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ARTICLE INFO ABSTRACT
Keywords: In-situ thermography for Fuse Filament Fabrication (FFF) processes reveals the dynamic thermal behavior during
In-situ thermal images printing. The data collected are thermal image time series. Their infrared (IR) intensity is visual evidence of heat-

Time series
Long short-term memory
Fused filament fabrication

affected zone (HAZ) temperatures, which can be leveraged to train deep learning models, e.g., Long Short-Term
Memory (LSTM), for real-time temperature prediction and process monitoring. Nonetheless, the data collection
method and printing path may pose challenges for data modeling. Typically, the IR camera has a fixed position
while the HAZ moves per the predetermined printing path. Consequently, the HAZ shifts in images and the
features extracted from these thermal images show a “periodic” behavior over time. Such periodic patterns do
not reflect any useful information about HAZ temperatures. Instead, they are noise hiding and interrupting the
true temperature information, thus must be removed before using the data to train an LSTM model for tem-
perature prediction. This study integrates a time series model, i.e., ARIMA, with Stacked LSTM to build a pTS-
LSTM model that eliminates noisy patterns and predicts temperatures during FFF printing. The case study re-
sults show the outperformance of pTS-LSTM over conventional LSTM and classic Recurrent Neural Network
models. pTS-LSTM is demonstrated to be promising for in-situ process monitoring with low-quality thermal
images. In FFF practices, pTS-LSTM will be a preferred option over the commonly used deep learning models for
thermal-image-based temperature prediction.

expansion and shrink of the part, resulting in insufficient bounding,
internal voids, and geometric deviation [3,7,8]. Hence, monitoring the
HAZ and predicting its temperature profiles during printing is rather
beneficial to FFF quality improvement.

State-of-the-art literature [9-11] has been using Infrared (IR) Ther-
mography to monitor FFF processes in situ and provide timely feedback
for the temperature profiles. In-situ thermography collected for HAZ
reveals the dynamic thermal behavior during FFF printing. The data
collected are thermal image time series. Their IR intensity is visual ev-
idence for the temperature profiles, from which one can extract peak
temperature, heating rate, cooling rate, etc. Fig. 1(a) shows the
screenshot of a thermal video for a lab-based FFF process. Subsequent
thermal image frames, as displayed in Fig. 1(b), show the transient
HAZs, revealing the heat transfer status across adjacent part regions
during printing. Deep learning (DL) models, e.g., Convolutional Neural
Networks (CNNs) [12], can learn HAZ characteristics from these thermal
images and predict the temperature profile or quality issues [13].

Despite the success in specific AM applications [13,14], current DL
methods are limited for predictive analysis with FFF thermal videos due

1. Introduction

Fused Filament Fabrication (FFF), also known as Fused Deposition
Modeling (Stratasys trademark FDM™) [1], is an extrusion-based ad-
ditive manufacturing (AM) process that deposits melted filament in a
predetermined path to build parts layer by layer. Typically, the extruder
of an FFF printer consists of a heating chamber and a nozzle. The heating
chamber hosts the liquefier to melt the filament, allowing the molten
material to exit from the small nozzle to form a thin bead of plastic that
will adhere to the material it is laid on [2,3]. Due to the build mecha-
nism, FFF fabricates durable parts with a high production rate and low
expense [4,5], thus promising for both industrial and home uses [6]. On
the other hand, the mechanism raises concerns about printing stability
and quality. The temperature profiles of the contact region between the
filament's hot end and the in-process layer, i.e., extrudate deposition area
(or heat-affected zone, abbreviated as HAZ), are highly influential to the
density and geometric accuracy of the printed parts. During FFF print-
ing, unstable HAZ temperature profiles can cause abnormal thermal
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Fig. 1. Thermal video of a lab-based FFF process: (a) thermal video for an FFF
process, (b) subsequent thermal image frames from the video.

to data-related issues, specifically periodic patterns in thermal videos. A
thermal video is essentially an imaging time series. The frames capture
an ongoing FFF process, thus reflecting the evolution of HAZ and heat
transfer status from time to time. When the data collection method is
ideal, e.g., having a sensor that captures high-resolution, complete im-
ages of the HAZ all the time, the thermal videos acquired would be free
of excessive noise or missing information. A DL model can learn from
these videos conveniently and predict HAZ temperatures with high ac-
curacy [15]. Nonetheless, such high-quality thermal videos are hardly
acquired from real FFF applications. The data collection can be
restricted — the sensor is usually posed from a certain angle to the
printing platform and captures the HAZ plus a large background (which
is useless, peripheral information). The thermal images in Fig. 1(a) are
an example of restricted data collection — huge background and imper-
fect sensor angle. Meanwhile, the HAZ would “shift” in subsequent
thermal image frames following the printing path of FFF. The predefined
printing path determines the back-and-forth nozzle movements in the
camera view. Consequently, the shifts of HAZ show periodicity, which

can be visually identified from Fig. 1(b). With preliminary data pro-
cessing and feature extraction, such periodicity is revealed as the typical
“periodicity” in time series (TS) [16] (Fig. 2).

The periodic patterns in FFF thermal videos are irrelevant to the HAZ
temperature profile, thus are noise and must be removed during DL-
based prediction. Unfortunately, existing DL methods for FFF or other
AM processes rarely address the data periodicity issue. They tend to
assume high-quality, non-noisy thermal images. They are of limited use
when the best thermal videos collectible are paradigms shown in Fig. 1.
Targeting this issue, this study proposes a novel DL model, Long Short-
Term Memory for periodic TS (abbreviated as pTS-LSTM), which in-
tegrates TS analysis, specifically Autoregressive Integrated Moving
Average (ARIMA) [17,18], with Stacked LSTM [19] to enable automatic
characterization and removal of periodicity in TS extracted from FFF
thermal videos, and use the residual TS to predict HAZ temperatures. By
removing the periodic pattern, pTS-LSTM preserves the relevant infor-
mation for HAZ temperatures, avoiding the interruption from the data
collection method and printing path.

This work will contribute to in-situ process monitoring of FFF from
both methodological and practical perspectives. Hybrids of TS analysis
and LSTM have been studied in non-manufacturing fields [20-23] but
not yet explored for thermal image TS from AM. The benefits of such
hybrid models, e.g., pattern characterization and forecasting, can be
helpful for analyzing in-situ thermal images from FFF that are subject to
noisy periodicity. pTS-LSTM integrates ARIMA and Stacked LSTM at the
algorithm level, enabling real-time periodicity reduction from upcoming
TS and LSTM-based HAZ temperature prediction. Unlike current DL
methods that are only useful on high-quality thermal images/videos,
pTS-LSTM is compatible with noisy data interrupted by data collection
angle and printing path, thus allowing the adoption of DL in FFF ap-
plications with imperfect data collection capability. pTS-LSTM also has
the potential to be generalized to other AM processes where thermal
image TS are collected during printing.
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Fig. 2. Features extracted from the thermal video of FFF processes form time series with periodicity. Feature extraction was done with kernel PCA.
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The rest of this paper is organized as follows. Section 2 will review
state-of-the-art literature for temperature monitoring in FFF and DL-
based temperature prediction with thermal imaging data. Section 3
will elaborate on the technical details of pTS-LSTM development, fol-
lowed by a case study in Section 4 to demonstrate pTS-LSTM on real data
from a lab-based FFF process. Section 5 will conclude the paper and
highlight future research directions.

2. Literature review

Real-time analysis of temperatures during FFF printing is enabled by
two components: (a) in-situ sensing and processes monitoring and (b)
predictive analysis of temperatures with thermal imaging data. This
section reviews studies related to both and uncovers the research gaps in
integrating TS models with LSTM for real-time prediction.

2.1. Temperature monitoring in FFF

Recent studies have made progress in temperature sensing and
monitoring for FFF processes. Haro et al. [24] showed that temperature
sensors could be used for FFF process monitoring. By applying temper-
ature sensors, the researchers monitored in-situ temperature variation,
including nozzle temperature and printing chamber temperature, to
systematically study their linkage with filament diameter in use. Kou-
siatza and Karalekas [25] embedded Fiber Bragg Grating and Thermal
Couple sensors into the samples at their 3rd layer and 20th layer, either
longitudinally or transversely, to obtain in-situ loading profiles and TS
temperature profiles. By comparing these two profiles, the researchers
concluded that as long as an initial reference temperature value can be
obtained and the temperature variation remains steady, the complete
temperature profiles during the whole procedure can be obtained from
the recorded Bragg peak wavelengths. Though the above studies
demonstrated the possibility of sensor-based temperature monitoring in
FFF, they have limited feasibility in practice due to the number and
sensitivity restrictions of the sensors needed for collecting the temper-
ature parameters at the positions relative to the nozzle.

Other researchers leveraged IR cameras to collect thermography
containing the TS temperature field on the HAZ and ambient conditions
[9,26,27]. Seppala and Migler [9] used IR thermography to observe the
temperature evolution at the welding zone in the thermoplastic AM

Table 1
Pseudo code for pTS-LSTM training and implementation.

Training:
Obtain kernel PCA results, i.e., training data X';
Define the ARIMA parameter sets, P, D, Q;

For jin 1:m
Find optimal ARIMA parameters (pj" d;, q});
Fit f; = ARIMA(p;, d}, q;):
Calculate residual |el/, €2y wees eTJ-IT:

End

Combine residuals from all the m PCs to obtain E;
Partition E into TS segments of length [ with 1-step rolling forward, denoted by E;, E,, ...;
Train Stacked LSTM with Ey, E,, ... to obtain pTS-LSTM;

Imy ation:

Obtain the trained pTS-LSTM and f;,j = 1,...,m;
Accumulate new thermal images and apply kernel PCA;
Obtain new data X} and form TS segments with [ instances;

Forjinl:m
Use fj to forecast %(;;
Calculate e = x;; — X3
Append (x;,, EU) to all previous instances for the jth PC;
Refit f,; = ARIMA(pj, d}, ;) for the jth PC using

{Geipens)s o ()

End

Combine residuals of the m PCs from the new thermal images to form E;
Feed E; into pTS-LSTM to predict HAZ temperature profile y;,.
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process. Malekipour et al. [26] conducted thermal experiments to
analyze parameters' effects on FFF printing quality and concluded that a
fabrication process with more even temperature distribution would
improve the mechanical properties of printed specimens. The issues with
IR cameras are the accuracy and completeness of temperature profiles.
The quality of data collected is susceptible to the IR camera position; the
data provided a 2D profile, while the temperature evolution in FFF is a
3D process.

To simplify the temperature monitoring procedure, some researchers
attempted to build physics models in combination with sensor data
collection and analysis. For instance, Ravoori et al. [28] applied an
analytical model to the FFF printing process, in which the energy con-
servation law and thermal distribution functions were applied to ac-
count for the heat transfer process during FFF, fitting well with their
temperature data from the thermocouples. They concluded that, by
manipulating the temperature parameters, desired filament-to-filament
bonding could be achieved, leading to novel, spatially varying ortho-
tropic parts. Similar efforts can also be found in Lu and Wang [29], Lu
and Wang [30], which built a physics-based compressive sensing model
to minimize the required number of sensors and the amount of data
collected. A 1D heat transfer model was developed to manipulate the
process parameters and optimize the bonding property between ABS
layers.

The progress in sensor-based temperature monitoring for FFF enables
further studies of the temperature profiles in FFF. To perform real-time
analysis for HAZ temperatures and generate timely feedback, thermal
image analysis and modeling are essential to inspect the sensor data
from FFF and identify the printing quality [31].

2.2. Thermal-image-based temperature prediction in FFF

Machine Learning (ML) and DL models have been useful tools for
automatic information extraction and analysis of thermal imaging data
from AM processes [13,14,32-34]. There are recent works applying DL
models on in-situ thermography of FFF for temperature or defect pre-
diction, e.g., Saluja et al. [15], Jin et al. [35], Wang et al. [36]. However,
thermal images collected from FFF processes may have a low quality
that impedes effective learning by DL models. For example, the IR
thermography in Prajapati et al. [27] observed the in-plane (x-y) view of
the 1st layer but could not see the subsequent ones during printing
because the previously deposited layers had absorbed the IR intensity
and obscured the camera view. It was pointed out in Raplee et al. [37]
that distinguishing and weakening the errors in IR measurement would
significantly decrease the noisy radiation and facilitate thermal-image-
based temperature monitoring. In FFF applications, the data collection
procedure is difficult to improve due to physical restrictions, e.g., the
sensor's distance, angle, and position relative to the nozzle. To enable
temperature prediction in FFF with low-quality thermal imaging data,
novel ML/DL models may help. Unfortunately, the existing literature on
DL-based temperature or quality prediction for AM does not offer a so-
lution. A novel DL model, specifically an LSTM, that learns the temporal
evolution of HAZ temperature and meanwhile resists the irrelevant
periodicity (i.e., noise) in thermal image TS is in imperative need, which
is yet to be developed in this study.

2.3. Hybrids of ARIMA and LSTM

Improving LSTM's learning outcome and prediction performance on
TS with noisy patterns has drawn discussion in recent literature. A
promising solution is the hybrid use of ARIMA [17,18] and LSTM. As an
advanced TS model, ARIMA integrates the basic TS models, i.e.,
Autoregressive and Moving Average [38], to represent the linear de-
pendency parsimoniously and predict future TS values. ARIMA can
identify the patterns or trends in TS and separate the patterns from
transient information in a TS observation [17].

State-of-the-art literature proposed several ways of integrating
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Fig. 3. Flowchart of using pTS-LSTM for temperature prediction in FFF.

ARIMA and LSTM. One major way is using ARIMA and LSTM as two
subsequent steps for TS modeling or prediction [20-23]. Depending on
the objective of the study, some works [20,23,39,40] used ARIMA first
to model TS patterns or remove the noise and then fed the residuals to
LSTM for prediction, while others [21,41-46] leveraged LSTM for error
prediction and then reconstructed/forecast the TS data based on ARIMA.
Parallel integration of ARIMA and LSTM was explored in Jin et al. [21]
and Wu et al. [47], who used the outputs from ARIMA and LSTM as the
input features of a statistical model for prediction. Indeed, the above
works are inspiring and facilitated prediction with TS. But they used
ARIMA and LSTM separately rather than integrating them into one al-
gorithm for real-time implementation. Some studies [22,23,43] have the
potential of real-time prediction, but they did not provide a generaliz-
able algorithm, and the application field was not AM. Consequently, the
existing hybrids of ARIMA and LSTM are limited in their applicability to
in-situ thermal image TS from FFF or other AM processes.

To fill in the research gap, this study will integrate ARIMA and LSTM
at the algorithm level to develop pTS-LSTM. In model training, ARIMA's
optimal model parameters (see Section 3.2) will be identified as a
separate step, and the fitted ARIMA will process the training TS to aid in
pTS-LSTM training, specifically the training of a stacked LSTM model
structure. In prediction, pTS-LSTM will be an integrated algorithm for
ARIMA-enabled periodicity removal, ARIMA coefficient update, and
LSTM prediction (see Section 3.4.2 and Table 1). In contrast to the
existing hybrids of ARIMA and LSTM, pTS-LSTM will fit in in-situ tem-
perature prediction for FFF and can be extended to other AM processes.

3. Method development

This study proposes pTS-LSTM for temperature prediction in FFF
with low-quality thermal imaging data. The method is completed with
three steps: (1) feature extraction from thermal videos (or equivalently,
thermal image TS), (2) ARIMA modeling of the periodic pattern, and (3)
development of pTS-LSTM model.

3.1. Method overview

To build a pTS-LSTM for temperature prediction in FFF, several tasks
need to be done, as shown in Fig. 3. First, thermal videos from FFF
processes need to be acquired and processed. The HAZ in each frame is
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identified and extracted. For objects of simple geometry, e.g., triangles,
image thresholding [48] can do the job. The HAZs extracted from sub-
sequent frames form an imaging TS. Image convolution with pretrained
CNNs [49] extracts feature vectors from each image to form high-
dimensional TS. Dimensionality reduction method, e.g., kernel PCA
[501, can be used to refine the TS. The refined TS becomes the training
data to build a pTS-LSTM model, or input to an established pTS-LSTM for
real-time HAZ temperature prediction.

3.2. Feature extraction from thermal image time series

Thermal videos are essentially TS of images. There are temporal
connections across frames due to the continuous printing process in FFF.
To develop an LSTM model structure for temperature prediction with
the videos, optical features must be extracted from individual frames to
form TS. This is done with pretrained CNNs.

3.2.1. Feature extraction with pretrained CNNs

CNNs are designed to learn from images. In a CNN model, convolu-
tional layers use filters, which are small receptive fields in the tensor
form [51], to extract features from input images. Features from a con-
volutional layer form a tensor. A CNN takes the input images, extracts
features with several convolutional layers, then flattens the feature
matrix into a feature vector and maps it to the response (or “label”) with
a couple of fully-connected layers of neurons [52]. The number of
convolutional layers, as well as other layer types, can be determined by
the user. There are a variety of commonly used CNN structures, e.g.,
VGG16 [53], ResNet [54], DenseNet [55]. These deep CNN models can
be trained on rather large datasets, e.g., ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) data [56], and then applied to different
datasets and solve new problems. Such models are referred to as pre-
trained CNNs [49].

Conventionally, CNNs are trained from scratch to do regression or
classification tasks [57]. Pretrained CNNs, on the other hand, can be
used directly for feature extraction from arbitrary images [58]. A pre-
trained CNN model for classification would take the image and map it to
the probabilities that the object belongs to the existing classes, regard-
less of its actual object type. For feature extraction, the user does not
take the final output but the feature vector from one of the fully-
connected layers. A typical practice is to take the feature vector from
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Fig. 4. LSTM memory cell topology adapted from Guo et al. [65].

the 1st fully connected layer [59]. The extracted feature vector is long, i.
e., 4096 elements with a pretrained VGG16, 2048 elements with a
pretrained ResNet50, and 1024 elements with a pretrained Dense-
Net121. Such a feature vector can be extracted from each frame in a
thermal video. Feature vectors from subsequent frames form a high-
dimensional TS.

3.2.2. Dimensionality reduction with kernel PCA

The features extracted by pretrained CNNs are high-dimensional TS.
Kernel Principal Component Analysis (kernel PCA) can be leveraged to
reduce the TS to its intrinsic dimension and meanwhile preserve the
meaningful data properties [60]. Kernel PCA is an extension of the
conventional PCA. While PCA uses orthogonal linear transform to
project high-dimensional data to low-dimensional space, kernel PCA
leverages kernel methods [61] to perform the transformation in a
reproducing kernel Hilbert space. It is therefore superior to PCA in
dimensionality reduction for nonlinear, complex data.

Denote the high-dimensional TS from a pretrained CNN by X =
[x1,%2,...,x7]7,x; € R withnlarge, t =1,...,T. A function, ®, maps x; to
a high-dimensional feature space, i.e., x;—>®(x;). Given arbitrary feature
vectors u and v, a T-by-T kernel is created as [50,61],

K = k(u,v) = ®(u)"®(v) @
A principal component (PC) from kernel PCA is
T o~ ~ 1 T
V=>" a®x) o) =0(x) —?Zs:lcp(xs) @)

Vector @ = [a1, ..., ar] is the eigenvector of K, whose length is chosen
to have ||[V|| =1 (& ||a||> = 1/4 for K’s eigenvalue 1) [50]. In this study,
the kernel is chosen to be the radial basis function [62]:

K =k(u,v) = exp(—7yllu —v|*) @

where y is a free parameter. Kernel PCA reduces the dimensionality of TS
from n to m, which is the number of PCs preserved. Denote the reduced

TS by X = [xll,x/z, ...,x/T]T,xrt € R™, m<n.
3.3. ARIMA: modeling of periodic pattern in TS

Due to the periodic shifts of HAZ during FFF printing process, the TS
extracted from thermal videos show periodic behavior. Such periodicity
exists in X. ARIMA [1 7,18] is a classic TS model that can be leveraged to
characterize the periodic pattern in X' It is parameterized by (p,d, q),
where p is the number of time lags in its autoregressive component, d is
the degree of differencing, and q is the order of its moving-average
component. An ARIMA(p, d, q) model without drift is [17]:

(1 - Z?ly/iL’) (1-L)'x, = (1 + Z;’leiu) €
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j=12...m (€))

where L is the lag operator, y; are the coefficients for the autoregressive
part, 0; are the coefficient for the moving average part, and ¢, are error
terms.

Assuming data stationarity [18], if model parameters (p,d,q) are
specified, Eq. (4) can be fitted to X to functionally characterize the
periodic pattern. Note that each column (or equivalently, PC) in X may
have different periodicity, so Eq. (4) is preferred to be fitted to each
column. ARIMA enables the removal of periodicity from TS by sub-

tracting x, by the model-fitted value, %,. The remaining part, e; = x, —

:Ac;, form a residual TS that can be input to pTS-LSTM (see Subsection
3.4.2 for ARIMA model fitting).

3.4. pTS-LSTM: temperature prediction with residual TS

When it comes to predictive analysis with TS data, LSTM and its
variants [63] are effective and well-adopted options. pTS-LSTM is
developed upon a Stacked LSTM model [19,64,65]. It integrates ARIMA
models to characterize and forecast the periodicity for one step, pre-
serving the residuals of TS as the input for temperature prediction with
Stacked LSTM.

3.4.1. LSTM

LSTM was developed from Recurrent Neural Networks (RNNs) to
tackle the “vanishing gradient” problem. Specifically, when using
gradient-based algorithms [66] to update the weights in conventional
RNNs proportionally to the partial derivative of the error function per
training iteration, the gradient can be vanishing and prevent the weights
from updating [67]. LSTM incorporates gate units to allow for constant
error flow through special, self-connected units, thus preventing “van-
ishing gradient” [63,68].

An LSTM block is formed with a self-connected memory cell (C), an
input gate (I), an output gate (O), and a forget gate (F) (Fig. 4). For time
t, the input for an LSTM block is e, and the output (hidden state vector)
from an LSTM block is k;. The activation equations are [68,69]:

F, = 6(Wre,+ Urh,_, +by)
I, = o(W,e,+Uh,_, +b))
0, = 6(Woe, + Uoh,_1 +bo)
C,=o(Wee,+Uch,_y +b¢)
C, = FoC,_y +1,5C,

h, = 0,°06(C,)

(5)

where W are weights of the input, U are recurrent connections, and b are
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bias. Operator o is the Hadamard product (or element-wise product)
[70].

The cell state is the “memory” of LSTM that carries relevant infor-
mation throughout the processing of TS data. Even information from
earlier time steps can be passed to later time steps, thus reducing the
effects of “vanishing gradient”. An LSTM layer is formed with multiple
cells, and several LSTM layers can be concatenated sequentially to form
a Stacked LSTM, which has even better learning ability than simple
LSTM models.

3.4.2. pTS-LSTM

pTS-LSTM is developed by integrating a Stacked LSTM with an
ARIMA model. For a new frame at time t, feature vector x, would be
extracted by a pretrained CNN and then converted to x, with kernel PCA.

The ARIMA model fits the periodic pattern as :?[ and subtract it from x, to
generate residual e,. e, is appended to residuals of previous I — 1 frames
to form a TS segment of length L, E; = [e;_1.1, €142, ..., et]T, as the input
for Stacked LSTM to predict HAZ temperatures, y,, , at time t+ 1.

Unlike CNNs, there are not many benchmark Stacked LSTM archi-
tectures. The model structure of Stacked LSTM needs to be adjusted per
the training data. Fig. 6 shows the Stacked LSTM adopted in this study.
It consists of 4 LSTM layers, with the layers containing 32, 16, 8, and 4
memory cells from left to right. Each LSTM layer adds one level of
abstraction, and eventually map the input E; to predicted temperatures
Yei1- An L2-regularized loss function [71], 7, is adopted for the Stacked
LSTM to avoid overfitting:

& =7+ p|WI} ©)
where the original loss function ./’ is mean squared error (MSE), f is the
hyperparameter to control the level of regularization and set to be 107°.

During model training, 7 superimposes the weights of each LSTM layer
according to the L2 norm, as in Ridge regression [72], thus lowering the
model complexity to avoid overfitting.

Another constitutive part of pTS-LSTM is ARIMA. Its optimal model
structure is identified during model training of pTS-LSTM (Fig. 5(a)).
Recall that m PCs are preserved from kernel PCA to form the TS. Each PC
may show different periodic patterns, so an optimal ARIMA model exists
for individual PC. For the jth PC, j = 1,2,...,m, the model structure of

ARIMA, as determined by its orders <pj, d;, q;) , are found with a greedy

search in user-defined parameter sets, Q:=x Ix «@.
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v(pj,dj,qj) €Q, an ARIMA(pj,dj,qj) model would be fitted to the

training data for the jth PC. The Akaike Information Criterion (AIC) [73]
for this model is obtained as fitness measure. The final ARIMA model

orders are (pj, d,q ) that minimize AIC for the training data. Let f; =

ARIMA(p},dj,qf) be the optimal ARIMA model fitted to the training
data of jth PC. The fitted values from fj,j =1,2,...,
training data X to generate residual TS E, which is the training data for
the Stacked LSTM.

During in-situ implementation of pTS-LSTM (Fig. 5(b)), the ARIMA
works as follows:

m, are subtracted from

1. Obtain x/tj from the thermal video frame at time ¢;

2. Forecast Qg with ARIMA as X =
feni|x N X1y N\l |5
(t—l—pj>] t-1-q; )j
3. Calculate e; = x; — fg,

. Append ( eg> to all previous instances (including the training

data) for the jth PC;
) for

. Refit  f; = ARIMA(pJ .d.q
<xtj, et]-)} which will forecast X x(

{(le,elj)7 ceey

Step 5 refits the ARIMA model every time a new frame becomes
available, which enhances the model fitness, or equivalently, the accu-
racy of characterizing the periodic pattern, at the expense of computing
speed. The prediction time would be extended by <1 min. It can be
omitted if fast prediction is of priority. In that case, the ARIMA models
fitted with training data will be used as they are throughout in-situ
temperature prediction. The pseudo code for the entire training and
implementation procedure for pTS-LSTM is given in Table 1.

Note that pTS-LSTM is applicable to HAZ temperature prediction for
FFF-ed parts with varying sizes, printing speeds, and shapes. As a data-
driven model, pTS-LSTM relies on good model training. If thermal image
TS can be collected, processed, and train pTS-LSTM following the above
methodology steps, then the trained pTS-LSTM model can predict HAZ
temperature profiles for new parts despite their different size and build
parameters. When extended to new FFF-ed parts, the user will need to
adjust the Stacked LSTM model structure and training epochs based on

the jth PC wusing

t+1)j*
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Input: Residual of TS
5 frames X 5 PCs
(rolling 1-frame ahead)

-

* Activation: “linear” for
LSTM, “RelLU” for Dense

* Dropout rate: 0.25 for
LSTM and 0.5 for Dense LSTM layer 1:

32 cells

16 cells

LSTM layer 2:

Stacked LSTM

Output: HAZ
temperature
(1-timestamp ahead)

LSTM layer 4:

LSTM layer 3: 4 cells

8 cells

Fig. 6. The Stacked LSTM structure used in the current pTS-LSTM. The input and output layers are not visualized.

their data and computing facilities. The case study here (see Section 4)
provides a reference pTS-LSTM model structure and training procedure
and can be the benchmark for pTS-LSTM utilization on new parts.

4. Case study

The proposed pTS-LSTM is implemented on a thermal video for a lab-
based FFF process. A performance comparison is done between con-
ventional LSTM models, pTS-LSTM, and classic RNNs.

4.1. Data collection

Fig. 7 shows the experiment setup for specimen printing and data
collection. A commercial FFF printer, Ender 3 Pro, was utilized. A
triangular specimen with a 3 cm edge length in PLA (white) was printed
to support real-time thermal image collection. The specimen had a 100
% infill grid pattern and around 2 mm in the depth direction (parallel to
the camera direction) to minimize the nozzle path away from the cam-
era. The layer thickness was set to 0.2 mm to ensure good printing
quality. The printing speed was 45 mm/min.

A FLIRTM A320 30HZ thermal camera (Focal Plane Array (FPA),
uncooled microbolometer) was manually focused on the sample hori-
zontally at a 30 cm distance for in-situ monitoring of the FFF printing
process. FLIRTM A320 camera is a non-contact thermal device operating
in the spectral range of 7.5 to 13 pm. The camera has an instantaneous
field of view (FOV) of 250 and provides 16-bit images at an accuracy of
+/—0.20C or +/— 2 %. The time series imaging collected by the camera
formed a thermal video. It captured 175 frames for the ~150 layers of
the FFF printing process. Each frame has a resolution of 320 x 240
pixels.

To train DL models, the video frames need to be “labeled”. During in-
situ temperature monitoring, the FLIR software recorded the point
temperature of HAZs, the region right below the nozzle on the top layer

(b)

Fig. 7. Experiment setup for data collection: (a) printed sample, (b) front view of the printer, (c) side view of the printer and the IR camera.

(a)
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of the printing specimen and exported as the “labels”. Temperatures
obtained from the thermal infrared data are correlated with surface
emissivity. A default emissivity, 0.92, was applied in this case study.
These labels were manually linked to each video frame to build a su-
pervised dataset for DL model training.

4.2. Data preprocessing

The raw thermal images collected by the FLIR camera captured a
large background (refer to Fig. 1(a)), which was peripheral information
that might compromise the subsequent feature extraction outcomes.
Hence, data preprocessing was done to remove the large background in
each video frame and prepare the dataset for DL model training and
validation.

The data preprocessing was completed in two steps. First, the spec-
imen was mainly in the lower part of each frame, corresponding to a
fixed region in the image, i.e., 280th to 320th pixel from top to bottom
and 150th to 250th pixel from left to right. Define this region as the
region of interest (ROI), essentially the image segment under the nozzle
head containing the HAZ and the entire layer being deposited. It was a
fixed area cropped out of each raw thermal image. The cropping size
here was selected per the raw image size and HAZ tracks. Next, each ROI
segment was thresholded with its own median pixel values. A rectan-
gular matrix of pixels was identified in each ROI as the HAZ. These HAZs
formed the actual thermal image TS and then were used as the input for
feature extraction (refer to Section 3.2).

4.3. Results and discussion

The novelty of pTS-LSTM is the integration of ARIMA and Stacked
LSTM for characterization and removal of data periodicity. This model
design makes pTS-LSTM superior to conventional LSTM models in pre-
dicting HAZ temperatures for FFF processes. For demonstration, pTS-
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Fig. 8. Training performance: (al-3) Stacked LSTM, (b1-3) kernel PCA + Stacked LSTM, (c1-3) kernel PCA + pTS-LSTM, (d1-3) RNN, (e1-3) kernel PCA + RNN.
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Table 2
Model training time in seconds based on V100 Nvidia GPU.
Model Time(s)
Stacked Kenel PCA + Kernel PCA RNN  Kernel
LSTM Stacked + pTS- PCA +
LSTM LSTM RNN
DenseNet121 1077 830 832 720 560
ResNet50 1210 811 849 681 522
VGG16 1400 975 1002 893 711

LSTM was compared with conventional Stacked LSTM. TS extraction
was done with pretrained CNNs, i.e., DenseNet121, ResNet50, and
VGG16. Five models were compared: (a) Stacked LSTM, (b) kernel PCA
+ Stacked LSTM, (c) kernel PCA + pTS-LSTM, (d) RNN (2 RNN layers,
the 1st layer contains 16 neurons and the 2nd layer contains 8 neurons),
(e) kernel PCA + RNN (same RNN structure). m = 5 PCs were preserved
in kernel PCA. (a)-(c) was a fair comparison among conventional LSTM
and the proposed pTS-LSTM with the Stacked LSTM structure in Fig. 6,
which demonstrates how pTS-LSTM improves the model performance by
reducing the data periodicity. (d) and (e) provided an additional com-
parison between pTS-LSTM and commonly used, shallow RNNs. For
pTS-LSTM, the optimal ARIMA parameters were searched from sets .’ =
{1,2,3,4,5,6}, 7 ={0,1},@ = {1,2,3,4,5,6} as part of model
training. All the (p,d, q) combinations formed from ., &, and @ were
used to fit ARIMA models. The optimal parameter set gave the ARIMA
model that achieved the smallest AIC among all combinations. These
relatively small parameter sets would expedite pTS-LSTM model
training at the expense of obtaining suboptimal parameter values, which
is acceptable for the case study and can be further improved in real
practice. For all (a)-(e), 5-fold cross-validation (CV) [74,75] is adopted
to validate the method's accuracy and robustness (CV for TS can be
found in Appendix A.1). In each replicate of CV, 1 fold is preserved as the
testing data (37 frames), and the rest become the training data (148
frames), within which 10 % are used for training-stage validation. All
the models are trained with 8000 epochs without batches. The TS
segment length is I = 5.

4.3.1. Training performance

Fig. 8 displays the training performance of models (a)-(e) with
varying feature extraction methods. Within (a)-(c), the proposed model
(c) obviously outperformed (a) and (b) — pTS-LSTM converged faster and
to a nearly zero MSE loss. In contrast, (a) had overfitting issues
throughout model training, and (b) did not fully converge, especially
when VGG16 was used for feature extraction, though 8000 epochs had
been completed. For (d) and (e), the model convergence was fast, which
is likely due to the simpler model structure. However, overfitting issues
were observed for (d2-3) even after model convergence. With the
adoption of kernel PCA in (e), the training performance was improved
from (d) and the steadiest after convergence among (a)-(e).

Table 3
Average MSE (and standard deviation) in prediction across 5-fold CV.

Journal of Manufacturing Processes 106 (2023) 316-327

Table 2 provides the training times for models (a)-(e) measured in
seconds (based on V100 Nvidia GPU). Comparing all the models, the
computing time was mainly affected by the feature dimensionality and
model structures. (a) consumed the longest training among all models
for all three feature extraction methods. When kernel PCA was used, the
input feature dimensionality was much reduced. Consequently, (b) and
(c) had shorter training time than (a). The same time-saving effect of
kernel PCA was observed by comparing (d) and (e). For LSTM and RNN
model structures, the RNN model structures used less training time. An
additional factor for model training time was the feature extraction
method. Compared with DenseNet121 and ResNet50, VGG16 features
required a longer time to train the same model structure. For the pro-
posed model (c), the model training times were at an intermediate level
among all the models and close to those of (b). The trivial training time
difference between (b) and (c) indicates that pTS-LSTM improved the
model training performance (see Fig. 8) without increasing the
computing burden.

4.3.2. Prediction performance

The trained models (a)-(e) were used for temperature prediction in
the lab-based FFF process. Table 3 shows the prediction performance,
measured by accuracy (or average MSE) and robustness (or standard
deviation of MSE) across 5-fold CV. Both performance metrics are the
smaller, the better.

In Table 3, the smallest metrics have been highlighted in bold, which
were mostly achieved by (c). When pretrained DenseNetl21 was
adopted for feature extraction, (d) had acceptable prediction perfor-
mance — the average MSEs were relatively low, and their standard de-
viations were small. DenseNets are CNN model structures designed to
overcome the “vanishing gradient” problem [55,76], which is con-
fronted by RNNs as well. This capability of DenseNet121 led to better
feature extraction results — the features well preserved the useful in-
formation about HAZ temperature profiles, thus improving RNN
learning outcomes. For all other combinations of feature extraction
methods and benchmark models, (c¢) had more favorable prediction
performance than the benchmarks. Specifically, when pretrained
ResNet50 was used, (c) achieved the best performance. It is noteworthy
that some results of benchmark models revealed the “downside” of using
kernel PCA - it facilitated model training but caused information loss
and compromised the prediction accuracy. Comparing (a) and (b), as
well as (d) and (e), one may observe higher MSE when kernel PCA was
adopted for the same LSTM or RNN model.

4.3.3. Summary

The above results illustrate the pTS-LSTM's superiority in handling
thermal image TS. For a fixed Stacked LSTM structure, pTS-LSTM
significantly improved both the training and prediction performance
of conventional LSTM models. In model training, pTS-LSTM brought the
MSE loss at the converged level from >1000 (for (a) and (b)) to nearly
0 and reduced overfitting; in prediction, the min, mean, median, and

Pretrained CNN MSE Stacked LSTM Kenel PCA + Stacked LSTM Kernel PCA + RNN Kernel PCA + RNN
pTS-LSTM
Min 267.3325 (252.4384) 495.7927 (727.7109) 24.6847 (30.0127) 12.7631 (7.2039) 14.5708 (13.5650)
DenseNet121 Mean 534.6227 (451.5825) 760.6500 (699.7481) 74.2074 (68.4914) 81.3530 (40.1182) 90.5040 (82.1456)
Median 557.5411 (595.5952) 632.8164 (766.2288) 67.4238 (88.9621) 59.5286 (34.7076) 65.6630 (54.5501)
Max 812.7719 (565.1169) 1365.8784 (746.3702) 130.5137 (108.4623) 277.7966 (181.3297) 284.5965 (287.2334)
Min 666.2767 (892.1636) 40.8302 (45.1437) 13.0784 (5.9971) 9.7916 (5.1778) 11.8529 (6.4217)
ResNet50 Mean 1104.0645 (1378.8525) 364.5163 (337.7676) 33.9749 (41.9028) 82.0963 (92.7912) 63.7859 (38.7440)
Median 1105.0940 (1453.8470) 278.1954 (409.4122) 16.4049 (6.9352) 52.9101 (49.1507) 53.3044 (25.8283)
Max 1608.9044 (1832.2020) 968.2463 (854.7760) 72.4413 (123.8482) 208.5660 (247.3396) 177.1793 (140.7060)
Min 187.2257 (307.0892) 200.8680 (210.8844) 12.9007 (4.3450) 57.9908 (85.6509) 40.9340 (43.7871)
VGG16 Mean 340.1107 (310.4982) 579.3239 (411.1842) 94.6323 (146.7450) 159.8329 (187.4225) 195.3294 (175.5987)
Median 285.9179 (344.9747) 487.2709 (519.8764) 56.7453 (91.9067) 153.1364 (189.0401) 194.2592 (199.2445)
Max 636.5734 (458.6399) 1217.1738 (731.7707) 214.5510 (348.3276) 333.3135 (339.7511) 388.2570 (280.7160)
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max MSE of pTS-LSTM were respectively 93.97 %, 85.07 %, 88.86 %, skills of pTS-LSTM for such complex data is an intriguing topic for future
81.92 % lower than those of (a) and 85.52 %, 88.20 %, 90.60 %, 88.44 % studies. Deeper LSTM structures and other RNN variants may be inte-
lower than those of (b) (averaged for the three pretrained CNNs). When grated into pTS-LSTM to handle the data complexity and noise reduction

compared with classic RNNs, pTS-LSTM consistently performed well in task. Second, kernel PCA was adopted here to reduce the dimensionality
both training and prediction, while shallow RNNs were relatively easy to of CNN-extracted features. It facilitated model training by lessening the
train but might not predict HAZ temperature profiles accurately. In computing burden but unavoidably led to information loss. Using end-
prediction, the mean, median, and max MSE of pTS-LSTM were to-end 3D CNNs [77,78] for a 1-step extraction of spatial-temporal
respectively 36.06 %, 39.56 %, 51.31 % lower than those of (d) and features from thermal video segments will be explored in the future

38.77 %, 45.78 %, 52.67 % lower than those of (e) (averaged for the extension of this work. Third, more advanced HAZ sensing and tracking
three pretrained CNNs). Therefore, pTS-LSTM is a better option than the will be explored. This issue is related to the geometry complexity of the

existing DL methods for modeling and predicting HAZ temperature printed object. For complex geometry, the HAZ location in subsequent
profiles in FFF. frames will be subject to larger uncertainty. Advanced sensing, e.g., in-

situ X-ray computer tomography, will be considered to capture high-
5. Conclusion and future work quality HAZ temperature profiles for pTS-LSTM model training. More

effective HAZ segmentation methods (compared with thermal image
This study developed a novel DL model, pTS-LSTM, for in-situ HAZ thresholding) will be developed to assist pTS-LSTM training and

temperature prediction in FFF. pTS-LSTM integrated TS forecasting and implementation.
Stacked LSTM in its model design, thus enabling automatic character-
ization and removal of noisy, irrelevant periodicity in data. This method Declaration of competing interest
targeted the data-level challenges brought by the data collection and
printing path in FFF. It will benefit FFF and other AM processes where The authors declare that they have no known competing financial
thermal images are collected as the major evidence of process moni- interests or personal relationships that could have appeared to influence
toring and prognostics. The proposed method can be readily extended to the work reported in this paper.
other laser-based AM applications for temperature or quality prediction
during the printing process of simple geometry. Acknowledgement

In the future, several research directions can be pursued. First, pTS-
LSTM can be extended for AM printing of complex geometry. Currently, We acknowledge the use of ASU Research Computing for data pro-
pTS-LSTM handles data periodicity due to a simple printing path. As the cessing and model training. This study is partially supported by Arizona
object geometry gets sophisticated, the printing path will be unique, State University startup funds, NSF grant 1826439 and NSF grant
resulting in more complex patterns in thermal video data. Enhancing the 1762792.
Appendix A

A.1. K-fold cross-validation for time series

This study adopts K-fold cross-validation (CV), with K = 5, in model training and testing. The thermal imaging data are time series (TS), so the data
split procedure in CV is slightly different from the conventional K-fold CV.

ForTS,S = {J’q },i =1,...,n, subsequent observations y; and y;,, have temporal connections (or correlations) that must be preserved, so the order
of instances in S should not be altered. In data split, S is first divided into 2 parts, with the first part being the initial training set, denoted by Sy and S;.
In this study, Sy contains the first 40 % instances in S. Next, S; is divided into K equal-sized folds, denoted by s;,s2, ...,sk. The first K — 1 folds have
LIS1|/K | instances, while the Kth fold may have several more instances if |S1|/K is not an integer.

During CV, the 1st iteration uses Sy for model training and s; for model testing. Next, s; is appended to Sy as the training set for the 2nd iteration,
and s; is used for model testing. Moving forward, sg,k = 2,...,K — 1 is appended to the training set from the previous iteration and si; is used for
model testing in the current iteration, until K iterations are completed. The performance metrics of model testing are the sample mean (or average) and

standard deviation of the MSE losses across the K iterations, i.e., 7 = Sk | 7, /K and §(Z) = /X (L — 2)*/(K — 1), respectively. The above
procedure is elaborated in Hyndman and Athanasopoulos [74].
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