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A B S T R A C T   

In-situ thermography for Fuse Filament Fabrication (FFF) processes reveals the dynamic thermal behavior during 
printing. The data collected are thermal image time series. Their infrared (IR) intensity is visual evidence of heat- 
affected zone (HAZ) temperatures, which can be leveraged to train deep learning models, e.g., Long Short-Term 
Memory (LSTM), for real-time temperature prediction and process monitoring. Nonetheless, the data collection 
method and printing path may pose challenges for data modeling. Typically, the IR camera has a 昀椀xed position 
while the HAZ moves per the predetermined printing path. Consequently, the HAZ shifts in images and the 
features extracted from these thermal images show a “periodic” behavior over time. Such periodic patterns do 
not re昀氀ect any useful information about HAZ temperatures. Instead, they are noise hiding and interrupting the 
true temperature information, thus must be removed before using the data to train an LSTM model for tem-
perature prediction. This study integrates a time series model, i.e., ARIMA, with Stacked LSTM to build a pTS- 
LSTM model that eliminates noisy patterns and predicts temperatures during FFF printing. The case study re-
sults show the outperformance of pTS-LSTM over conventional LSTM and classic Recurrent Neural Network 
models. pTS-LSTM is demonstrated to be promising for in-situ process monitoring with low-quality thermal 
images. In FFF practices, pTS-LSTM will be a preferred option over the commonly used deep learning models for 
thermal-image-based temperature prediction.   

1. Introduction 

Fused Filament Fabrication (FFF), also known as Fused Deposition 
Modeling (Stratasys trademark FDM™) [1], is an extrusion-based ad-
ditive manufacturing (AM) process that deposits melted 昀椀lament in a 
predetermined path to build parts layer by layer. Typically, the extruder 
of an FFF printer consists of a heating chamber and a nozzle. The heating 
chamber hosts the lique昀椀er to melt the 昀椀lament, allowing the molten 
material to exit from the small nozzle to form a thin bead of plastic that 
will adhere to the material it is laid on [2,3]. Due to the build mecha-
nism, FFF fabricates durable parts with a high production rate and low 
expense [4,5], thus promising for both industrial and home uses [6]. On 
the other hand, the mechanism raises concerns about printing stability 
and quality. The temperature pro昀椀les of the contact region between the 
昀椀lament's hot end and the in-process layer, i.e., extrudate deposition area 
(or heat-affected zone, abbreviated as HAZ), are highly in昀氀uential to the 
density and geometric accuracy of the printed parts. During FFF print-
ing, unstable HAZ temperature pro昀椀les can cause abnormal thermal 

expansion and shrink of the part, resulting in insuf昀椀cient bounding, 
internal voids, and geometric deviation [3,7,8]. Hence, monitoring the 
HAZ and predicting its temperature pro昀椀les during printing is rather 
bene昀椀cial to FFF quality improvement. 

State-of-the-art literature [9–11] has been using Infrared (IR) Ther-
mography to monitor FFF processes in situ and provide timely feedback 
for the temperature pro昀椀les. In-situ thermography collected for HAZ 
reveals the dynamic thermal behavior during FFF printing. The data 
collected are thermal image time series. Their IR intensity is visual ev-
idence for the temperature pro昀椀les, from which one can extract peak 
temperature, heating rate, cooling rate, etc. Fig. 1(a) shows the 
screenshot of a thermal video for a lab-based FFF process. Subsequent 
thermal image frames, as displayed in Fig. 1(b), show the transient 
HAZs, revealing the heat transfer status across adjacent part regions 
during printing. Deep learning (DL) models, e.g., Convolutional Neural 
Networks (CNNs) [12], can learn HAZ characteristics from these thermal 
images and predict the temperature pro昀椀le or quality issues [13]. 

Despite the success in speci昀椀c AM applications [13,14], current DL 
methods are limited for predictive analysis with FFF thermal videos due 
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to data-related issues, speci昀椀cally periodic patterns in thermal videos. A 
thermal video is essentially an imaging time series. The frames capture 
an ongoing FFF process, thus re昀氀ecting the evolution of HAZ and heat 
transfer status from time to time. When the data collection method is 
ideal, e.g., having a sensor that captures high-resolution, complete im-
ages of the HAZ all the time, the thermal videos acquired would be free 
of excessive noise or missing information. A DL model can learn from 
these videos conveniently and predict HAZ temperatures with high ac-
curacy [15]. Nonetheless, such high-quality thermal videos are hardly 
acquired from real FFF applications. The data collection can be 
restricted – the sensor is usually posed from a certain angle to the 
printing platform and captures the HAZ plus a large background (which 
is useless, peripheral information). The thermal images in Fig. 1(a) are 
an example of restricted data collection – huge background and imper-
fect sensor angle. Meanwhile, the HAZ would “shift” in subsequent 
thermal image frames following the printing path of FFF. The prede昀椀ned 
printing path determines the back-and-forth nozzle movements in the 
camera view. Consequently, the shifts of HAZ show periodicity, which 

can be visually identi昀椀ed from Fig. 1(b). With preliminary data pro-
cessing and feature extraction, such periodicity is revealed as the typical 
“periodicity” in time series (TS) [16] (Fig. 2). 

The periodic patterns in FFF thermal videos are irrelevant to the HAZ 
temperature pro昀椀le, thus are noise and must be removed during DL- 
based prediction. Unfortunately, existing DL methods for FFF or other 
AM processes rarely address the data periodicity issue. They tend to 
assume high-quality, non-noisy thermal images. They are of limited use 
when the best thermal videos collectible are paradigms shown in Fig. 1. 
Targeting this issue, this study proposes a novel DL model, Long Short- 
Term Memory for periodic TS (abbreviated as pTS-LSTM), which in-
tegrates TS analysis, speci昀椀cally Autoregressive Integrated Moving 
Average (ARIMA) [17,18], with Stacked LSTM [19] to enable automatic 
characterization and removal of periodicity in TS extracted from FFF 
thermal videos, and use the residual TS to predict HAZ temperatures. By 
removing the periodic pattern, pTS-LSTM preserves the relevant infor-
mation for HAZ temperatures, avoiding the interruption from the data 
collection method and printing path. 

This work will contribute to in-situ process monitoring of FFF from 
both methodological and practical perspectives. Hybrids of TS analysis 
and LSTM have been studied in non-manufacturing 昀椀elds [20–23] but 
not yet explored for thermal image TS from AM. The bene昀椀ts of such 
hybrid models, e.g., pattern characterization and forecasting, can be 
helpful for analyzing in-situ thermal images from FFF that are subject to 
noisy periodicity. pTS-LSTM integrates ARIMA and Stacked LSTM at the 
algorithm level, enabling real-time periodicity reduction from upcoming 
TS and LSTM-based HAZ temperature prediction. Unlike current DL 
methods that are only useful on high-quality thermal images/videos, 
pTS-LSTM is compatible with noisy data interrupted by data collection 
angle and printing path, thus allowing the adoption of DL in FFF ap-
plications with imperfect data collection capability. pTS-LSTM also has 
the potential to be generalized to other AM processes where thermal 
image TS are collected during printing. 

Nomenclature 

X,xt * ℝn n-dimensional time series extracted from videos 
l Length of time series segments 
Φ,k;K Kernel function; output of kernel function 
λ,α,V Eigenvalue, eigenvector, and principal component in 

kernel PCA 
X',x't * ℝm m-dimensional time series extracted from X by kernel 

PCA 
f , fj ARIMA model 
p,d,q;P ,D ,Q Orders in an ARIMA model f ; parameter sets of 

(p, d, q)
L; θi,ψ i; ϵt Lag operator; coef昀椀cients; error term in ARIMA model 
E,et ; ht Residual TS, input to an LSTM block; output of an LSTM 

block 
C, I,O,F Memory cell, input gate, output gate, and forget gate of an 

LSTM block 

W,U,b Weights of the input, recurrent connections, and bias in an 
LSTM block 

AM Additive manufacturing 
FFF Fused Filament Fabrication 
IR Infrared 
HAZ Heat-affected zone 
TS Time series 
DL Deep Learning 
CNN Convolutional Neural Network 
RNN Recurrent Neural Network 
LSTM Long Short-Term Memory 
ARIMA Autoregressive Integrated Moving Average 
PCA Principal Component Analysis 
AIC Akaike Information Criterion 
ROI Region of interest 
MSE Mean Squared Error 
CV Cross-Validation  

Fig. 1. Thermal video of a lab-based FFF process: (a) thermal video for an FFF 
process, (b) subsequent thermal image frames from the video. 

Fig. 2. Features extracted from the thermal video of FFF processes form time series with periodicity. Feature extraction was done with kernel PCA.  
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The rest of this paper is organized as follows. Section 2 will review 
state-of-the-art literature for temperature monitoring in FFF and DL- 
based temperature prediction with thermal imaging data. Section 3 
will elaborate on the technical details of pTS-LSTM development, fol-
lowed by a case study in Section 4 to demonstrate pTS-LSTM on real data 
from a lab-based FFF process. Section 5 will conclude the paper and 
highlight future research directions. 

2. Literature review 

Real-time analysis of temperatures during FFF printing is enabled by 
two components: (a) in-situ sensing and processes monitoring and (b) 
predictive analysis of temperatures with thermal imaging data. This 
section reviews studies related to both and uncovers the research gaps in 
integrating TS models with LSTM for real-time prediction. 

2.1. Temperature monitoring in FFF 

Recent studies have made progress in temperature sensing and 
monitoring for FFF processes. Haro et al. [24] showed that temperature 
sensors could be used for FFF process monitoring. By applying temper-
ature sensors, the researchers monitored in-situ temperature variation, 
including nozzle temperature and printing chamber temperature, to 
systematically study their linkage with 昀椀lament diameter in use. Kou-
siatza and Karalekas [25] embedded Fiber Bragg Grating and Thermal 
Couple sensors into the samples at their 3rd layer and 20th layer, either 
longitudinally or transversely, to obtain in-situ loading pro昀椀les and TS 
temperature pro昀椀les. By comparing these two pro昀椀les, the researchers 
concluded that as long as an initial reference temperature value can be 
obtained and the temperature variation remains steady, the complete 
temperature pro昀椀les during the whole procedure can be obtained from 
the recorded Bragg peak wavelengths. Though the above studies 
demonstrated the possibility of sensor-based temperature monitoring in 
FFF, they have limited feasibility in practice due to the number and 
sensitivity restrictions of the sensors needed for collecting the temper-
ature parameters at the positions relative to the nozzle. 

Other researchers leveraged IR cameras to collect thermography 
containing the TS temperature 昀椀eld on the HAZ and ambient conditions 
[9,26,27]. Seppala and Migler [9] used IR thermography to observe the 
temperature evolution at the welding zone in the thermoplastic AM 

process. Malekipour et al. [26] conducted thermal experiments to 
analyze parameters' effects on FFF printing quality and concluded that a 
fabrication process with more even temperature distribution would 
improve the mechanical properties of printed specimens. The issues with 
IR cameras are the accuracy and completeness of temperature pro昀椀les. 
The quality of data collected is susceptible to the IR camera position; the 
data provided a 2D pro昀椀le, while the temperature evolution in FFF is a 
3D process. 

To simplify the temperature monitoring procedure, some researchers 
attempted to build physics models in combination with sensor data 
collection and analysis. For instance, Ravoori et al. [28] applied an 
analytical model to the FFF printing process, in which the energy con-
servation law and thermal distribution functions were applied to ac-
count for the heat transfer process during FFF, 昀椀tting well with their 
temperature data from the thermocouples. They concluded that, by 
manipulating the temperature parameters, desired 昀椀lament-to-昀椀lament 
bonding could be achieved, leading to novel, spatially varying ortho-
tropic parts. Similar efforts can also be found in Lu and Wang [29], Lu 
and Wang [30], which built a physics-based compressive sensing model 
to minimize the required number of sensors and the amount of data 
collected. A 1D heat transfer model was developed to manipulate the 
process parameters and optimize the bonding property between ABS 
layers. 

The progress in sensor-based temperature monitoring for FFF enables 
further studies of the temperature pro昀椀les in FFF. To perform real-time 
analysis for HAZ temperatures and generate timely feedback, thermal 
image analysis and modeling are essential to inspect the sensor data 
from FFF and identify the printing quality [31]. 

2.2. Thermal-image-based temperature prediction in FFF 

Machine Learning (ML) and DL models have been useful tools for 
automatic information extraction and analysis of thermal imaging data 
from AM processes [13,14,32–34]. There are recent works applying DL 
models on in-situ thermography of FFF for temperature or defect pre-
diction, e.g., Saluja et al. [15], Jin et al. [35], Wang et al. [36]. However, 
thermal images collected from FFF processes may have a low quality 
that impedes effective learning by DL models. For example, the IR 
thermography in Prajapati et al. [27] observed the in-plane (x-y) view of 
the 1st layer but could not see the subsequent ones during printing 
because the previously deposited layers had absorbed the IR intensity 
and obscured the camera view. It was pointed out in Raplee et al. [37] 
that distinguishing and weakening the errors in IR measurement would 
signi昀椀cantly decrease the noisy radiation and facilitate thermal-image- 
based temperature monitoring. In FFF applications, the data collection 
procedure is dif昀椀cult to improve due to physical restrictions, e.g., the 
sensor's distance, angle, and position relative to the nozzle. To enable 
temperature prediction in FFF with low-quality thermal imaging data, 
novel ML/DL models may help. Unfortunately, the existing literature on 
DL-based temperature or quality prediction for AM does not offer a so-
lution. A novel DL model, speci昀椀cally an LSTM, that learns the temporal 
evolution of HAZ temperature and meanwhile resists the irrelevant 
periodicity (i.e., noise) in thermal image TS is in imperative need, which 
is yet to be developed in this study. 

2.3. Hybrids of ARIMA and LSTM 

Improving LSTM's learning outcome and prediction performance on 
TS with noisy patterns has drawn discussion in recent literature. A 
promising solution is the hybrid use of ARIMA [17,18] and LSTM. As an 
advanced TS model, ARIMA integrates the basic TS models, i.e., 
Autoregressive and Moving Average [38], to represent the linear de-
pendency parsimoniously and predict future TS values. ARIMA can 
identify the patterns or trends in TS and separate the patterns from 
transient information in a TS observation [17]. 

State-of-the-art literature proposed several ways of integrating 

Table 1 
Pseudo code for pTS-LSTM training and implementation. 
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ARIMA and LSTM. One major way is using ARIMA and LSTM as two 
subsequent steps for TS modeling or prediction [20–23]. Depending on 
the objective of the study, some works [20,23,39,40] used ARIMA 昀椀rst 
to model TS patterns or remove the noise and then fed the residuals to 
LSTM for prediction, while others [21,41–46] leveraged LSTM for error 
prediction and then reconstructed/forecast the TS data based on ARIMA. 
Parallel integration of ARIMA and LSTM was explored in Jin et al. [21] 
and Wu et al. [47], who used the outputs from ARIMA and LSTM as the 
input features of a statistical model for prediction. Indeed, the above 
works are inspiring and facilitated prediction with TS. But they used 
ARIMA and LSTM separately rather than integrating them into one al-
gorithm for real-time implementation. Some studies [22,23,43] have the 
potential of real-time prediction, but they did not provide a generaliz-
able algorithm, and the application 昀椀eld was not AM. Consequently, the 
existing hybrids of ARIMA and LSTM are limited in their applicability to 
in-situ thermal image TS from FFF or other AM processes. 

To 昀椀ll in the research gap, this study will integrate ARIMA and LSTM 
at the algorithm level to develop pTS-LSTM. In model training, ARIMA's 
optimal model parameters (see Section 3.2) will be identi昀椀ed as a 
separate step, and the 昀椀tted ARIMA will process the training TS to aid in 
pTS-LSTM training, speci昀椀cally the training of a stacked LSTM model 
structure. In prediction, pTS-LSTM will be an integrated algorithm for 
ARIMA-enabled periodicity removal, ARIMA coef昀椀cient update, and 
LSTM prediction (see Section 3.4.2 and Table 1). In contrast to the 
existing hybrids of ARIMA and LSTM, pTS-LSTM will 昀椀t in in-situ tem-
perature prediction for FFF and can be extended to other AM processes. 

3. Method development 

This study proposes pTS-LSTM for temperature prediction in FFF 
with low-quality thermal imaging data. The method is completed with 
three steps: (1) feature extraction from thermal videos (or equivalently, 
thermal image TS), (2) ARIMA modeling of the periodic pattern, and (3) 
development of pTS-LSTM model. 

3.1. Method overview 

To build a pTS-LSTM for temperature prediction in FFF, several tasks 
need to be done, as shown in Fig. 3. First, thermal videos from FFF 
processes need to be acquired and processed. The HAZ in each frame is 

identi昀椀ed and extracted. For objects of simple geometry, e.g., triangles, 
image thresholding [48] can do the job. The HAZs extracted from sub-
sequent frames form an imaging TS. Image convolution with pretrained 
CNNs [49] extracts feature vectors from each image to form high- 
dimensional TS. Dimensionality reduction method, e.g., kernel PCA 
[50], can be used to re昀椀ne the TS. The re昀椀ned TS becomes the training 
data to build a pTS-LSTM model, or input to an established pTS-LSTM for 
real-time HAZ temperature prediction. 

3.2. Feature extraction from thermal image time series 

Thermal videos are essentially TS of images. There are temporal 
connections across frames due to the continuous printing process in FFF. 
To develop an LSTM model structure for temperature prediction with 
the videos, optical features must be extracted from individual frames to 
form TS. This is done with pretrained CNNs. 

3.2.1. Feature extraction with pretrained CNNs 
CNNs are designed to learn from images. In a CNN model, convolu-

tional layers use 昀椀lters, which are small receptive 昀椀elds in the tensor 
form [51], to extract features from input images. Features from a con-
volutional layer form a tensor. A CNN takes the input images, extracts 
features with several convolutional layers, then 昀氀attens the feature 
matrix into a feature vector and maps it to the response (or “label”) with 
a couple of fully-connected layers of neurons [52]. The number of 
convolutional layers, as well as other layer types, can be determined by 
the user. There are a variety of commonly used CNN structures, e.g., 
VGG16 [53], ResNet [54], DenseNet [55]. These deep CNN models can 
be trained on rather large datasets, e.g., ImageNet Large-Scale Visual 
Recognition Challenge (ILSVRC) data [56], and then applied to different 
datasets and solve new problems. Such models are referred to as pre-
trained CNNs [49]. 

Conventionally, CNNs are trained from scratch to do regression or 
classi昀椀cation tasks [57]. Pretrained CNNs, on the other hand, can be 
used directly for feature extraction from arbitrary images [58]. A pre-
trained CNN model for classi昀椀cation would take the image and map it to 
the probabilities that the object belongs to the existing classes, regard-
less of its actual object type. For feature extraction, the user does not 
take the 昀椀nal output but the feature vector from one of the fully- 
connected layers. A typical practice is to take the feature vector from 

Fig. 3. Flowchart of using pTS-LSTM for temperature prediction in FFF.  
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the 1st fully connected layer [59]. The extracted feature vector is long, i. 
e., 4096 elements with a pretrained VGG16, 2048 elements with a 
pretrained ResNet50, and 1024 elements with a pretrained Dense-
Net121. Such a feature vector can be extracted from each frame in a 
thermal video. Feature vectors from subsequent frames form a high- 
dimensional TS. 

3.2.2. Dimensionality reduction with kernel PCA 
The features extracted by pretrained CNNs are high-dimensional TS. 

Kernel Principal Component Analysis (kernel PCA) can be leveraged to 
reduce the TS to its intrinsic dimension and meanwhile preserve the 
meaningful data properties [60]. Kernel PCA is an extension of the 
conventional PCA. While PCA uses orthogonal linear transform to 
project high-dimensional data to low-dimensional space, kernel PCA 
leverages kernel methods [61] to perform the transformation in a 
reproducing kernel Hilbert space. It is therefore superior to PCA in 
dimensionality reduction for nonlinear, complex data. 

Denote the high-dimensional TS from a pretrained CNN by X =

[x1, x2,…, xT ]T, xt * ℝn with n large, t = 1,…,T. A function, Φ, maps xt to 
a high-dimensional feature space, i.e., xt→Φ(xt). Given arbitrary feature 
vectors u and v, a T-by-T kernel is created as [50,61], 
K = k(u, v) = Φ(u)T Φ(v) (1) 

A principal component (PC) from kernel PCA is 

V =
3T

t=1
αt
�Φ(xt), �Φ(xt) = Φ(xt)−

1

T

3T

s=1
Φ(xs) (2) 

Vector α = [α1,…, αT ] is the eigenvector of K, whose length is chosen 
to have 6V6 = 1 ( ⇔ 6α62 = 1/λ for K’s eigenvalue λ) [50]. In this study, 
the kernel is chosen to be the radial basis function [62]: 
K = k(u, v) = exp

(
− γ6u − v62

) (3)  

where γ is a free parameter. Kernel PCA reduces the dimensionality of TS 
from n to m, which is the number of PCs preserved. Denote the reduced 
TS by X′ =

[
x′1, x′2,…, x′T

]T
,x′t * ℝm,m≪n. 

3.3. ARIMA: modeling of periodic pattern in TS 

Due to the periodic shifts of HAZ during FFF printing process, the TS 
extracted from thermal videos show periodic behavior. Such periodicity 
exists in X′. ARIMA [17,18] is a classic TS model that can be leveraged to 
characterize the periodic pattern in X′. It is parameterized by (p, d, q), 
where p is the number of time lags in its autoregressive component, d is 
the degree of differencing, and q is the order of its moving-average 
component. An ARIMA(p, d, q) model without drift is [17]: 
(

1−
3p

i=1
ψ iL

i

)
(1 − L)d

x′

tj =

(
1+

3q

i=1
θiL

i

)
ϵtj,

j = 1, 2,…,m (4)  

where L is the lag operator, ψ i are the coef昀椀cients for the autoregressive 
part, θi are the coef昀椀cient for the moving average part, and ϵt are error 
terms. 

Assuming data stationarity [18], if model parameters (p, d, q) are 
speci昀椀ed, Eq. (4) can be 昀椀tted to X′ to functionally characterize the 
periodic pattern. Note that each column (or equivalently, PC) in X′ may 
have different periodicity, so Eq. (4) is preferred to be 昀椀tted to each 
column. ARIMA enables the removal of periodicity from TS by sub-
tracting x′t by the model-昀椀tted value, �x′

t . The remaining part, et = x′t −

�x′

t, form a residual TS that can be input to pTS-LSTM (see Subsection 
3.4.2 for ARIMA model 昀椀tting). 

3.4. pTS-LSTM: temperature prediction with residual TS 

When it comes to predictive analysis with TS data, LSTM and its 
variants [63] are effective and well-adopted options. pTS-LSTM is 
developed upon a Stacked LSTM model [19,64,65]. It integrates ARIMA 
models to characterize and forecast the periodicity for one step, pre-
serving the residuals of TS as the input for temperature prediction with 
Stacked LSTM. 

3.4.1. LSTM 
LSTM was developed from Recurrent Neural Networks (RNNs) to 

tackle the “vanishing gradient” problem. Speci昀椀cally, when using 
gradient-based algorithms [66] to update the weights in conventional 
RNNs proportionally to the partial derivative of the error function per 
training iteration, the gradient can be vanishing and prevent the weights 
from updating [67]. LSTM incorporates gate units to allow for constant 
error 昀氀ow through special, self-connected units, thus preventing “van-
ishing gradient” [63,68]. 

An LSTM block is formed with a self-connected memory cell (C), an 
input gate (I), an output gate (O), and a forget gate (F) (Fig. 4). For time 
t, the input for an LSTM block is et and the output (hidden state vector) 
from an LSTM block is ht. The activation equations are [68,69]: 
Ft = σ(WFet +UFht−1 + bF)

It = σ(WIet +UIht−1 + bI)

Ot = σ(WOet +UOht−1 + bO)

�Ct = σ(WCet +UCht−1 + bC)

Ct = Ft∘Ct−1 + It∘�Ct  

ht = Ot∘σ(Ct) (5)  

where W are weights of the input, U are recurrent connections, and b are 

Fig. 4. LSTM memory cell topology adapted from Guo et al. [65].  
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bias. Operator ∘ is the Hadamard product (or element-wise product) 
[70]. 

The cell state is the “memory” of LSTM that carries relevant infor-
mation throughout the processing of TS data. Even information from 
earlier time steps can be passed to later time steps, thus reducing the 
effects of “vanishing gradient”. An LSTM layer is formed with multiple 
cells, and several LSTM layers can be concatenated sequentially to form 
a Stacked LSTM, which has even better learning ability than simple 
LSTM models. 

3.4.2. pTS-LSTM 
pTS-LSTM is developed by integrating a Stacked LSTM with an 

ARIMA model. For a new frame at time t, feature vector xt would be 
extracted by a pretrained CNN and then converted to x′t with kernel PCA. 
The ARIMA model 昀椀ts the periodic pattern as �x′

t and subtract it from x′t to 
generate residual et. et is appended to residuals of previous l − 1 frames 
to form a TS segment of length l, Et = [et−l+1, et−l+2,…, et ]T, as the input 
for Stacked LSTM to predict HAZ temperatures, yt+1, at time t+ 1. 

Unlike CNNs, there are not many benchmark Stacked LSTM archi-
tectures. The model structure of Stacked LSTM needs to be adjusted per 
the training data. Fig. 6 shows the Stacked LSTM adopted in this study. 
It consists of 4 LSTM layers, with the layers containing 32, 16, 8, and 4 
memory cells from left to right. Each LSTM layer adds one level of 
abstraction, and eventually map the input Et to predicted temperatures 
yt+1. An L2-regularized loss function [71], L ′, is adopted for the Stacked 
LSTM to avoid over昀椀tting: 
L

′ = L + β||W||2 (6)  

where the original loss function L is mean squared error (MSE), β is the 
hyperparameter to control the level of regularization and set to be 10−5. 
During model training, L ′ superimposes the weights of each LSTM layer 
according to the L2 norm, as in Ridge regression [72], thus lowering the 
model complexity to avoid over昀椀tting. 

Another constitutive part of pTS-LSTM is ARIMA. Its optimal model 
structure is identi昀椀ed during model training of pTS-LSTM (Fig. 5(a)). 
Recall that m PCs are preserved from kernel PCA to form the TS. Each PC 
may show different periodic patterns, so an optimal ARIMA model exists 
for individual PC. For the jth PC, j = 1,2,…,m, the model structure of 
ARIMA, as determined by its orders 

(
pj, dj, qj

)
, are found with a greedy 

search in user-de昀椀ned parameter sets, Ω := P × D × Q . 

"
(

pj, dj, qj
)
* Ω, an ARIMA

(
pj, dj, qj

)
model would be 昀椀tted to the 

training data for the jth PC. The Akaike Information Criterion (AIC) [73] 
for this model is obtained as 昀椀tness measure. The 昀椀nal ARIMA model 
orders are 

(
p*

j , d*
j , q*

j
)

that minimize AIC for the training data. Let fj =
ARIMA

(
p*j , d*j , q*j

)
be the optimal ARIMA model 昀椀tted to the training 

data of jth PC. The 昀椀tted values from fj,j = 1,2,…,m, are subtracted from 
training data X′ to generate residual TS E, which is the training data for 
the Stacked LSTM. 

During in-situ implementation of pTS-LSTM (Fig. 5(b)), the ARIMA 
works as follows:  

1. Obtain x′tj from the thermal video frame at time t;  
2. Forecast �x′

tj with ARIMA as �x′

tj =

f(t−1)j

»
¿x′(

t−1−p*
j

)
j
,…, x′

(t−1)j ; e(t−1−q*
j

)
j
,…, e(t−1)j

¿
£;  

3. Calculate etj = x′tj − �x′

tj;  
4. Append 

(
x′tj, etj

)
to all previous instances (including the training 

data) for the jth PC;  
5. Re昀椀t ftj = ARIMA

(
p*j , d*j , q*j

)
for the jth PC using 

{(
x′

1j, e1j
)
,…,

(
x′

tj, etj
)}

, which will forecast �x′

(t+1)j. 

Step 5 re昀椀ts the ARIMA model every time a new frame becomes 
available, which enhances the model 昀椀tness, or equivalently, the accu-
racy of characterizing the periodic pattern, at the expense of computing 
speed. The prediction time would be extended by <1 min. It can be 
omitted if fast prediction is of priority. In that case, the ARIMA models 
昀椀tted with training data will be used as they are throughout in-situ 
temperature prediction. The pseudo code for the entire training and 
implementation procedure for pTS-LSTM is given in Table 1. 

Note that pTS-LSTM is applicable to HAZ temperature prediction for 
FFF-ed parts with varying sizes, printing speeds, and shapes. As a data- 
driven model, pTS-LSTM relies on good model training. If thermal image 
TS can be collected, processed, and train pTS-LSTM following the above 
methodology steps, then the trained pTS-LSTM model can predict HAZ 
temperature pro昀椀les for new parts despite their different size and build 
parameters. When extended to new FFF-ed parts, the user will need to 
adjust the Stacked LSTM model structure and training epochs based on 

Fig. 5. pTS-LSTM: (a) model training, (b) in-situ temperature prediction with trained pTS-LSTM.  
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their data and computing facilities. The case study here (see Section 4) 
provides a reference pTS-LSTM model structure and training procedure 
and can be the benchmark for pTS-LSTM utilization on new parts. 

4. Case study 

The proposed pTS-LSTM is implemented on a thermal video for a lab- 
based FFF process. A performance comparison is done between con-
ventional LSTM models, pTS-LSTM, and classic RNNs. 

4.1. Data collection 

Fig. 7 shows the experiment setup for specimen printing and data 
collection. A commercial FFF printer, Ender 3 Pro, was utilized. A 
triangular specimen with a 3 cm edge length in PLA (white) was printed 
to support real-time thermal image collection. The specimen had a 100 
% in昀椀ll grid pattern and around 2 mm in the depth direction (parallel to 
the camera direction) to minimize the nozzle path away from the cam-
era. The layer thickness was set to 0.2 mm to ensure good printing 
quality. The printing speed was 45 mm/min. 

A FLIRTM A320 30HZ thermal camera (Focal Plane Array (FPA), 
uncooled microbolometer) was manually focused on the sample hori-
zontally at a 30 cm distance for in-situ monitoring of the FFF printing 
process. FLIRTM A320 camera is a non-contact thermal device operating 
in the spectral range of 7.5 to 13 μm. The camera has an instantaneous 
昀椀eld of view (FOV) of 25o and provides 16-bit images at an accuracy of 
+/− 0.2 0C or +/− 2 %. The time series imaging collected by the camera 
formed a thermal video. It captured 175 frames for the ~150 layers of 
the FFF printing process. Each frame has a resolution of 320× 240 
pixels. 

To train DL models, the video frames need to be “labeled”. During in- 
situ temperature monitoring, the FLIR software recorded the point 
temperature of HAZs, the region right below the nozzle on the top layer 

of the printing specimen and exported as the “labels”. Temperatures 
obtained from the thermal infrared data are correlated with surface 
emissivity. A default emissivity, 0.92, was applied in this case study. 
These labels were manually linked to each video frame to build a su-
pervised dataset for DL model training. 

4.2. Data preprocessing 

The raw thermal images collected by the FLIR camera captured a 
large background (refer to Fig. 1(a)), which was peripheral information 
that might compromise the subsequent feature extraction outcomes. 
Hence, data preprocessing was done to remove the large background in 
each video frame and prepare the dataset for DL model training and 
validation. 

The data preprocessing was completed in two steps. First, the spec-
imen was mainly in the lower part of each frame, corresponding to a 
昀椀xed region in the image, i.e., 280th to 320th pixel from top to bottom 
and 150th to 250th pixel from left to right. De昀椀ne this region as the 
region of interest (ROI), essentially the image segment under the nozzle 
head containing the HAZ and the entire layer being deposited. It was a 
昀椀xed area cropped out of each raw thermal image. The cropping size 
here was selected per the raw image size and HAZ tracks. Next, each ROI 
segment was thresholded with its own median pixel values. A rectan-
gular matrix of pixels was identi昀椀ed in each ROI as the HAZ. These HAZs 
formed the actual thermal image TS and then were used as the input for 
feature extraction (refer to Section 3.2). 

4.3. Results and discussion 

The novelty of pTS-LSTM is the integration of ARIMA and Stacked 
LSTM for characterization and removal of data periodicity. This model 
design makes pTS-LSTM superior to conventional LSTM models in pre-
dicting HAZ temperatures for FFF processes. For demonstration, pTS- 

Fig. 6. The Stacked LSTM structure used in the current pTS-LSTM. The input and output layers are not visualized.  

Fig. 7. Experiment setup for data collection: (a) printed sample, (b) front view of the printer, (c) side view of the printer and the IR camera.  
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Fig. 8. Training performance: (a1–3) Stacked LSTM, (b1–3) kernel PCA + Stacked LSTM, (c1–3) kernel PCA + pTS-LSTM, (d1–3) RNN, (e1–3) kernel PCA + RNN.  
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LSTM was compared with conventional Stacked LSTM. TS extraction 
was done with pretrained CNNs, i.e., DenseNet121, ResNet50, and 
VGG16. Five models were compared: (a) Stacked LSTM, (b) kernel PCA 
+ Stacked LSTM, (c) kernel PCA + pTS-LSTM, (d) RNN (2 RNN layers, 
the 1st layer contains 16 neurons and the 2nd layer contains 8 neurons), 
(e) kernel PCA + RNN (same RNN structure). m = 5 PCs were preserved 
in kernel PCA. (a)-(c) was a fair comparison among conventional LSTM 
and the proposed pTS-LSTM with the Stacked LSTM structure in Fig. 6, 
which demonstrates how pTS-LSTM improves the model performance by 
reducing the data periodicity. (d) and (e) provided an additional com-
parison between pTS-LSTM and commonly used, shallow RNNs. For 
pTS-LSTM, the optimal ARIMA parameters were searched from sets P =

{1,2, 3,4, 5,6},D = {0,1},Q = {1,2, 3,4, 5,6} as part of model 
training. All the (p, d, q) combinations formed from P ,D , and Q were 
used to 昀椀t ARIMA models. The optimal parameter set gave the ARIMA 
model that achieved the smallest AIC among all combinations. These 
relatively small parameter sets would expedite pTS-LSTM model 
training at the expense of obtaining suboptimal parameter values, which 
is acceptable for the case study and can be further improved in real 
practice. For all (a)-(e), 5-fold cross-validation (CV) [74,75] is adopted 
to validate the method's accuracy and robustness (CV for TS can be 
found in Appendix A.1). In each replicate of CV, 1 fold is preserved as the 
testing data (37 frames), and the rest become the training data (148 
frames), within which 10 % are used for training-stage validation. All 
the models are trained with 8000 epochs without batches. The TS 
segment length is l = 5. 

4.3.1. Training performance 
Fig. 8 displays the training performance of models (a)-(e) with 

varying feature extraction methods. Within (a)-(c), the proposed model 
(c) obviously outperformed (a) and (b) – pTS-LSTM converged faster and 
to a nearly zero MSE loss. In contrast, (a) had over昀椀tting issues 
throughout model training, and (b) did not fully converge, especially 
when VGG16 was used for feature extraction, though 8000 epochs had 
been completed. For (d) and (e), the model convergence was fast, which 
is likely due to the simpler model structure. However, over昀椀tting issues 
were observed for (d2–3) even after model convergence. With the 
adoption of kernel PCA in (e), the training performance was improved 
from (d) and the steadiest after convergence among (a)-(e). 

Table 2 provides the training times for models (a)-(e) measured in 
seconds (based on V100 Nvidia GPU). Comparing all the models, the 
computing time was mainly affected by the feature dimensionality and 
model structures. (a) consumed the longest training among all models 
for all three feature extraction methods. When kernel PCA was used, the 
input feature dimensionality was much reduced. Consequently, (b) and 
(c) had shorter training time than (a). The same time-saving effect of 
kernel PCA was observed by comparing (d) and (e). For LSTM and RNN 
model structures, the RNN model structures used less training time. An 
additional factor for model training time was the feature extraction 
method. Compared with DenseNet121 and ResNet50, VGG16 features 
required a longer time to train the same model structure. For the pro-
posed model (c), the model training times were at an intermediate level 
among all the models and close to those of (b). The trivial training time 
difference between (b) and (c) indicates that pTS-LSTM improved the 
model training performance (see Fig. 8) without increasing the 
computing burden. 

4.3.2. Prediction performance 
The trained models (a)-(e) were used for temperature prediction in 

the lab-based FFF process. Table 3 shows the prediction performance, 
measured by accuracy (or average MSE) and robustness (or standard 
deviation of MSE) across 5-fold CV. Both performance metrics are the 
smaller, the better. 

In Table 3, the smallest metrics have been highlighted in bold, which 
were mostly achieved by (c). When pretrained DenseNet121 was 
adopted for feature extraction, (d) had acceptable prediction perfor-
mance – the average MSEs were relatively low, and their standard de-
viations were small. DenseNets are CNN model structures designed to 
overcome the “vanishing gradient” problem [55,76], which is con-
fronted by RNNs as well. This capability of DenseNet121 led to better 
feature extraction results – the features well preserved the useful in-
formation about HAZ temperature pro昀椀les, thus improving RNN 
learning outcomes. For all other combinations of feature extraction 
methods and benchmark models, (c) had more favorable prediction 
performance than the benchmarks. Speci昀椀cally, when pretrained 
ResNet50 was used, (c) achieved the best performance. It is noteworthy 
that some results of benchmark models revealed the “downside” of using 
kernel PCA – it facilitated model training but caused information loss 
and compromised the prediction accuracy. Comparing (a) and (b), as 
well as (d) and (e), one may observe higher MSE when kernel PCA was 
adopted for the same LSTM or RNN model. 

4.3.3. Summary 
The above results illustrate the pTS-LSTM's superiority in handling 

thermal image TS. For a 昀椀xed Stacked LSTM structure, pTS-LSTM 
signi昀椀cantly improved both the training and prediction performance 
of conventional LSTM models. In model training, pTS-LSTM brought the 
MSE loss at the converged level from >1000 (for (a) and (b)) to nearly 
0 and reduced over昀椀tting; in prediction, the min, mean, median, and 

Table 2 
Model training time in seconds based on V100 Nvidia GPU.  

Model Time(s)  
Stacked 
LSTM 

Kenel PCA +
Stacked 
LSTM 

Kernel PCA 
+ pTS- 
LSTM 

RNN Kernel 
PCA +
RNN 

DenseNet121  1077  830  832  720  560 
ResNet50  1210  811  849  681  522 
VGG16  1400  975  1002  893  711  

Table 3 
Average MSE (and standard deviation) in prediction across 5-fold CV.  

Pretrained CNN MSE Stacked LSTM Kenel PCA + Stacked LSTM Kernel PCA +
pTS-LSTM 

RNN Kernel PCA + RNN 

DenseNet121 
Min 267.3325 (252.4384) 495.7927 (727.7109) 24.6847 (30.0127) 12.7631 (7.2039) 14.5708 (13.5650) 
Mean 534.6227 (451.5825) 760.6500 (699.7481) 74.2074 (68.4914) 81.3530 (40.1182) 90.5040 (82.1456) 
Median 557.5411 (595.5952) 632.8164 (766.2288) 67.4238 (88.9621) 59.5286 (34.7076) 65.6630 (54.5501) 
Max 812.7719 (565.1169) 1365.8784 (746.3702) 130.5137 (108.4623) 277.7966 (181.3297) 284.5965 (287.2334) 

ResNet50 
Min 666.2767 (892.1636) 40.8302 (45.1437) 13.0784 (5.9971) 9.7916 (5.1778) 11.8529 (6.4217) 
Mean 1104.0645 (1378.8525) 364.5163 (337.7676) 33.9749 (41.9028) 82.0963 (92.7912) 63.7859 (38.7440) 
Median 1105.0940 (1453.8470) 278.1954 (409.4122) 16.4049 (6.9352) 52.9101 (49.1507) 53.3044 (25.8283) 
Max 1608.9044 (1832.2020) 968.2463 (854.7760) 72.4413 (123.8482) 208.5660 (247.3396) 177.1793 (140.7060) 

VGG16 
Min 187.2257 (307.0892) 200.8680 (210.8844) 12.9007 (4.3450) 57.9908 (85.6509) 40.9340 (43.7871) 
Mean 340.1107 (310.4982) 579.3239 (411.1842) 94.6323 (146.7450) 159.8329 (187.4225) 195.3294 (175.5987) 
Median 285.9179 (344.9747) 487.2709 (519.8764) 56.7453 (91.9067) 153.1364 (189.0401) 194.2592 (199.2445) 
Max 636.5734 (458.6399) 1217.1738 (731.7707) 214.5510 (348.3276) 333.3135 (339.7511) 388.2570 (280.7160)  

S. Guo et al.                                                                                                                                                                                                                                      



Journal of Manufacturing Processes 106 (2023) 316–327

325

max MSE of pTS-LSTM were respectively 93.97 %, 85.07 %, 88.86 %, 
81.92 % lower than those of (a) and 85.52 %, 88.20 %, 90.60 %, 88.44 % 
lower than those of (b) (averaged for the three pretrained CNNs). When 
compared with classic RNNs, pTS-LSTM consistently performed well in 
both training and prediction, while shallow RNNs were relatively easy to 
train but might not predict HAZ temperature pro昀椀les accurately. In 
prediction, the mean, median, and max MSE of pTS-LSTM were 
respectively 36.06 %, 39.56 %, 51.31 % lower than those of (d) and 
38.77 %, 45.78 %, 52.67 % lower than those of (e) (averaged for the 
three pretrained CNNs). Therefore, pTS-LSTM is a better option than the 
existing DL methods for modeling and predicting HAZ temperature 
pro昀椀les in FFF. 

5. Conclusion and future work 

This study developed a novel DL model, pTS-LSTM, for in-situ HAZ 
temperature prediction in FFF. pTS-LSTM integrated TS forecasting and 
Stacked LSTM in its model design, thus enabling automatic character-
ization and removal of noisy, irrelevant periodicity in data. This method 
targeted the data-level challenges brought by the data collection and 
printing path in FFF. It will bene昀椀t FFF and other AM processes where 
thermal images are collected as the major evidence of process moni-
toring and prognostics. The proposed method can be readily extended to 
other laser-based AM applications for temperature or quality prediction 
during the printing process of simple geometry. 

In the future, several research directions can be pursued. First, pTS- 
LSTM can be extended for AM printing of complex geometry. Currently, 
pTS-LSTM handles data periodicity due to a simple printing path. As the 
object geometry gets sophisticated, the printing path will be unique, 
resulting in more complex patterns in thermal video data. Enhancing the 

skills of pTS-LSTM for such complex data is an intriguing topic for future 
studies. Deeper LSTM structures and other RNN variants may be inte-
grated into pTS-LSTM to handle the data complexity and noise reduction 
task. Second, kernel PCA was adopted here to reduce the dimensionality 
of CNN-extracted features. It facilitated model training by lessening the 
computing burden but unavoidably led to information loss. Using end- 
to-end 3D CNNs [77,78] for a 1-step extraction of spatial-temporal 
features from thermal video segments will be explored in the future 
extension of this work. Third, more advanced HAZ sensing and tracking 
will be explored. This issue is related to the geometry complexity of the 
printed object. For complex geometry, the HAZ location in subsequent 
frames will be subject to larger uncertainty. Advanced sensing, e.g., in- 
situ X-ray computer tomography, will be considered to capture high- 
quality HAZ temperature pro昀椀les for pTS-LSTM model training. More 
effective HAZ segmentation methods (compared with thermal image 
thresholding) will be developed to assist pTS-LSTM training and 
implementation. 
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Appendix A 

A.1. K-fold cross-validation for time series 

This study adopts K-fold cross-validation (CV), with K = 5, in model training and testing. The thermal imaging data are time series (TS), so the data 
split procedure in CV is slightly different from the conventional K-fold CV. 

For TS, S =
{yti
}
,i = 1,…,n, subsequent observations yti and yti+1 have temporal connections (or correlations) that must be preserved, so the order 

of instances in S should not be altered. In data split, S is 昀椀rst divided into 2 parts, with the 昀椀rst part being the initial training set, denoted by S0 and S1. 
In this study, S0 contains the 昀椀rst 40 % instances in S. Next, S1 is divided into K equal-sized folds, denoted by s1, s2,…, sK. The 昀椀rst K − 1 folds have 
⌊|S1|/K ⌋ instances, while the Kth fold may have several more instances if |S1|/K is not an integer. 

During CV, the 1st iteration uses S0 for model training and s1 for model testing. Next, s1 is appended to S0 as the training set for the 2nd iteration, 
and s2 is used for model testing. Moving forward, sk, k = 2,…,K − 1 is appended to the training set from the previous iteration and sk+1 is used for 
model testing in the current iteration, until K iterations are completed. The performance metrics of model testing are the sample mean (or average) and 
standard deviation of the MSE losses across the K iterations, i.e., L̄ =

3K
k=1L k/K and �σ(L ) =

������������������������������������3K
k=1(L k − L̄ )2

:
/(K − 1), respectively. The above 

procedure is elaborated in Hyndman and Athanasopoulos [74]. 
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