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ABSTRACT

Supersonic isothermal turbulence is a common process in astrophysical systems. In this work we

explore energy in such systems. We show that the conserved energy is the sum of kinetic energy (K)

and Helmholtz free energy (F ). We develop analytic predictions for the probability distributions, P (F )

and P (K) as well as their non-trivial joint distribution, P (F,K). We verify these predictions with a

suite of driven turbulence simulations, finding excellent agreement. The turbulence simulations

were performed at Mach numbers ranging from 1 to 8, and three modes of driving,

purely solenoidal, purely compressive, and mixed. We find that P (F ) is discontinuous

at F = 0, and the discontinuity increasing with Mach number and compressive driving.

P (K) resembles a lognormal with a negative skew. The joint distribution, P (F,K) shows

a bimodal distribution, with gas either existing at high F and high K or at low F and K.
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1. INTRODUCTION

Supersonic turbulence is a dynamical mechanism gov-

erning many aspects of galaxy evolution and star forma-

tion. Statistical modelling of turbulent gas offers insight

into the dynamical evolution of the interstellar medium

(ISM) and star formation. Supersonic motion is charac-

teristic for star-forming regions, wherein the occurrence

of local collapse is triggered by large density fluctuations

typical of supersonic flows (Scalo & Elmegreen 2004,

Mac Low & Klessen 2004) Turbulent molecular clouds

in astrophysical simulations are commonly treated as

isothermal. This expedient simplification is warranted

due to the relatively constant temperature of the molec-

ular clouds maintained by their effective cooling rates.

In this study we set out to explore the statistical

properties of thermal and kinetic energy involved in

the dynamics of supersonic isothermal turbulence by de-

scribing the probability density function (PDF) of each

component, as well as the joint statistics of the two.

Through this analysis, further understanding of the sta-

tistical nature of isothermal supersonic turbulence is ob-

tained. This focus opens further possibilities to model

the complex dynamics of the ISM, extended to mag-

netized, self-gravitating turbulence with more realistic

thermal evolution.

This is the third paper in a series. The first paper

(Rabatin & Collins 2023b) explored the PDF of den-

sity. This is treated as a lognormal in many works (e.g.

Vazquez-Semadeni 1994). A lognormal is reasonable,

as the density in supersonic isothermal turbulence can

be treated as the result of a series of shocks, and an

infinite number of random multiplications results in a

lognormal distribution. If one instead considers that

a parcel of gas experiences only a small finite number

of shocks, one obtains the Finite Shock Model (FSM).

In Rabatin & Collins (2023b) we show that FSM fits

simulated data quite well, and naturally explains the

variation with forcing parameter. In the second paper

(Rabatin & Collins 2023a), we examine the joint distri-

bution of density and velocity, and develop an analytic

model for their correlation. Often assumed to be un-

correlated, we find a correlation that depends on Mach

number, and can be described as a combination of dif-

ferently weighted marginalized distributions.

Isothermal hydrodynamics has essentially two free

variables; the scalar field, density (ρ) and the vector

field, velocity (v). Thus one would expect two inde-

pendent energies to be at work. The most obvious is

kinetic energy, K = 1
2ρv

2. The second variable should

be one of the thermodynamic potentials: Internal en-

ergy, U , which depends only on temperature; Enthalpy,

H = U+PV , is the total thermal energy content; Gibbs

energy G = H−TS is the total reversible work available;

and Helmholtz free energy, F = U −TS is the total use-

ful work available to the system. The internal energy,

U , depends only on temperature, so in an isothermal

system is constant and not interesting. The other ther-

modynamic potentials, H, G, and F are a combination

of the internal energy and the configuration of the gas.
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As we will show in Sec. 4, the Helmholtz free energy is

most relevant for isothermal hydrodynamics. We make

the distinction between internal energy, which only de-

pends on temperature, and thermal energy, which also

depends on the configuration of the gas. Throughout,

we refer to the Helmholtz free energy as the thermal

energy.

This paper is organized into several parts. In Sec. 2

we describe the simulation code, parameters, and nu-

merical data analysis. In Sec. 3 we review the dynami-

cal quantities describing isothermally turbulent medium

- density ρ, and velocity v⃗, as well as their statistical

properties. In Sec. 4 we show that the conserved energy

is K + F , where F is the Helmholtz free energy. Its

PDF, discussed in detail in Sec. 4.4, can be built on our

previously developed Finite Shock Model of density. In

Sec. 5 we focus on the kinetic energy density per unit

volume. Properties of the joint PDF of thermal and ki-

netic energy are discussed in Sec. 6. We conclude in

Sec. 7.

2. METHODS

In this section we describe simulations that were used

to verify our new model and present the methods used

for statistical analysis.

2.1. Simulations

To test our theoretical results a set of turbulent, su-

personic, isothermal simulations were performed using

the hydrodynamic code Enzo (Bryan et al. 2014). The

piecewise parabolic method (Woodward & Colella 1984)

is used to capture the shocks naturally occurring in a

supersonically turbulent medium. The simulations are

performed within a cube of unit length L, periodic in

all directions, at a resolution of 10243 cells, each having
the same volume δV = 1/10243.

To maintain a steady, turbulent state, the Stochastic

forcing module (Federrath et al. 2008) is used to drive

the medium by adding energy at the large scale, at a rate

proportional to the dissipation, Ė ∼ M3/L, where M is

the Mach number (Mac Low 1999; Mac Low & Klessen

2004). The large-scale driving pattern is modelled after

the Uhlenbeck & Ornstein (1930) process. In addition

to the 1D r.m.s. Mach number M1D, each simulation

is also characterized by the forcing mode ξ. The forc-

ing mode determines the proportion of the solenoidal

components within the forcing field; a purely solenoidal

driving corresponds to ξ = 1, while ξ = 0 represents

compressive driving.

For the purpose of extracting statistical properties

from the simulations we define the turnover time scale

τ . The turnover scale is roughly equal to the turbulent

crossing time τturb. = (L/2)/M1D, where L/2 is the size

of the driving pattern and M1D is the 1D r.m.s. Mach

number. Correlation between two temporally sep-

arated frames decays exponentially. Temporal

separation by t = τ corresponds to the correla-

tion of ≈ 37%. By t = 5τ the correlation is less

than 1%. All simulations are run for 9 turnover scales,

while the individual snapshots are taken with the step

of τ/10. To capture the steady turbulent state, frames

with t < 2τ are discarded, leaving 71 snapshots available

for statistical analysis. The 71 frames are analyzed to-

gether to provide a robust statistical ensemble. A similar

approach is common in other works (Porter et al. (1999),

Porter &Woodward (2000), Federrath et al. (2010), Fed-

errath (2013), Federrath et al. (2021)).

Numerical simulations were performed using three

forcing modes, compressive, mixed and solenoidal

(ξ = 0, 1/2, 1) and four target Mach numbers,

M1D = 1, 2, 4, 8. Simulation parameters and other ex-

tracted statistical quantities are summarized in Table

1. The first column of the table identifies each simu-

lation in the form of ξ − M , with forcing ξ and target

Mach number M . The actual 1D r.m.s. Mach number

M1D is listed in the second column, followed by the ra-

tio of volume-weighted Mach number to mass-weighted

Mach number squared, X. The third and last columns

show the average thermal and kinetic energy, ⟨F ⟩ = µM ,

⟨K⟩ = 3
2M

2
M , where µM ≡ ⟨ρ log(ρ/ρ0)⟩/ρ0 is the mass-

weighted average log density and MM ≡
√︁
⟨ρv2⟩/ρ0 is

the mass-weighted r.m.s. velocity.

Speed of sound cs =
√︁
p/ρ and mean density

ρ0 = M/V are simulation constants which will be

throughout this work, for the sake of brevity, set to 1.

2.2. Statistical analysis

Any random quantity Q(x⃗) defined within a simula-

tion domain V gives rise to its corresponding probability

density function (PDF), which can be calculated as

fQ(q) =
1

V

∫︂
V

d3x δ
(︁
q −Q(x⃗)

)︁
(1)

where q is the corresponding random variable and

fQ(q) dq represents the probability of Q occurring on

the interval between q and q + dq.

Two random quantities Q(x⃗), U(x⃗), in addition to

their individual statistics, also define the joint PDF,

which can be found as follows

f(Q,U)(q, u) =
1

V

∫︂
V

d3x δ
(︁
q −Q(x⃗)

)︁
δ
(︁
u− U(x⃗)

)︁
(2)

with q, u being the corresponding random variables.

This approach is generalizable to an arbitrary number

of random quantities.
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Sim. (ξ −M) M1D X ⟨F ⟩ ⟨K⟩
0− 1 0.977 1.35 0.910 1.06

0− 2 1.99 1.38 1.75 4.31

0− 4 3.92 1.43 2.49 16.1

0− 8 7.77 1.41 3.14 64.1

1/2− 1 0.999 1.14 0.191 1.31

1/2− 2 2.00 1.21 0.588 4.99

1/2− 4 3.98 1.16 1.03 20.5

1/2− 8 7.89 1.14 1.37 81.8

1− 1 0.993 1.15 0.160 1.29

1− 2 1.98 1.16 0.489 5.08

1− 4 3.71 1.14 0.840 18.2

1− 8 8.04 1.13 1.12 86.1

Table 1. Simulation parameters. The first column denotes
each simulation in the form of ξ −M where ξ is the forcing
mode and M is the nominal 1D r.m.s. Mach number. The
second column lists the measured 1D r.m.s. Mach number.
The third column represents X = ⟨v2⟩/⟨ρv2⟩, the ratio be-
tween the volume- and mass-weighted mean squared veloci-
ties. Last two columns show the average thermal and kinetic
energy, ⟨F ⟩, ⟨K⟩. The average thermal energy is related to
the mass-weighted mean of log density, µM (see Sec. 4.3),
whereas the average kinetic energy is related to the mass-
weighted Mach number, ⟨K⟩ = 3

2
M2

M .

Given a known PDF of q, fQ(q), and known rela-

tion between the two correpsonding random quantities

R = ϕ(Q), the PDF of R, fR(r), can be obtained by the

following simple random variable transformation

fR(r) =

∫︂
dq fQ(q) δ

(︁
r − ϕ(q)

)︁
(3)

which naturally preserves the probability fraction,

fR(r) dr = fQ(q) dq.

A known multivariate PDF of q, u, . . . can be used to

determine the PDF of any transformed random variables

depending on q, u, . . . Specifically, PDFs for the cases of

2 → 1 variables, with the relation between the quantities

given by R = ϕ(Q,U), and 2 → 2 variables, given by

R = ϕ1(Q,U), V = ϕ2(Q,U), can be determined using

the following formulas

fR(r) =

∫︂
dq

∫︂
du f(Q,U)(q, u) δ

(︁
r − ϕ(q, u)

)︁
(4)

f(X,Y )(x, y) =∫︂
dq

∫︂
du f(Q,U)(q, u)δ

(︁
x− ϕ1(q, u)

)︁
δ
(︁
y − ϕ2(q, u)

)︁
(5)

In this work, log density s = log ρ and speed v will

take the role of the baseline random variables with

known statistical properties. Their dependent counter-

parts will be thermal energy F (s) = ses and kinetic

energy K(s, v) = esv2/2. Eq. (3) proves useful in deter-

mining the PDF of thermal energy in Sec. 4, transfor-

mation (4) is used to obtain the PDF of kinetic energy in

Sec. 5 and the joint PDF of thermal and kinetic energy

is obtained in Sec. 6 using (5).

3. ISOTHERMAL TURBULENCE: OVERVIEW

The dynamics of isothermal compressible gas in the in-

ertial subrange, where both driving and dissipation can

be neglected, is governed by the equation of continuity

and Euler’s equation

∂ρ

∂t
+ ∇⃗ · (ρv⃗ ) = 0 (6)

ρ

(︃
∂v⃗

∂t
+ v⃗ · ∇v⃗

)︃
= −∇p (7)

where ρ is density and v⃗ is velocity. The system of gov-

erning equations is closed by the isothermal equation of

state, in which pressure is directly proportional to den-

sity

p = c2sρ (8)

where cs is the speed of sound, conventionally set to 1

in all subsequent expressions.

We will find it convenient to work with the log of den-

sity, s = log ρ/ρ0, where ρ0 is the mean density.

Assuming given initial conditions at t = 0 and bound-

ary conditions at all later times the equations determine

the fields evolving over time and space. Periodic bound-

ary conditions in a box with a side of length L are used.

Driving terms at largest scales and dissipation on the

smallest scale given by the grid resolution balance out.

3.1. Single-variable statistics

In this section we summarize the statistical properties

of the basic dynamical variables, density ρ and speed v,

as well as develop mathematical tools that will be useful

later.

3.1.1. Density Distribution: Finite Shock Model

We consider a cloud of supersonic turbulence as an en-

semble of shocks. Each shock adjusts the pre-shock den-

sity by a multiplicative factor m2 where m = v/cs is the

local Mach number, drawn from the the velocity distri-

bution, fv(v). The perfect log-normal behavior emerges

as a consequence of the central limit theorem if a parcel

of gas, on average, experiences a large amount of shocks

n, each adjusting its density by a random multiplicative

factor. In Rabatin & Collins (2023b), we improve this

model by assuming that n is finite and perhaps small.
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We model s as the sum of n independent, identical

events Y ∼ logm2, normalized to zero mean and unit

variance, as

s =
1√
n

n∑︂
i=1

Yi, (9)

which gives a charachteristic function of

ϕ(ω;n) ≡
⟨︁
eiωs

⟩︁
=

⟨︂
eiωY/

√
n
⟩︂n

. (10)

The distribution is then the inverse Fourier transform of

the characteristic function,

fsh.(s;n) =

∞∫︂
−∞

dω

2π
e−iωsϕ(ω;n). (11)

The behavior can be captured to a great degree of ac-

curacy by measuring two parameters from the ensemble;

mean µ ≡ ⟨s⟩ and variance σ2 ≡ ⟨s2⟩ − µ2. Values µ, σ,

n and ⟨es⟩ are related as follows

⟨es⟩ = eµϕ(−iσ;n) (12)

Since ⟨es⟩ = ⟨ρ/ρ0⟩ = 1, mean µ and standard devi-

ation σ of log density uniquely determine the value for

n by way of (12). All other expected values involving

density can also be calculated using the characteristic

function, further details can be found in (Rabatin &

Collins 2023b).

3.1.2. Velocity Distribution: Stretched Maxwell

Due to the symmetries of the turbulent motion,

the statistics of speed can be approximated by the

Maxwellian distribution

M(v;M1D) =
4πv2

(2πM2
1D)

3/2
exp

(︃
− v2

2M2
1D

)︃
, (13)

where M1D =
√︁
⟨v2⟩/3 is the 1D r.m.s. Mach number.

As described in (Rabatin & Collins 2023a), the statistics

of speed in our simulations can be described much more

accurately by introducing a correction term of a higher

power in v within the exponential,

Mt(v;M1D, b) ∝ v2 exp

[︃
− v2

2a2

(︃
1− b+

bv2

a2

)︃]︃
(14)

where the strength of the correction is adjusted by the

sloping parameter b ∈ [0, 1] and a is tuned so that

the r.m.s. Mach number matches the desired value,

3M2
1D = ⟨v2⟩. Further details can be found in (Rabatin

& Collins 2023a).

3.1.3. Velocity Distribution: Finite Shock Model

We can also approximate the velocity distribution

with FSM. The density fluctuations are generated by

random multiplicative factors drawn from the velocity

distribution. Hence, the statistics of v can be described

in terms of FSM itself, with exactly one shock. Specif-

ically, the PDF of the random variable w ≡ log v2 is

given by

fw(w;M1D, b) = M(log)
t (w;M1D, b)

≡ ew/2Mt(e
w/2;M1D, b)

≈ fsh.(w;µw, σw, nw) (15)

where µw, σw, are the mean and standard deviation, and

nw = 1 is the effective number of shocks of w. The mean

and variance can be calculated analytically for b = 0

µw(M1D, b = 0) = 2 logM1D +Υ0 (16)

σw(b = 0) = Σ0 (17)

with Υ0 = 2− γ− log 2 ≈ 0.730 and Σ0 =
√︁
π2/2− 4 ≈

0.967 are numerical parameters related to the ideal

Maxwellian distribution (here γ refers to the Euler con-

stant). Note, that while the mean of log v2 depends on

the Mach number, the variance is scale free.

The stretched Maxwellian can also be approximated

by the FSM, with modified parameters reflecting the

change in mean and variance of log v2. The most ex-

treme case when b = 1 can be again obtained analyti-

cally,

µw(M1D, b = 1) = 2 logM1D +Υ1 (18)

σw(b = 1) = Σ1 (19)

nw ≈ 1 (20)

where Υ1 = π/4−γ/2+(1/2) log 2+log
[︁
Γ(7/4)/Γ(5/4)

]︁
≈ 0.857, Σ1 =

√︁
π2/4− 2C ≈ 0.797, with C being the

Catalan constant.

The approximation (15) can be used across the full

range of parameters b for the following interpolation be-

tween the cases for b = 0 and b = 1

µw(M1D, b) ≈ 2 logM1D + 0.730 +
2.170b

1 + 16.01b0.82

(21)

σw(b) ≈ 0.967− 2.349b

1 + 12.84b0.78
(22)

nw = 1 (23)

3.1.4. Statistical weighting

We will find it useful to compute distribution with dif-

ferent weighting. Any PDF calculated from an ensemble
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via Eq. 1 can be weighted by a non-negative quantity

W ,

f
(W )
Q (q) =

1

Wnet

∫︂
V

d3xW (x⃗) δ(q −Q(x⃗)), (24)

where Wnet is the total of W within the ensemble. Al-

ternative weighting of the same quantity can be useful

in certain circumstances. In the context of this work,

weighting by volume (V ), mass (M) and kinetic energy

(K) is utilized.

In addition to the log-density PDF, by default

weighted by volume, the PDF weighted by mass and

kinetic energy is required. In Rabatin & Collins (2023a)

we find, that the mass- and kinetic energy-weighted in-

stances can be related to the volume-weighted PDF,

f
(V )
s (s) = fsh.(s;µ, σ, n), in the following way

f (M)
s (s) = esf (V )

s (s) = esfsh.(s;µ, σ, n) (25)

f (K)
s (s) = f (M)

s (s+ logX) = X esfsh.(s;µ− logX, σ, n)

(26)

where X = (M1D/MM )2 is the square of the ratio

between the 1D r.m.s. Mach number and its mass-

weighted counterpart.

The mass-weighted PDF of speed becomes relevant to

build the joint PDF of density and speed. It cannot be

related to its volume-weighted counterpart, but can still

be simply described by the stretched Maxwellian using

its own set of parameters

f (M)
v (v) = Mt(v;MM , bM ) (27)

3.1.5. Convolutions of Finite Shock Models

Two FSM distributions can be convolved together.

This can be interpreted as a random variable s = s1+s2
being the sum of two independent random variables.

The result of such convolution can be approximated by

another FSM formula

fconv(s;µ1, µ2, σ1, σ2, n1, n2)

=

∞∫︂
−∞

ds′ fsh.(s;µ1, σ1, n1)fsh.(s− s′;µ2, σ2, n2)

≈ fsh.(s;µconv, σconv, nconv) (28)

with parameters µconv = µ1 + µ2, σ
2
conv = σ2

1 + σ2
2 and

nconv, that can be determined from further physical con-

siderations, for example matching the mean of es.

We will find the convolution of density and speed use-

ful momentarily, which we now see simplifies to another

fsh.. Using both (15) and (28), we find

C(x;M, b, µ, σ) = fsh.(µ, σ, n) ∗M(log)
t (M, b)

≈ fsh.(µ, σ, n) ∗ fsh.(w;µw, σw, nw)

≈ fsh.(x;µconv, σconv, nconv) (29)

where

µconv(M1D, b) = µ+ µw(M1D, b)− log 2 (30)

σconv(b) =
√︁
σ2 + σ2

w(b) (31)

and nconv ∈ [1,∞) is some yet undetermined effective

convoluted shock parameter.

3.2. Joint statistics of density and speed

In what follows we revisit the statistical considera-

tions of an ensemble emerging from snapshots of our

isothermal, turbulent simulations. The primary dynam-

ical quantities, density ρ and velocity v⃗, can be treated

as random variables with their own distributions. The

statistical properties of each isothermal, turbulent en-

semble are fully captured in the joint PDF of log density

s = log ρ/ρ0 and magnitude of velocity, speed v = |v⃗|.
For the purposes of this work, we use the detailed model

proposed in Rabatin & Collins (2023a), that accurately

captures the statistics along with the correlations be-

tween the two quantities. The model gives an explicit

formula for the joint PDF,

f
(V )
(s,v)(s, v) ≈ f (V )

s (s)f (M)
v (v)+

(X−1)−1
(︂
e−sf (K)

s (s)−f (V )
s (s)

)︂(︂
f (V )
v (v)−f (M)

v (v)
)︂
,

(32)

given 6 parameters directly measured from a simu-

lated ensemble: 1D r.m.s. Mach number M1D, mass-

weighted Mach number MM =
√︁
⟨ρv2⟩/3, the ra-

tio between M2
1D and its mass-weighted counterpart,

X = (M1D/MM )2, average speed u = ⟨v⟩, average

speed weighted by mass uM = ⟨ρv⟩, mean of log den-

sity µ and standard deviation of density, σ. These pa-

rameters, presented in Table 1, in combination with the

model presented in Rabatin & Collins (2023a) allow us

to calculate any statistic involving density and speed.

4. THERMAL ENERGY

Here we show that F is necessary for a complete de-

scription of conserved energy in isothermal turbulence

(Section 4.1), and then identify F as the Helmholtz free

energy (Section 4.2). General properties of the thermal

energy are discussed in Section 4.3 and the PDF of ther-

mal energy is discussed in Section 4.4.

4.1. Conservation of energy

A conservation law has the form

∂Q

∂t
+∇ · f = 0 (33)

for some conserved quantity Q and its associated flux, f .

Kinetic energy K = 1
2ρv

2 is not conserved alone, which
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can be seen by taking the time derivative of K and using

equations (6, 7) and letting p = ρ

∂

∂t

(︃
1

2
ρv2

)︃
+∇ ·

(︃
1

2
ρv2sv

)︃
= −v · ∇ρ. (34)

This is not a conservation law, since kinetic energy is

not conserved by itself.

Next we consider the derivative of F = ρ ln ρ/ρ0,

∂

∂t
(ρ ln ρ/ρ0) = (1 + ln ρ/ρ0)

∂ρ

∂t

= − (1 + ln ρ/ρ0)∇ · ρv
= −∇ · (ρv (1 + ln ρ/ρ0))) + v · ∇ρ.

(35)

Combining these, we find

∂

∂t
(K + F ) +∇ ·

(︃
ρv

(︃
1

2
v2 + (1 + ln ρ/ρ0)

)︃)︃
= 0.

(36)

Thus the conserved energy is K + F .

4.2. Thermodynamical interpretation of F

The first law of thermodynamics can be expressed in

terms of quantlties defined per unit mass; U (internal

energy per unit mass), S (entropy per unit mass) and

1/ρ (vllume per unit mass). Additionally, in the isother-

mal framework, we can replace p = ρ. The first law of

thermodynamics then simplifies as follows

dU = TdS +
1

ρ
dρ (37)

The specific internal energy is a function of entropy

and density. However, to utilize the fact, that the tem-

perature is kept constant, a Legendre transformation in-
troducing a thermodynamical potential involving tem-

perature and density will prove useful. The Legendre

transformation applies for the specific quantities in the

standard way,

F = U − TS (38)

where F is the specific Helmholtz free energy (free en-

ergy per unit mass). Replacing U in Eq. (37) with

F + TS results in

dF = −SdT +
1

ρ
dρ (39)

which shows, that F is a function of T, ρ.

This equation allows us to directly use the isothermal

assumption, T = const., and therefore dT = 0. Inte-

grating over ρ results in

F = log ρ/ρ0 (40)

-4 -2 0 2 4

-4

-2

0

2

4

s,F

F,s

F = ses

s = W0(F)

s = W-1(F)

(-1/e, -1)

(-1, -1/e)

Figure 1. Function F (s) = ses together with it’s inverse,
s(F ) = W−1,0(F ). The branch -1 is denoted with a dashed
line, while the branch 0 is plotted with solid line.

where ρ0 again serves as an arbitrary constant with units

of density and is conventionally set to 1. Going back to

the energy per unit volume, F = ρF , gives us

F = ρ log ρ/ρ0 (41)

This derivation formalizes F within the thermody-

namical framework as the Helmholtz energy density per

unit volume. Without loss of generality we will set

ρ0 = 1 for the remainder of this work.

4.3. General properties, geometrical considerations

In this section we explore the properties of the

Helmholtz free energy, F = ρ log ρ = ses more closely.

The dimensionless thermal energy F = ses is a non-

injective function of log-density s that attains its mini-

mum Fmin = −1/e at s = −1. For 0 < s < 1, F < 0 and

is multivalued, as F (ρ = 0) = F (ρ = 1) = 0. The many-

to-one property can be observed from Fig. 1. Since

the inverse function to ses has two branches for F < 0,

an additional contribution to the PDF of F is expected

for negative thermal energies. This additional weight

is expected to become important should the PDF of

log-density, fs(s), be broad enough to reach both posi-

tive and negative tail in s. Therefore, the weight of the

negative thermal energy is expected to be more promi-

nent in high Mach numbers and/or compressive driving,

as the deviation in s, σ, is large in both cases. Addi-

tionally, the presence of a minimum at F = −1/e fore-

shadows a power law spike in the thermal energy PDF

near the left edge of the domain. This feature will be
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Figure 2. Plots of the PDF (vertical axis) of the shifted log of thermal energy, φ = log(1 + eF ) (horizontal axis). Dots along
with horizontal bars represent data points and error bars. Solid curve depicts the exact formula (45). The PDF has been

rescaled vertically by the value f (+)
max = lim

ε→0+
fφ(ε) for the sake of clarity.

used in 4.4 to provide an analogous random variable in a

logarithmic scale, highlighting the power law behavior,

φ = log(1 + eF ). Additionally, this choice preserves the

position of the singularity at φ = F = 0.

The mean value of F can be calculated using the FSM

(Rabatin & Collins 2023b). Moreover, this mean value

can be re-interpreted as the mass-weighted average of

log density,

⟨F ⟩ = ⟨ses⟩ = ⟨s⟩M = µM (42)

For ideally lognormal statistics of density, the mass-

weighted mean of log-density is simply related to its

volume-weighted counterpart, µM = −µV = σ2/2 > 0.

The positive sign of µM does not change for a finite

value of n, therefore, the mean thermal energy is always

positive ⟨F ⟩ > 0.

4.4. Statistical properties

The Helmholtz free energy of the form ρ log ρ, or, in

terms of variable s, ses, is only a function of one of

the primary variables - density. As such, its PDF can

be obtained solely using the PDF of density by a ran-

dom variable transformation and is given by equation

(3) where s, F take the role of the baseline and trans-

formed variables, respectively.

To explicitly integrate over the δ-function, the roots

of equation F = ses must be found for all values of

F ∈ [−1/e,∞). These roots are captured in a spe-

cial function, Lambert product logarithm W . Since the
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function ses is not monotonic, its inverse, as depicted

in Figure 1, is multivalued. For the purposes of the

thermal energy PDF, we recognize two real branches

of the product log, the principal branch W0 for argu-

ments ∈ [−1/e,∞) and values ranging from −1 to ∞,

and an additional branch denoted byW−1 for arguments

∈ [−1/e, 0) and values ∈ (−∞,−1].

With these definitions, the δ-function appearing in

Equation (3) can be rewritten as

δ(F − ses) =
∑︂

k=−1,0

δ(s−Wk(F )) θk(F )

es |1 + s|
(43)

where the sum is over the two real branches of the prod-

uct log and each branch only applies to its appropriate

range as described earlier,

θ−1(x) =

⎧⎨⎩1; −1/e ≤ x < 0

0; otherwise

θ0(x) =

⎧⎨⎩1; x ≥ 0

0; otherwise

The PDF of F is

fF (F ) =
∑︂

k=−1,0

fs

(︂
Wk(F )

)︂
θk(F )

exp
(︂
Wk(F )

)︂
|1 +Wk(F )|

(44)

Since the PDF of thermal energy diverges when

F → −1/e from above, we find it advantageous to

work with the PDF of its logarithmic counterpart,

φ = log(1 + eF ). The PDFs of φ and F are related by

a simple variable transformation

fφ(φ) = eφ−1fF (e
φ−1 − e−1) (45)

Fig. 2 shows the histograms of log thermal energy

density obtained from the numerical simulations as solid

points with error bars. Our model is depicted as a solid

black curve, showing a remarkable match. The power

law behavior at the left side, F = −1/e, fF ∼ (F+1/e)α

is apparent from the linear tail as seen in plots. One cu-

rious feature is the discontinuity around φ = F = 0.

This feature is more pronounced for the compressively

driven simulations, and for all driving modes the discon-

tinuity increases with Mach number. As expected, more

high energy gas is created with increasing Mach num-

ber, and this effect is more pronounced with compressive

driving. Our model perfectly captures these features.

5. KINETIC ENERGY

In Section 4.1 we showed, that the kinetic energy is

K = ρv2/2. Since it depends on both density and speed,

statistics of both, as well as the correlations between the

two, become important.

Some general properties of the kinetic energy are dis-

cussed in Section 5.1. The exact formula for the PDF

is discussed in Section 5.2, an approximation is given in

5.3.

5.1. General properties

The average kinetic energy density ⟨K⟩ is directly re-

lated to one of the parameters used to construct the joint

statistics of density and speed,

⟨K⟩ = 1

2
⟨ρv2⟩ = 1

2
⟨v2⟩M =

3

2
M2

M (46)

where MM is the mass-weighted Mach number. For

specific values, see Table 1. It should be noted, that

since density and speed are correlated, M1D ̸= MM

and therefore, the value for ⟨K⟩ differs from (3/2)M2
1D.

This difference is especially prominent in the transsonic

regime.

Due to the additive nature of logarithms, we will

later introduce logarithmically transformed kinetic en-

ergy, κ = logK = s+ 2 log v − log 2. This choice comes

natural, as the result is a sum of near-Gaussian (albeit

correlated) random variables, s and log v. Log-density

s is near-normal depending on the number of shocks,

n, and log v is distributed according to the FSM with

effective n = 1.

5.2. Kinetic PDF: exact formula

Following Eq. (4), the PDF of kinetic energy density,

K(s, v) = esv2/2, can be formally written as the follow-

ing transformation of random variables, given a known

joint PDF of the baseline variables s, v

fK(K) =

∞∫︂
−∞

ds

∞∫︂
0

dv f(s,v)(s, v) δ

(︃
K − 1

2
esv2

)︃
(47)

which can further be simplified by integrating over v

using the δ-function

fK(K) =

∞∫︂
−∞

ds
f(s,v)

(︂
s,
√
2e−sK

)︂
√
2esK

(48)

This exact formula cannot be simplified any further

without considering a specific model for the joint statis-

tics for density and speed, f(s,v). Even for the simplest

case of the lognormal PDF of density and Maxwellian
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Figure 3. Plots of the PDF (vertical axis) of logarithm of kinetic energy density, κ (horizontal axis). Dots and vertical lines
represent data points with error bars. Solid curve depicts the exact formula using Eqs. (48, 49), dashed line represents the
approximation (50). For the sake of clarity, the horizontal axis is shifted and rescaled by the corresponding mean and standard
deviation, while the vertical axis is rescaled by the maximum value.

PDF of speed, the integral cannot be performed in a

closed form.

Due to the lognormal nature of density, we examine

κ = logK, for which the PDF is a simple variable trans-

formation of fK ,

fκ(κ) = eκfK(eκ) (49)

where fK is the baseline PDF of K = 1
2ρv

2.

5.3. Logarithmic approximation

In this section we will derive an approximate analytic

formula directly for PDF of κ = logK given a few basic

assumptions.

We begin by integrating over the joint distribution,

(32), by way of (4), where R now represents κ = logK =

s+w− log 2. Since the terms in f(s,v) are uncorrelated,
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this then becomes the convolution of five pairs of density

and speed distributions, which by (29) becomes

fκ(κ) =C(κ;MM , bM , µ, σ)+

(X− 1)−1
(︂
XC(κ;M1D, b, µ− logX, σ)−

XC(κ;MM , bM , µ− logX, σ)−
C(κ;M1D, b, µ, σ)+

C(κ;MM , bM , µ, σ)
)︂

(50)

Since for the general shape of the FSM formula,

µ, σ, n, ⟨es⟩ are tied together via Eq. (12), we can re-

express the mean kinetic energy ⟨K⟩ = ⟨eκ⟩ = 3
2M

2
M ,

or, after multiplying by 2,

⟨2eκ⟩ = 3M2
M =

exp (µconv(MM , bM ))ϕ (−iσconv(bM ), nconv) (51)

where the cancellation of last 4 terms happens under

the assumption that the dependence of nconv on b can

be neglected. Using relations (21, 22, 30, 31), constraint

(51) can be expressed as

3M2
M = exp (µ+ µw(MM , bM ))×

ϕ

(︃
−i

√︂
σ2 + σ2

2(bM ), nconv

)︃
(52)

This equation can be used to find nconv given values of

µ, σ,MM , bM .

Fig. 3 shows the log kinetic energy density histograms

extracted from the simulations as solid points with er-

ror bars. The kinetic energy exhibits lognormal

behavior with an excessive negative skew. These

are compared to our exact model (Equation (48), solid

line) as well as the approximate formula (Equation (50),

dashed line). It should be noted that our approxima-

tion holds even in cases where the statistics of density

strongly deviates from lognormal and speed from ideal

Maxwellian (see Rabatin & Collins (2023a).) It devi-

ates from the true distributions in datasets exhibiting

larger correlation between density and speed, such as the

transsonic simulation with mixed or purely solenoidal

driving.

6. JOINT PDF

The joint PDF of thermal and kinetic energy can be

obtained from a known joint distribution of s, v and a

simple random variable transform (s, v) → (F,K) using

the transformation (5).

f(F,K)(F,K) =
∞∫︂

−∞

ds

∞∫︂
0

dv f(s,v)(s, v) δ (F − ses) δ

(︃
K − 1

2
esv2

)︃
(53)

Similar to the derivation of the PDF of thermal energy,

we solve for the two roots k = −1, 0 of s given a value of

F using the product logarithm, sk = Wk(F ). The other

δ-function can be used to determine the sole root for

v =
√
2e−sK. Together, we consider both δ-functions

in their root form

δ (F − ses) δ

(︃
K − 1

2
esv2

)︃
=

∑︂
k=−1,0

δ(s−Wk(F ))δ(v −
√
2e−sK)θk(F )

e2s|1 + s|v
(54)

and the joint energy PDF can be written analytically as

follows

f(F,K)(F,K) =

∑︂
k=−1,0

f(s,v)

(︂
Wk(F ),

√︁
2 exp(−Wk(F ))K

)︂
θk(F )

exp
(︁
3
2Wk(F )

)︁
|1 +Wk(F )|

√
2K

(55)

Since density is distributed roughly lognormally and

the thermal energy exhibits a power-law behavior near

its minimum at F = −1/e for s = −1, we consider the

logarithm of both components of energy in the following

form: φ = log(1 + eF ), κ = log(K), for which the joint

PDF can be written as

f(φ,κ)(φ, κ) = eφ+κ−1f(F,K)

(︁
eφ−1 − e−1, eκ

)︁
(56)

The joint statistics of φ (horizontal axis) and κ (verti-

cal axis) are shown in Fig. 4. The histograms extracted

from the simulations are displayed as dashed contours,

while the color represents the fractional probability. Our

result from equation (55) transformed via (56) is shown

via solid contours. The underlying statistical model for

the density-speed PDF uses the detailed basis discussed

in Rabatin & Collins (2023a). The bimodal behavior

of the correlation between energies is apparent from the

figure and perfectly reproduced by our model. Each

simulation has two lobes, one with high values of kinetic

and thermal energies, and one with low values of ki-

netic and thermal energies. Gas near the mean density

rarely attains high kinetic energy. The discontinuity at

F = φ = 0 appears again, with the curious result that

gas with high thermal energy must have high kinetic

energy.
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Figure 4. The joint PDF of φ and κ with our detailed model. Color and dashed contour shows data. Solid line shows contours
of our model. Each simulation is labeled with ξ − M in the top left corner. The axes are shifted and rescaled for the sake of
clarity.
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7. CONCLUSIONS

In this work we provided a deep dive into the statistics

of energy in isothermal supersonic turbulence. Using

a baseline model of the joint PDF of density-speed we

were able to derive the marginalized PDF of thermal

and kinetic energy, as well as their joint PDF.

The PDF of thermal energy carries the signature of

the density-dependent thermal energy, F = ses. This

manifests in two ways; first, a power law behavior

emerges near the left edge of the thermal energy PDF,

at F = −1/e, as a direct consequence of said minimum.

Second, a jump discontinuity in the PDF occurs at

F = 0 due to the region F < 0 of the thermal PDF car-

rying additional weight originating in the non-injective

nature of the thermal energy function of log-density.

Specifically, the region s ∈ (−∞,−1] gives rise to the

same values of thermal energy as s ∈ [−1, 0). These fea-

tures will show gradually with increasing width in log-

density. Our model matches the numerically simulated

data exceptionally well.

The PDF of K loosely resembles a lognormal

with an excessive negative skew. This skew can

be explained in terms of the underlying random

variables (density and speed), whose statistics

are also negatively skewed lognormal. The effect

is pronounced in high Mach number simulations

with compressive forcing. It is therefore advanta-

geous to discuss the log of the kinetic energy. The PDF

of κ = logK = s+w− log 2 uses the additive nature of

logarithms and, provided s and w are independent, its

PDF can be evaluated via convolution of the underlying

PDFs for s, w = log v2. This was used with the combi-

nation with the underlying model for the joint statistics

of s, v, consisting of 5 marginalized terms, providing an

approximate formula for the PDF of κ. This formula

approximates the exact formula, given as a numerical

integral, fairly well in all datasets except in those that

have a higher degree of correlation between density and

speed. The exact formula matches the data reasonably

well in the same datasets, which indicates, that the cor-

rection to the joint PDF of density and speed, carrying

the correlations between the two, is lacking in precision.

Finally, the joint PDF of energy was expressed in

closed form and showed a remarkable match with the

numerically obtained histograms. The joint PDF ex-

hibits an interesting feature, more prominent in more

supersonic simulations, that pronounces the weight of

for F < 0. For highly supersonic motion, regardless of

the driving pattern, most of the gas, by volume, exhibits

negative thermal energy.

By exploring the statistics of energy in this simplified

model of interstellar turbulence, we hope to lay ground-

work for further modelling of the complex dynamics of

the ISM.
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