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ABSTRACT
In star-forming clouds, high velocity flow gives rise to large fluctuations of density. In this work we explore the correlation
between velocity magnitude (speed) and density. We develop an analytic formula for the joint probability distribution (PDF) of
density and speed, and discuss its properties. In order to develop an accurate model for the joint PDF, we first develop improved
models of the marginalized distributions of density and speed. We confront our results with a suite of 12 supersonic isothermal
simulations with resolution of 10243 cells in which the turbulence is driven by 3 different forcing modes (solenoidal, mixed and
compressive) and 4 r.m.s. Mach numbers (1, 2, 4, 8). We show, that for transsonic turbulence, density and speed are correlated to
a considerable degree and the simple assumption of independence fails to accurately describe their statistics. In the supersonic
regime, the correlations tend to weaken with growing Mach number. Our new model of the joint and marginalized PDFs are a
factor of 3 better than uncorrelated, and provides insight into this important process.
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1 INTRODUCTION

Star-forming clouds of molecular hydrogen, which are known to
be undergoing turbulent supersonic motion, are often modeled as
isothermal in astrophysical simulations. This approximation is fa-
cilitated by rapid cooling rates of the molecular clouds (Armstrong
et al. 1995; Elmegreen & Scalo 2004; Krumholz 2014; Padoan et al.
2014), which keeps the temperature roughly constant.
This reasonably simple yet powerfulmodel is capable of explaining

the observed density fluctuations within the molecular clouds, which
can be used to predict many properties of star formation, such as the
star formation rate (Krumholz & McKee 2005; Padoan & Nordlund
2011; Hennebelle & Chabrier 2011; Federrath & Klessen 2012) and
the initial stellar mass distribution (Padoan&Nordlund 2002).While
supersonic turbulent motion inhibits the collapse and star formation
by increasing the effective Jeans mass, at the same time it gives rise
to large density variations allowing for a local collapse (Mac Low &
Klessen 2004).
The interplay between density and velocity fluctuations is fun-

damental to understanding star formation (Federrath et al. 2010).
Describing the statistics of the fundamental dynamical quantities in-
cluding the correlations between them reveals the statistical behavior
of all derived quantities, including kinetic energy and the joint PDF
of kinetic and thermal energy.
The main purpose of this work is to explore 𝑓𝑠𝑣 (𝑠, 𝑣), the joint

probability distribution function (PDF) between the log of density,
𝑠 = log 𝜌, and speed, 𝑣. The simplest assumption is that 𝑠 and 𝑣 are
independent of one another, in which case the joint distribution is the
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product of the marginalized distributions:

𝑓(𝑠,𝑣) = 𝑓𝑠 (𝑠) 𝑓𝑣 (𝑣) (1)

𝑓𝑠 (𝑠) =
∞∫

−∞

d𝑣 𝑓(𝑠,𝑣) (𝑠, 𝑣) (2)

𝑓𝑣 (𝑣) =
∞∫
0

d𝑠 𝑓(𝑠,𝑣) (𝑠, 𝑣). (3)

The density PDF is typically treated as lognormal, 𝑓𝑠 (𝑠) =

N(𝑠; 𝜇, 𝜎), a Gaussian N with mean 𝜇 and variance 𝜎. Speed,
𝑣, is usually modeled with a Maxwellian distribution; 𝑓𝑣 (𝑣) =

M(𝑣;M1D) with the 1D r.m.s. Mach number M1D =
√︁
⟨𝑣2⟩/3.

In this work, we improve on all three assumptions. The finite shock
model (Rabatin &Collins 2023) as an extension of a simple Gaussian
PDF of density is discussed in Section 3. In Section 4 we introduce a
tilted Maxwellian to better fit the statistics of speed. Finally, we find
a correction to the joint PDF in Section 5.
Figure 1 shows three models for the joint distribution along with

simulated data. The color and solid contours are taken from simula-
tions described in Section 2. In the left panel, the dashed contours
show the simple assumption of uncorrelated variables. Clearly the
shape of the model does not agree with the simulated data. The
second panel shows our first correction to the joint PDF, which in-
troduces a correlation between density and speed, but continues to
assume a lognormal for density and Maxwellian for speed. The third
panel shows our detailed model, with the corrected joint PDF and
improved density and speed PDFs.
An important aspect of this work is the lack of fitting of any kind.

All of the results come from moments of the data, and not by fitting
a model to the simulated histograms.
The paper is organized as follows. In Section 2we discuss the code,

simulations, and analysis. In Section 3 we describe the finite shock
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Figure 1. The joint PDF of speed 𝑣 vs. log density 𝑠 (color, dashed lines) in the Mach 1 simulation with solenoidal (𝜉 = 1) forcing along with models of the
PDF (solid lines). In the left panel, the model of the joint PDF assuming uncorrelated density and speed. The middle panel shows our simple model that includes
correlations, and the right panel shows our detailed model for the PDF that includes correlations and improved models for the marginalized PDFs of density and
speed.

model for the density PDF. In Section 4 we discuss our updated
distribution of speed. In Sections 5 and 6 we show our new joint
distribution. In Section 7 we show that our model works well even
for higher order moments of the distribution. Finally we conclude in
Section 8.

2 METHODS

The suite of numerical simulations was performed using the hydro-
dynamic code Enzo (Bryan et al. 2014) using the piecewise parabolic
method (Woodward & Colella 1984). The simulation domain con-
sists of a cube of unit length with periodic boundary conditions. Each
simulation is described by two parameters, the forcing mode 𝜉 and
Mach numberM1D, both introduced via the Stochastic forcing mod-
ule implemented within Enzo (Federrath et al. 2008). The forcing
mode 𝜉 ∈ [0, 1] is the weight of the solenoidal components of the
forcing field. The value of 𝜉 = 0 corresponds to the purely compres-
sive forcing field, whereas 𝜉 = 1 represents the purely solenoidal
forcing. The target mach number is achieved by adding energy at the
large scale at a rate proportional to the Mach-number dependent dis-
sipation,M3

1D/𝐿 (Mac Low & Klessen 2004). The driving pattern
is large scale (𝑘 ∈ [1, 2]) and evolves in time using the Uhlenbeck
& Ornstein (1930) process with a correlation time equal to the large
scale eddy turnover time.
For each Mach numberM1D we consider the turnover scale 𝜏 as

the time scale at which two frames become statistically uncorrelated.
The turnover time is roughly equal to the turbulent crossing time
𝜏turb. = (𝐿/2)/M1D, where 𝐿 is the size of the box with 𝐿/2 being
the size of the driving pattern andM1D is the 1D r.m.s.Mach number,
M1D =

√︁
⟨𝑣2/3⟩. Each simulation is run for 9𝜏 with the step of 0.1𝜏.

For statistical purposes, only frames with 𝑡 ⩾ 2𝜏 are considered, as
the fluid settles in its chaotic turbulent motion. Thus 71 snapshots of
statistics within each simulation. This approach to obtain statistical
data is common in similar astrophysical simulations (Porter et al.
1999; Porter & Woodward 2000; Federrath et al. 2010; Federrath
2013; Federrath et al. 2021).
The simulation grid consists of 𝑁 = 10243 cells with each cell ℓ

containing the same volume 𝛿𝑉ℓ = 1/10243. Our suite of simulations

employed 1D r.m.s. Mach numbers 1, 2, 4, 8, and three values of the
forcing parameter, 𝜉 = 0, 1/2, 1.
Table 1 describes the simulations and the resulting parameters. The

first column names the simulation by way of forcing parameter and
target Mach number. The second column shows the actual 1d Mach
number realized by the simulation. The third column shows the ratio
of volume-weighted Mach number to mass-weighted Mach number
squared, 𝔛. The following two columns show the volume-weighted
mean speed ⟨𝑣⟩ and its mass-weighted counterpart ⟨𝜌𝑣⟩. The final
three columns show the volume-weighted mean and variance of 𝑠, 𝜇
and 𝜎, and the number of shocks.
In this work, we will use M1D to denote the volume-weighted

1D Mach number,M3D =
√
3M1D to denote the volume-weighted

3D Mach number, 𝑀𝐾 is the 1D kinetic energy-weighted Mach
number, and M𝑀 to denote the 1D mass-weighted Mach number.
Nominal Mach numbers are referred to as 𝑀 . We useM(𝑣;M1D)
to denote a Maxwellian distribution, andM𝑡 (𝑣;M1D) to denote its
tilted variation.
Without loss of generality, we assume mean density 𝜌0 ≡ ⟨𝜌⟩ = 1

and sound speed 𝑐𝑠 = 1 throughout.

2.1 Analysis

The probability distribution function, 𝑓𝑄 (𝑞), for a random quantity,
𝑄, is the probability that 𝑄 will realize a value within the interval
[𝑞, 𝑞 + 𝑑𝑞]. This can be found as

𝑓𝑄 (𝑞) = 1
𝑉

∫
𝑉
𝑑3𝑥 𝛿(𝑞 −𝑄(𝑥)), (4)

where 𝑉 is the volume of the sample.
We can alternatively weight our PDF with other quantities,𝑊 , as

𝑓
(𝑊)
𝑄

(𝑞) = 1
𝑊net

∫
𝑉
𝑑3𝑥𝑊 (𝑥) 𝛿(𝑞 −𝑄(𝑥)), (5)

where𝑊net is the total of𝑊 on the domain. This is useful as it gives
an alternative view of the variable.
We will find it valuable to explore weighting by volume (𝑉),
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Sim. (𝜉 −𝑀) M1D 𝔛 ⟨𝑣⟩ ⟨𝜌𝑣⟩ 𝜇 𝜎 𝑛

0 − 1 0.977 1.35 1.55 1.33 −1.07 1.59 6.45
0 − 2 1.99 1.38 3.21 2.72 −2.32 2.48 4.43
0 − 4 3.92 1.43 6.34 5.25 −3.61 3.29 2.84
0 − 8 7.77 1.41 12.6 10.5 −4.73 3.93 2.35
1/2 − 1 0.999 1.14 1.61 1.50 −0.196 0.634 53.6
1/2 − 2 2.00 1.21 3.23 2.92 −0.618 1.14 50.8
1/2 − 4 3.98 1.16 6.41 5.91 −1.15 1.60 16.0
1/2 − 8 7.89 1.14 12.7 11.8 −1.57 1.91 11.0
1 − 1 0.993 1.15 1.60 1.49 −0.163 0.577 70.3
1 − 2 1.98 1.16 3.20 2.96 −0.497 1.01 291
1 − 4 3.71 1.14 5.99 5.58 −0.883 1.37 53.8
1 − 8 8.04 1.13 13.0 12.2 −1.24 1.68 13.0

Table 1. Simulation parameters. The first column denotes each simulation in the form of 𝜉 − 𝑀 where 𝜉 is the forcing mode and 𝑀 is the nominal 1D r.m.s.
Mach number. The second column lists the measured 1D r.m.s. Mach number. The third column represents 𝔛 = ⟨𝑣2 ⟩/⟨𝜌𝑣2 ⟩, the ratio between the volume- and
mass-weighted Mach numbers, squared. Columns 4 and 5 show the volume- and mass-weighted mean values of speed, respectively. Columns 6, 7, 8 show the
statistical parameters of density; mean 𝜇 = ⟨𝑠⟩, standard deviation 𝜎 =

√︁
⟨𝑠2 ⟩ − ⟨𝑠⟩2 and the number of shocks, 𝑛, using equation (22).

mass (𝑀), and kinetic energy (𝐾). 2D PDFs weighted by different
quantities are related to one another by the following useful formulae:

𝑓
(𝑀)
(𝑠,𝑣) (𝑠, 𝑣) = 𝑒

𝑠 𝑓
(𝑉)
(𝑠,𝑣) (𝑠, 𝑣) (6)

𝑓
(𝐾)
(𝑠,𝑣) (𝑠, 𝑣) =

𝑒𝑠𝑣2

⟨𝑒𝑠𝑣2⟩
𝑓
(𝑉)
(𝑠,𝑣) (𝑠, 𝑣) (7)

𝑓
(𝐾)
(𝑠,𝑣) (𝑠, 𝑣) =

𝑣2

⟨𝑒𝑠𝑣2⟩
𝑓
(𝑀)
(𝑠,𝑣) (𝑠, 𝑣) (8)

For 1D PDFs, the only simple analytic expressions possible are
the following

𝑓
(𝑀)
𝑠 (𝑠) = 𝑒𝑠 𝑓 (𝑉)𝑠 (𝑠) (9)

𝑓
(𝐾)
𝑣 (𝑣) = 𝑣2

⟨𝑒𝑠𝑣2⟩
𝑓
(𝑀)
𝑣 (𝑣). (10)

Relationships between other weights and quantities, e.g., 𝑓 (𝑀)
𝑣 (𝑣)

and 𝑓 (𝑉)𝑣 (𝑣), are only possible by integrating the joint distributions.
The ratio of volume-weighted Mach number to its mass-weighted

counterpart will prove to be a useful quantity:

𝔛 =
⟨𝑣2⟩
⟨𝑒𝑠𝑣2⟩

=
M2
1D

M2
𝑀

(11)

which serves as a loose measure of the correlation between den-
sity and velocity. Here we have introduced the mass-weighted Mach
number,M𝑀 =

√︁
⟨𝜌𝑣2⟩/3.

For the purposes of numerically comparing histograms binned
from data, 𝑓 (data), with a theoretical model 𝑓 (theory) we employ the
𝐿1 norm

𝛿 =
∑︁
bin 𝑏

|︁|︁|︁ 𝑓 (data)
𝑏

− 𝑓 (theory) (𝑏cen.)
|︁|︁|︁ |𝑏 | (12)

where the model function is evaluated at the bin center 𝑏cen. and |𝑏 |
indicates the bin measure (length, area, volume, ...). This formula
closely mimics the analogous integral 𝐿1 norm.

3 DENSITY IN SUPERSONIC ISOTHERMAL
TURBULENCE

The knowledge of the statistical properties of density within the star-
forming clouds is one of the cornerstones of many star formation
theories (Padoan et al. 1997; Krumholz & McKee 2005; Padoan &

Nordlund 2011; Hennebelle & Chabrier 2011; Federrath & Klessen
2012; Krumholz 2014). A turbulent mediumwithout self-gravity can
be shown to exhibit near lognormal density fluctuations, a result of
the self-similar statistics of isothermal, supersonic flows (Vazquez-
Semadeni 1994; Padoan et al. 1997; Nordlund & Padoan 1999; Pas-
sot & Vázquez-Semadeni 1998; Federrath et al. 2008; Schmidt et al.
2009), later also extended to flows magnetized with ideal MHD
(Molina et al. 2012; Beattie et al. 2022). In the scope of isother-
mal turbulence the PDF of log density 𝑠 can be approximated by a
Gaussian

𝑓𝑠 (𝑠;𝜎) = N(𝑠;−𝜎2/2, 𝜎) = 1
√
2𝜋𝜎2

exp
⎛⎜⎜⎝−

(︂
𝑠 + 𝜎2/2

)︂2
2𝜎2

⎞⎟⎟⎠ (13)

with variance𝜎2 = ⟨𝑠2⟩−⟨𝑠⟩2 andmean value 𝜇 = ⟨𝑠⟩ = −𝜎2/2 that
fixes the mean density, ⟨𝑒𝑠⟩ = 1. In the longormal approximation,
the variance is known to depend on the r.m.s. sonic Mach number
M3D =

√︁
⟨𝑣2⟩ and the weight of the solenoidal components of the

forcing, 𝜉; 𝜎2 ≈ log
(︂
1 + 𝑏2M2

3D

)︂
(Padoan & Nordlund 2011).

While the lognormal approximation already provides a reasonably
accurate picture of the density fluctuations, several works propose
various corrections to the PDF of density, either purely within the
context of turbulence (Hopkins 2013; Squire & Hopkins 2017; Mocz
& Burkhart 2019; Rabatin & Collins 2023), or due to other phenom-
ena extending beyond the framework of isothermal turbulence (Scalo
et al. 1998; Ostriker et al. 1999; Klessen 2000).
In this work we make use of the finite shock model of density

fluctuations (Rabatin & Collins 2023), that describes the PDF of
log density 𝑠 arising from a series of shocks traversing the turbulent
medium, each adjusting the local density by a factor proportional
to the local sonic Mach number, drawn from an idealized Maxwell
distribution. When the number of the shocks grows to infinity, the
PDF of density approaches a lognormal. However, for a finite number
of shocks 𝑛, the distribution in 𝑠 can be described via its characteristic
function, 𝜙

𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛) =
1

√
2𝜋𝜎2

∞∫
−∞

d𝜔 𝜙(𝜔; 𝑛) exp
(︂
−𝑖𝜔 𝑠 − 𝜇

𝜎

)︂
(14)

where the parameters 𝜇 ≡ ⟨𝑠⟩ and 𝜎2 ≡
⟨︁
𝑠2

⟩︁
− 𝜇2 are the mean

value of 𝑠 and variance in 𝑠. The additional parameter 𝑛 represents
the number of shocks giving rise to a distribution with a negative
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Figure 2. Plots of the PDF (vertical axis) of log density (horizontal axis). Each simulation is labeled as 𝜉 −𝑀 in the top left corner. For the sake of clarity, the
horizontal axis is shifted towards the center and scaled by the width of the histogram, and the vertical axis is scaled by the maximum of the distribution. Data
points (dots) along with the error bars (vertical lines) are represented in black. The black line represents the finite shock model function with parameters listed
on the plot. Parameters 𝜇 and 𝜎 are measured as ensemble averages, while 𝑛 is estimated using equation (22). Dashed gray lines depict the ideal Gaussian
function using equation (13) whose only parameter is 𝜎.

skew. More details, along with the explicit form for 𝜙 can be found
in Rabatin & Collins (2023).
By default, the finite shock model PDF without a superscript is

assumed to describe the volume-weighted statistics of log density 𝑠.
To obtain its mass-weighted counterpart, we employ (9)

𝑓
(𝑀)
𝑠 (𝑠; 𝜇, 𝜎, 𝑛) = 𝑒𝑠 𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛) (15)

Fig. 2 shows a comparison between the finite shock model
𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛) and the histograms extracted from the simulations.
Parameters 𝜇, 𝜎 are directly measured from the datasets and 𝑛 is
determined using equation (22). To emphasize the improvement over

a simple lognormal model of the statistics of log density, the dashed
gray line shows a Gaussian 𝑓𝑠 (𝑠;𝜎) as defined in (13).
The kinetic energy-weighted PDF of log density is derived in sec.

3.2.

3.1 Generating function of the finite shock model

For the purposes of calculating various expectation values within the
finite shock model, we introduce the following parametric expecta-
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tion value involving only (log) density

𝐸 (𝑢, 𝑘; 𝜇, 𝜎, 𝑛) ≡
⟨︂
𝑠𝑘𝑒𝑢𝑠

⟩︂
=

∞∫
−∞

𝑠𝑘𝑒𝑢𝑠 𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛) (16)

Using the analytic properties of the characteristic function, we can
easily calculate the expectation value for 𝑘 = 0. Moreover, differen-
tiation with respect to 𝑢 brings down one power of 𝑠, increasing 𝑘 by
1, which gives rise to a recurrent formula for 𝑘 ⩾ 1,

𝐸 (𝑢, 0; 𝜇, 𝜎, 𝑛) = 𝑒𝑢𝜇𝜙(−𝑖𝑢𝜎; 𝑛) (17)

𝐸 (𝑢, 𝑘 + 1; 𝜇, 𝜎, 𝑛) = d
d𝑢
𝐸 (𝑢, 𝑘; 𝜇, 𝜎, 𝑛) (18)

In order to extract useful quantities from the characteristic func-
tion, we introduce two normalized functions,Φ𝑘 (𝑥) and 𝐹 (Δ), which
normalize out the first and second arguments of 𝜙(𝜔; 𝑛) as follows

Φ0 (𝑥) ≡
1
𝑛
log 𝜙(−𝑖

√
𝑛𝑥; 𝑛) (19)

𝐹 (Δ) = 1
𝜎2
log 𝜙(−𝑖𝜎;𝜎2/Δ2). (20)

If 𝜇, 𝜎, 𝑛 are parameters of the volume-based distribution of log
density, the conservation of total mass, ⟨𝑒𝑠⟩ = 1, following equations
(16) and (19), constraints 𝜇 as follows

𝜇 = − log 𝜙(−𝑖𝜎; 𝑛) = −𝑛Φ0 (𝜎/
√
𝑛) (21)

which, as expected, reduces to −𝜎2/2 when 𝑛→ ∞.
The number of shocks, 𝑛, for given values 𝜇, 𝜎 can be estimated

from equation (21) and by inverting equation (20)

𝑛 =
𝜎2

Δ
(︁
−𝜇/𝜎2

)︁ (22)

where Δ ≡ 𝐹−1 denotes the solution to equation (20).
Φ𝑘 (𝑥) for 𝑘 > 0 are calculated as the derivative of Φ0, and their

explicit form for 𝑘 = 1, 2 is

Φ1 (𝑥) ≡ Φ′(𝑥) = − 𝑖
√
𝑛

𝜙′(−𝑖
√
𝑛𝑥; 𝑛)

𝜙(−𝑖
√
𝑛𝑥; 𝑛)

(23)

Φ2 (𝑥) ≡ Φ′′(𝑥) = −𝜙
′′(−𝑖

√
𝑛𝑥; 𝑛)

𝜙(−𝑖
√
𝑛𝑥; 𝑛)

+
(︃
𝜙′(−𝑖

√
𝑛𝑥; 𝑛)

𝜙(−𝑖
√
𝑛𝑥; 𝑛)

)︃2
(24)

The mass-weighted counterpart of the average log density,
𝜇𝑀 ≡ ⟨𝑠⟩𝑀 = ⟨𝜌𝑠⟩ can be calculated using the generating function
𝐸 with 𝑢 = 1, 𝑘 = 1, utilizing equation (23),

𝜇𝑀 = 𝜇 +
√
𝑛 𝜎Φ1 (𝜎/

√
𝑛) (25)

reducing to +𝜎2/2 when 𝑛→ ∞.
Finally, it is possible to express the variance in 𝑠weighted bymass,

𝜎2
𝑀

=
⟨︁
𝜌𝑠2

⟩︁
− ⟨𝜌𝑠⟩2, using equation (24) as follows

𝜎2𝑀 = 𝜎2Φ2 (𝜎/
√
𝑛) (26)

which reduces to 𝜎𝑀 = 𝜎 in the lognormal limit.

3.2 Kinetic energy-weighted density PDF

For the construction of the joint PDF of density and speed as
outlined in sec. 5, the kinetic energy-weighted histogram of den-
sity must be known. We already explored the mass-weighted PDF,
𝑓
(𝑀)
𝑠 (𝑠; 𝜇, 𝜎, 𝑛) = 𝑒𝑠 𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛), and its statistics in the previ-
ous paragraph. However, equation (8) indicates, that the conversion
from the mass-weighted to the kinetic energy-weighted instance of
the density PDF would require marginalization of the full joint PDF

Figure 3. Mass- and kinetic energy-weighted mean 𝜇 and variance 𝜎 of
log density. The horizontal axis represents the values as measured from each
simulation. Vertical axis represents the relative error between the measured
and theoretically predicted 𝜎 (circles) and 𝜇 (stars) weighted by mass (blue)
or energy (red). Since the typical scale within Gaussian-like distributions is
set by the width 𝜎, both errors in 𝜇 and 𝜎 are considered relative to 𝜎𝑀,𝐾 .
The theoretical values are calculated using the values of 𝔛, 𝜇, 𝜎 taken from
the simulations. The number of shocks 𝑛 is obtained via equation (22) and
subsequently 𝜇𝑀 and 𝜎𝑀 are calculated from equations (25, 26). Values
𝜇𝐾 , 𝜎𝐾 are approximated via equations (27, 31).

weighted by a factor of 𝑣2. Since the full PDF is not known, this
approach is not feasible. To sidestep this problem, we propose an
explicit form for the kinetic energy-weighted PDF based on the finite
shock model. First, we notice an approximate relation between the
mass- and kinetic energy-weighted standard deviations of log 𝜌 are
approximately equal,

𝜎𝐾 ≈ 𝜎𝑀 (27)

to a high degree of accuracy. The highest relative difference between
the two is observed to be less than 3% in the compressive simulation
with Mach number 2 (see Figure 3). This remarkable match allows
for the following educated guess; since the width of the log density
PDF does not change between the mass- and kinetic energy-weighted
instances, we assume, that the two share the same general shape. The
only freedom left after this assumption has been made is an arbitrary
argument shift, that can be expressed as

𝑓
(𝐾)
𝑠 (𝑠) = 𝑓

(𝑀)
𝑠 (𝑠 + 𝛿𝑠) = 𝑒𝑠+𝛿𝑠 𝑓sh. (𝑠 + 𝛿𝑠; 𝜇, 𝜎, 𝑛). (28)

As a consequence, the difference between the mean of 𝑠 weighted
by energy and mass is 𝛿𝑠; 𝜇𝑀 − 𝜇𝐾 = 𝛿𝑠. To determine 𝛿𝑠 we look
at the kinetic energy-weighted mean of 1/𝜌,

⟨𝑒−𝑠⟩𝐾 =
⟨𝑣2⟩
⟨𝑒𝑠𝑣2⟩

= 𝔛 (29)

where 𝔛 = ⟨𝑣2⟩/⟨𝜌𝑣2⟩ was introduced in equation 11.
Going back to our proposed shape for 𝑓 (𝐾)

𝑠 , we use this newly
found mean value to determine 𝛿𝑠

𝔛 = ⟨𝑒−𝑠⟩𝐾 =

∞∫
−∞

d𝑠 𝑒−𝑠 𝑓 (𝐾)
𝑠 (𝑠) = 𝑒𝛿𝑠 =⇒ 𝛿𝑠 = log𝔛 (30)

which translates to the following shift in 𝜇𝐾

𝜇𝐾 = 𝜇𝑀 − log𝔛 (31)
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6 B. Rabatin et al.

Figure 4. Plots of the PDF (vertical axis) of log density (horizontal axis) weighted by kinetic energy. Each simulation is labeled with 𝜉 − 𝑀 in the top left
corner. Both axes are shifted and rescaled to emphasize the shape of the histograms. Data points (dots) along with the error bars (vertical lines) are represented
in black. Measured parameters 𝔛 = M2

1D/M
2
𝑀
, 𝜇, 𝜎 and 𝑛 using equation (22) (listed in the top right corner of each plot) give rise to the solid black line.

Given the shift, the kinetic energy-weighted PDF can be written
using the finite shock model as

𝑓
(𝐾)
𝑠 (𝑠;𝔛, 𝜇, 𝜎, 𝑛) = 𝔛 𝑒𝑠 𝑓sh. (𝑠; 𝜇 − log𝔛, 𝜎, 𝑛) (32)

Figure 3 shows the relative error between the estimators for 𝜎𝑀,𝐾
and the values measured from the simulations as filled circles. The
calculated value for 𝜎𝑀 was obtained from 𝜇, 𝜎, 𝑛 using equation
(26), where 𝑛 is given by equation (22). Subsequently, 𝜎𝐾 is as-
sumed to be equal to 𝜎𝑀 per equation (27). Figure 3 also shows the
error between the estimated and measured means 𝜇𝑀,𝐾 (filled stars)
obtained from equations (25, 31). These errors are taken relative
to their respective 𝜎𝑀,𝐾 ,

|︁|︁|︁𝜇 (data)
𝑀,𝐾

− 𝜇 (est.)
𝑀,𝐾

|︁|︁|︁ /𝜎 (data)
𝑀,𝐾

. This reduction
was chosen due to the overall scale of a Gaussian-like distribution

being set by its respective standard deviation 𝜎; two Gaussian dis-
tributions with equal widths 𝜎 only differ substantially from each
other if their means 𝜇 disagree significantly on the scale given by 𝜎.
The difference between the estimated and measured mass- and ki-
netic energy-weighted values of mean and standard deviation of log
density is below 5% for all simulations, demonstrating the accuracy
and consistency of the approximations derived in this section.

Figure 4 shows the plots of 𝑓 (𝐾)
𝑠 (𝑠;𝔛, 𝜇, 𝜎, 𝑛) compared to the

histograms extracted from the simulations, by using the values of
𝔛, 𝜇, 𝜎 directly measured from the histograms. These values are used
to determine 𝑛 using equation (22). Subsequently, equation (32) with
the determined parameters and the finite shockmodel for the volume-
weighted basis is plotted alongside the data. The match between
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the model equipped by estimated parameters and the histograms is
remarkable, considering the approximations made along the way.

4 PDF OF SPEED

The velocity field within in isothermally turbulent medium can, due
to the chaotic nature of turbulence, also be treated as a random vari-
able with certain statistical properties. While the exact distribution
depends on the driving, several assumptions can be made to derive a
simple distribution for the magnitude of velocity.
Assuming independence of all components of velocity and

isotropic driving, the argument similar to that of Maxwell (1860)
can be used to infer that the velocity is a Gaussian in all directions
with variance equal in each component. Thus, the speed is drawn
from the following Maxwellian distribution

𝑓𝑣 (𝑣;M1D) = M(𝑣;M1D) =
4𝜋𝑣2

(2𝜋M2
1D)
3/2 exp

(︄
− 𝑣2

2M2
1D

)︄
, (33)

whereM1D is the 1D r.m.s. Mach number.
Despite the vast majority of literature regarding the velocity fluctu-

ations focuses on the two-point statistics and power spectra, several
previous works address the deviations from the ideal Maxwellian
shape of the PDF of speed in compressible and incompressible
isothermal turbulence (Jiménez 1998; Gotoh et al. 2002; Wilczek
et al. 2011). The slope of the distribution above the maximum can be
observed to be steepened compared to the ideal Maxwellian, and can
be seen from a direct comparison, in Figure 5. The three-dimensional
geometry of the simulation necessarily implies that the prefactor 𝑣2 is
preserved under very general assumptions about the original distribu-
tion for the velocity, 𝑓 (𝑣) → 𝑓 (𝑣) ∼ 𝑣2 + · · · . Thus, this steepening
can only be reflected as a higher-order term, for example a quartic
correction inside the exponential,

𝑓
(𝑉,𝑀)
𝑣 (𝑣;M1D, 𝑏) =

M𝑡 (𝑣;M1D, 𝑏) ∝ 𝑣2 exp
[︃
− 𝑣2

2𝑎2

(︃
1 − 𝑏 + 𝑏𝑣

2

𝑎2

)︃]︃
(34)

where 𝑎 is a parameter carrying the units of speed, that is adjusted
so that the root-mean square of 𝑣 matches the desired Mach number,
3M2

1D = ⟨𝑣2⟩. The parameter 𝑏 ∈ [0, 1] adjusts the amount of
steepening; when 𝑏 = 0, ideal Maxwellian shape is restored, whereas
for 𝑏 = 1, the tail behaves like ∼ 𝑣2𝑒−𝑣4 .
Note, that the functional form of equation (34) can be used to

describe both volume- andmass-weighted PDF of speed, with unique
parameters of M1D, 𝑏 in each case. The kinetic energy-weighted
histogram of speed can be determined using equation (10).
The difference between the newly introduced correction and its

Maxwellian counterpart when 𝑏 = 0, apart from the shape of the
PDF, manifests in the following ratio of the expectation values of
powers of magnitude of speed⟨︁

(𝑣 · 𝑣)𝛼
⟩︁⟨︁

(𝑣 · 𝑣)𝛼
⟩︁
(𝑏=0)

≡ ℎ𝛼 (𝑏). (35)

The function ℎ𝛼 only depends on the power, 𝛼, and the tilt parameter,
𝑏. While it doesn’t have an analytic form, can be easily tabulated and
inverted numerically.
Specifically, for the pure Maxwellian, the expected results are

⟨︁
(𝑣 · 𝑣)𝛼

⟩︁
(𝑏=0) =

∞∫
0

𝑣2𝛼 𝑓𝑣 (𝑣;M1D) d𝑣 =
2𝛼+1
√
𝜋

M2𝛼
1DΓ(𝛼 + 3/2)

(36)

which simplifies to (2𝑛 + 1)!!M2𝑛
1D for integer 𝛼 = 𝑛, however,

extra care should be taken for half-integer 𝛼, as the double-factorial
formula does not match the form in equation (36). Lower values of 𝛼
are most numerically reliable, for example, for 𝛼 = 1/2, we can relate
the ensemble average of ⟨𝑣⟩ to the sloping parameter 𝑏 as follows√︂
𝜋

8
⟨𝑣⟩
M1D

=

√︁
𝜋/8

M1D

⟨︂√
𝑣 · 𝑣

⟩︂
= ℎ1/2 (𝑏) → 𝑏 = ℎ−11/2

(︃√︂
𝜋

8
⟨𝑣⟩
M1D

)︃
(37)

This equation can be used to estimate the value of the parameter
𝑏 for a given set of measured ensemble averages 𝑣 and the Mach
number M1D. Table 1 lists the simulation parameters along with
the ensemble averages of 𝑣 and Mach number (both volume- and
mass-weighted). Figure 5 shows the perfect Maxwellian shape by
obtaining the Mach numberM1D and the correction (34) obtained
by measuring the additional parameter 𝑣 ≡ ⟨𝑣⟩ for each simulation.
While the Maxwellian form fails to fit the data for 𝑣 > M1D due
to the prominent steepening of the slope of the distribution in this
region, the quartic correction approximates the dataset much better.
In the line of the original argument for the Maxwellian distribu-

tion of speeds based on the rotational symmetry and independence
of individual components of velocity, one might wonder which as-
sumption (if not both) is violated. Arguments from the power spec-
trum of velocity (Jiménez 1998) and direct numerical simulations
(Wilczek et al. 2011) show, that the tails of the PDFs of the individ-
ual components of velocity are sub-Gaussian, which does not leave
any indication of dependence or independence of the components.
The full study of the velocity statistics is interesting, but outside the
scope of this work.

5 JOINT PDF OF DENSITY AND SPEED: GENERAL
THEORY

We now turn to the joint distribution of density and speed,
𝑓(𝑠,𝑣) (𝑠, 𝑣). Having already described the statistics of each vari-
able separately, the dependence between the two comes to question,
as

(𝑠, 𝑣) independent ⇐⇒ 𝑓(𝑠,𝑣) (𝑠, 𝑣) = 𝑓𝑠 (𝑠) 𝑓𝑣 (𝑣). (38)

If the random variables are truly independent, the joint PDF
would be fully described by the product of its marginalized parts,
𝑓(𝑠,𝑣) (𝑠, 𝑣) = 𝑓𝑠 (𝑠) 𝑓𝑣 (𝑣). Conversely, if there is dependence be-
tween 𝑠 and 𝑣, 𝑓(𝑠,𝑣) is not the product of the marginalized dis-
tributions. We will first show that this is in fact the case, then develop
a model for the actual joint PDF. Our correction will be developed
in the next section.
To demonstrate dependence between 𝑠 and 𝑣, we exploit an-

other, equivalent, definition of independence of random variables.
For any two functions ℎ1 (𝑠), ℎ2 (𝑣): ⟨ℎ1 (𝑠) ℎ2 (𝑣)⟩ = ⟨ℎ1 (𝑠)⟩ ⟨ℎ2 (𝑣)⟩
iff 𝑠, 𝑣 are independent random variables. That is, the average of
the product is the product of the averages, iff 𝑠 and 𝑣 are inde-
pendent. Conversely, if we find a certain combination for which
⟨ℎ1 (𝑠)ℎ2 (𝑣)⟩ ≠ ⟨ℎ1 (𝑠)⟩ ⟨ℎ2 (𝑣)⟩, the variables must be dependent.
One such choice is ℎ1 (𝑠) = 𝑠 and ℎ2 (𝑣) = 𝑣2. We will show

that
⟨︁
𝜌𝑣2

⟩︁
≠ ⟨𝜌⟩

⟨︁
𝑣2

⟩︁
. We parameterize the correlation using

𝔛 = ⟨𝑣2⟩/⟨𝜌𝑣2⟩ and show that it is different from one, demonstrating
dependence.
Table 1 features all parameters measured from the simulations. As

seen from the values of 𝔛, the values of ⟨𝑣2⟩ and ⟨𝜌𝑣2⟩ differ by at
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8 B. Rabatin et al.

Figure 5. Plots of the PDF (vertical axis) of speed (horizontal axis). Each simulation is labeled with 𝜉 − 𝑀 in the top left corner. Data points (dots) along
with the error bars (vertical lines) are represented in black. The simple Maxwellian curve with the measured Mach number is shown as a dashed gray line, the
Maxwellian with a quartic correction, obtained by measuring 𝑣 in addition toM1D, is represented by a solid black curve.

least 10% in all simulations which indicates, that density and speed
are correlated and therefore, to some extent, dependent quantities.
The non-zero correlation between density and speed complicates

the joint statistics, since the joint PDF cannot be written as a product
of the 1D marginalized PDFs. However, motivated by the fact, that
the product of 1D marginalized PDFs is relatively close to the joint
PDF, in the following section 5.1 we propose a simple correction
term added to the product of marginalized distributions, allowing for
a simple, consistent, description of the joint statistics.

5.1 Correction term to the joint PDF

The relative proximity between the true joint PDF and the product
of its marginalized subparts leads us to believe, that a simple, small

correction to the latter can be used to model the dependence between
𝑠 and 𝑣,

𝑓(𝑠,𝑣) (𝑠, 𝑣) = 𝑓𝑠 (𝑠) 𝑓𝑣 (𝑣) + 𝑔(𝑠, 𝑣). (39)

Given full freedom in 𝑔, this approach can perfectly describe the
joint PDF. However, the full knowledge of such correction is akin
to knowing the joint PDF itself. Instead, we resort to a reasonable
approximation; let’s assume, that the function 𝑔 can be also written
as a product of two single-variable functions,

𝑔(𝑠, 𝑣) = 𝑔𝑠 (𝑠)𝑔𝑣 (𝑣). (40)

The main task is to determine the single variable functions 𝑔𝑠,𝑣
using various methods of weighting outlined in 2.1. Note, that since
integrating out one of the variables must yield the marginalized PDF
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Density-Velocity Correlations 9

Figure 6. The joint PDF of 𝑠 and 𝑣 with our simple model. Color and dashed contour shows data. Solid line shows contours of the minimal model with 3
parameters. Dashed and solid contours denote the same set of values. Each simulation is labeled with 𝜉 − 𝑀 in the top left corner. The axes are shifted and
rescaled for the sake of clarity.
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10 B. Rabatin et al.

Figure 7. The joint PDF of 𝑠 and 𝑣 with our detailed model. Colors and dashed contours are the same as in Figure 6. Here solid lines show our detailed model.
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of the other variable, the integral over each single-variable 𝑔𝑠,𝑣 must
be equal to zero. Therefore, to reveal the correction term in each
variable, we need a way to break this symmetry by introducing a
factor involving one of the variables. This can be done using the
paradigm of weighted histograms, as weighting by different positive
quantities naturally imposes factors involving density and speed.
To proceed, we consider the mass-weighted joint PDF of 𝑠 and 𝑣

as the basis for our calculations,

𝑓
(𝑀)
(𝑠,𝑣) (𝑠, 𝑣) = 𝑓

(𝑀)
𝑠 (𝑠) 𝑓 (𝑀)

𝑣 (𝑣) + 𝑔 (𝑀)
𝑠 (𝑠)𝑔 (𝑀)

𝑣 (𝑣), (41)

and compare it to the volume- and kinetic energy-weighted joint
PDFs, that can be related to the mass-weighted basis using equations
(6, 8)

𝑓
(𝑉)
(𝑠,𝑣) (𝑠, 𝑣) = 𝑒

−𝑠
[︂
𝑓
(𝑀)
𝑠 (𝑠) 𝑓 (𝑀)

𝑣 (𝑣) + 𝑔 (𝑀)
𝑠 (𝑠)𝑔 (𝑀)

𝑣 (𝑣)
]︂

(42)

𝑓
(𝐾)
(𝑠,𝑣) (𝑠, 𝑣) =

𝑣2

3M2
𝑀

[︂
𝑓
(𝑀)
𝑠 (𝑠) 𝑓 (𝑀)

𝑣 (𝑣) + 𝑔 (𝑀)
𝑠 (𝑠)𝑔 (𝑀)

𝑣 (𝑣)
]︂
(43)

The factors introduced this way break the symmetry of the cor-
rection terms under integration over the involved variable. Firstly, by
definition, integrating over the mass-weighted instances of the joint
PDF yields the baseline mass-weighted marginalized distribution of
the other variable
∞∫

−∞

d𝑠 𝑓 (𝑀)
(𝑠,𝑣) (𝑠, 𝑣) = 𝑓

(𝑀)
𝑣 (𝑣) (44)

∞∫
0

d𝑣 𝑓 (𝑀)
(𝑠,𝑣) (𝑠, 𝑣) = 𝑓

(𝑀)
𝑠 (𝑠) (45)

If we now use the fact, that ⟨𝑒−𝑠⟩𝑀 = ⟨1⟩ = 1 and
⟨︁
𝑣2

⟩︁
𝑀

=

⟨𝑒𝑠𝑣2⟩ = 3M2
𝑀

= 2𝜀, we can explicitly integrate out 𝑠 in the volume-
weighted case and 𝑣 in the kinetic energy-weighted instance to get
∞∫

−∞

d𝑠 𝑓 (𝑉)(𝑠,𝑣) (𝑠, 𝑣) ≡ 𝑓
(𝑉)
𝑣 (𝑣) = 𝑓

(𝑀)
𝑣 (𝑣) + 𝐴𝑔 (𝑀)

𝑣 (𝑣) (46)

∞∫
0

d𝑣 𝑓 (𝐾)
(𝑠,𝑣) (𝑠, 𝑣) ≡ 𝑓

(𝐾)
𝑠 (𝑠) = 𝑓

(𝑀)
𝑠 (𝑠) + 𝐵𝑔 (𝑀)

𝑠 (𝑠) (47)

where 𝐴, 𝐵 are non-zero constants associated with the integrals of
the mass-weighted 𝑔-functions of variable 𝑠 and 𝑣 with additional
factors of 𝑒−𝑠 and 𝑣2 in the density and speed terms, respectively.
As we can see, the terms associated with different weighing break
the symmetry of an otherwise identically vanishing integral. Solving
equations (46) and (47) for the 𝑔−functions, we find:

𝑔
(𝑀)
𝑠 (𝑠) ∼ 𝑓

(𝐾)
𝑠 (𝑠) − 𝑓

(𝑀)
𝑠 (𝑠) (48)

𝑔
(𝑀)
𝑣 (𝑣) ∼ 𝑓

(𝑉)
𝑣 (𝑣) − 𝑓

(𝑀)
𝑣 (𝑣). (49)

The corrected joint PDF of log 𝜌 and 𝑣 can be found by inserting
these into equation (41) to find

𝑓
(𝑀)
(𝑠,𝑣) (𝑠, 𝑣) = 𝑓

(𝑀)
𝑠 (𝑠) 𝑓 (𝑀)

𝑣 (𝑣) +

+ 𝐶
(︂
𝑓
(𝐾)
𝑠 (𝑠) − 𝑓

(𝑀)
𝑠 (𝑠)

)︂ (︂
𝑓
(𝑉)
𝑣 (𝑣) − 𝑓

(𝑀)
𝑣 (𝑣)

)︂
(50)

where 𝐶 is a constant accommodating the proportionality relation of
the 𝑔-terms to the differences in the brackets.
This method is successful under two conditions; first, we had to

assume, that the correction 𝑔 can bewritten as a product of two single-
variable functions. Second, the single-variable functionsmust bewell

described by the finite shock model function and tilted Maxwellian,
for some choice of the parameters, regardless of themethod of weigh-
ing. It should be noted, that despite the derivation mainly focusing
on the mass-weighted version of the histogram, this functional form
can be converted to the volume-weighted instance of the joint PDF
by multiplying by a factor 𝑒−𝑠 . Since 𝑓 (𝑀)

𝑠 (𝑠) = 𝑒𝑠 𝑓 (𝑉)𝑠 (𝑠), we can
write the volume-weighted joint PDF as follows

𝑓
(𝑉)
(𝑠,𝑣) (𝑠, 𝑣) ≈ 𝑓

(𝑉)
𝑠 (𝑠) 𝑓 (𝑀)

𝑣 (𝑣) +

+ 𝐶
(︂
𝑒−𝑠 𝑓 (𝐾)

𝑠 (𝑠) − 𝑓
(𝑉)
𝑠 (𝑠)

)︂ (︂
𝑓
(𝑉)
𝑣 (𝑣) − 𝑓

(𝑀)
𝑣 (𝑣)

)︂
(51)

The expression for 𝐶,

𝐶 = (𝔛 − 1)−1, (52)

can be found by multiplying equation (50) by 𝑣2, integrating over
speed and demanding both sides to be equal to 3M2

𝑀
𝑓
(𝐾)
𝑠 (𝑠).

6 JOINT PDF: SPECIFIC REALIZATIONS

In what follows we suggest several choices of basis functions to build
up the joint distribution; first, we use the simplest basis possible,
consisting of Gaussian in 𝑠 and Maxwellian in 𝑣. We then utilize
our updated marginalized pictures using the finite shock model and
a tilted Maxwellian to obtain a much better description of the joint
distribution.

6.1 Minimal model

In this section we describe the joint PDF using the simplest basis
distributions; the normal distribution N(𝑠; 𝜇, 𝜎) with a mean 𝜇 and
variance 𝜎2, and a simple Maxwellian M(𝑣;M1D) where M1D
is the 1D r.m.s. Mach number. The minimum amount of parameters
needed to describe the distribution is 3;M1D,𝔛, 𝜎. These three allow
to directly describe the volume-weighted distribution of density, ap-
proximated by N(𝑠; 𝜇, 𝜎) where 𝜇 = −𝜎2/2, volume-weighted dis-
tribution of speed approximated byM(𝑣;M1D) and also the mass-
weighted distribution of speed using the Maxwellian with the pa-
rameterM𝑀 = M1D/

√
𝔛. The kinetic energy-weighted distribution

of log density is approximated as exp(𝑠 + log𝔛)N (𝑠; 𝜇 − log𝔛, 𝜎).
With these considerations in mind, the joint PDF can be then written
as

𝑓
(𝑉)
(𝑠,𝑣) (𝑠, 𝑣;M1D,𝔛, 𝜎) = N(𝑠; 𝜇, 𝜎)M(𝑣,M𝑀 ) +

+ (𝔛 − 1)−1
(︂
𝔛N(𝑠; 𝜇 − log𝔛, 𝜎) − N (𝑠; 𝜇, 𝜎)

)︂
×

×
(︂
M(𝑣;M1D) −M(𝑣;M𝑀 )

)︂ (53)

While this model does not aspire to fit the true shape of the 2D
histogram, it fully preserves the measured parameters and expected
relations between them.
Figure 6 shows the joint PDF of 𝑠 (horizontal axis) and 𝑣 (vertical

axis). Histograms obtained from the simulated data are displayed
via solid contours and color denoting the fraction of probability, our
minimal model of the joint PDF is overlaid as dashed contours. Since
the minimal model only uses three parameters directly measured
from the data, it cannot, in its simplicity, fully capture the joint
PDF. The most jarring difference occurs in the compressively driven
simulationswith high r.m.s.Mach number,manifesting in a large shift
of the maximum. This is due to a crude approximation 𝜇 = −𝜎2/2.
In reality, 𝜇 is far away from this value, moreover, the true maximum
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of the density PDF is further shifted to the right due to the very low
number of shocks inferred from these datasets.
While the maximum of the proposed simple model is shifted with

respect to the true maximum of the distribution due to the approx-
imations we used, the general shape matches that of the measured
histograms.

6.2 Detailed basis

The final, most complicated form of our model of the joined distribu-
tion, we replace each function with its more detailed counterpart; the
finite shock model function 𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛) instead of a simple Gaus-
sian and the tilted Maxwellian for speedM𝑡 (𝑣;M1D, 𝑏) in place of
the ideal Maxwellian. This way, we need to provide 6 parameters
to fully describe the joint distribution;M1D,𝔛, 𝑢, 𝑢𝑀 , 𝜇, 𝜎, where
𝑢, 𝑢𝑀 are two new measured quantities equal to 𝑢 = ⟨

√
𝑣 · 𝑣⟩ and

𝑢𝑀 = ⟨
√
𝑣 · 𝑣⟩𝑀 = ⟨𝜌

√
𝑣 · 𝑣⟩, which define 𝑏 and 𝑏𝑀 via equation

(37). Parameter 𝑛 is inferred from 𝜇, 𝜎 using equation (22).
The function can then be written as

𝑓
(𝑉)
(𝑠,𝑣) (𝑠, 𝑣;M1D,𝔛, 𝑢, 𝑢𝑀 , 𝜇, 𝜎) =

𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛)M𝑡 (𝑣;M𝑀 , 𝑏𝑀 ) +

+ (𝔛 − 1)−1
(︂
𝔛 𝑓sh. (𝑠; 𝜇 − log𝔛, 𝜎, 𝑛) − 𝑓sh. (𝑠; 𝜇, 𝜎, 𝑛)

)︂
×

×
(︂
M𝑡 (𝑣;M1D, 𝑏) −M𝑡 (𝑣;M𝑀 , 𝑏𝑀 )

)︂
(54)

Figure 7 shows the comparison between the model with detailed
basis to the histograms extracted from the datasets. Notice the re-
markable match between the two without any additional fitting. Even
the noisiest dataset, the compressibleMach 8 simulation, is described
very closely by our model in the regions with low noise and extrap-
olates naturally into the region with larger density and higher noise.

7 MOMENTS OF THE JOINT DISTRIBUTION

To corroborate our model of joint distribution, we compare various
moments, 𝐶ℓ,𝑚 = ⟨𝑠ℓ𝑣2𝑚⟩ between our model and the data. The
moments implied from our model can be expressed via the measured
quantities as follows

𝐶ℓ,𝑚 = (2𝑚 + 1)!!M2𝑚
𝑀

[︃
𝐸 (0, ℓ; 𝜇, 𝜎, 𝑛)ℎ𝑚 (𝑏𝑀 ) +

(𝔛 − 1)−1
(︂
𝔛 𝐸 (0, ℓ; 𝜇 − log𝔛, 𝜎, 𝑛) − 𝐸 (0, ℓ; 𝜇, 𝜎, 𝑛)

)︂
×(︂

𝔛𝑚ℎ𝑚 (𝑏) − ℎ𝑚 (𝑏𝑀 )
)︂]︃
.

(55)

In case of the simple model using parameters M1D,𝔛, 𝜎, the
correlators can be obtained from the same formula by taking 𝑛→ ∞,
𝜇 = −𝜎2/2 and 𝑏 = 𝑏𝑀 = 0.
Figure 8 shows the ratio of the calculated vs. simulated mo-

ments of the joint distribution, 𝐶ℓ,𝑚 for integers 1 ⩽ ℓ, 𝑚 ⩽ 5.
For the sake of clarity, all moments are normalized by their uncor-
related value assuming lognormal density and Maxwellian speed,
𝐶̃ℓ,𝑚 = 𝐶ℓ,𝑚/(⟨𝑠ℓ ⟩⟨𝑣𝑚⟩). Moments generated using the simple
model are depicted by red points, those of the detailed model by
blue points. The shape of the points represents the size of ℓ2 + 𝑚2;
the lowest powers are denoted by circles, intermediate powers by
diamonds and the highest combinations of powers by stars. It can be
seen that for the most combinations of exponents, the detailed model
matches the simulated moments substantially better than the simple
model.

Figure 8. Right panel: various correlators (horizontal axis) and their theoret-
ical predictors reduced by its corresponding measured counterpart (vertical
axis). Note, that all correlators are reduced by their theoretical value in case of
uncorrelated density and speed, ⟨𝑠ℓ ⟩ ⟨𝑣2𝑚 ⟩, for the sake of readability. The
plot points are differentiated by color (model used to predict the correlator
value) and shape (ranging from filled circles for the lowest values of ℓ, 𝑚,
diamonds for intermediate values of ℓ, 𝑚 and triangles denoting the highest
values of ℓ, 𝑚).

7.1 Correlation coefficient

The Pearson correlation coefficient corr(𝑠, 𝑣) is a special case of a
normalized moment of the joint distribution and can be expressed
using our model. The term ⟨𝑠𝑣⟩ needed to calculate corr(𝑠, 𝑣) can be
obtained from equation (55) by setting ℓ = 1, 𝑚 = 1/2,

corr(𝑠, 𝑣) = ⟨𝑠𝑣⟩ − ⟨𝑠⟩⟨𝑣⟩
𝜎𝑠𝜎𝑣

= − 𝑢 − 𝑢𝑀
𝜎

√︃
3M2

1D − 𝑢2
𝔛 log𝔛
𝔛 − 1 (56)

This expression is compared to the measured correlation coeffi-
cients in Figure 9. The largest correlation coefficients, occurring in
the datasets with the lowest Mach numbers, match the measurement
more accurately, whereas with increasingMach number and decreas-
ing correlation, the estimate of the correlation deviates somewhat
from the measured value.

8 CONCLUSIONS

In the presentworkwe developed a newmodel of the joint distribution
of log density 𝑠 and speed 𝑣 by introducing a correction term to the
product of marginalized 1D PDFs of the individual variables. By
marginalizing over differently weighted instances of the proposed
2-dimensional PDF we were able to describe the correction term
using a simple set of 1D distributions of each variable weighted by
volume, mass or kinetic energy. We proposed 3 different shapes of
the overall distribution, depending on the complexity of the basis
functions; ranging from the simplest Gaussian in 𝑠 and Maxwellian
in 𝑣 to the most detailed basis comprised of the finite shock model
in 𝑠 and tilted Maxwellian (with a quartic correction) in 𝑣. Along the
way we found out, that the kinetic-energy weighted histogram of log
density has the same overall shape as its mass-weighted counterpart,
and is shifted by 𝛿𝑠 = log𝔛 = log

(︂
⟨𝑣2⟩/⟨𝜌𝑣2⟩

)︂
to the left. The

overall match between the shapes is closely related to the fact, that
𝜎𝑀 = 𝜎𝐾 , i.e. the mass- and kinetic energy-weighted variances
of log density are equal to each other. The shift between the PDFs
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Figure 9. Pearson correlation coefficient as measured from the simulations
(horizontal axis) vs. the theoretical prediction (vertical axis). Different forcing
modes are distinguished by the shape: disks for compressive, diamonds for
mixed and stars for solenoidal forcing. The Mach number is distinguished by
color: M1D = 1 (blue), 2 (green), 4 (yellow), 8 (red). The solid black line
indicates 𝑦 = 𝑥.

can be interpreted as the difference between the mass- and kinetic
energy-weighted means of log density, 𝜇𝑀 − 𝜇𝐾 = log𝔛.
Our model was confronted with simulated data from Enzo with

compressive, mixed and solenoidal driving, each at 4 different 1D
sonic Mach numbersM1D = 1, 2, 4, 8. The parameters of the model
are directly measured from each simulation, with no additional fitting
needed. The model using the detailed basis functions matches the
simulated histograms to a high degree of precision evenwhen density
and speed are correlated to a considerable degree. Thematch between
each model and histograms is measured by the 𝐿1 norm, and for the
detailed basis, the overall difference is at most 4.5% in the worst
case scenario. It should be noted, that feeding the model parameters
taken from an ensemble leads to a reasonable match even upon re-
weighing by mass or energy, e.g. see Figure 10. This is opposed
to fitting one of the instances (for example the volume-weighted
histogram) by varying the parameters of the model, however, that
makes the match between a differently weighted histogram and its
measured counterpart suboptimal.
In addition to matching histograms we computed a set of 25 cor-

relation coefficients for each model, ⟨𝑠ℓ𝑣2𝑚⟩ (1 ⩽ ℓ, 𝑚 ⩽ 5) that
are compared to the coefficients measured directly from each simula-
tion. Unsurprisingly, the model utilizing the detailed basis functions
provides the closest match between the estimated values of the coef-
ficients and their measured counterparts, with the factor of 2 at most,
occurring in the case of the highest powers in ℓ, 𝑚.
In this work we focused on the supersonic turbulent flows, in

which the density and speed become less correlated with increasing
Mach number, regardless of the forcing mode. At the same time,
the number of shocks, inferred from the statistics of density alone,
decreases with Mach number, resulting in a more tilted distribution.
Both of these effects can be explained in the same framework of
shocks and rarefactionwaves. The shockwaves propagating through a
supersonic, turbulentmediumexhibit, on average, higher densitywith
increasingMach number. However, due to overall mass conservation,
the volume available for such shock to occupy is smaller, resulting
in a limited longitudinal size of the shock wave. On the other hand,
rarefaction waves, following behind the shocks, tend to reset the
density towards the mean. Since the shock waves are faster and

smaller in more turbulent gas, the number of shocks experienced by
the gas before it resets to ambient density is smaller. This is paralleled
by the weakening correlation between the density and speed.
Overall, our model suggests, that the correlations between density

and speed are an integral part of the complete picture of the statis-
tics of a turbulent, supersonic, isothermal flow. Moreover, with the
knowledge of the full joint PDF of density and speed, further insight
into the statistics of turbulence can be attained, such as exploring the
statistics of thermal and kinetic energy.
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