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|. INTRODUCTION

In recent years, teacher noticing of student thinking has gained momentum in the landscape of educational
research as an important teaching practice due to its relationship to other teaching practices (Thomas,
2017). In fact, Mason (2002) noted "every act of teaching depends on noticing” (p. 7). Teacher noticing
of students’ mathematical thinking is described as "focusing attention on and making sense of what students
say or do before actually responding to them" (Jacobs & Spangler, 2017, p. 771). Jacobs et al. (2010) explain
that noticing students’ thinking is comprised of three interrelated skills: attending to students’ strategies,
interpreting their understanding, and deciding how to respond on the basis of those understandings. Jacobs
and Spangler (2017) identified teacher noticing as an important core teaching practice—meaning it is "central
to teaching and accessible to and learnable by novice teachers” (p. 769). As such, teacher noticing is foundational
to enacting other practices like posing purposeful questions and facilitating whole class discussions. To
support novices in learning core practices, Grossman et al. (2009) proposed a Framework for Teaching
Practice which is commonly referred to as "pedagogies of practice” (e.g., Estapa et al., 2018). Their framework
emphasized three teacher education pedagogies: representations of practice that make the teaching practice
visible (e.g., classroom videos, student work samples), decomposition of practice which provides opportunities
for novices to examine and identify the constituent parts of a practice, and approximations of practice
that encompass opportunities to engage in practices that simulate the realities of the teaching practice.
Grossman et al. (2009) emphasized that these three pedagogies of practice "overlap and underscore each
other” (p. 2091) suggesting that they three can be used in tandem with novices as they work to develop
complex teaching practices.

Research on teacher noticing of students’ mathematical thinking has shown that both preservice and
inservice teachers tend to struggle to fully interpret students’ mathematical thinking (e.g., Callejo & Zapatera,
2017; Sanchez-Matamoros et al., 2014; Teuscher et al., 2017). This result is heightened in contexts in which
students are engaged in technology-enhanced math tasks (e.g., Bailey et al., 2022; Chandler, 2017; Wilson
et al., 2011). Given that teachers struggle with interpreting student thinking, we began to ponder how
the design of materials that draw on Grossman et al.'s framework (2009) might support preservice teachers'
(PSTs) developing practice of teacher noticing when students are engaged in technology-enhanced math
tasks. Our work is in the context of a larger design-based professional development project, Preparing
to Teach Mathematics with Technology - Examining Student Practice Project (PTMT-ESP), in which we
have spent the last six years studying our design process as we created modules to support PSTs learning
to teach secondary mathematics with technology. Within this work, we use Grossman et al.'s pedagogies of
practice (i.e., representation, decomposition, and approximation of practice) to provide scaffolded opportunities
for PSTs to engage with the practice of teacher noticing in technology-mediated environments. Here we

report on a study of our design of a specific approximation of teacher noticing task with the overarching
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goal of theorizing about how to design approximations of practice that support PSTs' learning to notice
student thinking in technology-mediated environments with a specific focus on interpreting students’

mathematical thinking.

Il. BACKGROUND

To situate our study, we draw on two main bodies of literature. As the task under consideration is
an approximation of practice, our work is grounded in pedagogies of practice (or Framework for Teaching
Practice; Grossman et al., 2009). Further, the task aims to have PSTs approximate the practice of teacher

noticing, so we will detail research on teacher noticing, including the decomposition of this practice.

1. Pedagogies of practice

Grossman et al. (2009) explained that novice teachers in the midst of developing complex teaching practices,
should be provided with "opportunities to first distinguish and then to practice, the different components
that go into professional work prior to integrating them fully” (pp. 2068-2069) using the three overlapping
teacher education pedagogies: representations of practice, decomposition of practice, and approximations
of practice The purpose of these pedagogies is to help mathematics teacher educators (MTEs) parse core
teaching practices into smaller pieces that simplify complex teaching practices and assist PSTs as they
focus on specific aspects of teaching practice in isolation as they work to develop more complex skills
that will occur when they enact teaching practices in their own classrooms.

For PSTs new to teaching practice, representations of practice that make the teaching practice visible
are needed to illustrate the practice. These include artifacts of teaching that display aspects of teaching
that PSTs can visualize (e.g., classroom videos, lesson plans, clinical interviews, student work). Representations
can vary in the ways they make aspects of teaching visible. For example, a lesson plan might highlight
planned purposeful questions, while whole class video might highlight orchestration of a whole class discussion.
Once provided with a representation of practice, the teaching practice under development is decomposed
into components that illustrate the "anatomy of the practice to be learned” (Grossman et al., 2009, p. 2069).
These decompositions often serve as scaffolds and require MTEs to carefully design learning experiences
that build toward the complex practice that PSTs are working to develop (Tyminski et al., 2014).

Approximations of practice simulate aspects of practice (e.g., micro teaching, planning a discussion, scripting
questioning). Although they "are not the real thing” (Grossman et al., 2009, p. 2078) and are proximal
to actual teaching, they offer PSTs opportunities to simulate the decomposed components of practice in
managed environments that may vary in their degree of authenticity (Schutz et al., 2018). Grossman et

al. (2018) explained the need for approximations to "provide novices with the opportunity to enact elements
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of practice with a high degree of support and under conditions of reduced complexity” (p. 9). When using
a pedagogies of practice approach, approximations of practice are often used alongside decompositions
of practice "to support novices in distinguishing and understanding separate components before integrating
them into complex [approximations of] professional practice” (Sztajn et al., 2020, p. 2). The affordances
of this approach were explained by Schutz et al. (2018) who stated, "By providing structured and scaffolded
ways of 'trying on' teaching, we can begin to develop novices' capabilities to simultaneously engage with
content and students in ways that leverage the resources that individual children bring to their learning”
(p. 62).

In the context of mathematics teacher education, many MTEs have designed learning experiences (i.e.,
approximations of practice) for teachers to support learning of various core teaching practices ranging
from whole class discussions (e.g., Boerst et al., 2011; Tyminski et al., 2014, Webb & Wilson, 2023), tutoring
(e.g., Farrell et al., 2022), teacher questioning (e.g., Billings & Swartz, 2021), selecting and sequencing
student work (e.g., Ducharme et al., 2022), designing tasks (e.g., Jacobs et al., 2023), and teacher noticing
of students' mathematical thinking (e.g., Estapa et al., 2018; Herbst et al., 2018; Thomas et al., 2023). For
this study, teacher noticing of students’ mathematical thinking when students are working in technology-

mediated environments is the core teaching practice we sought to develop for PSTs.

2. Teacher noticing as an approximation of practice

Teacher noticing is a core teaching practice (Jacobs & Spangler, 2017) focused on students’ mathematical
thinking that can be summarized as the attention to and interpretation of students’ mathematical thinking
that is used to formulate responses to students and make instructional decisions. Developing this core
practice is difficult, particularly interpreting students' thinking and deciding how to respond (e.g., Callejo &
Zapatera, 2017; Sanchez-Matamoros et al., 2014; Teuscher et al., 2017). Yet, recent literature reviews revealed
that noticing interventions hold potential to assist PSTs in developing their teacher noticing skills (Amador
et al., 2021; Konig et al., 2022). One method that has shown some success in supporting PSTs' noticing
has been with a pedagogies of practice approach. From this lens, MTEs have supported PSTs' development
of teacher noticing using a variety of representations of practice, frameworks for decomposing the practice,
and different types of approximations of the practice.

Since teacher noticing of students’ mathematical thinking occurs in many different classroom contexts,
MTEs have chosen a variety of types of representations for teachers to consider when engaging in the
practice of teacher noticing. These include but are not limited to written classroom vignettes (e.g., Dick
et al., 2024), video cases of classroom vignettes either of small groups or whole class (e.g., Estapa et al.,
2018; Fisher et al., 2019; Jacobs et al., 2010), student interviews (e.g., Chao et al., 2016), and animations
of students engaged in mathematics (e.g., Walkoe & Levin, 2018). The selection of representations of practice

is "complex and significant” (Jacobs & Spangler, 2017, p. 776). There are several important considerations
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when selecting a representation such as the "length of the video-recorded episode or the amount of written
work to be shared, whether video will be edited or unedited, and visibility and clearly of the student mathematical
thinking portrayed” (Jacobs & Spangler, 2017, p. 776). However, once representations of practice are chosen,
approximations of practice can be designed to help teachers develop their teacher noticing practice.

To approximate the practice of teacher noticing, various types of learning experiences have been created
by MTESs. Providing prompts for PSTs to write responses is a commonly used approximation (e.g., Jacobs
et al., 2010; Krupa et al., 2017; Thomas et al., 2023). Other approximations that are used in research include,
but are not limited to, having PSTs create animations that incorporate their noticing (e.g., Estapa et al.,
2018) or asking PSTs to rehearse leading discussions (e.g., Fernandez et al., 2013). Because of the complexity
of teacher noticing, researchers have employed different decompositions of practice to assist PSTs as they
engage with the various components of noticing. Many researchers have adopted Jacobs and colleagues
(2010) noticing framework that includes three interrelated skills: attending to students’ mathematical thinking,
interpreting students' mathematical understanding, and deciding how to respond as explicit decompositions
of the practice of teaching noticing (e.g., Dick et al., 2024; McCulloch et al., 2023; Thomas et al., 2023)
while others have structured approximation assignments for PSTs that implicitly draw upon the three component
skills without actually naming them (e.g., Schack et al., 2013). Thomas et al. (2023) designed a five-lesson
module for elementary PSTs that progressively nested a decomposition of noticing into Jacobs et al.'s (2010)
three (i.e., attending, interpreting, deciding) components that were explicitly named for the PSTs. Other
researchers have chosen to provide PSTs with frameworks for teaching practice that support their noticing
approximations for specific components of noticing. For example, Ivars and colleagues (2020) provided PSTs
with a learning trajectory to support their interpretations of student thinking. Similarly, Thomas and colleagues
(2015) proposed integrating the 5 Practices (Smith & Stein, 2011) across the teacher noticing components
as a nested decomposition.

Jacobs et al. (2010) identified teacher noticing as a learnable practice. Recent literature reviews re-emphasized
this point and added that regardless of the type of decomposition employed, teacher noticing is a learnable
practice (Konig et al., 2022; Santagata et al., 2021). Santagata and colleagues (2021) called for design-based
research studies that shed light on how to improve the learning of this practice. Thus, for this paper,
we have chosen to present the results of a design-based research program studying the design of one
approximation of teacher noticing task across multiple semesters with different PSTs. Specifically, we consider
the written decomposition of teacher noticing prompts that we provided to PSTs to elicit their noticing
in which we aimed to address Jacobs' (2017) call that noted, "researchers must find ways to tease apart
when teachers failed to notice something versus when they simply did not provide evidence that they
had noticed it" (p. 278).
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I1. METHODS

In this intrinsic case study (Yin, 2018) of the design of the approximation of teacher noticing task, we
examine the ways in which our design choices elicited varying evidence of the PSTs' interpretations using
professional development design study methods. Cobb et al. (2014) explain, "professional development design
studies involve developing, testing, and revising conjectures about both the processes by which teachers
develop increasingly sophisticated instructional practices and the means of supporting that development”
(p. 491). In the context of this study, the instructional practice of focus is teacher noticing of student thinking
on technology-enhanced mathematics tasks. Design studies involve cyclic phases of design, implementation,
and analysis (see Figure 1; Stephan, 2015). In the following sections we describe the context in which this
study took place followed by the three phases of the design cycle we went through in studying the prompts
provided to the PSTs in the approximation of teacher noticing task. Ultimately, we aim to address the
following research question: How does the design of a task for approximating teacher noticing of student

thinking on technology-enhanced mathematics tasks support PSTs' practice of interpreting student thinking?

Figure 1 Professional development assessment task design cycle (adapted from Stephan, 2015, p. 906)

Design Phase Implementation Phase Analysis Phase

- " . : :
* Literature review Retrospective analysis

SN DiEn o Approximation |:> . ITPIen;‘ent apl_Dr_ommatkmn |:> . Sum;nat_we afnalyms. _
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Q |

1. Context

The study described here is situated in a larger design based professional development project. For our
work with the PTMT-ESP Project, we developed materials for PSTs' professional learning that focused on
their teacher noticing of students’ mathematical thinking as well as teaching practices that build on teacher
noticing in the context of secondary students engaging in technology-enhanced algebra and function tasks. As
designers, our team was guided by an assumption that materials grounded in representations, decompositions,
and approximations of practice (Grossman et al., 2009) could support PSTs in developing these pedagogies
of practice in the context of students doing math in technology-mediated environments. To that end, we
designed a set of learning experiences that we believed would be effective in supporting the development

of PSTs' noticing practice in the context of technology-mediated environments. We have reported on the
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design of the overarching instructional sequence elsewhere (e.g., Lovett et al., 2020). While we focus on

the end of semester approximation of noticing task in this study, for context we will describe how the
PSTs in the study were introduced to teacher noticing throughout the semester.

In the beginning of the semester, the PSTs had many opportunities to observe and discuss various video
representations of pairs of secondary students working on technology-enhanced mathematics tasks. In-class
discussions of these videos often focused on the students’ mathematical thinking evidenced in the video;
however, the PSTs were not formally introduced to teacher noticing until later in the semester. All of
these carefully selected video representations were chosen using the project design principles (Lovett et
al., 2020). Such videos included everything that the students said and did on the task and showed their

written work (see Figure 2).

Figure 2 /mage of the picture in picture video clip
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Use the sliders to change the parameter values in the function. f(x) = 1 / (2x + 3) How can you predict the location of a vertical asymptote
given the function rule?
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e

Mid-semester, the PSTs were formally introduced to the practice of teacher noticing of students thinking
on technology-enhanced mathematics tasks. The first activity was an explicit introduction to the Noticing
in Technology-Mediated Environments (NITE) framework (Dick et al., 2021; Bailey et al., 2022; McCulloch
et al., 2023) that decomposes the practice of teacher noticing of student thinking on technology-enhanced
math tasks into its various components (see Figure 3). The PSTs watched carefully selected video recording
representations of pairs of students engaged in a technology-enhanced mathematics task and reviewed
and discussed exemplars of experienced teachers' written noticings (i.e., attend, interpret, and decide). The
NITE framework is an extension of Jacobs et al.'s (2010) decomposition of teacher noticing that highlights
the importance of attending to and interpreting students' technology engagement. While we acknowledge

that all the components of noticing are by their nature interrelated (Jacobs et al., 2010), we have separated
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attention to and interpretation of students’ spoken and written responses from attention to and interpretation
of students’ engagement with the technology to scaffold PSTs' focus on the actions students take with the
technology and what students see as a result of these actions when attending to and interpreting students’
mathematical thinking. Thus, the arrows in the NITE framework indicate the importance of both the horizontal
coordination of attention and interpretation as well as the vertical integration of both attention and
interpretation. Within the NITE decomposition, the decide how to respond component is separated from
the other components for two reasons: (1) to indicate the importance of balancing insight gained from
attending to and interpreting both students’ spoken and written responses and their technology-engagement
when making instructional decisions, (2) to indicate that when deciding how to respond the teacher must

consider how to position the technology (or not).

Figure 3 Teacher noticing of students’ work in a technology-mediated
environment (NITE) Framework (McCulloch et al., 2023)

Attend to students’ Attend to students’
spoken and written —) engagement with the
mathematical thinking technology
Interpret students’ Interpret students’
understanding from their — understanding from their
spoken and written engagement with the
mathematical thinking technology

!

‘ Decide how to respond ’

After the PSTs learned about the NITE framework, they had the opportunity to formally engage with
various approximations of teacher noticing by completing learning activities that decomposed the practice
into smaller pieces. These activities used additional video clip representations of pairs of students engaged
in technology-enhanced mathematics tasks. The PSTs discussed important details to consider when attending
to and interpreting the students’ thinking and the students’ technology engagement on these tasks, as well
as possible decisions teachers might make based on their attending and interpreting. These approximation
of teacher noticing tasks included prompts that decomposed noticing into the three components (i.e., attend,
interpret, and decide) with the decide component further decomposed into various approximations of teaching

practices for which noticing student thinking is foundational (e.g., posing purposeful questions, selecting
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student work, facilitating discussions, designing a next task). Moving forward we refer to the further
decomposition of the decide component as nested decomposition. This nested decomposition of instructional
decision making is an example of scaffolding various levels of decompositions as discussed by Sleep and
Boerst (2012). In this way for the rest of the semester, the PSTs had multiple opportunities to practice
the components of teacher noticing using the NITE framework as a guide.

To assess the effectiveness of our instructional sequence, we designed an approximation of practice task.
This specific approximation of noticing student thinking on a technology-enhanced mathematics task was
implemented both at the beginning and end of the course to capture changes in the PSTs' noticing practice.
In this paper, we focus on the end of semester implementation as the PSTs had engaged with additional
representations and decompositions of the practice throughout the semester. The design of this approximation

of practice task is the focus of this study.

2. Design phase

During the initial design phase of this study, we read literature on teacher noticing of students' mathematical
thinking generally, and also with a lens on the ways in which researchers elicited teacher noticing using
various pedagogies of practice (Grossman, 2009). Based on our review of the literature, we decided that
a good way to approximate the practice of in-the-moment noticing of students’ thinking on a technology-
enhanced mathematics task would be to choose a representation of practice and ask the PSTs to provide
written responses to teacher noticing prompts based on the NITE framework (McCulloch et al., 2023).
Specifically, the initial design of the approximation of teacher noticing task highlighted in this manuscript
features a short video clip of two secondary school students engaged in a Desmos task exploring the effect

k
ax+b

of parameters on the location of the vertical asymptote of a rational function of the form f(x)=

(https://tinyurl.com/NoticingAssess). The Desmos task was designed to address three goals: (1) Students

will recognize that a rational function of the form f(x)= has a vertical asymptote at x :*g, 2

ax+b
Students will be able to explain that the location of the vertical asymptote is found by setting the denominator
equal to zero, since that is where the function is undefined, and (3) Students will be able to explain that
a vertical asymptote occurs when the function is undefined (i.e., when the denominator is 0).

The video clip is approximately 3 minutes long. In the video, the pair of students is seen dragging
sliders for the parameters k, a, and b while discussing their effects on the location of the vertical asymptote.
The students quickly determine that k does not affect the location of the vertical asymptote and focus
their attention on a and b. At one point in the video, the students set k equal to zero, so that the graph
is a horizontal line at ¥ =0, yet because of the way the activity was designed, an asymptote is still shown

on the graph. Eventually the students conjecture that the asymptote location can be found by dividing
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b by a, but they aren't sure why &/« is negative. They decide that this is just "one of those weird flippy
things that graphs do." The students test their conjecture with a few different values for a and b, and

then record that they would explain to a friend that the location of a vertical asymptote for a rational

function of the form f(x)= is —x=0b/a.

k
ax+b

As previously mentioned, research on teacher noticing has shown that the decomposed practice of deciding
to respond is particularly challenging for PSTs (e.g., Dick et al., 2024; Jacobs et al., 2023; Krupa et al,,
2017). Because of this, work within teacher noticing is often focused on the attend and interpret components
with the intent being that it is important to develop these practices prior to focusing on deciding how
to respond (see Konig et al., 2022). Based on these findings, we conjectured the same would be true for
PSTs' noticing student thinking on technology-enhanced mathematics tasks. Thus, the initial design of
the approximation of teacher noticing task included only attend and interpret focused instructions and

prompts to accompany the carefully selected video clip representation (see Figure 4).

Figure 4 /nitial approximation of teacher noticing task instructions and prompts

The purpose of this assignment is to showcase your skills related to noticing student
thinking in technological environments. You will watch a short video clip of a pair of
students working on a technology-mediated task and respond to some prompts related
to the video.

In the video you will see a pair of HS students currently enrolled in an Integrated Math 3
course working on a task in which they are being introduced to the idea of a vertical
asymptote.

Before going any further, take a few moments to work through the task yourself. As you
work, pay attention to the dynamic features of the task - including in the titles of the
pages.

Now that you are familiar with the Making Sense of Vertical Asymptotes task you are
going to analyze a video of a pair of students working on the same task. As was noted
above, these students are currently enrolled in an Integrated Math 3 course. They have
been working with rational functions, but have not been formally introduced to the idea
of a vertical asymptote. This task serves as their introduction to vertical asymptotes.

In this video the students, Eden and McKenzie, are working on page 5 of the Desmos
Asymptote Activity. Page 5 opens immediately after the definition of vertical asymptote
has been provided. The students are working to determine where (if at all) a vertical

asymptote will exist for a rational function with a constant numerator and linear
denominator (i.e., f(x) = ﬁ .

Watch the video clip provided in Canvas. You may watch this video as many times as
you would like.
1. Attend to (i.e., describe in detail) how the students determined the location of the
vertical asymptote for a rational function of the form f(x) = i
2. Interpret the students’ current understanding of vertical asymptotes. Provide
evidence from the video to support your claims.
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During the initial design phase, we asked our project advisory board for feedback on the task design

and did feasibility testing with four PSTs outside of the context of a course. No changes were made based
on these interactions. As previously mentioned, while we use this same approximation of noticing task
structure with different video clip representations throughout the curriculum materials, for the purposes
of this study we are going to focus only on the design of the specific task described above. In the findings
section of this paper, we begin by reporting the findings related to this first design implementation, and
then describe the subsequent iterations of design and how they were informed by our cycles of implementation

and analysis.

3. Implementation phase

We have undergone three cycles of design for the approximation of teacher noticing task instructions
and prompts, across four universities (U1-U4) in the United States (US). Universities ranged from small
to large, public to private and include rural, suburban and urban from across the eastern US. The approximation
of teacher noticing task was implemented in a secondary mathematics methods course for PSTs at each
of the universities. Each round took place in a different semester with different PSTs. There were between
three and 10 PSTs enrolled in each course section with a total of 73 PSTs (Note: there were two sections
of courses for U3 in Round 1). Of those, there were complete datasets for 50 PSTs; these comprise the
data corpus for the study (Table 1). Recall that in this paper, we focus on the end of semester approximation
of noticing student thinking on a technology-enhanced mathematics task. The PSTs were provided either
a printed or electronic version of the approximation of practice task to record their responses. All PST

data were blinded and organized into a shared folder according to university and implementation phase.

Table 1 Mumber of PSTs at each university for each implementation phase

University Round 1 Round 2 Round 3
U1 4 0 2
U2 6 7 3
U3 17 0 8
U4 0 0 3

4. Analysis phase

After each implementation phase, the PSTs' written responses to the prompts in the task were analyzed
using a rubric and codebook created by the research team. To create the rubric, we began by using a
process similar to Jacobs et al. (2010), identifying the mathematically significant details present in the

video clip representation. Because the video included students engaged in a technology-enhanced mathematics
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task, the significant mathematical details included not only what the students said and wrote, but also
the ways in which the students engaged with the dynamic mathematics representations and what they
saw as a result of their engagement. This work resulted in a list of what would be expected for a robust
attend response. Next, based on the expectations for a robust attend response, we then described what
would be included in a robust interpret response—what could be interpreted about the students’ mathematical
understandings based on the evidence in the video. The rubric included possible interpretations and whether
or not PSTs drew upon the students’ engagement with the technology as evidence of their interpretations.
The coding rubric was built in a shared spreadsheet (see Figure 5). In addition to indicating the details
of PSTs' attend and interpret responses, the rubric included a check box to note if PSTs included details
that were implausible or incorrect in their responses, and whether or not they provided evidence from
the students' technology engagement for their interpretations. Accompanying the rubric was a codebook
that detailed the level of evidence that was needed to check that an item was included in a PST's response
and included both examples and counter-examples for each code. A brief summary of the four interpretation
codes is included in Figure 6 which features the definition and code name for each. The first interpretation
focuses on what the students understand at the point when the video clip ends: The students have identified
a way to determine the location of the vertical asymptote. The next two interpretations refer to what
the students have not yet provided evidence of understanding: why their procedure works and how it
is related to the structure of a rational function. For brevity, we refer to these three interpretations as
students’ procedure (i.e., being able to state the location), traditional procedure (i.e., the location is at x =—b/a
because that is the result of setting the denominator equal to zero and solving), and underlying concept
(i.e., if the denominator is zero, the function is undefined; see Figure 6). These codes are not mutually
exclusive categories. In fact, an ideal interpretation would result in three codes: students’ procedure, traditional
procedure and underlying concept. For example, consider this PST response:
One student suggested b/, which they then realized must be -/ because the sign switches --- [The
students] understand a method to find the vertical asymptote but they are not relating it to where the
function is undefined or where the denominator is equal to zero ‘- They aren't relating the form of the
functions denominator to the rule; they just came up with the rule through testing values.
This PST identified that the students understand that the location of a vertical asymptote is determined
by a procedure (i.e., students’ procedure). Additionally, the PST noted that the students have not yet shown
evidence of understanding that the procedure is the result of setting the denominator equal to zero and
solving (i.e., traditional procedure) and that the vertical asymptote is where the function is undefined (i.e.,

underlying concept).

638 https://doi.org/10.29275/jerm.2024.34.3.627



Designing Approximations of Practice: The Case of Teacher Noticing

JERM

Figure 5 Example of interpret coding rubric

Codebook is here
Files are here PsN-521-U1-10 | PsN-§21-U1-11 | PsN-521-U1-12 | PsN-521-U1-14 | PsN-521-U2-09 | PsN-§21-U2-10 | PsN-§21-U2-11
Interpret 1: The students understand that the location of a vertical asymptote
for a rational function of the formf(x)=kax+b can be determined by x = -b/a Yes - Yes v Yes v Yes - Yes v Yes L7 Yes v
(-x = b/a) (i.e., they have a procedure for locating the vertical asymptote)
Tech Evidence for Interpret 1? D D D
script of what
they did as tech
Notes evidence
Interpret 2: The students have not connected the location of a vertical - - - - - - -
asymptote to where a rational function is undefined o o o i o o e
Interpret 3: The students have not yet connected their rule to setting the
denominator of the function equal to 0 to solve to explain why the vertical No > No "2 No > No v No > No i Yes ¥
asymptote is located at x = -b/a rather than x = b/a.
Tech Evidence for Interpret 2 & 37 D D [j D D D D
"don't know
what it actually
Notes||is"
Implausible/Incorrect? O a O a O (]
Notes
Incorrect -x=b/a evidence O O O O O O O
Notes

Figure 6 Summary of interpretation codes

Interpretations of
what students did
understand

Interpretations of
what students did not
yet understand

Interpretations

The students understand that the location of a vertical asymptote
for a rational function of the form f(x) = ﬁcan be determined

by x = — %(—x = S) (i.e., they have a procedure for locating the
vertical asymptote; identification of a procedure)

The students have not yet connected their rule to setting the

denominator of the function equal to O to solve as an explanation

. : b b
why the vertical asymptote is located at x = = rather than x = =

(i.e., the procedure typically defined in textbooks)

The students have not yet connected the location of a vertical
asymptote to where a rational function is undefined (i.e.,
understanding of the connection between the graph and the
structure of the function )

There is an implication that the students do not yet understand
something, but there is no explicit inclusion of either the
traditional procedure or the underlying concept

Code Names

Students’
Procedure

Traditional
Procedure

Underlying
Concept

Vague

Using an iterative process similar to DeCuir-Gunby et al.'s (2011) process for codebook development,

every member of the research team coded a subset of the PSTs' responses, and the codebook descriptions

and exemplars were refined until all coders were applying the codes consistently. With the rubric and
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codebook complete, every PST's noticing response was coded by three members of the research team. Like

Superfine et al. (2017), we read across the prompts for evidence of the PSTs' attend and interpret responses
(i.e., the response did not have to be under the associated task prompt for the PST to get credit). Any
discrepancies were discussed by the three coders until consensus was met; any continued disagreements
were brought to the entire coding team of eight coders. After the analysis of each implementation phase,
the research team met to discuss the findings and then loop back to the design phase to revise the approximation

of noticing task based on the analysis. The specifics of each cycle are described in the sections that follow.

IV. FINDINGS

The findings are organized by cycles of design (we refer to each as a round). We will begin by reporting
the findings for the first round of the approximation of teacher noticing task design and how those findings
informed our revisions that aimed to better capture the PSTs' developing practice of teacher noticing, specifically
interpreting students’ thinking. For the subsequent rounds, we will detail the specific modifications to
the task instructions and prompts, detail the findings from this revised task, and identify the changes
needed based on those findings given our overarching goal of supporting PSTs approximating teacher noticing
of students' thinking on technology-enhanced mathematics tasks. Table 2 summarizes the elements of the
task that were the focus of our design for each round. These will be described in detail in the sections

that follow.

Table 2 Approximation of practice task modifications by round

Task Components

Round University . Instructions:
Attend Prompt Interpret Prompt ~ Decide Prompt Performance
Goals
1 U1, U2, Us 27 X X
Uz 7 X X X
U1, U2, U3, U4 16 X X X X
1. Round 1

The first design of the approximation of teacher noticing task, informed by the literature on teacher noticing,
included an attend and an interpret prompt as described in the methods section. Recall that we identified
three potential interpretations of students’ thinking we would expect to see given the representation of
practice video-clip that was provided as well as the accompanying evidence for these interpretations.

In Round 1, there were 27 PSTs. The overwhelming majority (96.3%) interpreted what the students

understood (i.e., the students have a procedure for locating the vertical asymptote—students’ procedure;
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Table 3). A typical PST example included evidence of how the students used the parameter sliders to help

them determine a procedure for the location of the vertical asymptote:
Through trial and error with different inputs for a and b, they found that b divided by a--- yet still were
confused about why the sign on the vertical asymptote was consistently the opposite---Therefore, [they]
know how to find the vertical asymptote.

Table 3 Round 7 summary of the PSTs interpretations

Interpretation Number of PSTs
Students' Procedure 26
Vague 5
Traditional Procedure 12
Underlying Concept 1

Over half of the PSTs in Round 1 made some kind of interpretation regarding what the students do
not yet understand (N=16, 59.3%). Of these 16 PSTs, 31.5% (5 of 16) made vague interpretations but did
not explicitly include either the traditional procedure or underlying concept interpretations. As an example
of a typical vague interpretation, consider this PST's response: They know a method for finding the asymptote,
but they don't understand what the asymptote actually is.

Three-quarters of the PSTs who interpreted what the students did not yet understand demonstrated
evidence of the traditional procedure interpretation (12 of 16, 75%). These PSTs typically stated things like
What they don't understand is what the asymptote actually means and how it is connected. If they had
an understanding of [what] the asymptote actually means, they could maybe understand that it has to

deal with when the denominator is 0.
Only one PST demonstrated evidence of both the traditional procedure and underlying concept interpretation
of what students do not yet understand. This PST stated:

This indicates that the girls understand that a vertical asymptote will be located at the -b value divided

by the a value. They have yet to realize that this very value is the one that makes the denominator zero,

as they never set the denominator equal to zero--‘They do not talk about the domain, which indicates that

they are focused on the where, rather than the why of asymptotes currently.
This PST noted that students have not yet connected their rule to set the denominator equal to zero,
and they have not yet connected the location to where the function is undefined.

One of the big findings from this round of our task implementation was that the PSTs were interpreting
what the students did understand, but not consistently discussing what the students did not yet understand
in their interpretations. These results prompted us to consider how revising the approximation of practice
task prompts might elicit PSTs to consider what students do not yet understand as part of their interpretations.

As previously mentioned, initially, the design of the approximation of practice task only included an attend
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and an interpret prompt which is in line with other researchers who introduced the components of attend
and interpret prior to the decide component (e.g., Fisher et al., 2019) as research has shown that deciding
how to respond is challenging for PSTs (e.g., Jacobs et al., 2010; Jong et al., 2021; Krupa et al., 2017).
However, when we broadened our review of the literature to include other core practices, we found examples
in which the decomposition of a teacher response supported teachers' interpretations of student thinking.
For example, in Tyminski and colleagues’ (2017) study of the use of pedagogies of practice to support
PSTs' facilitations of whole-class discussions showed that when PSTs were provided sample student work
and asked to select and sequence the work (i.e., decide how to respond), their interpretations of the student
work improved. Based on this work and ongoing work by Dick and colleagues (2024), we conjectured
that perhaps if we asked the PSTs to explicitly think about their next pedagogical moves as part of the
approximation of noticing task prompts (i.e., include a decide prompt), it might lead them to write about

what the students did not yet understand in their interpretations.

2. Round 2

In Round 2, the initial instructions and the first two prompts of the approximation of noticing task
remained unchanged from Round 1 (see Figure 4). The only modification was the addition of a decide
prompt which read: "Based on your responses to Q1 and Q2 above, if you were with Eden and McKenzie
at the moment the video occurred, what would you do next? Why?"

There were seven PSTs in this round. All of the PSTs (100%) interpreted what the students understood—
students’ procedure. These interpretations were similar to those in Round 1. In addition, 100% of the PSTs
made some kind of interpretation regarding what the students do not yet understand (vague, traditional
procedure, and/or underlying concept). Table 4 summarizes in which prompt the PSTs discussed their

interpretations of what students do not yet understand.

Table 4 Round 2 summary of the PSTs' interoretations and in which prompt they occurred

Prompt in which the interpretation occurred

Interpretation (Number of PSTs) Both the interpret and
Interpret prompt only .
decide prompts

Decide prompt only

Vague (2 of 7) 0 0
Traditional Procedure (5 of 7) 1 1
Underlying Concept (4 of 7) 0 0

Twenty nine percent of the PSTs made vague interpretations. These PSTs made their vague interpretations
in the newly added decide prompt, meaning we would likely not have elicited evidence of these interpretations
if we did not add this prompt. As part of the decide prompt, these interpretations were tied to the PSTs'

envisioned next pedagogical moves. For example, one PST stated:

642 https://doi.org/10.29275/jerm.2024.34.3.627



Designing Approximations of Practice: The Case of Teacher Noticing IERM

I'would [ask] them to answer the question 'Why does this make sense? I think having them reason with

their answer could lead to their discovery of how it relates to the graph---Before I sent them into testing

new values, I would point out to them that the numbers at the top of the screen in the header move with

the parameters. I would tell them that they should look at what happens to the parameters there and try

to decide what is happening and why it makes sense that it is happening.
This PST noted that the students have yet to discover why the vertical asymptote occurs and that technology
can help, yet the PST did not explicitly include either the traditional procedure or underlying concept in
their written interpretation.

Just under three quarters of the PSTs (71.4%) demonstrated evidence of the traditional procedure
interpretation of what students do not yet understand. Of those PSTs, 20% made their interpretation within
the interpret prompt, 20% in both the interpret and decide prompts, and 60% in the decide prompt. Thus,
over half of the PSTs only made this interpretation when formulating a response to deciding what to
do next with the students from the video, meaning we would likely not have seen any evidence of these
interpretations without the decide prompt. For example, one PST stated:

I also might ask them to fully solve for = (in other words change the equation into x=-b/a instead of
-z=b/a). From there I might ask them to try plugging in -6/« for = and see what happens to the
equation.
When considering how to respond to the students, this PST suggested solving for » and plugging in specific
values, thus providing evidence of the traditional procedure as a means of building upon the students’
procedure (what the students do understand).

Over half of the PSTs (57.1%) demonstrated evidence of the underlying concept interpretation of what
students do not yet understand, and all of them made this interpretation within the decide prompt. Again,
this result indicates that without the decide prompt, we would likely have no evidence that the PSTs
made these interpretations. For example, one PST said they would:

ask the students an advancing question like, "What is the domain of your function and how does it relate

to the vertical asymptote? Another question that may advance them forwards is How do you calculate

the domain of a function? I chose the above approach because the students have correct understanding

of where a vertical asymptote occurs, but they do not understand why. By reintroducing the domain into

their thinking, they will be guided towards understanding that the points where the function does not

exist are where the denominator equals 0, similar to holes in a graph for rational functions, however in

this case the numerator is a constant not a function.
Of those PSTs that made the traditional procedure or underlying concept interpretations, 50% demonstrated
evidence of both interpretations of what students do not yet understand.

To summarize, in Round 2 we saw a difference in the number of PSTs interpreting what students do
not yet understand with the addition of the decide prompt. Specifically, we saw a jump from 44.4% to

71.4% of the PSTs that showed evidence of the traditional procedure interpretation. We also saw a jump
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from 3.7% to 57.1% of the PSTs that showed evidence of underlying concept interpretation.

While these increases in both the percentage of PSTs evidencing the traditional procedure and the underlying
concept interpretations are promising, there was still much room for improvement. When reflecting upon
the results from both Rounds 1 and 2, we wondered if part of the reason the PSTs were not considering
what students did not yet understand might be because they did not know what to expect students to
understand about vertical asymptotes (i.e.,, not familiar with standards yet) when working on a
technology-enhanced math task like the one included in this representation. In fact, the National Council
of Teachers of Mathematics' (2014) Mathematics Teaching Framework suggests that tasks should be selected
to align with established learning and performance goals. Since the PSTs were not being asked to select
the task, they possibly did not consider the goals for which it might be selected. Thus, we conjectured
that including specific goals for the technology-enhanced task within the instructions for Round 3's
approximation of noticing task might focus PSTs' interpretations by helping them think specifically about

the teacher's intention for what the students should get out of their engagement with the task.

3. Round 3

Based on the results in Round 2, we made one additional modification to the task. We edited the instructions
to include explicit performance goals for the activity along with the introductory text (see Figure 7) in
hopes it would serve as an additional scaffold, pointing the PSTs to consider the teachers' goal prior to
interpreting the students' thinking and deciding how to respond.

There were 16 PSTs in this round. All 16 PSTs interpreted what the students understood—students’
procedure. These interpretations were similar to those that we observed in Rounds 1 and 2. Most of the
PSTs made some kind of interpretation regarding what the students do not yet understand (vague, traditional
procedure, and/or underlying concept; 81.3%). Table 5 summarizes in which prompt the PSTs wrote their
interpretations of what students do not yet understand.

Of the PSTs that made some kind of interpretation regarding what the students do not yet understand,
12.5% made vague interpretations but did not explicitly interpret either the traditional procedure or underlying
concept interpretations. Half of these PSTs made the interpretation in the decide prompt. These vague
interpretations were similar to those in Round 2.

Over half of the PSTs (62.5%) demonstrated evidence of the traditional procedure interpretation of what
students do not yet understand. Again, these interpretations were similar to those in Round 2. Of these
PSTs, 80% made their interpretation in both the interpret and decide prompts. Half of the PSTs (50%)
demonstrated evidence of the underlying concept interpretation of what students do not yet understand.
Of these PSTs, 50% made their interpretation in both the interpret and decide prompts, and 37.5% made
their interpretation only in the decide prompt. Again, indicating that without the decide prompt we likely

would have no evidence that some of the PSTs made the underlying concept interpretation.
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Figure 7 Round 3 task with newly added performance goals in bold/green

The purpose of this assignment is to showcase your skills related to noticing student
thinking in technological environments. You will watch a short video clip of a pair of
students working on a technology-mediated task and respond to some prompts related
to the video.

In the video you will see a pair of HS students currently enrolled in an Integrated Math 3
course working on a task in which they are being introduced to the idea of a vertical
asymptote. The performance goals for this task include:

e Students will recognize that a rational function of the form f(x) = ﬁ has a

vertical asymptote at x = — S.

e Students will be able to explain that a vertical asymptote occurs when the
function is undefined (i.e., when the denominator is 0).

e Students will be able to explain that the location of a vertical asymptote can
be found by setting the denominator equal to zero, since that is where the
function is undefined.

Before going any further, take a few moments to work through the task yourself. As you
work, pay attention to the dynamic features of the task - including in the titles of the
pages. [Link to the Activity]

Now that you are familiar with the Making Sense of Vertical Asymptotes task you are
going to analyze a video of a pair of students working on the same task. As was noted
above, these students are currently enrolled in an Integrated Math 3 course. They have
been working with rational functions, but have not been formally introduced to the idea
of a vertical asymptote. This task serves as their introduction to vertical asymptotes.

In this video the students, Eden and McKenzie, are working on page 5 of the Desmos
Asymptote Activity. Page 5 opens immediately after the definition of vertical asymptote
has been provided. The students are working to determine where (if at all) a vertical
asymptote will exist for a rational function with a constant numerator and linear

. . k
denominator (i.e., f(x) = ——).
Watch the video clip provided in Canvas. You may watch this video as many times as
you would like.
1. Attend to (i.e., describe in detail) how the students determined the location of the
vertical asymptote for a rational function of the form f(x) = i
2. Interpret the students’ current understanding of vertical asymptotes. Provide
evidence from the video to support your claims.
3. Based on your responses to Q1 and Q2 above, if you were with Eden and
McKenzie at the moment the video occurred, what would you do next? Why?

Table 5 Round 3 summary of the PSTs' interpretations and in which prompt they occurred

Prompt in which the interpretation occurred

Imerpretation (Number of PSTS) Interpret prompt only gl e [ty e Decide prompt only
decide prompts
Vague (2 of 16) 1 0 1
Traditional Procedure (10 of 16) 2 8
Underlying Concept (8 of 16) 1 4 3
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4. Looking across rounds

Looking at the PSTs' responses on the approximation of teacher noticing task across the three rounds
revealed some trends. With respect to their written interpretations of what students did understand, the
PSTs consistently interpreted that the students had a procedure for finding the location of the vertical
asymptote (Table 6). With respect to interpretations of what students did not yet understand, we saw a
jump in the percentage of PSTs making traditional procedure and underlying concept interpretations from
Round 1 to Round 2 when we included the decide prompt as part of the task. While there was a slight
decrease in the percentage of PSTs making traditional procedure and underlying concept interpretations
from Round 2 to Round 3, the percentages are still markedly improved compared to Round 1. Once the
decide prompt was introduced in Round 2, there was an immediate increase in the percentage of PSTs

making interpretations of what students did not yet understand in the decide prompt.

Table 6 7he PSTs'interpretations by round

Interpretation Round 1 (N=27) Round 2 (N=7) Round 3 (N=16)
What the students Students' Procedure 96.3% (26) 100% (7) 100% (16)
did understand
What the students Any interpretations of what the students ~ 59.3% (N=16) 100% (N=7) 81.3% (N=13)
did not yet did not yet understand
understand Vague 18.5% (N=5) 28.6% (N=2) 12.5% (N=2)
Traditional Procedure 44 4% (N=12) 71.4% (N=5) 62.5% (N=10)
Underlying Concept 3.7% (N=1) 57.1% (N=4) 50% (N=8)

In Round 3, there were less vague interpretations (Table 7) and more PSTs made the traditional procedure
interpretation in the interpret prompt rather than the decide prompt when we added the specific performance
goals as part of the task instructions (Table 7). We saw a similar trend but to a lesser extent with the
underlying concept interpretations from Round 2 to Round 3. After the decide prompt was added in Round
2, we saw more PSTs making underlying concept interpretations within the decide prompt. However, once
the performance goals were added, more PSTs made the underlying concept interpretation in the interpret

prompt.
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Table 7 /In which prompt the PSTs made their interpretations

Location Round 2 (N=5%) Round 3 (N=10%*)
Traditional Procedure Interpret prompt only 20% (N=1) 80% (N=8)
Interpretation Both the interpret and decide prompt 20% (N=1) 20% (N=2)
Decide prompt only 60% (N=3) 0% (N=0)
Underlying Concept Interpret prompt only 0% (N=0) 50% (N=4)
Interpretation Both the interpret and decide prompt 0% (N=0) 12.5% (N=1)
Decide prompt only 100% (N=4) 37.5% (N=3)

Note: * indicates the number of PSTs in the Round that made a procedural interpretation, not the total N

V. DISCUSSION

To provide PSTs with opportunities to develop the core teaching practice of teacher noticing, we designed
materials using the lens of pedagogies of practice to represent, decompose, and approximate the practice
of teacher noticing in technology-mediated environments. Using design-based research methodologies, we
aimed to conceptualize how to best design an approximation of practice task that supports PSTs' learning
to notice student thinking in technology-mediated environments with a specific focus on interpreting students’
mathematical thinking. We initially found that the PSTs were good at interpreting what students did understand,
as evidenced by including instances of students” procedure as part of their written interpretations. However,
the PSTs were not consistently discussing what the students did not yet understand in their interpretations
which led us to change our design in the following rounds. We made two important design decisions aimed
to further elicit interpretations of students’' thinking within the PSTs approximation of the practice of
teacher noticing. First, including prompts for all three components as the decomposition of teacher noticing
(i.e., including decide) was essential in eliciting interpretations of what students did not yet understand.
Second, the addition of performance goals resulted in more interpretations within the interpret prompt
and less vague interpretations overall. In the following paragraphs, we will discuss these results based
on our design decisions. In the sections that follow we will briefly describe the of this study, implications

for task design, and implications for MTEs.

1. Limitations of the study

There are several important limitations of this study that should be taken into account when considering
the findings. Most prominent are issues with Round 2 regarding sample size, course type, and university.
Round 2 had a small sample of PSTs (N=7) who were all from one course at the same university; thus,
this particular round lacked the diversity afforded by larger samples across multiple universities that were
seen in Rounds 1 and 3. Given the small size and lack of diversity, it is tenuous to compare across all

three rounds, yet we believe that despite this limitation, the findings from Round 2 do indicate important
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implications for the design choices made in that round that continued in Round 3. We were further limited

by the nature of using a written approximation of practice since that means we only have access to what
the PSTs articulate in writing in response to the prompts. Thus, it is possible that the PSTs attended to
or interpreted students’ mathematical thinking that they did not write in their responses. Another limitation
involves the window (Sherin et al., 2009) afforded by our selected artifact. Our selected representation
of practice (the picture in picture video of students engaged in the technology-enhanced task) affords a
wide window into students' thinking, particularly it includes a window into what students do not yet
understand. The moments of confusion within the video clip resulted in evidence of the students meeting
one performance goal and no evidence in the clip of meeting the other two performance goals (see Figure
7 for a list of goals). Other representations (i.e., video clips) might yield different results. It is important
for MTEs to consider the window afforded by the representation when designing approximations of teacher

noticing tasks since the goal is to elicit as much as possible from PSTs who are developing this practice.

2. Implications for task design

The initial design of the approximation of noticing task revealed that the PSTs consistently interpreted
what the students understood. Across all three rounds, this finding remained true with most PSTs interpreting
the students’ procedure—over 96% of interpretations per round included that the students had a procedure
that correctly identified the location of the vertical asymptote. Previous research on teacher noticing revealed
that PSTs struggle with interpreting students’ understandings (see Konig et al., 2022; Stahnke et al., 2016),
which contrasts with our findings. Thus, separating the analysis of interpretation of what students did
understand and what students did not yet understand might better provide insight into PSTs' interpretations
of student thinking.

Several researchers have suggested that the decide component of teacher noticing is challenging (e.g.,
Jacobs et al., 2023; Jong et al., 2021; Krupa et al., 2017), and subsequently some researchers have focused
on attend and interpret (and not decide) when introducing PSTs to the practice of teacher noticing in
an attempt to simplify the approximation of practice (e.g., Fisher et al., 2019). We believed the same as
evidenced by our design decision in Round 1 to have only an attend and interpret prompt. Yet, our findings
suggest that including the more challenging component of deciding how to respond can actually be helpful
and support PSTs in articulating their interpretations of what students do not yet understand. We discovered
that interpreting what students did not yet understand is potentially more difficult or at least not as intuitive
for PSTs. We conjectured that by asking the PSTs to reflect upon their next pedagogical moves, the PSTs
would be more likely to consider what the students were still grappling with; thus, they had a reason
to go beyond what is already known about the students’ thinking (i.e., what was seen in the video-clip
representation) when deciding how to respond. In Round 2, when we added the decide prompt, more

than half of the PSTs interpreted the traditional procedure within the decide prompt, and all PSTs interpreted
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the underlying concept within the decide prompt. Thus, without including this prompt, we would have

missed the PSTs' interpretations of what the students did not yet understand. We posit that it might not
have been that they didn't notice it, but they did not see a reason to articulate their noticing of what
the students did not yet understand because the wording of the task prompts did not elicit this aspect
of the PSTs' interpretations. As shown by Estapa and colleagues (2018), the focus of PSTs' noticing and
the way they articulated their noticing changed between different representations of practice. In our study,
PSTs articulated their noticing based on how we decomposed the approximation of noticing prompts (i.e.,
asking them to decide based on their attend and interpret responses). Both highlight the influence of carefully

choosing a pedagogies of practice approach to designing tasks to develop PSTs' teacher noticing skills.

3. Implications for mathematics teacher educators

Our findings related to PSTS' interpretations when considering how to respond corroborate similar findings
in other studies on approximation of practice design. In their study of elementary PSTs' approximation
of organizing a classroom discussion, Tyminski et al. (2014) found that most of the PSTs were interpreting
students’ strategies while in the midst of considering their discussion goals. Thus, when PSTs are asked
to make pedagogical decisions, there is a distinct need to interpret students' strategies, and Tyminski et
al.'s study demonstrated that PSTs interpret well when the approximation of practice includes pedagogical
decisions. This result implies that when MTEs are designing approximations of practice tasks, they should
consider if the PSTs are asked to make pedagogical decisions since such decisions can result in more
depth of interpretations of student thinking.

When considering the third component of noticing (i.e., deciding), research has shown that teachers
do not always ground their decisions on their interpretations of students’ thinking (e.g., Jacobs et al., 2023).
Jacobs et al. described some teachers' decisions as having focused on their own preferred strategy instead
of utilizing the interpretation of the students’ thinking to further the students’ understanding. While we
did not analyze the quality of PSTs' decisions, our findings do suggest that the wording of the decide
prompt can support PSTs in using their interpretations to inform their pedagogical decisions. We intentionally
asked PSTs to refer back to their attend and interpret responses when articulating their decision (see Figure
7). Future studies are needed to better understand how to best support PSTs' development of robust decisions
that rely on interpretations of students’ thinking.

Furthermore, results of this study suggest that both MTEs and researchers who are focused on PSTs'
interpretations when noticing student thinking need to consider PSTs' responses to both interpret and
decide prompts. Not only does including a decide prompt seem to elicit PSTs interpretations of what students
did not yet understand, we also saw evidence of interwoven responses across prompts (e.g., interpretations
in the decide prompt and not the interpret prompt). This finding seems to contradict what some other

studies have found. Thomas et al. (2023) reported that the elementary preservice teachers in their study
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"on occasion, addressed other components within a single response (e.g., proposing a decision within a
response to an interpreting prompt)” (p. 367). In contrast, our study revealed that many PSTs addressed
their interpretations in their response to the decide prompt. We hypothesize that both choice of representation
of practice (i.e., artifacts) and decomposition of practice (i.e., prompt wording and prompts based on a
provided decomposed framework) play an important role in approximating the component of interpreting
within the practice of teacher noticing.

Since teacher noticing is a practice that is foundational to other teaching practices, it is often introduced
in early courses for PSTs. Thus, it is not uncommon for PSTs to be less familiar with local mathematics
standards and be early in their learning about the complex ways in which students are expected to understand
procedures and their underlying concepts—meaning that learning and/or performance goals for a particular
task might not be obvious to many PSTs. The findings of this study suggest that the inclusion of specific
performance goals can support PSTs' approximation of teacher noticing. In Round 3, with the introduction
of the performance goals, PSTs interpreted the traditional procedure more frequently in the interpret prompt.
The increase of the traditional procedure within the interpret prompt was likely related to the inclusion of
the performance goals (as that was the only modification in that Round). If PSTs explicitly know what the
students were expected to achieve within the lesson, then they have a guide for what evidence to look
for when approximating the practice and are less likely to provide vague interpretations. However, while
we saw an increase in frequency of the traditional procedure in the interpret prompt when the goals were
added, we did not see a parallel shift for the underlying concept suggesting that even with the addition
of goals, it is important to keep the decide prompt and that providing goals as a scaffold is not enough to
prompt PSTs full articulations of their interpretations of students' thinking. Reflecting upon the iterative design
changes, we saw evidence that PSTs were interpreting what the students did not yet understand, which

could indicate that the PSTs were interpreting this all along, yet our prompts failed to elicit such interpretations.

VI. CONCLUSION

The goal of professional development design studies is to build an understanding of how teachers, in
this case PSTs in the context of their teacher preparation coursework, develop sophisticated practices as
well as how to support that development (Cobb et al., 2014). Through our three cycles of design, we were
able to do just that with respect to teacher noticing. In the initial design of our approximation of teacher
noticing task, we drew on the recent reviews of studies on teacher noticing to justify our decision to
include only an attend prompt and an interpret prompt (Amador et al., 2021; Konig et al., 2022). Yet,
as our study revealed, adding a decide prompt and performance goals influenced what the PSTs articulated
in their interpretations of student thinking and in which prompt they did so. Our results further point

to Thomas' (2017) call to "[understand the] relationship among the component processes of teacher noticing”
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(p- 510). Thomas et al. (2023) indicated that the nature of the task can "[limit] somewhat, the nuance
and complexity with which we might consider the interplay of professional noticing components as participants
are responding to the prompts” (p. 8) We want to extend this notion and suggest that the complex interplay
between the decomposed components when approximating the practice of teacher noticing are also related
to and potentially constrained by the nature of the prompts and information provided as a scaffold to
help the PSTs approximate the practice of teaching that occurs before the approximation of teacher noticing.

There are a number of important implications for MTEs that arose from this study. First, interpreting
what students did not yet understand is more difficult than interpreting what they did understand. The
inclusion of targeted goals within a representation of practice can help PSTs explicitly focus on what students
should learn from a task—including conceptual understandings. Second, PSTs need to be challenged to
adopt a teacher mindset and consider their pedagogical decisions to elicit their interpretations of what
students do not yet understand. Third, tasks which decompose the practice of noticing might guide students
to consider different types of evidence (i.e., spoken, written, technology engagement) as well as what students
do and do not yet understand. Last, our focus was specifically on teacher noticing when students are
engaged in technology-enhanced mathematics tasks; thus, we used a framework specific to this context
(i.e., NITE; McCulloch et al., 2023) to support the decomposition of this practice. However, what we have
learned about supporting PSTs' development of more sophisticated teacher noticing practice is relevant
regardless of context; a different context would require using an aligned representation of practice and
decomposition framework. Like Mason (2002), we feel that teacher noticing underlies all other content
specific teaching practices, and as such understanding how to better support PSTs' development of this
practice is crucial. We echo Cobb et al.'s (2014) call that sharing studies of how such supports have been
designed is "urgently needed” as they "make critical contributions to the development and refinement of
practice-specific theories” (p. 499). Our hope is that others will join us in continuing to develop and refine

theories of PSTs' development of teacher noticing through a pedagogies of practice approach.
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