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ABSTRACT

Supersonic isothermal turbulence is a common process in astrophysical systems. In this work we
explore energy in such systems. We show that the conserved energy is the sum of kinetic energy (K)
and Helmholtz free energy (F'). We develop analytic predictions for the probability distributions, P(F)
and P(K) as well as their non-trivial joint distribution, P(F, K). We verify these predictions with a
suite of driven turbulence simulations, finding excellent agreement. The turbulence simulations
were performed at Mach numbers ranging from 1 to 8, and three modes of driving,
purely solenoidal, purely compressive, and mixed. We find that P(F) is discontinuous
at F' = 0, and the discontinuity increasing with Mach number and compressive driving.
P(K) resembles a lognormal with a negative skew. The joint distribution, P(F, K) shows
a bimodal distribution, with gas either existing at high F' and high K or at low F and K.
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1. INTRODUCTION

Supersonic turbulence is a dynamical mechanism gov-
erning many aspects of galaxy evolution and star forma-
tion. Statistical modelling of turbulent gas offers insight
into the dynamical evolution of the interstellar medium
(ISM) and star formation. Supersonic motion is charac-
teristic for star-forming regions, wherein the occurrence
of local collapse is triggered by large density fluctuations
typical of supersonic flows (Scalo & Elmegreen 2004,
Mac Low & Klessen 2004) Turbulent molecular clouds
in astrophysical simulations are commonly treated as
isothermal. This expedient simplification is warranted
due to the relatively constant temperature of the molec-
ular clouds maintained by their effective cooling rates.

In this study we set out to explore the statistical
properties of thermal and kinetic energy involved in
the dynamics of supersonic isothermal turbulence by de-
scribing the probability density function (PDF) of each
component, as well as the joint statistics of the two.
Through this analysis, further understanding of the sta-
tistical nature of isothermal supersonic turbulence is ob-
tained. This focus opens further possibilities to model
the complex dynamics of the ISM, extended to mag-
netized, self-gravitating turbulence with more realistic
thermal evolution.

This is the third paper in a series. The first paper
(Rabatin & Collins 2023b) explored the PDF of den-
sity. This is treated as a lognormal in many works (e.g.
Vazquez-Semadeni 1994). A lognormal is reasonable,

as the density in supersonic isothermal turbulence can
be treated as the result of a series of shocks, and an
infinite number of random multiplications results in a
lognormal distribution. If one instead considers that
a parcel of gas experiences only a small finite number
of shocks, one obtains the Finite Shock Model (FSM).
In Rabatin & Collins (2023b) we show that FSM fits
simulated data quite well, and naturally explains the
variation with forcing parameter. In the second paper
(Rabatin & Collins 2023a), we examine the joint distri-
bution of density and velocity, and develop an analytic
model for their correlation. Often assumed to be un-
correlated, we find a correlation that depends on Mach
number, and can be described as a combination of dif-
ferently weighted marginalized distributions.
Isothermal hydrodynamics has essentially two free
variables; the scalar field, density (p) and the vector
field, velocity (v). Thus one would expect two inde-
pendent energies to be at work. The most obvious is
kinetic energy, K = % pv?. The second variable should
be one of the thermodynamic potentials: Internal en-
ergy, U, which depends only on temperature; Enthalpy,
H = U+ PV, is the total thermal energy content; Gibbs
energy G = H—T'S is the total reversible work available;
and Helmholtz free energy, F' = U —T'S is the total use-
ful work available to the system. The internal energy,
U, depends only on temperature, so in an isothermal
system is constant and not interesting. The other ther-
modynamic potentials, H, GG, and F' are a combination
of the internal energy and the configuration of the gas.


http://orcid.org/0000-0001-5372-6882
http://orcid.org/0000-0001-6661-2243

2

As we will show in Sec. 4, the Helmholtz free energy is
most relevant for isothermal hydrodynamics. We make
the distinction between internal energy, which only de-
pends on temperature, and thermal energy, which also
depends on the configuration of the gas. Throughout,
we refer to the Helmholtz free energy as the thermal
energy.

This paper is organized into several parts. In Sec. 2
we describe the simulation code, parameters, and nu-
merical data analysis. In Sec. 3 we review the dynami-
cal quantities describing isothermally turbulent medium
- density p, and velocity ¢, as well as their statistical
properties. In Sec. 4 we show that the conserved energy
is K + F, where F is the Helmholtz free energy. Its
PDF, discussed in detail in Sec. 4.4, can be built on our
previously developed Finite Shock Model of density. In
Sec. 5 we focus on the kinetic energy density per unit
volume. Properties of the joint PDF of thermal and ki-
netic energy are discussed in Sec. 6. We conclude in
Sec. 7.

2. METHODS

In this section we describe simulations that were used
to verify our new model and present the methods used
for statistical analysis.

2.1. Simulations

To test our theoretical results a set of turbulent, su-
personic, isothermal simulations were performed using
the hydrodynamic code ENzO (Bryan et al. 2014). The
piecewise parabolic method (Woodward & Colella 1984)
is used to capture the shocks naturally occurring in a
supersonically turbulent medium. The simulations are
performed within a cube of unit length L, periodic in
all directions, at a resolution of 10242 cells, each having
the same volume 6V = 1/10243.

To maintain a steady, turbulent state, the Stochastic
forcing module (Federrath et al. 2008) is used to drive
the medium by adding energy at the large scale, at a rate
proportional to the dissipation, E~ M3 /L, where M is
the Mach number (Mac Low 1999; Mac Low & Klessen
2004). The large-scale driving pattern is modelled after
the Uhlenbeck & Ornstein (1930) process. In addition
to the 1D r.m.s. Mach number Mp, each simulation
is also characterized by the forcing mode £. The forc-
ing mode determines the proportion of the solenoidal
components within the forcing field; a purely solenoidal
driving corresponds to & = 1, while £ = 0 represents
compressive driving.

For the purpose of extracting statistical properties
from the simulations we define the turnover time scale
7. The turnover scale is roughly equal to the turbulent

crossing time Ty, = (L/2)/Mip, where L/2 is the size
of the driving pattern and M;p is the 1D r.m.s. Mach
number. Correlation between two temporally sep-
arated frames decays exponentially. Temporal
separation by ¢ = 7 corresponds to the correla-
tion of ~ 37%. By t = 57 the correlation is less
than 1%. All simulations are run for 9 turnover scales,
while the individual snapshots are taken with the step
of 7/10. To capture the steady turbulent state, frames
with ¢ < 27 are discarded, leaving 71 snapshots available
for statistical analysis. The 71 frames are analyzed to-
gether to provide a robust statistical ensemble. A similar
approach is common in other works (Porter et al. (1999),
Porter & Woodward (2000), Federrath et al. (2010), Fed-
errath (2013), Federrath et al. (2021)).

Numerical simulations were performed using three
forcing modes, compressive, mixed and solenoidal
(£=0,1/2,1) and four target Mach numbers,
Mip =1,2,4,8. Simulation parameters and other ex-
tracted statistical quantities are summarized in Table
1. The first column of the table identifies each simu-
lation in the form of & — M, with forcing £ and target
Mach number M. The actual 1D r.m.s. Mach number
Mp is listed in the second column, followed by the ra-
tio of volume-weighted Mach number to mass-weighted
Mach number squared, X. The third and last columns
show the average thermal and kinetic energy, (F') = pas,
(K) = 3M3,, where ipr = (plog(p/po))/po is the mass-
weighted average log density and My, = /{pv?)/po is
the mass-weighted r.m.s. velocity.

Speed of sound c¢; = \/]% and mean density
po = M/V are simulation constants which will be
throughout this work, for the sake of brevity, set to 1.

2.2. Statistical analysis

Any random quantity Q(#) defined within a simula~
tion domain V gives rise to its corresponding probability
density function (PDF), which can be calculated as

folw) = [ a6 Q@) (1)

where ¢ is the corresponding random variable and
fo(q)dq represents the probability of @ occurring on
the interval between ¢ and ¢ + dgq.

Two random quantities Q(Z),U(Z), in addition to
their individual statistics, also define the joint PDF,
which can be found as follows

fou(a.w = [ ddlo-Q@) su-U(@) @

with ¢,u being the corresponding random variables.
This approach is generalizable to an arbitrary number
of random quantities.



[sim. =) [Mw [ x [ () [(5)]

0-1 0.977 | 1.35 || 0.910 | 1.06
0-2 1.99 | 1.38 || 1.75 | 4.31
0—-4 3.92 | 143 || 249 | 16.1
0—-38 777 | 141 | 3.14 | 64.1
1/2-1 0.999 | 1.14 || 0.191 | 1.31
1/2 -2 2.00 | 1.21 || 0.588 | 4.99
1/2—-4 3.98 | 1.16 | 1.03 | 20.5
1/2 -8 7.89 | 1.14 || 1.37 | 81.8
1-1 0.993 | 1.15 || 0.160 | 1.29
1-2 1.98 | 1.16 || 0.489 | 5.08
1-4 3.71 | 1.14 || 0.840 | 18.2
1-8 8.04 | 1.13 || 1.12 | 86.1

Table 1. Simulation parameters. The first column denotes
each simulation in the form of & — M where ¢ is the forcing
mode and M is the nominal 1D r.m.s. Mach number. The
second column lists the measured 1D r.m.s. Mach number.
The third column represents X = (v?)/(pv?), the ratio be-
tween the volume- and mass-weighted mean squared veloci-
ties. Last two columns show the average thermal and kinetic
energy, (F),(K). The average thermal energy is related to
the mass-weighted mean of log density, pa (see Sec. 4.3),
whereas the average kinetic energy is related to the mass-
weighted Mach number, (K) = %M?M

Given a known PDF of ¢, fo(g), and known rela-
tion between the two correpsonding random quantities
R = ¢(Q), the PDF of R, fr(r), can be obtained by the

following simple random variable transformation

fr(r) = / dq fola)8(r — 6()) 3)

which naturally preserves the probability fraction,
Fr(r) dr = fo(q)dg.

A known multivariate PDF of ¢, u,... can be used to
determine the PDF of any transformed random variables
depending on g, u, ... Specifically, PDFs for the cases of
2 — 1 variables, with the relation between the quantities
given by R = ¢(Q,U), and 2 — 2 variables, given by
R=¢1(Q,U), V =¢2(Q,U), can be determined using
the following formulas

fr(r) = / dq / du fo.u) (1) 8(r — dlq, )
(4)
f(X,Y)(l‘a y) =
/ dg / du fio.0) (@, w)8(z — d1(,u)) (y — bala,w)
(5)

In this work, log density s = logp and speed v will
take the role of the baseline random variables with
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known statistical properties. Their dependent counter-
parts will be thermal energy F(s) = se® and kinetic
energy K(s,v) = e*v?/2. Eq. (3) proves useful in deter-
mining the PDF of thermal energy in Sec. 4, transfor-
mation (4) is used to obtain the PDF of kinetic energy in
Sec. 5 and the joint PDF of thermal and kinetic energy
is obtained in Sec. 6 using (5).

3. ISOTHERMAL TURBULENCE: OVERVIEW

The dynamics of isothermal compressible gas in the in-
ertial subrange, where both driving and dissipation can
be neglected, is governed by the equation of continuity
and Fuler’s equation

O o
E‘FV-([)U)—O (6)
o N

p(at +’U-V’U> = Vp (7)

where p is density and ¥ is velocity. The system of gov-
erning equations is closed by the isothermal equation of
state, in which pressure is directly proportional to den-
sity

p=cip (8)

where ¢, is the speed of sound, conventionally set to 1
in all subsequent expressions.

We will find it convenient to work with the log of den-
sity, s = log p/po, where pg is the mean density.

Assuming given initial conditions at ¢ = 0 and bound-
ary conditions at all later times the equations determine
the fields evolving over time and space. Periodic bound-
ary conditions in a box with a side of length L are used.
Driving terms at largest scales and dissipation on the
smallest scale given by the grid resolution balance out.

3.1. Single-variable statistics

In this section we summarize the statistical properties
of the basic dynamical variables, density p and speed v,
as well as develop mathematical tools that will be useful
later.

3.1.1. Density Distribution: Finite Shock Model

We consider a cloud of supersonic turbulence as an en-
semble of shocks. Each shock adjusts the pre-shock den-
sity by a multiplicative factor m? where m = v/c, is the
local Mach number, drawn from the the velocity distri-
bution, f,(v). The perfect log-normal behavior emerges
as a consequence of the central limit theorem if a parcel
of gas, on average, experiences a large amount of shocks
n, each adjusting its density by a random multiplicative
factor. In Rabatin & Collins (2023b), we improve this
model by assuming that n is finite and perhaps small.
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We model s as the sum of n independent, identical
events Y ~ logm?, normalized to zero mean and unit
variance, as

s:%Zn (9)

which gives a charachteristic function of

Plwin) = (%) = <ei“’y/‘/ﬁ>n. (10)

The distribution is then the inverse Fourier transform of
the characteristic function,

oo

flsm = [ GPeowin.

—0o0

The behavior can be captured to a great degree of ac-
curacy by measuring two parameters from the ensemble;
mean p = (s) and variance 02 = (s2) — p?. Values p, o,

n and (e®) are related as follows
(€°) = e'p(—iosn) (12)

Since (e®) = (p/po) = 1, mean p and standard devi-
ation o of log density uniquely determine the value for
n by way of (12). All other expected values involving
density can also be calculated using the characteristic
function, further details can be found in (Rabatin &
Collins 2023b).

3.1.2. Velocity Distribution: Stretched Mazwell

Due to the symmetries of the turbulent motion,
the statistics of speed can be approximated by the
Maxwellian distribution

4mo? v?
M(v; Mip) = WQXP <_2/V@D> ., (13)
where Mip = 1/(v?)/3 is the 1D r.m.s. Mach number.
As described in (Rabatin & Collins 2023a), the statistics
of speed in our simulations can be described much more
accurately by introducing a correction term of a higher
power in v within the exponential,

2 2
M (v; Mip, b) o v* exp { Y (1 —-b+ b;g)} (14)

242

where the strength of the correction is adjusted by the
sloping parameter b € [0,1] and a is tuned so that
the r.m.s. Mach number matches the desired value,
3M3, = (v?). Further details can be found in (Rabatin
& Collins 2023a).

3.1.3. Velocity Distribution: Finite Shock Model

We can also approximate the velocity distribution
with FSM. The density fluctuations are generated by
random multiplicative factors drawn from the velocity
distribution. Hence, the statistics of v can be described
in terms of FSM itself, with exactly one shock. Specif-
ically, the PDF of the random variable w = logv? is
given by

fw(w; Mip,b) = Mﬁlog)(w;/\/lm,b)
= ew/QMt(ew/Q;MlD,b)
~ fSh.(w;Mwao—w)nw) (15)

where pi,,, 0y, are the mean and standard deviation, and
ne = 1 is the effective number of shocks of w. The mean
and variance can be calculated analytically for b =0

Mw(MlD,b:O) =2logMip + Ty (16)
O'w(b = 0) = 20 (17)

with Yo =2—v—1log2 ~ 0.730 and ¢ = y/7%2/2 — 4 =
0.967 are numerical parameters related to the ideal
Maxwellian distribution (here 7 refers to the Euler con-
stant). Note, that while the mean of logv? depends on
the Mach number, the variance is scale free.

The stretched Maxwellian can also be approximated
by the FSM, with modified parameters reflecting the
change in mean and variance of logv?. The most ex-
treme case when b = 1 can be again obtained analyti-
cally,

fo(Mip, b= 1) = 2log M1p + T3 (18)
owlb=1)=3%, (19)
Ny ~ 1 (20)

where Y1 = m/4—~/2+4(1/2)log 2+log [I'(7/4)/T'(5/4)]
~ 0.857, ¥y = y/m2/4 —2C = 0.797, with C being the
Catalan constant.

The approximation (15) can be used across the full
range of parameters b for the following interpolation be-
tween the cases for b=0and b =1

2.170b
~ 21 . T 16 01H0-82
fw(Mip, b) og Mip +0.730 + 1+ 16.0150-82
(21)
2.349b
7w (b) ~ 0967 — {5 o .
1 (23)

3.1.4. Statistical weighting

We will find it useful to compute distribution with dif-
ferent weighting. Any PDF calculated from an ensemble



via Eq. 1 can be weighted by a non-negative quantity
W,

180 = 5 /V PrW(E) (- Q). (24)

where Wit is the total of W within the ensemble. Al-
ternative weighting of the same quantity can be useful
in certain circumstances. In the context of this work,
weighting by volume (V), mass (M) and kinetic energy
(K) is utilized.

In addition to the log-density PDF, by default
weighted by volume, the PDF weighted by mass and
kinetic energy is required. In Rabatin & Collins (2023a)
we find, that the mass- and kinetic energy-weighted in-
stances can be related to the volume-weighted PDF,

s(v)(s) = fsn.(8; 4, 0,m), in the following way

FO(s) = e fV)(s) = €° fan. (55 p1,0,m) (25)
ng)(s) = féEM)(s +logX) = X e fon.(s; 0 — log X, 0,n)
(26)

where X = (Mip/Mjr)? is the square of the ratio
between the 1D r.m.s. Mach number and its mass-
weighted counterpart.

The mass-weighted PDF of speed becomes relevant to
build the joint PDF of density and speed. It cannot be
related to its volume-weighted counterpart, but can still
be simply described by the stretched Maxwellian using
its own set of parameters

£ (0) = Mo(v; Mar, bar) (27)
3.1.5. Conwolutions of Finite Shock Models

Two FSM distributions can be convolved together.
This can be interpreted as a random variable s = s1+ s
being the sum of two independent random variables.
The result of such convolution can be approximated by
another FSM formula

fconv(S;m,Mz, 01702%1,”2)

o0
= /dS’ fon.(8; 11, 01,m1) fon. (s — 8’5 pi2, 02, 2)
— 00
~ fSh.(S;MCOHV?UCOHV7TLCOHV) (28)

with parameters peony = i1 + H2, 020, = 03 + 05 and

Nconv, that can be determined from further physical con-
siderations, for example matching the mean of e®.

We will find the convolution of density and speed use-
ful momentarily, which we now see simplifies to another
fsh.- Using both (15) and (28), we find

Cla; M, b, 11, 0) = fan (1, 0,n) * M{°®) (M, b)
~ fsh.(,U/7 g, n) * fsh. (’LU; Haws Ows nw)

~ fsh. (.’ﬂ; Heconvs Oconvs 7/Lconv) (29)

where

Nconv(Mle b) =M + Hw (Mle b) - IOg 2 (30)
Oconv (D) = Vo2 + 02(b) (31)

and neony € [1,00) is some yet undetermined effective
convoluted shock parameter.

3.2. Joint statistics of density and speed

In what follows we revisit the statistical considera-
tions of an ensemble emerging from snapshots of our
isothermal, turbulent simulations. The primary dynam-
ical quantities, density p and velocity ¥, can be treated
as random variables with their own distributions. The
statistical properties of each isothermal, turbulent en-
semble are fully captured in the joint PDF of log density
s = log p/po and magnitude of velocity, speed v = |J].
For the purposes of this work, we use the detailed model
proposed in Rabatin & Collins (2023a), that accurately
captures the statistics along with the correlations be-
tween the two quantities. The model gives an explicit
formula for the joint PDF,

T (s, 0) = ¥ (8) M (0) +
@=1)7 (e 1)~ 1)) (£ 0) = 0 @),

(32)

given 6 parameters directly measured from a simu-
lated ensemble: 1D r.m.s. Mach number Mip, mass-
weighted Mach number My, = /{(pv?)/3, the ra-
tio between M3 and its mass-weighted counterpart,
X = (Mip/My)?, average speed u = (v), average
speed weighted by mass up = (pv), mean of log den-
sity p and standard deviation of density, o. These pa-
rameters, presented in Table 1, in combination with the
model presented in Rabatin & Collins (2023a) allow us
to calculate any statistic involving density and speed.

4. THERMAL ENERGY

Here we show that F' is necessary for a complete de-
scription of conserved energy in isothermal turbulence
(Section 4.1), and then identify F' as the Helmholtz free
energy (Section 4.2). General properties of the thermal
energy are discussed in Section 4.3 and the PDF of ther-
mal energy is discussed in Section 4.4.

4.1. Conservation of energy

A conservation law has the form

oQ

—+V-f=0 33

o+ (33)
for some conserved quantity ) and its associated flux, f.

Kinetic energy K = % pv? is not conserved alone, which
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can be seen by taking the time derivative of K and using
equations (6, 7) and letting p = p

o (1 1
En <2pv2) +V- (vazsv) =—v-Vp. (34)

This is not a conservation law, since kinetic energy is
not conserved by itself.
Next we consider the derivative of F' = pln p/py,

% (pInp/po) = (1+1np/po) %
== +Inp/po) V- pv
==V (pv(1+Inp/po))) +v-Vp.

(35)
Combining these, we find
0 15
5 (K+F)+V- <pv (211 +(1 —an/po)>) =0.
(36)

Thus the conserved energy is K + F.

4.2. Thermodynamical interpretation of F

The first law of thermodynamics can be expressed in
terms of quantlties defined per unit mass; U (internal
energy per unit mass), S (entropy per unit mass) and
1/p (vllume per unit mass). Additionally, in the isother-
mal framework, we can replace p = p. The first law of
thermodynamics then simplifies as follows

1
dU =Tds + ~dp (37)

The specific internal energy is a function of entropy
and density. However, to utilize the fact, that the tem-
perature is kept constant, a Legendre transformation in-
troducing a thermodynamical potential involving tem-
perature and density will prove useful. The Legendre
transformation applies for the specific quantities in the
standard way,

F=U-TS (38)

where F is the specific Helmholtz free energy (free en-
ergy per unit mass). Replacing U in Eq. (37) with
F + TS results in

1
AF = =SdT + dp (39)

which shows, that F is a function of T, p.

This equation allows us to directly use the isothermal
assumption, T = const., and therefore dT" = 0. Inte-
grating over p results in

F =logp/po (40)

ar F = se® 1
2 |- 4
s=Wy(F)
(-1, —1/e)
Fis 0mmemmmmmr
o T e )
\
1
\
s=W_(F) |
4+ H 4
|
[
a =2 0 2 s
s,F

Figure 1. Function F(s) = se® together with it’s inverse,
$(F) = W_1,0(F). The branch -1 is denoted with a dashed
line, while the branch 0 is plotted with solid line.

where pg again serves as an arbitrary constant with units
of density and is conventionally set to 1. Going back to
the energy per unit volume, F' = pF, gives us

F = plogp/po (41)

This derivation formalizes F' within the thermody-
namical framework as the Helmholtz energy density per
unit volume. Without loss of generality we will set
po = 1 for the remainder of this work.

4.3. General properties, geometrical considerations

In this section we explore the properties of the
Helmbholtz free energy, F' = plog p = se® more closely.

The dimensionless thermal energy F' = se® is a non-
injective function of log-density s that attains its mini-
mum Fi, = —1/eat s=—1. For0 < s < 1, F < 0 and
is multivalued, as F'(p = 0) = F(p = 1) = 0. The many-
to-one property can be observed from Fig. 1. Since
the inverse function to se® has two branches for F' < 0,
an additional contribution to the PDF of F' is expected
for negative thermal energies. This additional weight
is expected to become important should the PDF of
log-density, fs(s), be broad enough to reach both posi-
tive and negative tail in s. Therefore, the weight of the
negative thermal energy is expected to be more promi-
nent in high Mach numbers and/or compressive driving,
as the deviation in s, o, is large in both cases. Addi-
tionally, the presence of a minimum at F = —1/e fore-
shadows a power law spike in the thermal energy PDF
near the left edge of the domain. This feature will be
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Figure 2. Plots of the PDF (vertical axis) of the shifted log of thermal energy, ¢ = log(1 + eF') (horizontal axis). Dots along
with horizontal bars represent data points and error bars. Solid curve depicts the exact formula (45). The PDF has been

rescaled vertically by the value f,(ntz( =

used in 4.4 to provide an analogous random variable in a
logarithmic scale, highlighting the power law behavior,
¢ = log(1+ eF). Additionally, this choice preserves the
position of the singularity at ¢ = F = 0.

The mean value of F' can be calculated using the FSM
(Rabatin & Collins 2023b). Moreover, this mean value
can be re-interpreted as the mass-weighted average of
log density,

(F) = (se) = (s)m = pnr (42)

For ideally lognormal statistics of density, the mass-
weighted mean of log-density is simply related to its
volume-weighted counterpart, uy = —puy = 02/2 > 0.
The positive sign of up; does not change for a finite

lim f,(e) for the sake of clarity.
e—0t

value of n, therefore, the mean thermal energy is always
positive (F) > 0.

4.4. Statistical properties

The Helmholtz free energy of the form plog p, or, in
terms of variable s, se®, is only a function of one of
the primary variables - density. As such, its PDF can
be obtained solely using the PDF of density by a ran-
dom variable transformation and is given by equation
(3) where s, F' take the role of the baseline and trans-
formed variables, respectively.

To explicitly integrate over the d-function, the roots
of equation F' = se® must be found for all values of
F € [-1/e,00). These roots are captured in a spe-
cial function, Lambert product logarithm W. Since the
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function se® is not monotonic, its inverse, as depicted
in Figure 1, is multivalued. For the purposes of the
thermal energy PDF, we recognize two real branches
of the product log, the principal branch Wy for argu-
ments € [—1/e,00) and values ranging from —1 to oo,
and an additional branch denoted by W_; for arguments
€ [~1/e,0) and values € (—oo, —1].

With these definitions, the J-function appearing in
Equation (3) can be rewritten as

5(F _ ses) _ k; 0 5(8 Krl(i)i|0k(F) (43)

where the sum is over the two real branches of the prod-
uct log and each branch only applies to its appropriate
range as described earlier,

1; —1/e<z <0
9_1(l‘>= /

0; otherwise

1;, x>0
bo(x) =

0; otherwise

The PDF of F'is

1 (Wa(F)) 0u(F)
TOEY (i) (14)
i exp (WiF)) [+ Wi (F)|

Since the PDF of thermal energy diverges when
F — —1/e from above, we find it advantageous to
work with the PDF of its logarithmic counterpart,
@ =log(1 + eF). The PDFs of ¢ and F' are related by
a simple variable transformation

folp) =7 fp(e?™! —e™h) (45)

Fig. 2 shows the histograms of log thermal energy
density obtained from the numerical simulations as solid
points with error bars. Our model is depicted as a solid
black curve, showing a remarkable match. The power
law behavior at the left side, F = —1/e, fr ~ (F+1/e)*
is apparent from the linear tail as seen in plots. One cu-
rious feature is the discontinuity around ¢ = F = 0.
This feature is more pronounced for the compressively
driven simulations, and for all driving modes the discon-
tinuity increases with Mach number. As expected, more
high energy gas is created with increasing Mach num-
ber, and this effect is more pronounced with compressive
driving. Our model perfectly captures these features.

5. KINETIC ENERGY

In Section 4.1 we showed, that the kinetic energy is
K = pv?/2. Since it depends on both density and speed,
statistics of both, as well as the correlations between the
two, become important.

Some general properties of the kinetic energy are dis-
cussed in Section 5.1. The exact formula for the PDF
is discussed in Section 5.2, an approximation is given in
5.3.

5.1. General properties

The average kinetic energy density (K) is directly re-
lated to one of the parameters used to construct the joint
statistics of density and speed,

(K) = 50o) = 502 = 5 M3 (46)
where M, is the mass-weighted Mach number. For
specific values, see Table 1. It should be noted, that
since density and speed are correlated, Mip # M,
and therefore, the value for (K) differs from (3/2)M?p.
This difference is especially prominent in the transsonic
regime.

Due to the additive nature of logarithms, we will
later introduce logarithmically transformed kinetic en-
ergy, k = log K = s + 2logv — log 2. This choice comes
natural, as the result is a sum of near-Gaussian (albeit
correlated) random variables, s and logwv. Log-density
s is near-normal depending on the number of shocks,
n, and logwv is distributed according to the FSM with
effective n = 1.

5.2. Kinetic PDF: exact formula

Following Eq. (4), the PDF of kinetic energy density,
K(s,v) = e*v?/2, can be formally written as the follow-
ing transformation of random variables, given a known
joint PDF of the baseline variables s, v

fi(K) = /ds/dvf(w)(s,v)(s(z{_;esvz) (47)
—oo 0

which can further be simplified by integrating over v
using the J-function

fr(K) = /oods fis) (572;/82[?75]()

—00

(48)

This exact formula cannot be simplified any further
without considering a specific model for the joint statis-
tics for density and speed, f(, ). Even for the simplest
case of the lognormal PDF of density and Maxwellian
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PDF of speed, the integral cannot be performed in a
closed form.

Due to the lognormal nature of density, we examine
k = log K, for which the PDF is a simple variable trans-
formation of fg,

fu(r) =€" fk (")
where ff is the baseline PDF of K = 1pv?.

(49)

5.3. Logarithmic approximation

In this section we will derive an approximate analytic
formula directly for PDF of k = log K given a few basic
assumptions.

We begin by integrating over the joint distribution,
(32), by way of (4), where R now represents x = log K =
s+w —log2. Since the terms in f(, ) are uncorrelated,
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this then becomes the convolution of five pairs of density
and speed distributions, which by (29) becomes

fn(“) =
(x - 1)*1(35

C(r; Mpr, by, p, o) +
C(
XC(k; Mar, by, p—logX,0) —
(
(

H;MlDabaﬂl - log%,a) -

C K; M1D7 b7 122 O-) +
C H§MM7bM7/LaO')) (50)

Since for the general shape of the FSM formula,
W, o,n, (e®) are tied together via Eq. (12), we can re-
express the mean kinetic energy (K) = (e®) = 3 M3,

-2
or, after multiplying by 2,

(2e") = 3M3, =
exp (/’LCOHV(MM7 bM)) ¢ (_iaconv(bM); nconv) (51)

where the cancellation of last 4 terms happens under
the assumption that the dependence of ncony On b can
be neglected. Using relations (21, 22, 30, 31), constraint
(51) can be expressed as

3M3; = exp (i + prw(Mar, bar)) %

" (—i,/ﬂ T o2 (bur). n) (52)

This equation can be used to find n¢ony given values of
0, Mg, b

Fig. 3 shows the log kinetic energy density histograms
extracted from the simulations as solid points with er-
ror bars. The kinetic energy exhibits lognormal
behavior with an excessive negative skew. These
are compared to our exact model (Equation (48), solid
line) as well as the approximate formula (Equation (50),
dashed line). It should be noted that our approxima-
tion holds even in cases where the statistics of density
strongly deviates from lognormal and speed from ideal
Maxwellian (see Rabatin & Collins (2023a).) It devi-
ates from the true distributions in datasets exhibiting
larger correlation between density and speed, such as the
transsonic simulation with mixed or purely solenoidal
driving.

6. JOINT PDF

The joint PDF of thermal and kinetic energy can be
obtained from a known joint distribution of s,v and a
simple random variable transform (s,v) — (F, K) using

the transformation (5).

firr)(F,K) =

/ ds /dv Jis,0)(8,0) 0 (F — se®) 6 <K - ;esv2>
—oo 0

(53)

Similar to the derivation of the PDF of thermal energy,
we solve for the two roots k = —1,0 of s given a value of
F using the product logarithm, s = Wy (F'). The other
é-function can be used to determine the sole root for
v = V2e sK. Together, we consider both d-functions

in their root form

§(F —se®)é (K - ;esyz) =
Z 0(s = Wi(F))d(v — vV2e5K)0(F)

e?s|1 + slv

(54)
k=—1,0

and the joint energy PDF can be written analytically as
follows

firr)(F,K) =
Jsar (WelB), y/2exp(=Wi(F))K ) 01(F)
W0 exp (3Wi(F)) |1+ Wyi(F)| V2K

(55)

Since density is distributed roughly lognormally and
the thermal energy exhibits a power-law behavior near
its minimum at ' = —1/e for s = —1, we consider the
logarithm of both components of energy in the following
form: ¢ =log(1l + eF),k = log(K), for which the joint
PDF can be written as

fomy (@, 8) = e#T"  fippey (e#7h — et e®)  (56)

The joint statistics of ¢ (horizontal axis) and  (verti-
cal axis) are shown in Fig. 4. The histograms extracted
from the simulations are displayed as dashed contours,
while the color represents the fractional probability. Our
result from equation (55) transformed via (56) is shown
via solid contours. The underlying statistical model for
the density-speed PDF uses the detailed basis discussed
in Rabatin & Collins (2023a). The bimodal behavior
of the correlation between energies is apparent from the
figure and perfectly reproduced by our model. Each
simulation has two lobes, one with high values of kinetic
and thermal energies, and one with low values of ki-
netic and thermal energies. Gas near the mean density
rarely attains high kinetic energy. The discontinuity at
F = ¢ = 0 appears again, with the curious result that
gas with high thermal energy must have high kinetic
energy.
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7. CONCLUSIONS

In this work we provided a deep dive into the statistics
of energy in isothermal supersonic turbulence. Using
a baseline model of the joint PDF of density-speed we
were able to derive the marginalized PDF of thermal
and kinetic energy, as well as their joint PDF.

The PDF of thermal energy carries the signature of
the density-dependent thermal energy, F' = se®. This
manifests in two ways; first, a power law behavior
emerges near the left edge of the thermal energy PDF,
at F'= —1/e, as a direct consequence of said minimum.
Second, a jump discontinuity in the PDF occurs at
F = 0 due to the region F' < 0 of the thermal PDF car-
rying additional weight originating in the non-injective
nature of the thermal energy function of log-density.
Specifically, the region s € (—oo, —1] gives rise to the
same values of thermal energy as s € [—1,0). These fea-
tures will show gradually with increasing width in log-
density. Our model matches the numerically simulated
data exceptionally well.

The PDF of K loosely resembles a lognormal
with an excessive negative skew. This skew can
be explained in terms of the underlying random
variables (density and speed), whose statistics
are also negatively skewed lognormal. The effect
is pronounced in high Mach number simulations
with compressive forcing. It is therefore advanta-
geous to discuss the log of the kinetic energy. The PDF
of Kk =log K = s+ w — log 2 uses the additive nature of
logarithms and, provided s and w are independent, its
PDF can be evaluated via convolution of the underlying

PDFs for s, w = log v2. This was used with the combi-
nation with the underlying model for the joint statistics
of s, v, consisting of 5 marginalized terms, providing an
approximate formula for the PDF of x. This formula
approximates the exact formula, given as a numerical
integral, fairly well in all datasets except in those that
have a higher degree of correlation between density and
speed. The exact formula matches the data reasonably
well in the same datasets, which indicates, that the cor-
rection to the joint PDF of density and speed, carrying
the correlations between the two, is lacking in precision.

Finally, the joint PDF of energy was expressed in
closed form and showed a remarkable match with the
numerically obtained histograms. The joint PDF ex-
hibits an interesting feature, more prominent in more
supersonic simulations, that pronounces the weight of
for FF < 0. For highly supersonic motion, regardless of
the driving pattern, most of the gas, by volume, exhibits
negative thermal energy.

By exploring the statistics of energy in this simplified
model of interstellar turbulence, we hope to lay ground-
work for further modelling of the complex dynamics of
the ISM.
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