uln]. Note that target normalization is im-
perative to ensure that the mean approximation error across
multiple LTI system realizations (i.e., values of “parameter” ;)
is not dominated by realizations for which «vis closer to 1 or —1
over those for which «v is closer to 0. With this formulation, the
normalized target has unit norm. This can also be written as the
system function in terms of the z-transform as

M
Sa(2) = Y WmSg,, (2), (7)

m=1

which can be expanded as

V1—a? N i Wi @®)
1—az 1~ 1— Bzt

m=1
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x[n] y[n] e[n]

Target LTI
h[n] = a™u[n]
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Bu 77!

Fig. 3. Approximating an LTI system belonging to a known model family
(e.g., first-order IIR system) with a linear non-interconnected reservoir ESN.

Thus, the system being estimated is an infinite impulse response
(IIR) system with a single pole o, where the ESN attempts to
estimate this IIR impulse response as a weighted combination
of M IIR impulse responses characterized by the random poles
{Bm }, which are kept fixed during training of the output weights
{W,,} and during test. This problem can be characterized as a
system “approximation” or “identification” problem, whereby a
linear ESN with a reservoir of non-interconnected neurons with
randomly generated or configured weights attempts to reproduce
the output of the unknown LTT system belonging to a known
model family, in this case, a single-pole IIR system. The problem
setup is depicted in Fig. 3.

C. ESN Initialization and Training

The process of initializing the ESN reservoir weights (random
generation or configuration) and subsequent training of output
weights consists of three components: i) a target function f(-; «)
to be approximated, ii) a linear subspace €2 spanned by the reser-
voir basis functions, and iii) an approximation ]?(, Biy..oyPBm)
of the target function in 2. For the LTI system approximation
task, the target function is the normalized impulse response of
the system, given by f(-; ) = H NEE . The subspace spanned by

the reservoir neurons is given by Q= span(sg, ;.. .,Sga,, ). For

a general loss function L(f; f), the training procedure finds the
output combining weights {W,,,} such that the approximation
J/‘\(-; B1,...,0n) lying in © minimizes L(f; f) With the /5
norm as the loss function £(f; f), the ESN training procedure
finds f( s B1, - .., Bar) asthe £ training loss minimizing approx-
imation, implying that it is the orthogonal projection of f(-; «)
onto 2. The corresponding approximation error is then referred
to as the “projection error”. This setup is illustrated in Fig. 4.
The projection error can be written as the following ¢5-loss:
2

e= Z S| ©)

Tols )

where
2

Z WmS/Bm y

2

{W;} = aﬁg min (10)

Wil %Jb

Target Function

(5a) =
FG = -
: £
1
1
Approximation & f(-; By, ., Bu)
Q = span(sg,, ..., sg,,)
Fig. 4. Learning a single-pole IIR system: An orthogonal projection view.
0 Projection Error (¢)
I —M =5
M =T
—M =9
5L
O
@
2
10k
-15 :
-1 1
Fig. 5. Projection Error (g) of (12) versus o for M = 5,7,9 ESN poles

evenly spaced in (—1, 1). The local minima represent the locations of the poles
{Bm }M_, in each case.

are the optimum output weights given by

w=x"! (11)

Here, w £ (Wi € RM and the projection error can

be shown to be

Wl

e=1—-r'2"1r. (12)

Here, [|sa]l3 =Y g0’ = 15, and r e RM*! and T ¢

RM>*M are respectively defined as
1 <SB1 ) Sa>
r 2 ; 13)
ISecll2
SBr > Sa

and []; ; £ (sg,,sp,), where []; ; is the element of X in the
1th row and the jth column. As an example, the projection error
of (12) is plotted in Fig. 5 with M evenly spaced poles in the
interval (—1,1) for M =5,7,9.

The projection error of (12) is intrinsically linked to the
training loss when {W,,,} are trained with finite labeled data
samples. Specifically, for an impulse input, i.e., |x||2 = 1, the
data-driven training loss is lower bounded by the projection
error €. This is because the projection error makes use of the
“optimum” output combining weights { W%, }, computing which
requires knowledge of a. This inherently assumes that an infinite
number of data samples are available for training {W,,, } so that
they converge to {W} }. Thus, the projection error of (12) is the
lowest achievable training loss for an impulse input (||x|| = 1).
Then, the loss metric £(+;-) to be used to optimize the fixed
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reservoir weights {3,,, } can be defined as the projection error of
), i.e.,

‘C(a;ﬂlv"'7BM) ég.

Since we are interested in designing a single ESN with reservoir
weights that provides a low approximation error on average, we
model «v as a random variable with a known prior PDF pa (). For
example, system identification tasks in acoustic and electrome-
chanical servo systems employ frequency-domain methods [47],
[48] in practice to empirically deduce the distribution of the
system poles or the modes of a given LTI system. Then, the
ultimate ESN design goal is to analytically choose the fixed
optimum reservoir weights {5, ..., 33, } according to

{815+ By Bur)], (15)

(14)

,Bary=argmin E,,, oy [L(a
{B1,-- B}
so that the expected projection error is minimized, where the
expectation is taken over the target function parameter c.
Determining the optimum {3}, }27_, individually can be in-
tractably challenging. Therefore, we take an alternative approach
of treating each [3,,, as a random variable such that an individual
pole 3, is sampled i.i.d. from the PDF pg(+). Instead of finding
the optimum reservoir weights individually, we attempt to find
the optimum probability distribution in terms of its PDF pj;(+),
from which the poles {f31,...,0n} can be “configured” by
sampling from p}; (+) in an i.i.d. manner. Therefore, the reservoir
optimization problem can be reformulated as determining the
optimum PDF pj; (+) of the ESN pole distribution which satisfies

pB()
= arfBr(nmE{Bh Bl on () Eopa() [L(a; B, .., Bu)]| -
(16)

In the next section, we describe a method of solving this opti-
mization problem by using a local approximation.

III. RESERVOIR OPTIMIZATION

A. Nearest Neighbors Approximation

As M — oo, the projection error £(«a; 81, ...,y ) can be
estimated by making a “nearest neighbors approximation”. This
approximation states that in the neighborhood of a given a,
the approximation error due to {ﬁm}%:l is dominated by the
two ESN poles closest to «. In this treatment, we assume that
a ~U(—ap,ap) = pa(-),where0 < oy < 1.Then, the nearest
neighbors approximation states that

L(e; Bry- . Bar) = L(ei Bryo s Bar), (A7)
where the “surrogate loss” L is defined as
Lo B, Brr) £ Lla; gV, 52). (18)

Here, 51 and 5 are the two ESN poles that are closest to v,
i.e., its two nearest neighbors, with 31, 32 < {B1,..., B}
In this treatment, we define a local neighborhood R as the inter-
val containing /3 M, @ and I} () ie., itis the interval containing
the LTI system pole « and only the two nearest ESN poles /31 and

(2. With the approximation of (17), the optimization problem
can be stated as

pi()

=y B [l 021200 ]
(19)

In the following sequence of steps, we denote pj;(-) as pj; for
brevity of notation. If the projection error corresponding to the
problem in (19) is &4, i.e.,

€1

=mink _EQNPA(.) [E(a;ﬁl, - 7ﬁM):| ]
_mmE{Bm}”de Z/ pa(u ﬁl,...,ﬁM)du},
_mmE{Bm},,Nd on Z/ pa(u 04 B, 52)> ]

acR

)-sup L (a; B(l),ﬁ(2)> du] ,

<m1nIE{ﬁm},s [Z/ pa(u

7m1nE{ﬁm i) [ZPI‘QER) supﬁ(aﬁl) ﬂ >:|

acR
(20)

where the dummy variable u denotes a particular realization of
the random variable o Since Pr(« € R) is constant regardless
of the location of the small neighborhood R in the entire range
of [—ag, ap] for o ~ pa(+), the optimization problem can be
stated as the min-max formulation given by

g = argp;ninl[*]{ﬂm i {Z:}ég [ a; BV, B 2))] } 2D
As we shall see in the next section, obtaining the exact expres-
sion for sup,cx[£(c; 81, )] can be intractably challeng-
ing. Instead, we derive an upper bound BéR) for this term so
that sup, <z [£(c; BM), ()] < B™ Therefore, we define the
“optimum” distribution p}; (-) as that which solves the following
optimization problem:

Coy : (R)
pp(+) argrtllnE{Bm}‘.de{ZBe }
pB () R

(22)

In the next section, we derive an expression for Bé ).

B. Error Bound With Nearest Neighbors Approximation

We analyze the behavior of the error of (12) in the small
neighborhood R where the two nearest neighbors of o € R,
B and B are denoted simply as 31 and S35 for clarity of
notation and 3; < 2 W.L.O.G. Thus, for the purpose of this
analysis, R is defined as the interval containing (31, « and [s.
With this disclaimer, in the following analysis, we denote the
projection error of (12) as &(g), where the subscript (2) denotes
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Fig.6. Nearest Neighbors Approximation: Projection error €3y plotted in the
neighborhood R with poles 81 and 52 on its edges.

the fact that we are evaluating a 2-nearest neighbors error in
a small neighborhood R. & 2) £ L(a; 1, 32) can be evaluated
by substituting for r and ¥ with M = 2 in (12). After further
manipulation, it can be obtained as

8(2) =1-

(1—a®) (1~ Biba) ((1 ~ 831~ BiB2)

(B1 = B2)? (1 —apy)?
_ 9 (1-59)( - p3) n (1531 = B1fa)
(1 —ap)(1 —aps) (1 - af)? '

(23)

Since our focus is on the small neighborhood R, we quantify the
density of packing of the two ESN poles (31 and 32 by defining
them around a mid-point 3. as 81 = S. — A and B = B. + A,
where A > 0 and 3, £ %(51 + B2).

We are interested in the trend followed by the maximum value
of this error within R as a function of A. However obtaining
an expression for the true maximum error el (2 ) by finding the

stationary point inside R can be intractably tedious. Therefore,

(max)

instead of finding ¢ (2) »We attempt to find an upper bound B,

on e(glax) With this final goal, we state the following proposition.

Proposition 1: An upper bound on the maximum error in R
is given by

Oz (2)
foJe

B. (mld) +A

el , (24)

a=f.

where 552) mid) & £(2)(Be)-

This can be seen with the aid of Fig. 6 which plots the
projection error €2y with the nearest neighbors approximation
for By, B2 > 0 W.L.O.G. It can be observed that B. of (24)
is one of the possible upper bounds on the true maximum error
£(2)la=am, - SINCE £(2) is a concave function of o and has exactly
one local maximum inside R, the claim of Proposition 1 always
holds within R which is bounded by exactly one ESN pole on

either side. Then, €5y evaluated at 3. is given in the following
lemma.

Lemma 1: The 2-nearest neighbors-based projection error
£(2)» evaluated at the mid-point, i.e., « = (3. of the small neigh-
borhood R is given by

(mld) 4 6
€o) = a 52) ——— A"+ O(A®). (25)
The complete proof of this result is provided in Appendix A.
This is an important outcome, indicating that the neighborhood
error has a power scaling law with A given by A*. Similarly, an
expression for % is given in the following lemma.

a=f
Lemma 2: The rate of change of £(2) in R, evaluated at the
mid-point o« = 3, is given by
85 (2)
da

466‘ 4 6
a a —52)5A + O(A®).
The complete derivation for this result is given in Appendix B.
With the results of Lemma 1 and Lemma 2, we can use Propo-
sition 1 to state the following theorem.
Theorem 1: An upper bound on the worst-case (highest)
projection error in R is given by

1 A4 + |BC|

(1—p2)* (1—p2)°

This result follows from directly substituting (25) and (26)
in (24) of Proposition 1. Note that a tighter bound on the true
maximum error 6?;)&)() can be obtained by evaluating the RHS of
(24) at an @ = o that is closer to the true maximizing point
Q(max)» instead of at the mid-point o = .. However, it can
be shown that such a tighter bound also exhibits a minimum
dependence of A*. With either upper bound, the conclusion is
that the worst-case projection error in R obeys a scaling law
versus A with the minimum exponent 4 and no lower than that,
i.e., the error scales at least as A, which is a significant result.

(26)

B. = A+ O(A"). 27

C. Deriving the Optimum ESN Pole Distribution

Theorem 1 expresses an upper bound on the approximation
error of an LTI system pole « using only two ESN poles 5, and
B2, as a function of the distance between the poles A = 1B2—pn] ﬁ il
Now, we revert to the problem of approximating « usmg M
ESN poles {3,, }M_, that are “configured” by sampling them
in an i.i.d. manner from the PDF pg(-). As M — oo, we now
define a neighborhood R as an infinitesimally small interval
over (—ayg, o) in which the PDF pg(+) is constant with value
pB(R). We denote the length of this interval as |R|. Then, for a
particular realization of o say a(® lying inside R, the nearest
neighbors approximation states that the approximation error is
given by the two ESN poles say 3(1:®) and 8(2®) that are closest
to a(®). Denote the corresponding minimum distance between

them as A(R) = w The upper bound on the highest
error in R is given by (27), which we write as BéR)(A(R)).
Then, the contribution of this particular realization o™ to
the average approximation error across all realizations of « is

givenby C(® = ps (a®) - |R| - B, To satisfy the min-max
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3 Optimal distribution of ESN poles (reservoir weights)

—ap = 0.95
—Q) — 0.8
2+ 1
S
* M
IS8
1- 1
0 I I I
-1 -0.5 0 0.5 1
B
Fig. 7. Optimum PDF pf; (8) curves for ag = 0.95 and ag = 0.8.

optimization objective of (20) and thus, that of (21), we require
that C'®) remain constant across all such neighborhoods, i.e.,
for any two neighborhoods R and R/, we require C(®) = C'(R"),
Since pa(+) is constant and as |R| does not depend on M or

A(R), we require B"® = p{®, Using only the leading terms
of (27), this becomes

(a®)" (AR
(1-B(R)A)* (1-Bo(R)D)Y
= (A(R)>4 x (1_&(73)2)47

= AR « (1-B.(R)?). (28)

Now, AR m. Thus, the optimum PDF pj(-) must
vary in R as
1
5 (R _. 29
pB( ) S 1_56(7?/)2 ( )

Since this relationship must hold in every infinitesimally small
R, we can write the PDF pf; (-) in terms of the realization 3 of the
random variable representing an ESN pole. Hence, we replace
Bc(R) with B to write the optimum pj(5) for the “global”
allocation of ESN poles as

W) = G

where the PDF normalizing constant C' is found by solving
ffaoo 1_6232 dB = 1for|ag| < 1, giving C = log (HO‘

1_—@8) .Asan
example for og = 0.95, C' = 3.6636 and the optimum ESN pole
(reservoir weight) distribution is

. 0.273
pe(B) = w
The optimum PDF curves for oy = 0.95 and oy = 0.8 are
plotted in Fig. 7. Recognizing that A ﬁ, where M is the
number of neurons in the reservoir, Theorem 1 provides a
practical scaling law for the ESN projection error and by exten-
sion, the training loss, i.e., EE;n)ax) x ﬁ Such a direct scaling
relationship of the training loss as a function of the model size
is currently not available for more traditional neural network
architectures.

(30)

(3D

D. Incorporating Prior Distributions on Pole of LTI System

In the derivation of pj5(8) in Section III-C, the prior distri-
bution of the pole of the unknown LTI system was assumed
to be uniform, i.e., o ~ U(—ap, ag). However, the PDF of the
optimum distribution for the poles {3,,, } can be adjusted for any
other prior distribution of . This result is stated in the following
corollary.

Corollary 1.1: Given an optimum probability density func-
tion (PDF) p}(-) of the ESN poles {f,,} for the unknown
LTI system pole « distributed uniformly as a ~ pa() =
U(—ag, ap), the optimum ESN pole distribution changes
to q5(-) o< pi () - (ga(-))*/4, if the prior distribution on a
changes from pa (+) to ga(+).

We provide a sketch of a proof for this result using the
same argument as that in Section III-C. For « ~ ¢a (-), where
ga(+) is a non-uniform PDF, the contribution of a particular
realization a(®) to the average approximation error across all
realizations of « is now CR) = g5 (a®)) - |R] 1 Opti-
mizing the min-max objective of (20) requires C(®) = C(R)
for any two neighborhoods R and R'. However, since ga () is
no longer constant across neighborhoods, this becomes

ar (a®) - B =gy (a®) - B @32

Using only the leading terms in Bém and B(gRI), we get

(@)’ (a®)'

q@Y. &)y BT
o () a2 T ame

4 1—60(72)2)4
A®) (L= Be(R)?)” 33
= (a®) o) (33)
Recognizing that A®) m, we get
. (ga(a®))1/
BR) < g wEy -

Thus, the modified optimum PDF ¢j; (-) for a global allocation of
ESN poles can be written in terms of a general pole realization
(3, similar to Section III-C as
(aa(B)

(1-5%)
giving the result in Corollary 1.1.

Thus, if the system pole « follows a known non-uniform
distribution g (+), the “optimum” distribution to sample the ESN
reservoir weights from is not simply ga (+) itself, but is rather
a function of g () which is further skewed by the universal
optimum PDF pf(+). This is an important insight which informs
that configuring the ESN reservoir weights according to the same
distribution as the LTI system pole is in fact sub-optimal and a
better initialization strategy exists.

a5 (8) o =pi(B)(aa(B)E, (39

E. Extension to Higher-Order LTI Systems

In the preceding sections, we have considered the atomic
problem of approximating a first-order IIR system having a
single pole using an ESN consisting of randomly selected
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reservoir weights (poles) and trained output weights. We now
generalize the target function to a higher-order LTT system, in
particular, a linear combination of first-order poles [45], i.e.,
Sy = Ele UgSq,, for some weights vy € R, k=1,... K.
This is written in the transform domain as
K
Su(z) =

k=1

vk
—_— 36
1—apz1 (36)

We would like to approximate this higher-order system with an
ESN consisting of a random collection of poles {3, } corre-
sponding to each system pole realization avx,. This approximation
can be written as

1- 6m,k

k=1 \m=1

Su(z) (37

Denoting the projection error incurred in approximating each
first-order component s, as €, we recognize that an upper
bound on VAR(gj) has been obtained as VAR(ex) < B., in
Theorem 1. Then, the variance of the total approximation error £
across all K poles is given by VAR(e) = VAR(Y 1, &.). Since
the LTI system poles {«y} are not independent in general, an
upper bound on VAR(g) can be obtained as

VAR(e) < K*? - max (VAR(ep)) < K* - max (B:,). (38)
Therefore, the optimum PDF minimizing the approximation
error of a single first-order IIR system also minimizes the same
for a linear combination of such poles.

FE. Reservoir With Random and Sparse Interconnections

The conventional ESN in state-of-the-art practice uses a
reservoir that is sparsely connected with randomly weighted
interconnections between the constituent neurons. In the case
of non-interconnected neurons, the reservoir weights matrix
is Wy = diag({B, }2_,). However, this is not the case for
a sparsely interconnected reservoir. Performing the eigenvalue
decomposition of the general sparse (non-diagonal) W,

W = QAQ_17

where Q € CM*M s the matrix containing the eigenvectors
of W,. For a non-interconnected reservoir, W, = A and
Q =1I,,. On the other hand, for a random and sparsely in-
terconnected reservoir, the elements of W, induce a corre-
sponding distribution in A such that the elements of A may
no longer be independent [49]. However, the projection error
due to a general random sparsely interconnected reservoir ESN
will always be lower bounded by the projection error due to
a non-interconnected reservoir with its weights sampled i.i.d.
from pj5 (+). Although pj5 (+) has been derived for the case of non-
interconnected neurons, we will show in this section that even
with random and sparse (weighted) interconnections between
the neurons, where the recurrent and interconnection weights
are drawn from a uniform distribution, the projection error in
this case is still lower bounded by the projection error with

{Bm} - pr (+). This can be seen by invoking the state update

(39)

and output equations for the linear ESN, i.e.,

Xres[1] = WiesXres[n — 1] + WinXin[1] (40)
Xout[1t] = WouXes[1] 41)
Substituting (39) in (40), we get
Xres[] = QAQ ' Xpes[n — 1] + Winxin[n],
= Kres[n] = ARres[n — 1] + Wigxin[n], (42)

where  Xes[n] £ Q 'Xpes[n] and Wi, £ Q 'W,,. Using
QQ ' =1, in (41), we get

Xout [n} - Woul)’zres [n}v (43)

where Wom = W Q.

Thus, a general linear ESN with random and sparse inter-
connections between its reservoir neurons can be diagonalized
and the analysis for its optimization is the same as that for
a reservoir without interconnections, i.e., for W = A. We
will empirically show in Section V that a linear reservoir with
random interconnections does not provide additional perfor-
mance gain and is still bounded by the performance of the
non-interconnected reservoir ESN with weights sampled from
the optimal pj5 (+). This conclusion holds in general for reservoirs
with linear activation, i.e., the best performance for a reservoir
with linear activation will only be achieved for the case of non-
interconnected neurons with {3,,, } configured by sampling i.i.d.
from pj(+) In other words, p};(+) is the optimum PDF to sample
{Bm} from only when the neurons are not interconnected.

Studying the impact of nonlinear activation to derive the
optimum PDF, even with non-interconnected neurons can
be challenging. Although local approximations of the state
update equation around the zero state can be obtained using the
Jacobian, which is an approach used in stability analysis [50],
this is generally analytically tractable only for specific activation
functions, e.g., the hyperbolic tangent (tanh) function. Alterna-
tive approaches may include incorporating the nonlinear acti-
vation by modeling the state update equation as a higher-order
autoregressive process, up to an order that may admit tractable
analysis towards the optimum PDF. Finally, operator theoretic
methods [51] could be a possible solution for handling the
nonlinear activation, however their tractability towards deriving
the optimum PDF remains to be studied. The effect of nonlinear
activation on random interconnections between neurons will be
addressed in our future work.

IV. TRAINING WITH LIMITED SAMPLES

In the preceding sections, we have considered the orthogo-
nal projection of an LTI system’s impulse response on to the
subspace spanned by the reservoir of the ESN, and solved
the problem of finding the optimum basis for this subspace.
The optimum output weights {W; } for the linear combina-
tion of these basis functions are given by (11). However, this
makes use of the knowledge of the particular realization of v or
viewed alternatively, requires infinitely many samples to learn
{W;,}. In practice, however, we do not observe or know the
true model of the system being simulated, but have access to
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only a limited number of labeled input-output data samples. Un-
der this scenario, the output weights w = [W; Wy ... Wy|T
are trained with limited training data using the conventional
approach of least squares optimization of the {5 regression
loss. For a training sequence consisting of input-output pairs
{(z1,91),...,(zrL,yL)}, W is estimated as

w=(y"xL)", (44)
where y = [y y2 ... yr]T € REX! is the ground truth and
X,es € RM*L i the reservoir states matrix containing the state
vector Xees[n] fromn = 1 ton = L in its columns. When multi-
ple sequences are used for training, the training rule is modified
as

w=w"XL)", (45)
where y € RM»! is the concatenated ground truth across N,
training sequences, and X, € RM*NoL is the concatenated
reservoir states matrix. The availability of only a finite number
of labeled training data samples leads to the well-known issue
of model selection. In the context of ESNs, this translates into
selecting an optimum reservoir size M such that the test loss
is minimized while avoiding an excessively large reservoir size
that may lead to overfitting. The Akaike Information Criterion
(AIC) [52] is a well-known model selection criterion that penal-
izes large model sizes. The main AIC result can be written as

arg min D (px vy (z,y; @)||px,y (2, Y; B, Win))

M
o M
= arg min D (px.y (2, y; @)|[px,v (2, y; B, Win)) + NI
M P
(46)

where px y (x, y; &) denotes the true unknown joint distribution
with parameter « from which the input-output sample pairs are
generated, i.e., the unknown LTI system. px,y (x, ¥; B, Win)
denotes the joint distribution generated by the ESN model with
parameters {3, } and {W,,, } and D(p||q) denotes the Kullback-
Leibler (KL) divergence between two probability distributions
with PDFs p(-) and ¢(+). Since we cannot observe the true joint
distribution px y (x, y; @) in practice and only observe a finite
number of input-output samples, we only have access to the
empirical joint distribution px y (2, y; ). Thus, the argument
of the LHS of (46) is representative of the test loss, while the
argument of the first term on the RHS of (46) is representative
of the training loss computed using a finite number NV, of input-
output pair sequences, for which a scaling law as a function
of M has been derived in Theorem 1. The second term on the
RHS % represents the overfitting penalty imposed by the AIC.
Combining this observation with the result of Theorem 1, we get

1 M

Liest X

With this relationship, we can derive an order for the optimum
reservoir size M* which minimizes the test 10ss L. This is

obtained by first setting

AL est 4 1
— X

—— + —— =0. (48)
dM M5 " N,L

Solving this, we can obtain an order of magnitude for the
optimum reservoir size M* as

M* =0 ((NPL)1/5) : (49)
Note that this result does not give the exact reservoir size in
terms of number of neurons, but is rather an approximation of
the order of the optimum reservoir size needed to minimize
the testing loss. Furthermore, the AIC is one of many model
selection criteria, e.g., Bayesian Information Criterion (BIC),
Generalized Information Criterion (GIC), among others [53].
However, such model selection criteria is beyond the scope of
this paper. A statistical learning theory-inspired model selection
criteria for ESN-based multi-antenna wireless symbol detection
is developed in our previous work [42].

V. NUMERICAL EVALUATIONS

In this section, we provide numerical evaluations to validate
the theoretical results derived in the preceding sections. Specif-
ically, our objective is to experimentally verify the result of
Theorem 1 and validate the optimality of the distribution p} ()
for the reservoir weights under various scenarios.

A. Sampling From the Optimum Distributions

For the case of uniformly distributed system pole «, we
use the Von Neumann rejection sampling method (accept-reject
algorithm) [54] to draw i.i.d. samples from the optimal reservoir
weights distribution pj;(-), as well as the modified optimum
PDF gf;(-) for non-uniformly distributed «, as shall be seen
in Section V-E. Alternatively, its empirical form [55] can avoid
computing the PDF scaling constant.

B. Projection Error Scaling law From Theorem 1

The main result of Theorem 1 is a scaling law for the pro-
jection error as a function of the reservoir size in neurons. This
is a key result that also translates to the rate of decrease in the
training loss when training a standard /inear ESN under limited
training data. The projection error € of (12) is simulated over
10° Monte-Carlo runs for v ~ U(—0.95,0.95) for an ESN with
a non-interconnected reservoir, i.e., Wy = diag({n }M_,).
The resulting plot of the empirical error versus M is shown
in Fig. 8. We can observe that the simulated projection error
using reservoir weights {f3,,} configured using the optimum
PDF pi;(+) is significantly lower than the error obtained using
reservoir weights drawn from ¢/ (—0.95, 0.95). Additionally, the
empirical ¢ approximately displays an M ~* dependence when
its reservoir weights are configured using pj5 (), compared to
approximately an M 2 dependence displayed when the weights
are sampled from U/(—0.95,0.95), indicating a good match
between theory and numerical evaluations.

In addition to plotting the projection error, we also validate
the scaling law via the empirical sequence approximation error
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Projection Error (¢) vs M

(B} ~ U(—0.95,0.95)
= {Bm} ~ Pi(8)

log;,(e) (simulated)
I

6L
1]
-8 \ \ :
0 0.5 1 1.5 2
log, (M)
Fig. 8.  Validation of the scaling law for the projection error (¢) of (12).
0 Sequence Approximation Error vs M
g ‘ ‘ o (B} ~ U(—0.95,0.95)
2 ={Bn} ~ Pp(9)
L
g
8L !
_10 L L L
0 0.5 1 1.5 2
log(M)
Fig. 9. Validation of the scaling law for the sequence approximation error

(Eseq) for sequence length L = 1000.

Eseq» defined as

Niin 9
&l (50)
2

1 O
Eseq = m Z; HYLEFI — YESN
i=

where yﬁ% € R and ygS)N € RZ are the sequences each of
length L output by the unknown LTI system being simulated and
by the ESN approximation respectively in the ¢th Monte-Carlo
run. Note that the output weights w € R for the sequence
approximation task are computed using (11), i.e., they are se-
lected as the optimum values {1V}, } that result from orthogonal
projection given the value of the realization of « in each run.
This is plotted in Fig. 9 for a sequence length L = 1000 over
Ngim = 10° runs. As with the simulated projection error, Fig. 9
shows that 44 also exhibits a dependence of approximately
M~ for {m} ~ pi(-) and that of approximately M 2 for
{Bm} ~ U(—0.95,0.95). In summary, these numerical evalu-
ations provide strong confirmation for the validity of the de-
rived theoretical optimum distribution of the internal reservoir
weights.

C. Training and Test Loss Under Limited Training Data

Recall that computing the projection error € via (12) required
knowledge of the particular realization of « in each run, or
alternatively the availability of infinitely many training samples.
However, with limited training data as in practice, we can

Training Loss vs M

logyo (»Ctram)

-10 He-{Bm} ~ 14(—0.95,0.95) )

&{Bun} ~ p(8)
-12 i \ \
0 0.5 1 1.5 2
logyo(M)
Fig. 10. Training loss versus reservoir size M for ESN trained with finite

training samples.

Test Loss vs M

logyo (Ltest )

BHo (B} ~ U(—0.95,0.95) ]

'E'{ﬁm} ~ p]’%(ﬁ)
-10 1 I I i]
0 0.5 1 1.5 2
log;o(M)
Fig. 11.  Test loss versus reservoir size M for ESN trained with finite training

samples.

verify that a similar scaling trend versus M and improvement in
performance in terms of the training and test losses is obtained
when configuring the weights using pj; (-) compared to randomly
generating them from U (—ayg, cg). To validate this, the linear
ESNis trained with V;, = 1 training sequence of length L = 500
samples, i.e., W is computed using (45). Next, it is tested with

Ny = 10 test sequences of the same length. The empirical train-

: A 1 Niim 1) 5(2) — (i) 2
ing loss Linain = Nem N, L 2ot HyLTI,train _YESN,trainHz 18

plotted in Fig. 10, where yg%l’train € RN»L is the concatenated

training output from the LTI system and y(E’gNmm € RV»L s
the concatenated ESN output during training respectively in the
i Monte-Carlo run, with N, = 5 x 10%.

We can observe that the ESN with optimally sampled reservoir
weights shows a significantly lower training loss and approxi-
mately obeys the M ~* scaling law. The more important practi-

. .. A
cal performance metric, namely the empirical test loss Ly =
NSlﬂ\

m >t ||S’I(j%1,test - yg%N,test”% is plotted in Fig. 11,
where yST)Ltest € RMal 5 the concatenated LTI system output
during test and y](E%N’teSt € RNl is the concatenated ESN
output during test respectively in the ™ Monte-Carlo run. There-
fore, the derived optimum PDF for the reservoir weights can
provide up to 4 orders of magnitude improvement in the test loss

at higher reservoir sizes, indicating a huge performance gain that
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Training Loss vs M (Interconnected Reservoir)
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Fig. 12. Training loss versus reservoir size M under finite training samples

for ESN with random interconnections between neurons.

Test Loss vs M (Interconnected Reservoir)
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Fig. 13. Test loss versus reservoir size M under finite training samples for
ESN with random interconnections between neurons.
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Fig. 14.  Test loss versus reservoir size M with a changed prior PDF on «
given by ga () (non-uniform distribution).

can be achieved without any additional training complexity. Note
that in the simulation of a simple system such as a first-order IIR
system, it would typically take a model of a significantly larger
size, i.e., reservoir with many more neurons to start observing
the overfitting effect in the test 10ss Ly

D. Interconnected Linear Activation Reservoir

In order to validate our finding from Section III-F that
interconnections between neurons in the reservoir is equivalent

Test Loss vs M (Higher-order system)
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Fig. 15.  Test loss versus reservoir size M for a 5-th order LTI system.

to a non-interconnected reservoir with modified input and output
weights matrices, we replicate the evaluations of Section V-C,
but with a non-diagonal W, i.e., with random and sparse
interconnections between the reservoir neurons. The sparsity
of connections is controlled via the hyperparameter ‘sparsity’
(denoted as x) which represents the probability of each element
of W, being 0. Furthermore, the spectral radius of Wi
is set to 0.95, i.e., p(Wies) = max |A(Wies)| = 0.95 for the
cases of random and sparsely interconnected reservoirs, with
corresponding weights drawn i.i.d. from ¢/(—0.95, 0.95).

From both Figs. 12 and 13, we can observe that the ESN with a
non-interconnected reservoir with weights configured using the
optimum PDF pj;(+) greatly outperforms the ESN model with a
sparsely interconnected reservoir with weights randomly gener-
ated from U(—0.95,0.95), i.e., the state-of-the-art practice. At
higher reservoir sizes, e.g., M = 100, we can see a gain of up to
6 orders of magnitude in the test loss. Additionally, for a fixed
spectral radius, a change in the sparsity of the reservoir from
k = 0.2 to k = 0.5 does not result in any observable change in
the trends of the training and the test losses. This confirm our
hypothesis from Section III-F that for linear activation, random
interconnections between neurons do not provide additional
performance gain.

E. Simulating Change in Prior Distribution of System Pole

In this section, the result of Corollary 1.1 is validated through
simulations. Specifically, we consider a changed prior distribu-
tion of a given by ga(-) = N(0.7,1072). Following the same
settings as in the previous sections for data-driven training of the
output weights, the ESN reservoir weights are now configured
by sampling from the modified optimum PDF ¢(-) using the
result of Corollary 1.1. The corresponding test loss for this
experiment is plotted in Fig. 14. Furthermore, we also plot the
test loss for the case of {f3,,,} initialized from p}(-), which
is optimized for o ~ U(—0.95,0.95) and not for « ~ ga(-).
Compared to randomly generating the reservoir weights {5, }
from /(—0.95,0.95), configuring them using pj(-) or ¢5(-)
both result in much improved performance. However, the perfor-
mance achieved with ¢ (-) which is optimized for the modified
prior PDF ¢4 (-) is even better than that using pj5(-) which is
optimized for a uniform prior PDF py (+). This clearly validates
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Corollary 1.1 and demonstrates the value in adapting the reser-
voir initialization strategy to the available domain knowledge.

F. Simulating Higher-Order LTI Systems

In this section, we empirically verify the optimality of p};(-)
when approximating higher-order LTI systems of the form
given in (36), i.e., a linear combination of first-order poles.
Specifically, we consider a 5-th order system by substituting
K =5ins, = ZkK:l Sa,. Where {ay, } are sampled i.i.d. from
U(—0.95,0.95). The corresponding test loss is plotted in Fig. 15.
Similarly to the first-order system approximation task, we can
see an improvement of up to 4 orders of magnitude at moderate
to higher reservoir sizes. This validates the applicability of the
derived optimum PDF to higher-order LTI systems.

VI. CONCLUSION AND FUTURE WORK

In this work, we have introduced a clear signal process-
ing approach to understand the echo state network (ESN), a
powerful architecture of the Reservoir Computing (RC) family,
belonging to the broader class of randomized recurrent neural
networks. Employing the linear ESN to approximate a simple
linear time-invariant (LTT) system, we provide a precise scaling
law obeyed by the approximation error and a complete analytical
characterization of the optimum probability density function
(PDF) that can be used to configure the ESN’s reservoir weights,
which are otherwise randomly generated in a pre-determined and
arbitrary fashion in state-of-the-art practice. Numerical evalua-
tions demonstrate the optimality of the derived optimum PDF by
showing a gain of up to 4 orders of magnitude at moderate to high
reservoir sizes. This demonstrates the practical applicability
and realizable performance gains by virtue of the analysis in
this work. Extension of this analysis to complex-valued ESNs
and developing an understanding of the impact of nonlinear
activation is part of future investigation. Additionally, deriving
the optimum weights distribution for the wireless channel equal-
ization task given statistical knowledge of the channel is also
included in future work.

APPENDIX A
PROOF OF LEMMA 1

Proof: Substituting o = 3, £ £(B1 + B2) in (23) and the
substitution 37 = 8. — A and 8> = 8. + A, we can arrive at
the following expression after some manipulation,
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Using this approximation in (51), we arrive at Lemma 1,
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APPENDIX B
PROOF OF LEMMA 2

Proof: With the substitutions 5, = 8. — A, B2 = .+ A
and a sequence of algebraic manipulations, we can arrive at
the following expression for the derivative of the neighborhood
error w.r.t. o, evaluated at the mid-point o = 3, £ %(ﬁl + B2),

Oe(2) B 46.(1 — ﬂg + A2)
Do ((1-p2)2 - p2A2)°
Since a power series expansion for 6(2> ‘ _, interms of A is

requlred we first obtain a Taylor series expans1on for the term
W as follows. Rewriting this term as
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using the Taylor series 17— + ~ 1 — z, for small x. Thus,
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Simplifying (55), we get
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Substituting with the Taylor expansion for Cébou“d) from (58), it
follows that
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yielding the result of Lemma 2. |
REFERENCES

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 12,2024 at 16:00:50 UTC from IEEE Xplore. Restrictions apply.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. IEEE 2013 Int. Conf. Acoust., Speech,
Signal Process., 2013, pp. 6645-6649.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by
continuous time recurrent neural networks,” Neural Netw., vol. 6, no. 6,
pp. 801-806, 1993.

M. M. Agiiero-Torales, J. I. Abreu Salas, and A. G. Lépez-Herrera, “Deep
learning and multilingual sentiment analysis on social media data: An
overview,” Appl. Soft Comput., vol. 107, 2021, Art. no. 107373.

K. Cho et al., “Learning phrase representations using RNN encoder—
decoder for statistical machine translation,” in Proc. Proc. Conf. Empirical
Methods Natural Lang. Process., 2014, pp. 1724-1734.

D. Giiera and E. J. Delp, “Deepfake video detection using recurrent neural
networks,” in Proc. IEEE 15th Int. Conf. Adv. Video Signal Based Surveill.,
2018, pp. 1-6.

B. Zhao, X. Li, and X. Lu, “CAM-RNN: Co-attention model based
RNN for video captioning,” IEEE Trans. Image Process., vol. 28, no. 11,
pp. 5552-5565, Nov. 2019.

S.S.Mosleh, L. Liu, C. Sahin, Y. R. Zheng, and Y. Yi, “Brain-inspired wire-
less communications: Where reservoir computing meets MIMO-OFDM,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4694-4708,
Oct. 2018.

B. Peng et al., “RWKYV: Reinventing RNNs for the transformer era,”
Findings of the Assoc. Comput. Linguistics: EMNLP 2023. Association
for Computational Linguistics, Dec. 2023, pp. 14048-14077. [Online].
Available: https://aclanthology.org/2023.findings-emnlp.936.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1310-1318.

P. Werbos, “Backpropagation through time: What it does and how to do
it,” Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long time lag
problems,” in Proc. Adv. Neural Inf. Process. Syst., 1997, pp. 473—479.
A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network,” Physica D: Nonlinear Phe-
nomena, vol. 404, 2020, Art. no. 132306.

C. Gallicchio, A. Micheli, and P. Tino, “Randomized recurrent neu-
ral networks,” in Proc. Eur. Symp. Artif. Neural Netw., 2018. [Online].
Available: https://www.esann.org/sites/default/files/proceedings/legacy/
€s2018-6.pdf

M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to recur-
rent neural network training,” Comput. Sci. Rev., vol. 3, no. 3, pp. 127-149,
2009.

M. LukoSevi¢ius, A Practical Guide to Applying Echo State Networks.
Berlin Heidelberg: Springer, 2012, pp. 659-686.

X. Hinaut and P. F. Dominey, “On-Line processing of grammatical
structure using reservoir computing,” in Proc. Artif. Neural Netw. Mach.
Learn.—ICANN, 2012, pp. 596-603.

A. Juven and X. Hinaut, “Cross-situational learning with reservoir com-
puting for language acquisition modelling,” in Proc. Int. Joint Conf. Neural
Netw., 2020, pp. 1-8.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

197

A. Jalalvand, G. Van Wallendael, and R. Van De Walle, “Real-time
reservoir computing network-based systems for detection tasks on visual
contents,” in Proc. 7th Int. Conf. Comput. Intell., Commun. Syst. Netw.,
2015, pp. 146-151.

W.-J. Wang, Y. Tang, J. Xiong, and Y.-C. Zhang, “Stock market index
prediction based on reservoir computing models,” Expert Syst. With Appl.,
vol. 178, 2021, Art. no. 115022.

Z.Zhou, L. Liu, and H.-H. Chang, “Learning for detection: MIMO-OFDM
symbol detection through downlink pilots,” IEEE Trans. Wireless Com-
mun., vol. 19, no. 6, pp. 3712-3726, Jun. 2020.

Z. Zhou, L. Liu, S. Jere, J. Zhang, and Y. Yi, “RCNet: Incorporating
structural information into deep RNN for online MIMO-OFDM symbol
detection with limited training,” IEEE Trans. Wireless Commun., vol. 20,
no. 6, pp. 3524-3537, Jun. 2021.

J. Xu, Z. Zhou, L. Li, L. Zheng, and L. Liu, “RC-Struct: A structure-
based neural network approach for MIMO-OFDM detection,” [EEE Trans.
Wireless Commun., vol. 21, no. 9, pp. 7181-7193, Sep. 2022.

H.-P. Ren, H.-P. Yin, C. Bai, and J.-L. Yao, “Performance improvement
of chaotic baseband wireless communication using echo state network,”
IEEE Trans. Commun., vol. 68, no. 10, pp. 6525-6536, Oct. 2020.

H.-H. Chang, L. Liu, and Y. Yi, “Deep echo state Q-network (DEQN) and
its application in dynamic spectrum sharing for 5G and beyond,” I[EEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 3, pp. 929-939, Mar. 2022.
F. Da Ros, S. M. Ranzini, H. Biilow, and D. Zibar, “Reservoir-computing
based equalization with optical pre-processing for short-reach optical
transmission,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 5,
Sep./Oct. 2020, Art. no. 7701912.

H. Dai and Y. K. Chembo, “Classification of IQ-modulated signals based
on reservoir computing with narrowband optoelectronic oscillators,” IEEE
J. Quantum Electron., vol. 57, no. 3, Jun. 2021, Art. no. 5000408.

R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C.
Zhang, “Artificial intelligence-enabled cellular networks: A critical path to
beyond-5G and 6G,” IEEE Wireless Commun., vol. 27,no. 2, pp. 212-217,
Apr. 2020.

G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Miiller,
Layer-Wise Relevance Propagation: An Overview. Cham, Switzerland:
Springer, 2019, pp. 193-209.

R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv:1703.00810.

S. M. Lundberg and S.-1. Lee, “A unified approach to interpreting model
predictions,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4768-47717.

D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K.-R. Miiller, “How to explain individual classification decisions,” J.
Mach. Learn. Res., vol. 11, pp. 1803-1831, Aug. 2010.

M. C. Ozturk, D. Xu, and J. C. Principe, “Analysis and design of echo
state networks,” Neural Comput., vol. 19, no. 1, pp. 111-138, Jan. 2007.
E. Bollt, “On explaining the surprising success of reservoir com-
puting forecaster of chaos? The universal machine learning dynami-
cal system with contrast to VAR and DMD,” Chaos, vol. 31, 2021,
Art. no. 013108.

A. G. Hart, J. L. Hook, and J. H. Dawes, “Echo state networks trained by
tikhonov least squares are L2(p) approximators of ergodic dynamical sys-
tems,” Physica D: Nonlinear Phenomena, vol. 421,2021, Art. no. 132882.
A. Haluszezynski and C. Rith, “Good and bad predictions: Assessing
and improving the replication of chaotic attractors by means of reservoir
computing,” Chaos, vol. 29, no. 10, 2019, Art. no. 103143.

T. L. Carroll, “Optimizing memory in reservoir computers,” Chaos, vol. 32,
no. 2, 2022, Art. no. 023123.

S. Jere, R. Safavinejad, and L. Liu, “Theoretical foundation and design
guideline for reservoir computing-based MIMO-OFDM symbol detec-
tion,” IEEE Trans. Commun., vol. 71, no. 9, pp. 5169-5181, Sep. 2023.
L. Gonon, L. Grigoryeva, and J.-P. Ortega, “Risk bounds for reservoir
computing,” J. Mach. Learn. Res., vol. 21, no. 240, pp. 1-61, 2020.

S. Jere, R. Safavinejad, L. Zheng, and L. Liu, “Channel equalization
through reservoir computing: A theoretical perspective,” IEEE Wireless
Commun. Lett., vol. 12, no. 5, pp. 774-778, May 2023.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems,
2nd ed. Hoboken, NJ, USA: Prentice-Hall, Inc., 1996.

K. Sozos, A. Bogris, P. Bienstman, G. Sarantoglou, S. Deligiannidis,
and C. Mesaritakis, “High-speed photonic neuromorphic computing using
recurrent optical spectrum slicing neural networks,” Commun. Eng., vol. 1,
no. 1, p. 24, 2022, doi: 10.1038/s44172-022-00024-5.

X. Liu, “A new method for the pole estimation of linear time-invariant
systems using singular value decomposition,” J. Sound Vib., vol. 310, no. 4,
pp- 998-1013, 2008.


https://aclanthology.org/2023.findings-emnlp.936
https://www.esann.org/sites/default/files/proceedings/legacy/es2018-6.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2018-6.pdf
https://dx.doi.org/10.1038/s44172-022-00024-5

198 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

[48] Y. Zhang, Z. Zhang, X. Xu, and H. Hua, “Modal parameter identification

using response data only,” J. Sound Vib., vol. 282, no. 1, pp. 367-380,

2005.

[49] A. Edelman and N. R. Rao, “Random matrix theory,” Acta Numerica,
vol. 14, pp. 233-297, 2005.

[50] F. M. Bianchi, L. Livi, and C. Alippi, “Investigating echo-state networks

dynamics by means of recurrence analysis,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 29, no. 2, pp. 427-439, Feb. 2018.

S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:

Machine Learning, Dynamical Systems, and Control. Cambridge, U.K.:

Cambridge Univ. Press, 2019.

[52] H. Akaike, Information Theory and an Extension of the Maximum Likeli-
hood Principle. New York, NY, USA: Springer, 1998, pp. 199-213.

[53] P. Stoica and Y. Selen, “Model-order selection: A review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36-47,
Jul. 2004.

[54] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, vol. 2.
Berlin, Germany: Springer, 1999.

[55] B. S. Caffo, J. G. Booth, and A. C. Davison, “Empirical supremum
rejection sampling,” Biometrika, vol. 89, no. 4, pp. 745754, 2002.

[51]

Shashank Jere (Graduate Student Member, IEEE)
received the B.S. degree in electrical and electronic
engineering from Nanyang Technological University,
Singapore, in 2014, and the M.S. degree in electrical
engineering from the University of California at Los
Angeles, Los Angeles, CA, USA, in2016. From 2016
to 2019, he was a Platform and Product Develop-
ment Engineer with Qualcomm Technologies Inc.,
San Diego, CA, USA. He is currently working toward
the Ph.D. degree with the Wireless@VT, Bradley
Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA. His research interests include wireless
communications, optimization, deep learning, information theory and statistical
learning theory.

Lizhong Zheng (Fellow, IEEE) received the B.S.
and M.S. degrees from Tsinghua University, Beijing,
China, in 1994 and 1997, respectively, and the Ph.D.
degree from the University of California, Berkeley,
CA, USA, in 2002. Since 2002, he has been with
the Department of Electrical Engineering and Com-
puter Sciences, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, where he is currently
a Professor of electrical engineering and computer
sciences. His research interests include information
theory, wireless communications, and statistical in-
ference. He was the recipient of the Eli Jury Award from UC Berkeley in 2002,
IEEE Information Theory Society Paper Award in 2003, NSF CAREER Award
in 2004, and AFOSR Young Investigator Award in 2007. He became an IEEE
Fellow in 2016.

Karim Said received the B.Sc. degree from Man-
soura University, Mansoura, Egypt, in July 2006,
and the M.S. and Ph.D. degrees from the Virginia
Polytechnic institute and State University (Virginia
Tech), Blacksburg, VA, USA, in 2012 and 2017,
respectively. He is currently a Research Scientist with
Virginia Tech, working on Waveform Design for 6G
and Machine Learning for Wireless Communications

Lingjia Liu (Senior Member, IEEE) received the
B.S. degree in electronic engineering from Shang-
hai Jiao Tong University, Shanghai, China, and the
Ph.D. degree in electrical and computer engineering
from Texas A&M University, College Station, TX,
USA. He is currently a Professor and Bradley Senior
Faculty Fellow with the ECE Department, Virginia
Tech (VT), Blacksburg, VA, USA, and is also the
Director of Wireless@ Virginia Tech, a center focus-
ing on wireless technology. He spent more than four
years working with the Mitsubishi Electric Research
Laboratory (MERL) and the Standards and Mobility Innovation Lab, Samsung
Research America (SRA), where he was the recipient of Global Samsung Best
Paper Award in 2008 and 2010. He was leading Samsung’s efforts on multiuser
MIMO, CoMP, and HetNets in 3GPP LTE/LTE-Advanced standards. His re-
search interests include enabling technologies for 5G-Advanced/6G networks,
including machine learning for wireless networks, massive MIMO, massive
MTC communications, and mmWave communications. His research received
eight Best Paper Awards. In 2021, he was the recipient of VT College of
Engineering Dean’s Award for Excellence in Research.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 12,2024 at 16:00:50 UTC from IEEE Xplore. Restrictions apply.



