

1 Mapping Barriers to Food, Energy, and 2 Water Systems Equity in the United States

3 Haleigh N. Summers^{1,2}, Tiffanie F. Stone^{1,3}, Loulou C. Dickey⁴, Chris R. Rehmann⁴, Emily K. Zimmerman¹,
4 John C. Tyndall¹, Lu Liu⁴

5 ¹ Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States

6 ² Sand County Foundation, Madison, WI, United States

7 ³ Agroecology, Aarhus University, Aarhus, Denmark

8 ⁴ Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA, United States

10 **Abstract**

11 Barriers to affordable, accessible, high-quality food, energy, and water systems (FEWS) harm social
12 equity. Connections within and across FEWS suggest that co-occurring barriers to equity can compound
13 vulnerability. We hypothesized that barriers to FEW resources are strongly associated with geographic
14 location, both within and across FEWS, as they rely heavily on localized sociopolitical and natural
15 environments. This study explored the geographic relationships between FEWS barriers and social
16 equity through a spatial analysis of census tracts within the United States. Cluster analyses showed that
17 all FEWS barriers had a positive spatial autocorrelation (Moran's $I = 0.12 - 0.94$), with energy barriers
18 being the most spatially clustered and affordability barriers being the least spatially clustered. In 54% of
19 census tracts, we observed the co-occurrence of low barriers to water quality and access. Barriers to
20 FEWS affordability almost always co-occurred in parallel (e.g., high barriers to affordability in one system
21 co-occurred with high barriers to affordability in another system). Finally, we developed a spatial index
22 of the barriers to FEWS equity to determine vulnerability at the census tract scale, which had a positive
23 spatial autocorrelation (Moran's $I = 0.41$). Clusters and intersections of FEWS equity barriers suggest
24 that resources are interconnected, resulting in additional challenges for people living in these areas. The
25 maps of barriers to equity in FEWS are useful tools that could help stakeholders (e.g., federal agencies,
26 city planners, utilities) distribute FEWS resources fairly and begin engagement with communities about
27 FEWS barriers in their local context.

28 **Highlights:**

- 29 • Barriers to food, energy, water system (FEWS) resources impede equity
- 30 • Barriers to FEWS resources were evaluated at the US census tract scale
- 31 • All barriers to equitable FEWS resources were spatially clustered
- 32 • Barriers to FEWS affordability often co-occurred, enhancing vulnerabilities
- 33 • A US FEWS Equity Barrier Index was developed to support effective decision-making

35 **Keywords:** Social equity, Socio-environmental Index, Resource Affordability, Resource Access, Resource
36 Quality, Environmental Justice

37 **1 Introduction**

38 Food, energy, and water systems (FEWS) constitute an interconnected biophysical nexus that influences
39 and relies upon sociopolitical and natural environments (Kaddoura and El Khatib, 2017; Helmstedt et al.,
40 2018; Vörösmarty et al., 2023a). Nexus research is a growing field primarily focused on increasing
41 resilience and reducing environmental damage (White et al., 2017). FEWS are constantly in flux, facing
42 increasing pressure from climate change and population growth that heighten demands on the systems
43 (Endo et al., 2017; Hinrichs, 2014; James and Friel, 2015), as well as more urgent social demands to
44 improve capacity to adapt to FEWS disruptions (Bergendahl et al., 2018; Biggs et al., 2015; Food and
45 Agriculture Organization, 2014). Furthermore, increased stress on FEWS caused by climate change is
46 likely to cause greater harm to populations who are already economically and socially vulnerable (US
47 Environmental Protection Agency, 2021; Younger et al., 2008). These stressors motivate research
48 focused on identifying tradeoffs for the sustainable intensification of FEWS (Kaddoura and El Khatib,
49 2017; Sodiq et al., 2019; White et al., 2017), such as increasing agricultural production while protecting
50 valuable water resources. Although the nexus approach has been applied in a variety of contexts, we
51 define the FEWS nexus as a framework for studying and managing F, E, W systems that recognizes their
52 interconnectedness and aims to balance human demands with sustainable development (Estoque,
53 2023). In this context, advocates call for equitable resource allocation, which can be supported by
54 integrating social equity into the FEWS nexus approach (Stone et al., 2023).

55 FEWS resources are critical to human well-being, and barriers to equitable production and distribution
56 can damage communities (Younger et al., 2008). Economically and socially vulnerable populations are
57 more likely to be hurt by environmentally damaging FEWS infrastructure such as food processing
58 facilities, energy conversion plants, and wastewater discharges (Bullard, 1994; US Environmental
59 Protection Agency, 2021; Younger et al., 2008; Zimmerman, 1993). FEWS infrastructure, along with
60 social, economic, and environmental conditions, can create barriers to FEWS that hurt social equity.
61 Stone et al. (2023) found that equitable provisioning of FEWS resources involves three primary factors:
62 affordability, access, and quality. Gaining a greater understanding of barriers to affordable, accessible,
63 and good-quality FEWS resources can help alleviate existing and future inequities that are likely to be
64 exacerbated by climate change.

65 Identifying useful measures of barriers to FEWS is important to understand the biophysical and social
66 characteristics that influence equitable and sustainable resource provisioning. Yet, it is often difficult to
67 create adequate metrics because they are complex and relational. For example, a metric measuring
68 "affordability" requires a nuanced approach. Cost data for individual items or resources are insufficient,
69 as many other factors determine if something is "affordable" (Teodoro, 2019), including the dynamic
70 prices and fungibility of other essential household expenses, including FEWS resources (e.g., electricity
71 and food (Doremus et al., 2022) as well as non-FEWS essentials (e.g., housing costs, childcare). Likewise,
72 "access" is complex because it can involve both spatial proximity and the presence of infrastructure
73 necessary to obtain FEWS resources. Quality is similarly nuanced, particularly in the case of FEWS
74 resources where it can be difficult to measure on a household scale (Stone et al., 2023).

75 FEWS are heavily influenced by factors, such as geology, climate, and biome, leading to localized or
76 regional system characteristics (Albatayneh, 2023; Huntington et al., 2021; Vörösmarty et al., 2023a).
77 For example, water systems can be highly localized depending on watershed or aquifer characteristics;
78 furthermore, most water treatment and distribution is conducted at the municipal scale. Additionally,
79 FEWS are closely interconnected, meaning changes to one system can significantly affect the other two
80 systems in the same area (Newell et al., 2019; Vörösmarty et al., 2023a). Illustrating this point, local and

81 regional characteristics influence whether agricultural production necessitates irrigation or artificial
82 drainage, which in turn affects water quality. Because of the local and regional nature of biophysical
83 FEWS, spatial trends and intersections of the systems could also be present in barriers to affordability,
84 accessibility, and quality that impede equity. Co-occurrence, or spatial intersections of multiple barriers,
85 could create a compounding effect and bring additional challenges for people living in these census
86 tracts.

87 Spatial analysis is a useful way to visualize trends at a variety of geographic and governance scales (e.g.,
88 Albert et al., 2017; Pappalardo and Debizet, 2020). Clustering or hotspot analysis can identify large
89 groups of similar values, suggesting that the system has a widespread effect on the resource barriers or
90 that the data are more affected by local sociopolitical influences or the natural environment (e.g., Wang
91 and Varady, 2005). By mapping multiple datasets at the same scale (e.g., census tract), we can identify
92 where trends overlap or co-occur, which can provide information about the degree to which populations
93 in these census tracts might be disadvantaged (e.g., The Biden Administration, 2023). Indices that
94 combine metrics spatially can aid in understanding complex physical, social, and cultural interactions
95 and their spatial distributions (e.g., Albrecht & Ramasubramanian, 2004; Nar & Nar, 2019; Shu et al.,
96 2021; Zhu et al., 2019).

97 Identifying FEWS barriers and their spatial distribution can help to understand the biophysical and
98 sociopolitical factors that impede FEWS equity. Spatial analysis and visualization of FEWS barriers can
99 help engage stakeholders and disadvantaged communities to prevent further harm that often occurs
100 when decision-makers are unaware of preexisting inequities in accessing the biophysical systems they
101 administer (Hoolahan et al., 2018; Liang et al., 2020). Historically, decisions about FEWS and the
102 environment are largely the result of sociopolitical factors that influence policy (i.e., determined by
103 economics, culture, power, and politics), as opposed to scientific findings (Desikan et al., 2023).
104 Consequently, policy often neglects underrepresented and vulnerable communities that have limited
105 access to the policy process or are underrepresented in governing bodies (Desikan et al., 2023). In the
106 United States (US), recent federal programs, such as Justice40, have highlighted the need for identifying
107 disadvantaged populations as they relate to climate change and involving them in the process to build
108 resilience capacity (The Biden Administration, 2023; Watson, 2023). Similarly, there is a need to identify
109 and engage populations experiencing barriers to affordable, accessible, and good-quality FEWS
110 resources to build more sustainable and just systems.

111 In this study, we identified affordability, access, and quality barriers to FEWS resources. Our objectives
112 were to i) spatially examine potential clusters or hotspots of barriers to each FEWS resource, ii) evaluate
113 whether barriers co-occur spatially, and iii) create an index of barriers to FEWS equity. We hypothesized
114 that we would find clusters of barriers, because we expect that barriers to FEWS resources, like FEWS,
115 also rely on local biophysical systems and sociopolitical factors such as economics, policies, and culture.
116 The FEWS Equity Barriers Index we developed identifies trends and disadvantaged populations at the
117 census tract scale that can inform FEWS governance and future research.

118 **2 Materials and Methods**

119 Building on the FEWS equity themes from the Stone et al. (2023) systematic literature review, which
120 synthesized how social equity was incorporated in FEWS literature, we identified one measure each of
121 affordability, access, and quality representing each Food-Energy-Water system to assess trends in

122 barriers to resources and create a United States (US) FEWS Equity Barriers Index. We identified available
123 nationwide data, prioritizing data collected at the census tract level from reputable and publicly
124 available sources. The ten indicators used to analyze and build a FEWS Equity Barriers Index were based
125 on the fit for each equity theme, data availability, and national coverage (Table 1, Figures S1-S10).

126 Indicators were selected to represent, as closely as possible, the FEWS barriers or burdens experienced
127 by each US census tract. Affordability data for food, energy, and water systems were calculated as the
128 "burden" of each system, or the annual cost divided by the median family income for each census tract
129 (Teodoro, 2019). We define access as the ability to obtain FEWS resources, where barriers to access are
130 indicated by the prevalence of food deserts, frequent power outages, and households lacking complete
131 plumbing. Food deserts were selected as the food access indicator due to their emphasis on spatial
132 access which has more limited overlap with food affordability than other indicators considered (e.g.,
133 U.S. Supplementary Nutritional Assistance Program enrollment).

134 For energy access, some areas of the country are more likely to experience inclement weather patterns
135 that can disrupt electricity access; therefore, we selected the Customer Average Interruption Duration
136 Index (CAIDI) measure that includes Major Event Days (i.e., electricity outage caused by a major event;
137 Committee of the IEEE Power and Society, 2012) averaged over a five-year period (2017-2021). Our
138 energy access barrier measure may introduce some confounding variables between climate impacts and
139 energy system performance. While this approach limits our ability to isolate purely operational issues,
140 we believe it provides a more comprehensive assessment of overall barriers to energy access. This
141 method allows us to capture the complex interactions between climate events, energy system
142 infrastructure, and FEWS equity, highlighting areas where infrastructure improvements could enhance
143 system resilience and ensure more equitable access in the face of increasing climate uncertainties. We
144 also explored barriers to resource quality; food quality is gauged by the ratio of unhealthy to total food
145 retailers, water quality by regulatory violations in community water systems, and energy quality through
146 household Energy Consumption Intensity (ECI). The latter reflects a type of energy burden that is
147 particularly relevant for low-income and marginalized households unable to afford energy-efficient
148 housing, underscoring social equity concerns (Buylova, 2020; Reames, 2016; Tong et al., 2021).

149 Addressing FEWS issues, both now and in the future, requires accounting for increasing uncertainties
150 due to climate change, particularly those caused by weather-induced hazards (Alhanaee et al., 2017;
151 Bärring and Persson, 2006; Memarzadeh et al., 2019). Climate change impacts are important at the
152 community scale and are deeply intertwined with FEWS, potentially increasing the risk of widespread
153 energy outages, reduced agricultural productivity, and decreased water potability (Vörösmarty et al.,
154 2023b). To capture these complex interactions, we incorporated a Community Resilience metric from
155 the US Federal Risk Management Agency's National Risk Index in our FEWS Equity Barriers Index. This
156 metric assesses a community's ability to recover from climate-related disasters such as extreme
157 weather, droughts, and wildfires (Zuzak et al., 2022). By including this indicator, our analysis considers a
158 community's ability to bounce back from climate shocks and recognizes that those with limited recovery
159 capacity face greater barriers to climate resiliency. This approach allows us to identify at-risk areas
160 across the US where the complex relationship between climate risks and FEWS vulnerabilities may be
161 most pronounced at the community level.

Table 1: Indicators of barriers to FEWS equity available in the US. The percentage of missing values was calculated after data cleaning (described in section 2.2), leaving 82,907 census tracts.

FEWS System	Equity Theme	Barrier Measurement	Data Source	Units	Data Range	Percentage of Missing Values
Food	Affordability	Food Burden: annual spending/household income	US Consumer Spending (Esri, 2022) US Bureau of Labor Statistics Consumer Expenditure Surveys (US Bureau of Labor Statistics, 2022) 2020 US Census (Walker and Herman, 2023)	cost:income ratio	0-5.9	<1
	Access	Percentage of population further than 0.5 miles (urban areas) or 10 miles (rural areas) from a supermarket	Food Access Research Survey (USDA Economic Research Service, 2022)	%	0-100	25
	Quality	Percentage of healthy food retailers out of total food retailers	Modified Retail Food Environment Index (Center for Disease Control and Prevention - Division of Nutrition, 2012)	%	0-100	36
	Affordability	Energy Burden: annual spending/household income	See <i>Food Affordability</i> data sources	cost:income ratio	0-1.2	<1
	Access	2017 – 2021 Customer Average Interruption Duration Index (CAIDI)	Annual Electric Power Industry Report (US Energy Information Administration, 2021)	minutes	9.5-2146.6	0
	Quality	Average Household Energy Consumption Intensity (energy used for temperature regulation divided by the square footage of livable space) ¹	Modeled. ResStock Residential End Use Load Profiles (National Renewable Energy Laboratory, 2021) 2020 American Community Survey (US Census Bureau, 2020)	kWh/sqft	3.1-32.6	0
Energy	Affordability	Water Burden: annual spending/household income	See <i>Food Affordability</i> data sources	cost:income ratio	0-0.4	<1
	Access	Percentage of households with incomplete plumbing	2020 American Community Survey (US Census Bureau, 2020)	%	0-83.3	0
	Quality	Maximum Number of Violations	Enforcement and Compliance History Online (US Environmental Protection Agency, 2022) (Internet of Water Initiative et al., 2022; SimpleLab and EPIC, 2022)	violation points	0-763	7
Water	Resilience	FEMA National Risk Index – Community Resilience ²	US Federal Emergency Management Agency (Zuzak et al., 2022)	index (0-100)	41.2-64.7	<1
Climate						

164 ¹ Relevant attributes between the ResStock load profiles and the 2020 census survey were identified (i.e., household size,
165 income, state, urban/rural status, type of home, own or rent, fuel type used, and age of home) to model the energy
166 consumption intensity for each census tract. A similar methodology was employed by Bednar et al. (2017).

167 ² Obtained by subtracting the FEMA National Risk Index Community Resilience value from 100.

168 **2.1 Spatial Analysis**

169 Spatial autocorrelation tests Tobler's first law of geography: "Near things are more related than distant
170 things" (Tobler, 1970). Variables with high spatial autocorrelation indicate patterns in the data, such as
171 hotspots or clustering, that require further analysis. Clustering of high barriers indicates systemic issues
172 influenced by the natural environment or regional sociopolitical factors (e.g., city, county, or state
173 governance). Each indicator variable was tested for spatial autocorrelation using Global Moran's I
174 calculated with the spdep package in R and queen criterion neighbors (Bivand, 2022; Bivand & Wong,
175 2018). Values of Moran's I range from -1 to 1, with negative numbers indicating spatial dispersion and
176 positive numbers indicating spatial clustering (Moran, 1950). We then calculated the Local Moran's I
177 values using a Local Indicators of Spatial Autocorrelation (LISA; Anselin, 1995) test, which identified
178 clusters and outliers when compared to neighboring census tracts for each indicator variable. A
179 threshold p-value of 0.05 was used for all statistical tests. Data analysis was performed in R version 4.1.2
180 (R Core Team, 2022). Maps and figures were created using the ggplot2 package in R (Wickham, 2016).

181 **2.2 Data Cleaning and Normalization**

182 As of 2023, there are 84,214 census tracts in the US. We removed census tracts that were missing
183 median household income data (n=1,254) or had a population count of 0 (n=563) in the 2020 American
184 Community Survey. Before locating co-occurrences and calculating the index, census tracts missing more
185 than one indicator in each food, energy, or water system were removed from the analysis (n=9,681).

186 The indicator values for food affordability, energy affordability, energy access, energy quality, water
187 affordability, and water quality had extreme outliers. For these indicators, we considered anything
188 beyond the bottom 2.5th percentile and above the 97.5th percentile to represent the best and worst
189 values. Thus, we capped values outside of below and above this range to be equal to the 2.5th and 97.5th
190 percentiles, respectively. All indicators were normalized to a 0-100 scale,

$$191 x' = 100 \frac{x - \min(x)}{\max(x) - \min(x)}$$

192 where the maximum and minimum are of each individual indicator x . For food quality and climate
193 resilience, the normalized data were subtracted from 100 to obtain their complements. This step
194 ensured all variables followed the same trend of lower values indicating more barriers to FEWS
195 resources. This normalization results in values closer to 0 indicating low barriers, while values closer to
196 100 indicate high barriers to FEWS resources.

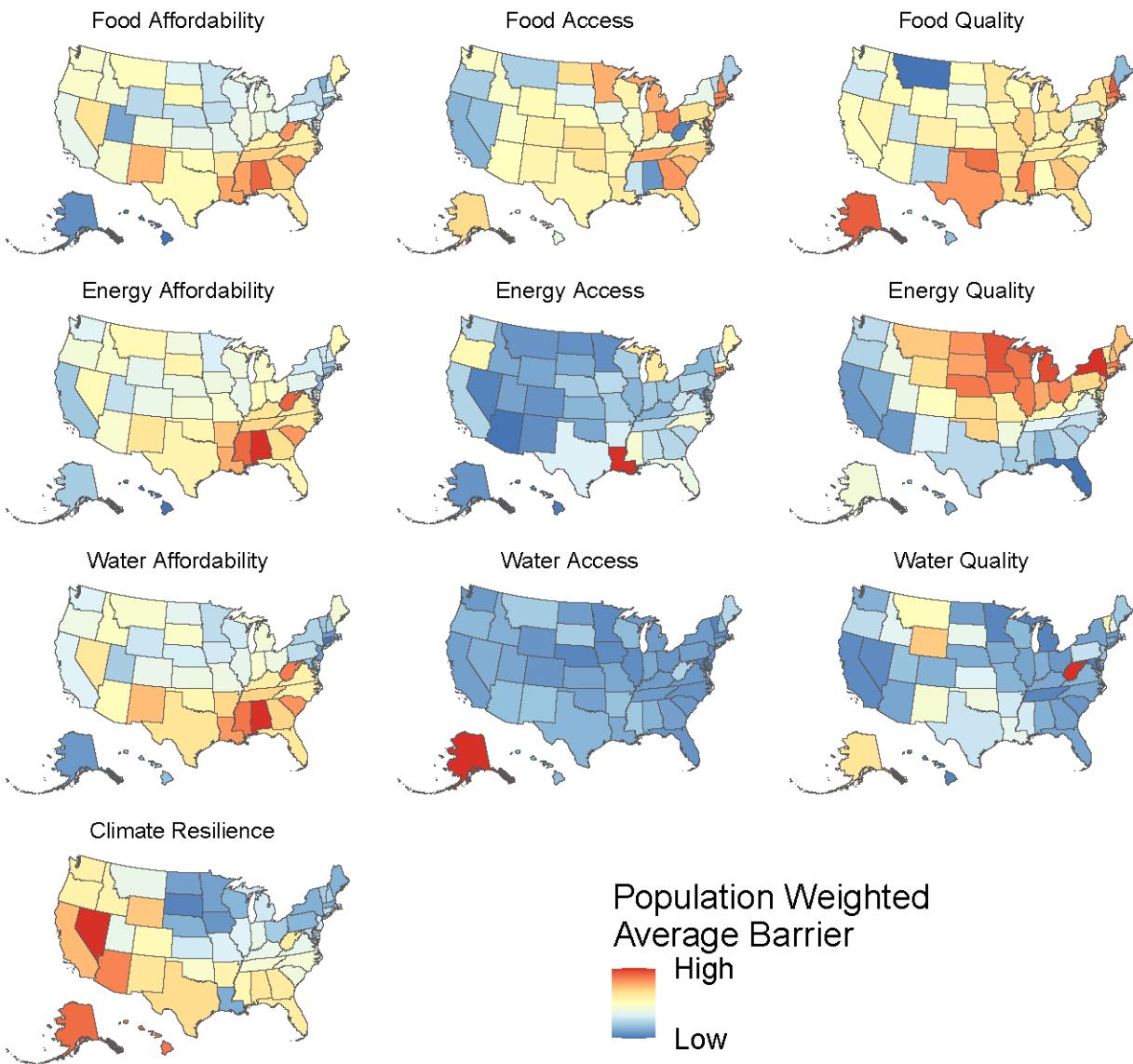
197 **2.3 Identification of Co-Occurrences**

198 After normalizing the data for each indicator, we identified co-occurrences of barriers both within and
199 across the FEW systems. For each system, we identified values in the top and bottom quintiles (80th and
200 20th percentiles; Tong et al. 2021) for each barrier (affordability, access, and quality). We then identified

201 census tracts where all three barriers had significant high or low values and identified the relationship as
202 an intersection of high values (top quintile or more barriers), low values (bottom quintile or fewer
203 barriers), or a mixed intersection (at least one high and one low quintile value; conflicting barriers).

204 **2.4 Index Calculation**

205 The FEWS Equity Barriers Index was computed with:


206
$$\text{FEWS Equity Barriers Index} = (0.3 * \text{Averaged food barriers}) + (0.3 * \text{Averaged energy barriers})$$

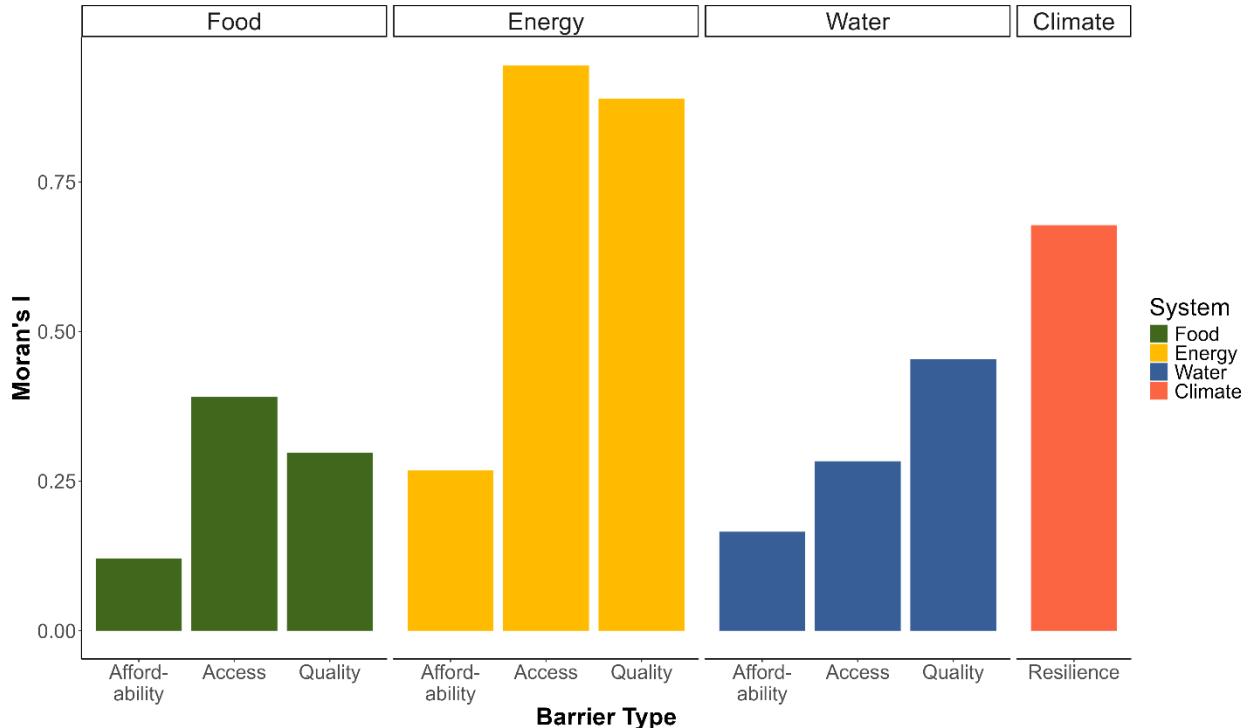
207
$$+ (0.3 * \text{Averaged water barriers}) + (0.1 * \text{Community Resilience})$$

208 Index values were calculated by taking the average of the three indicators (i.e., affordability, access, and
209 quality) in each FEWS to get a separate value for each system. This step allowed us to still obtain a value
210 for each system, even if there was a missing barrier value (Table 1). The weights used (0.3 and 0.1)
211 ensured the climate indicator (community resilience) was not given more weight than any FEWS
212 indicator. The final index values were then normalized to obtain a 0-100 scale.

213 **3 Results**

214 **3.1 Variation of FEWS Equity Barriers by State**

215 Mapping barriers to FEWS affordability, access, and quality shows regional and statewide trends (Figure
216 1). Barriers to FEWS affordability remain consistently high through Alabama, West Virginia, Mississippi,
217 South Carolina, and Louisiana. Delaware and Connecticut had the highest population-weighted food
218 access barriers due to the percentage of the population living far from a grocery store. Energy and water
219 access barriers were highest in Louisiana and Alaska, respectively. Food quality barriers, or the
220 proportion of unhealthy food to healthy food retailers in an area, were higher in the Southern US,
221 Northeastern US, and Alaska. Energy quality barriers have the clearest regional trend of any FEWS
222 barrier, with Northern states having higher barriers on average (Figure 1). Water quality barriers were
223 considerably higher in West Virginia than any other state. Mapping average climate resilience by state
224 shows that Western and Southern states and Alaska tend to be more vulnerable to climate change
225 impacts than states on the East Coast or in the Midwest.

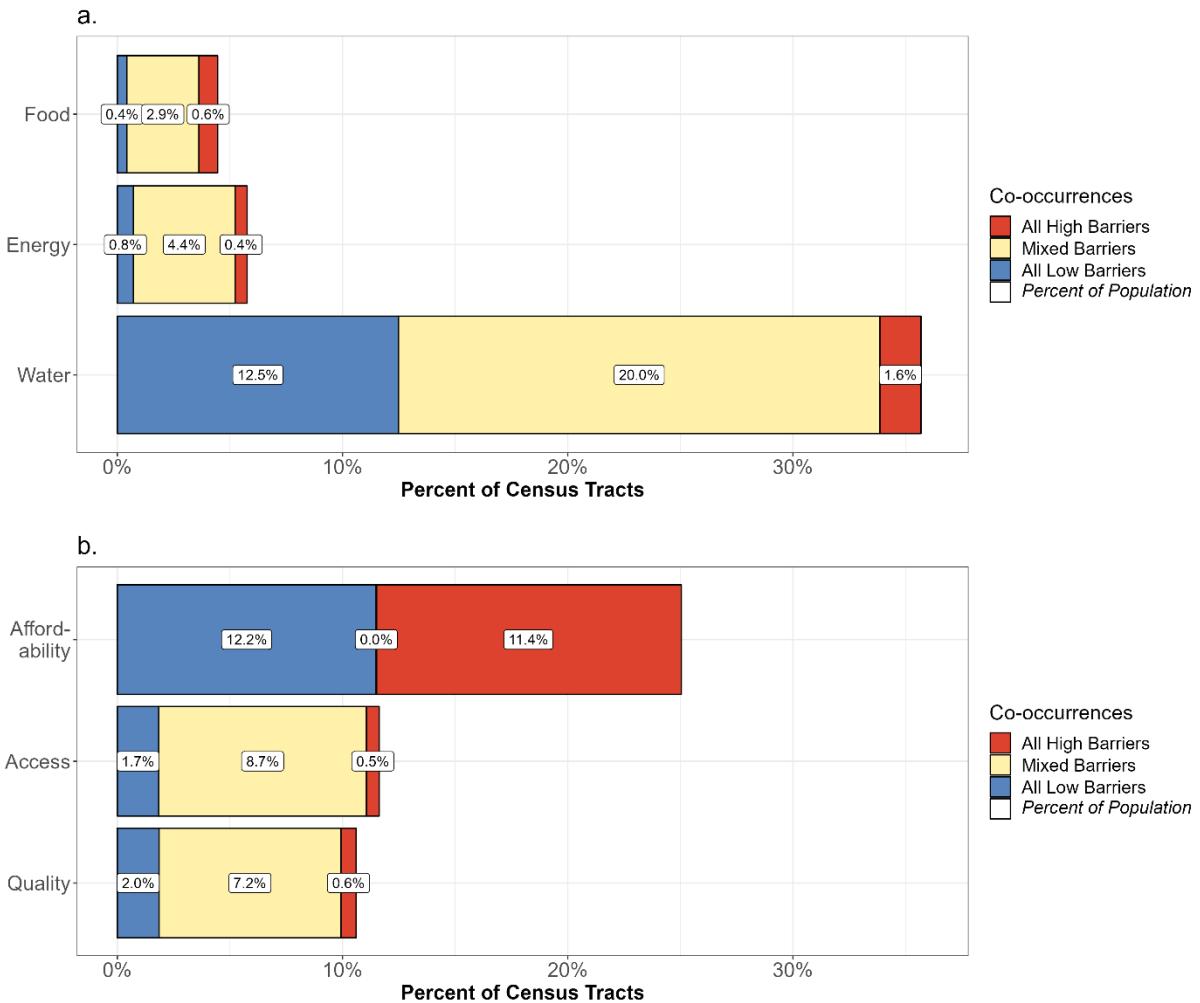


226
227

Figure 1. FEWS barriers mapped by US state. Higher values correspond to higher population-weighted barriers to FEWS equity.

228 3.2 Spatial Analysis

229 Each of the nine indicators contained a positive spatial autocorrelation based on Moran's I, ranging from
 230 0.12 (low spatial autocorrelation) to 0.94 (high spatial autocorrelation; $p < 0.05$, Figure 2). High spatial
 231 autocorrelation of FEWS barriers suggests that the ability to obtain resources may be locally influenced
 232 by the natural environment or sociopolitical factors such as economics (e.g., cost of living, household
 233 income) and policies (e.g., assistance programs, FEWS regulations). While all barriers had a positive
 234 spatial autocorrelation and showed spatial clustering, some were not as clustered as others. For
 235 example, affordability barriers to FEWS were the least spatially clustered, with food affordability having
 236 the lowest Moran's I value. Barriers to energy were among the most spatially correlated, likely due to
 237 the regional distribution of US energy infrastructure (Figures 1 and 2).

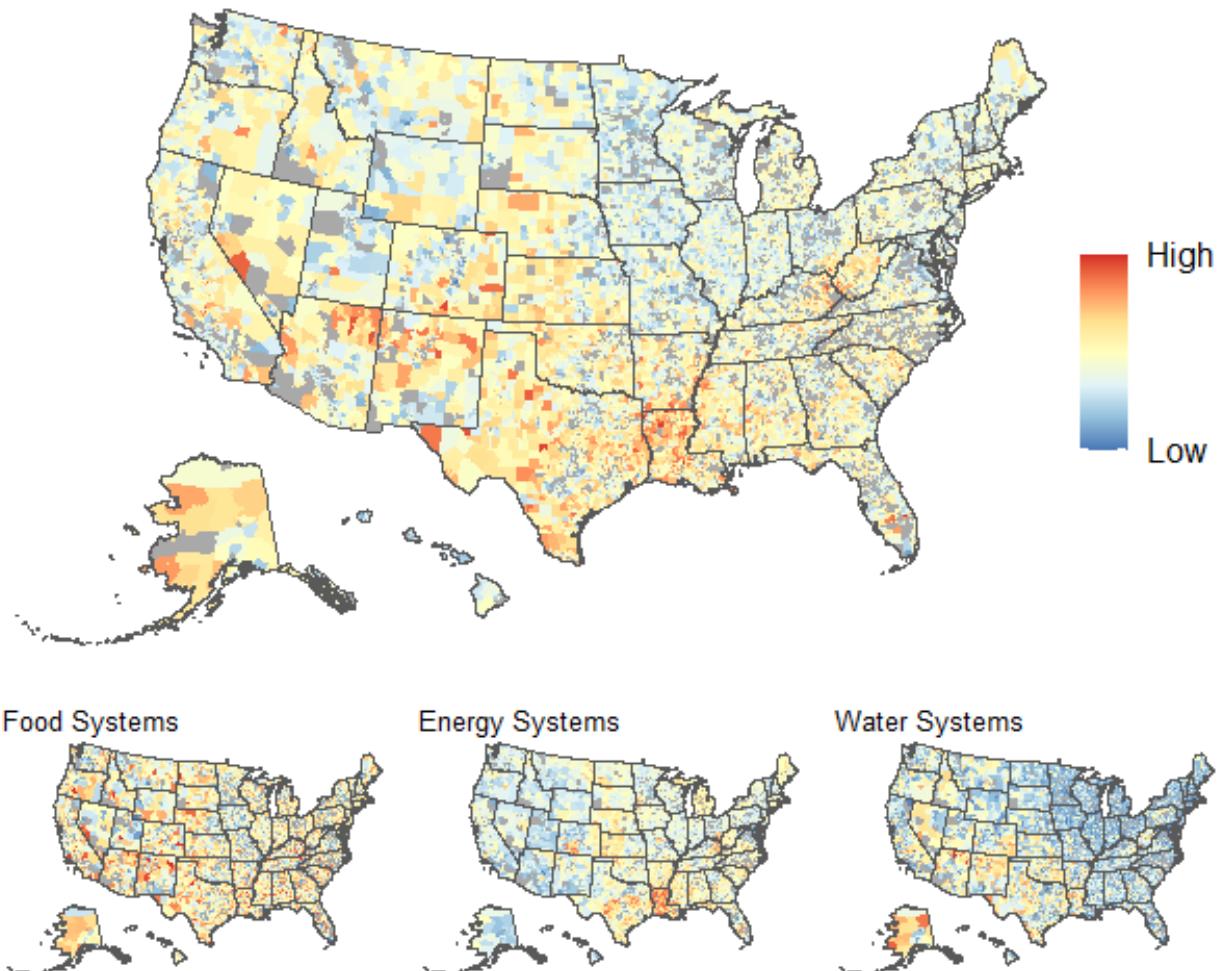

238

239 *Figure 2: Degree of spatial autocorrelation of FEWS equity indicators across the US.*

240 After energy barriers, the next most spatially correlated metric was the community resilience (Climate)
 241 value, followed by water systems. The large percentage of missing food access (25%) and food quality
 242 (36%) data (Table 1) influences Moran's I values because tracts with missing values are omitted in the
 243 calculation. Water systems are regionally connected (i.e., watersheds or aquifers); thus, we expected to
 244 observe more spatial trends in the water barriers, particularly for water quality (number of violation
 245 points at the Community Water System). However, compared to the other systems, water access and
 246 quality barriers were only moderately spatially autocorrelated (Moran's I of 0.28 and 0.45, respectively),
 247 showing less spatial trends than expected.

248 **3.3 Co-Occurrences of Barriers**

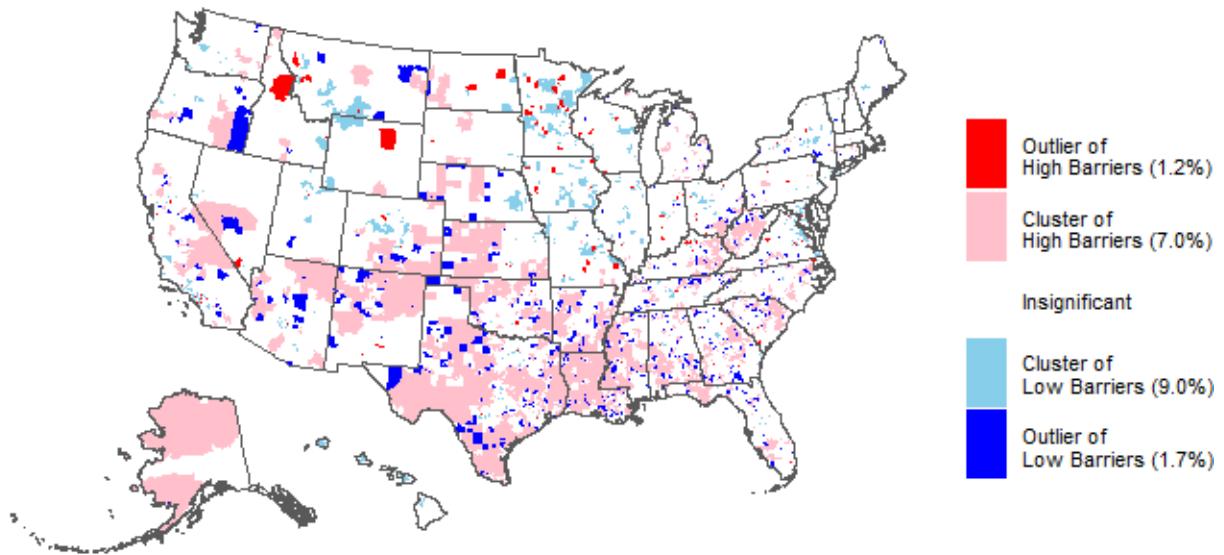
249 In both food and energy systems, co-occurrences were infrequent, occurring in less than 10% of census
 250 tracts (Figure 3-a). Barriers to equitable water systems co-occurred most often. In 17% of census tracts,
 251 there were co-occurring low barriers to water affordability, access, and quality. Low barriers to water
 252 access (houses with incomplete plumbing) and quality (community water violations) co-occurred in 54%
 253 of the census tracts. However, 9% of census tracts had high barriers to water affordability but low
 254 barriers to water access and quality, meaning that citizens could access high-quality water, but it was
 255 relatively more expensive (data not shown). Co-occurrences of high or low barriers across FEWS were
 256 also infrequent (Figure 3-b). Barriers to affordability of FEWS co-occurred most often and exclusively in
 257 parallel; that is, census tracts frequently had all high (14%) or all low (11%) barriers to FEWS
 258 affordability.


259

260 *Figure 3: Percentage of census tracts with co-occurrences (a) within each food, energy, or water system and (b) within each*
 261 *barrier to affordability, access, and quality. High Barriers = census tract in the bottom 20th percentile, indicating more barriers*
 262 *to equity in each system. Low Barriers = census tracts in the top 80th percentile, indicating less barriers to equity in each system.*
 263 *Mixed barriers = some barriers were in the top 20th percentile and some barriers were in the bottom 20th percentile.*

264 **3.4 FEWS Equity Barriers Index**

265 The FEWS Equity Barriers Index combines metrics associated with affordability, access, and quality
 266 barriers to FEWS resources, as well as community resilience to climate change (Figure 4). Combining
 267 nationwide metrics provides a snapshot of barriers to FEWS resources and suggests areas for
 268 stakeholder engagement and targeted investment. While FEWS are biophysically interconnected and
 269 require consideration of the whole nexus, maps detailing index values for individual FEW systems also
 270 offer insights into patterns and trends across the US.


FEWS Equity Barriers Index

271
272 *Figure 4: Values of the FEWS Equity Barriers Index and individual F, E, W systems in the US. Higher values represent higher*
273 *barriers to FEWS equity. Grey areas indicate missing data.*

274 To this point, higher FEWS Index values in the Southwestern US were primarily influenced by
275 considerably high barriers to water resources. Meanwhile, the influence of energy systems on the FEWS
276 Equity Barriers Index is notable along the Gulf Coast, particularly in states like Louisiana, Florida, and
277 Texas. In Northern states where energy for heating during winter months is essential, we expected
278 higher energy costs to drive higher affordability barriers; yet, the energy system index showed higher
279 barriers to affordability and quality in Southern states (Figures 1 and 4). Food systems show fewer
280 regional trends that influence the FEWS Equity Barriers Index. Compared to energy systems (i.e.,
281 Western states have lower barriers) and water systems (i.e., where Eastern states have lower barriers),
282 food barriers vary throughout the US (Figures 1 and 4).

283 The FEWS Equity Barriers Index had a moderate positive spatial autocorrelation, with a Moran's I value
284 of 0.37 (Figure 5). Areas of low barriers to FEWS resources were clustered primarily in Hawaii, the
285 Midwest, and some Northern states. Areas of high barriers were clustered in Alaska, the Southern US,
286 and some Western states. An interesting note is that while the index had a positive spatial
287 autocorrelation, there were few co-occurrences between barriers in the same census tract (Figure 3).

288

289 *Figure 5: Spatial clustering of the FEWS Equity Barriers Index, as determined by Moran's I and Local Indicators of Spatial*
 290 *Autocorrelation (LISA). Clustering census tracts indicate large groups of census tracts with similarly high/low values, while an*
 291 *outlier census tract is dissimilar to neighboring census tracts. Insignificant census tracts are neither similar nor dissimilar to their*
 292 *neighbors, as determined by the LISA analysis. Values in parentheses indicate the percent of the US population in each cluster*
 293 *type.*

294 **4 Discussion**

295 **4.1 Variation of FEWS Equity Barriers by State**

296 Affordability barriers across FEWS were predominately observed in states with below-average median
 297 incomes, suggesting that these barriers stem from financial disadvantages rather than high costs of
 298 living (US Census Bureau, 2020). Indeed, Teodoro and Saywitz (2020) found regional trends showing
 299 worse affordability potential in the South versus other areas of the US. Further, many other researchers
 300 have observed high barriers to energy affordability throughout the South, with some studies indicating
 301 that the use of electric rather than natural gas heating may exacerbate affordability issues for low-
 302 income households in Southeastern states with climates that require substantial heating and cooling (M.
 303 A. Brown et al., 2020b).

304 Our findings on population-weighted food access barriers differ from the US Department of Agriculture
 305 (USDA) food access reporting, where South Dakota had the highest population share in low access
 306 census tracts (Rhone et al., 2019). It is difficult to compare our findings with the USDA report because
 307 we considered all census tracts with data rather than the USDA's method of sorting by a binary measure
 308 of low access. Additionally, food access is commonly contextualized by looking at income level in
 309 addition to distance from grocers; low-income households may have outsized difficulty getting to a
 310 distant grocery store because they do not have access to a vehicle (Ver Ploeg et al., 2015). Energy and
 311 water access barriers were highest in Louisiana and Alaska, respectively. Louisiana is vulnerable to
 312 natural hazards, including hurricanes, flooding, storms, and extreme temperatures; furthermore, climate
 313 change is increasing the number of outages caused by extreme weather resulting in the highest number

314 of outage hours in the US (Climate Central, 2022; Do et al., 2023). Many studies have confirmed the lack
315 of access to water infrastructure in Alaska, with causes attributed to unique environmental and social
316 conditions along with a lack of financial resources (Brown et al., 2022; Penn et al., 2017; Spearing et al.,
317 2022).

318 The higher energy quality barriers in the Northern US are related to higher energy use in Northern states
319 with cold climates. While higher energy barriers in the Northern US relate primarily to biophysical
320 factors such as climate and weather, sociopolitical factors can determine the actual impact on people
321 living there. For example, weatherization programs reduce energy use and costs to households in cold
322 climates by insulating, sealing, and repairing residential structures (Tonn et al., 2023, 2018).
323 Furthermore, many states take advantage of federal funding to offer assistance for energy-efficient
324 appliance purchases and home repairs to low socioeconomic status households (American Council for an
325 Energy-Efficient Economy, 2017; Cluett et al., 2016). Policies and programs that help households
326 overcome energy barriers were not captured in our analysis but should be considered when engaging
327 stakeholders at a local level to gain additional context.

328 Climate vulnerabilities in Southwestern states can be linked to natural hazards, including drought, heat
329 waves, fires, and earthquakes (Zuzak et al., 2022). Along the Gulf Coast, natural hazards such as
330 hurricanes, extreme storms, flooding, and tornados make states like Texas, Mississippi, Alabama,
331 Georgia, and Florida relatively vulnerable (Zuzak et al., 2022). Natural hazards are not the only
332 determinant of climate vulnerability; sociocultural, economic, and institutional factors are considered
333 along with the condition of the built environment and community capacity to determine overall climate
334 resilience or vulnerability (Cutter et al., 2014). Thus, barriers to climate resilience offer insights into the
335 relationship between biophysical and sociopolitical factors that influence outcomes. For example, Tee
336 Lewis et al. (2023) found six distinct geographic groupings of census tracts across the US with similar
337 climate vulnerability scores driven by environmental, social, and built environment factors. In this way,
338 climate resilience can be a good gauge of current and future FEWS barriers by quantifying systematic
339 risk.

340 **4.2 Spatial Analysis**

341 The lack of spatial clustering in affordability data could be caused by the normalization of cost data by
342 the median household income in each census tract. Large disparities in household income can exist
343 between neighboring census tracts or even neighboring houses (Weinberg, 2011), which reduces the
344 likelihood of spatial clustering. However, higher costs of living (such as housing, food, water, energy,
345 etc.) are associated with higher median income, suggesting that the two may have a dampening effect
346 on each other (Bauer et al., 2018).

347 Although energy companies typically operate on a much smaller extent to deliver power to buildings
348 (i.e., one to a few companies per state; Edison Electric Institute, 2023), these connections are nested
349 within a larger grid network connecting multiple states (US Environmental Protection Agency, 2023).
350 With such a large regionally connected energy grid, wide-reaching energy disruptions are more likely.
351 Further, factors that contribute to increased energy consumption intensity (energy quality) or outage
352 durations (energy access) are most often climate- or weather-related and occur regionally. However,
353 even in systems primarily influenced by environmental factors, socioeconomic factors can still
354 significantly impact outcomes. For example, Tong et al. (2021) found census blocks with a higher

355 proportion of people of color had higher energy use intensity, which has been linked to historically
356 discriminatory housing policies that result in older housing stock and lower rates of home ownership
357 (Goldstein et al., 2022). Adding to this disparity, higher energy use in low-income homes is related to the
358 high initial cost of having an energy-efficient household (Pivo, 2014). Meanwhile, energy costs are based
359 on the distribution company and usage levels, leading to a stronger tie to the built environment (i.e.,
360 building efficiency and energy grid) as well as the natural environment (i.e., climate), which influences
361 demand.

362 Spatial analysis revealed varying patterns across the different FEWS metrics. The community resilience
363 metric was highly spatially clustered (Moran's $I = 0.67$), which may be attributed to its reliance on social
364 measures such as the demographic makeup, financial well-being, and sociocultural properties.
365 Additionally, localized infrastructure and institutional factors within a community could contribute to
366 this relatively high level of spatial clustering (University of South Carolina - Hazards & Vulnerability
367 Research Institute, 2015). In contrast, water quality barriers exhibited a lack of clear spatial trends. This
368 absence of pattern could be related to how Community Water Systems (CWS) receive violation points,
369 which are not entirely based on the quality of water but also on the quality of monitoring and
370 communication (US Environmental Protection Agency, 2023). Further, common treatments for
371 contaminants vary by CWS; that is, not all CWS treat for all contaminants. Additionally, we could not
372 account for water quality in private well systems used in many rural areas that could influence the
373 spatial trends related to water quality. Other researchers have observed the lack of data about private
374 well water quality and emphasized the need for further study (Allaire et al., 2018; Marcillo & Krometis,
375 2019).

376 **4.3 Co-Occurrences of Barriers**

377 The lack of co-occurrences in food and energy systems suggests that some barriers to food and energy
378 resources are less related to location, possibly due to the dispersed nature of food and energy systems
379 compared to water systems (Stone et al., 2023). Meanwhile, low barriers to water access were likely due
380 to the distribution of barriers to water, which was highly skewed towards 0 or low barriers to both water
381 access and water quality (data not shown).

382 The census tracts with high barriers to affordability of resources in all three FEWS are either financially
383 disadvantaged due to lower income or located in areas with higher costs of living. In our analysis, census
384 tracts with high affordability barriers had lower median incomes—just over half (55%) of the overall
385 average median income across all US census tracts. Food, energy, and water costs in these tracts were
386 also lower—12% less than the US average, indicating that median income has a greater effect on
387 affordability barriers. Census tracts with low barriers to FEWS affordability averaged almost seven times
388 larger in geographic area than census tracts with high barriers to FEWS affordability. This result suggests
389 rural areas have lower barriers to affordability because the similar population counts in census tracts
390 indicate large tracts are less densely populated. In this analysis, we did not delve into the disparities
391 between urban and rural areas, but it would be valuable to investigate this contrast in future research.

392 Even though affordability indicators were not highly spatially correlated (Moran's $I < 0.3$; Figure 2), they
393 often co-occurred in the same census tracts and followed the same trend (i.e., high affordability barriers
394 co-occurred with other high affordability barriers). The trend of co-occurrences with a lack of spatial
395 clustering could suggest that affordability barriers are caused by more systemic issues brought on by

396 local sociopolitical factors associated with governance rather than biophysical factors such as climate
397 and geology. To this point, a literature review of low-income households in the Southern US found that
398 both location and socioeconomic status impacted energy burden, with rural areas and marginalized
399 communities experiencing the greatest energy burden due in part to older housing stock, energy source,
400 and efficiency policies and programs that are not accessible to low-income people (M. A. Brown et al.,
401 2020a). In the context of the COVID-19 pandemic, food system inequities reinforced health inequities:
402 Black and Indigenous communities and people of color in the US disproportionately experienced both
403 increased food insecurity and hospitalization (Klassen and Murphy, 2020). Several studies assessing
404 affordability highlight the importance of a nuanced relationship between economic, social, and
405 demographic factors that can increase food, energy, and water resource vulnerability (Cardoso and
406 Wichman, 2022; Doremus et al., 2022; Horst et al., 2016).

407 **4.4 FEWS Equity Barriers Index**

408 The FEWS Equity Barriers Index was heavily influenced by one system in a few regions, such as high
409 barriers to water resources in the Southwestern US. Droughts in the Western US have heightened water
410 scarcity, leading to increased costs, treatment challenges, and conflicts over water rights and allocation
411 that directly affect affordability, access, and quality (McKinney and Thorson, 2015). Agricultural
412 production accounts for the majority of water usage in the Western US (Schaible and Aillery, 2017) and
413 contributes to the contamination of water resources, particularly by increasing nitrate concentrations
414 (Schaider et al., 2019), which could increase water costs or degrade water quality. Extended droughts in
415 the Western US are becoming more frequent and severe due to climate, causing an increased reliance
416 on groundwater for irrigation that further strains water supplies (Balting et al., 2021). Studies of water
417 system barriers in this region also found similar trends that tie water insecurity to increased drought,
418 temperatures, and deteriorating physical water infrastructure (Mullin, 2020). Furthering the strain on
419 water supplies, climate change-induced wildfires compromise traditional source water from snowmelt in
420 forested mountain watersheds (Barnard et al., 2023). Water access insecurity is nuanced in the US
421 context, with 50% of the population with incomplete plumbing living in highly urbanized spaces that
422 disproportionately hurt low-income communities and people of color (Meehan et al., 2020). These
423 diverse pressures on water resources underscore the urgent need for integrated management and
424 governance to ensure sustainable and equitable access to FEWS resources.

425 Energy barriers to access were predictably higher in these areas where natural disasters (e.g., tornados,
426 hurricanes) that can cause outages are more prominent (Burga, 2022). The high barriers to energy
427 affordability and quality in Southern states rather than Northern states could be partially explained by
428 the older housing stock in the South or by the use of natural gas for heating in the North, which is often
429 less expensive than electric heating and cooling in the South (M. A. Brown et al., 2020a). In addition, lack
430 of access to heat in Northern winter climates has more severe consequences on housing stock (e.g.,
431 burst water pipes) than lack of access to cooling in the summer. However, low-income communities and
432 people of color in the South face increasing health risks from lack of access to air conditioning due to
433 extreme temperatures caused by climate change (Gutierrez and LePrevost, 2016; Hsu et al., 2021;
434 Wilson, 2020).

435 The lack of regionality in food systems may be due to the food system metrics available because lack of
436 access due to spatial limitations (i.e., food deserts) in the US is common in rural areas regardless of
437 region (Horst et al., 2016). Likewise, food system affordability and quality barriers (based on the

438 proportion of healthy food retailers) tend to cluster in areas with higher population and median income,
439 meaning that racial and socioeconomic barriers can limit food access within cities on a highly localized
440 basis, with less variability at the regional scale (Crowe et al., 2018; Sullivan, 2014).

441 The FEWS Equity Barriers Index has some important limitations in the context of indigenous FEWS
442 resources and land use. For example, Alaska was found to have consistently high barriers, particularly
443 related to food and water resources (Figure 4). Lack of complete plumbing is more prevalent in Alaska
444 than in any other state (Antrobus et al., 2017), and water quality violations at the CWS are high for a
445 large portion of the population as well (Marino et al., 2009). The lack of safe, reliable, and accessible
446 water systems is a well-known issue in Alaska, stemming from complex sociopolitical and natural
447 challenges (Spearing et al., 2022). Small, rural communities located in harsh arctic environments face
448 difficulties related to funding, building, maintaining, and operating piped water systems that are prone
449 to failure during winter months (Cozzetto et al., 2013; Hickel et al., 2018; Thomas et al., 2016). However,
450 work by Schmidt et al. (2022) in rural areas of Alaska found that residents reported high FEWS security,
451 particularly in food and water resources. One explanation for this contrast may be that our indicators
452 did not capture traditional sources of food, energy, and water collected from the local environment;
453 that is, many of the residents interviewed by Schmidt et al. (2022) reported gathering their own FEWS
454 resources rather than relying on contemporary infrastructure. The data we used in the analysis may also
455 obscure intricacies related to energy systems, as we were unable to include information about energy
456 obtained from traditional sources such as firewood. These data availability considerations likely apply to
457 other states and regions in the US, especially rural areas.

458 Clusters of high barriers suggest that barriers could be influenced by the local natural environment and
459 sociopolitical factors. We would expect census tracts with co-occurrences to have an inflated or deflated
460 index value, depending on whether the co-occurrences were of high or low barriers. Likewise, we would
461 expect a moderate index value in census tracts that did not contain co-occurrences. The positive spatial
462 autocorrelation observed in the index emphasizes the importance of considering local factors related to
463 built, natural, and sociocultural environments.

464 **4.5 Significance and uses for the FEWS Equity Barriers Index**

465 In this study, we identified census tracts in the US where residents face greater barriers to FEWS
466 resources. Residents in these census tracts may be more vulnerable to future climate change impacts on
467 FEWS. For example, a recent US Environmental Protection Agency (2021) report found that many
468 socially vulnerable groups (identified based on income, race, ethnicity, education level, and age) were
469 disproportionately impacted by climate change ranging from direct effects on FEWS (e.g., inland and
470 coastal flooding) to indirect (e.g., extreme temperatures, air quality and health). Thus, increasing
471 resilience by modifying the built environment, such as weatherization of buildings and the power grid,
472 could produce co-benefits for health and equity under a changing climate (Vörösmarty et al., 2023b;
473 Younger et al., 2008). The FEWS Equity Barriers Index combines key physical and social barriers for
474 equity and FEWS in one useful metric, creating opportunities to understand how FEWS interacts with
475 social equity, which could support targeted climate-smart investments in critical FEWS infrastructure.

476 Many indices have been developed to describe socioeconomic or demographic inequities by comparing
477 geographic regions (e.g., countries or cities), for example, the Climate & Economic Justice Screening Tool
478 (CEJST; Executive Office of the President of the United States: Council on Environmental Quality, 2022)

479 and the Energy Justice Dashboard (US Department of Energy: Office of Economic Impact & Diversity,
480 2023). These tools aim to identify "disadvantaged communities that are marginalized, underserved, and
481 overburdened by pollution" (The Biden Administration, 2023). While some data sources and themes in
482 the FEWS Equity Barriers Index are similar to those in the Energy Justice Dashboard and CEJST, our index
483 can identify barriers to FEWS resources and support diverse stakeholder-engaged conversations and
484 decision-making. We did not include socioeconomic or demographic variables in our index; rather, we
485 explored critical co-occurrences among interconnected systems to highlight equity concerns specific to
486 the FEWS context. This study can thus serve as a guide for future FEWS researchers and stakeholders
487 across governmental or geographic scales to explore potential barriers. The maps provided could also
488 help government officials and decision-makers to identify locations where investments should be made
489 to either increase equity in these systems or provide services to assist more vulnerable or at-risk
490 populations.

491 A recent review of the literature found that a growing number of FEWS studies have used stakeholder-
492 engaged mapping to support effective governance and confront critical FEWS challenges across
493 governmental scales (Tye et al., 2022). However, these efforts often include only stakeholders who are
494 current decision-makers and, thus, reflect current power structures (G. Brown et al., 2020). This type of
495 participatory mapping is a promising approach that could engage stakeholders and support decision-
496 making if implemented with an equity lens to enhance institutional and interpersonal trust (Chambers,
497 2006; Garcia-Martin et al., 2017). The maps of current barriers to FEWS resources at the census tract
498 scale developed in this study could support this effort by identifying where to begin stakeholder
499 engagement and the critical FEWS equity barriers necessitating investments in these areas. Given that
500 FEWS decision-making involves both socio-cultural and biophysical components (Garcia-Martin et al.,
501 2017), our digital maps would be most effective when used to enhance place-based conversations about
502 community planning. These discussions should involve decision-makers and those most impacted by
503 FEWS barriers, using co-creation and participatory methods similar to those found within sustainability
504 science, natural resource management, and agroecology literature (Busse et al. 2023; Hakkarainen et al.,
505 2022; Lopez-García et al., 2021).

506 **4.6 Limitations and Data Needs**

507 The availability and quality of nationwide data limits this and similar analyses. Detailed socioeconomic
508 and demographic data take time and care to collect. Data collection at the national scale requires
509 substantial funding and organizational efforts, often possible only through government support. Due to
510 privacy and statistical accuracy concerns, most data were aggregated at coarser resolutions by the data
511 collection agencies (e.g., the US Census Bureau). Inconsistent metrics and lack of high-resolution (e.g.,
512 census tract) data can make it challenging to create tools to support FEWS decision-making (M. A. Brown
513 et al., 2020a). Ideally, all metrics used in this analysis would be collected simultaneously to best
514 represent FEWS resource provisioning at a snapshot in time. We attempted to find the most reliable and
515 accurate data sources from as similar years as possible, with most datasets collected within a three-year
516 timespan (i.e., 2020-2023), except for the 2012 food quality data. Other FEWS nexus researchers have
517 encountered similar issues in obtaining relevant data across geographic regions and scales, indicating
518 the need for improved collection and aggregation of national FEWS data (Khan et al., 2022; Yadav et al.,
519 2021).

520 Many data sources for identifying current barriers to affordable, accessible, and high-quality FEWS were
521 difficult to locate at a national scope or from reputable sources. Food system barrier data were
522 particularly challenging to obtain, likely due to the complex and international nature of food systems,
523 alongside the difficulty of collecting data within a free-market context (Stone et al., 2023). The large
524 proportion of missing food data (25% and 36% in access and quality, respectively) likely dampened the
525 spatial trends found in our analysis. This dampening effect would occur because clustering analysis is
526 based on neighboring census tracts, and missing data reduces the number of neighbors for affected
527 tracts (Anselin, 1995). We used food deserts as the indicator for spatial access to food, although this
528 measure alone is not a comprehensive representation of food insecurity (Taylor & Ard, 2015). No
529 alternative measure capturing the multiple dimensions of food access was available with the necessary
530 spatial orientation and coverage for our study. Improving FEWS equity analyses requires the
531 development of more comprehensive food access and security indicators that are rooted in principles of
532 social equity, applicable at the national scale, and sensitive to local contexts (ver Ploeg et al., 2015).

533 Environmental and social system interactions further complicate identifying useful FEWS barrier metrics.
534 For example, food deserts are less correlated to diet-related health disparities than to income and race
535 (Brinkley et al., 2017). The energy quality barrier was similarly challenging due to the lack of energy
536 efficiency data at the household level. Energy use and costs are often greater for low-income or renting
537 households without the means (or permission) to increase the energy efficiency of their home (Pivo,
538 2014) or appliances (M. A. Brown et al., 2020a). Although the ideal energy quality barrier metric would
539 be a comprehensive measure of household energy efficiency, we used the best available option –
540 temperature regulation on a square foot basis.

541 The FEWS Equity Barriers Index used equal weighting of nine FEWS barriers related to affordability,
542 access, and quality, including one additional barrier to climate resilience. Index weights are generally
543 assigned one of four ways: i) equal weighting (as done in this study), ii) weights based on statistical
544 analyses such as principal component analysis, iii) weight assignment based on the results of a multi-
545 criteria decision-making process, and iv) participatory selection by surveying experts or stakeholders
546 (Moreira et al., 2023). We chose to use equal weights to account for the interconnections within the
547 FEWS nexus and avoid biasing the result to any particular system or barrier type. Exploring different
548 weighting schemes, particularly stakeholder-engaged participatory weighting, could support regionally
549 specific analyses for effective governance in the face of climate change and increased human population
550 (Carrier et al., 2016; Heckert & Rosan, 2016; Albrecht & Ramasubramanian, 2004).

551 Though not included in our study, sociocultural barriers are another critical form of inequity in FEWS
552 that can involve personal preferences, cultural norms, and household dynamics (Stone et al., 2023).
553 These barriers are difficult to incorporate because they require collecting qualitative or interview data
554 using place-based and mixed methods that are more conducive to a narrower scope and geographic
555 scale (Dean and Sharkey, 2011; Hoolahan et al., 2018). One avenue for future work is to use our FEWS
556 Equity Barriers Index map as a starting point to engage stakeholders in developing methods and
557 measures for incorporating place-based sociocultural FEWS barriers. Combining our index with such
558 measures could be useful for FEWS decision-making and planning, particularly by coordinating with
559 decision-makers to increase climate change resiliency.

560 **5 Conclusion**

561 FEWS resources are critical to human health and well-being, but barriers to quality resources exist for
562 many populations across the US. Inequities can be highly localized, with some census tracts having more
563 barriers to FEWS than others. Our previous work highlighted the need for comprehensive tools to assess
564 social equity in FEWS (Stone et al., 2023). FEWS are inherently tied to place, necessitating an ability to
565 consider regional, local, and place-based elements (Garcia and You, 2016). Our analysis at the census
566 tract scale identifies inequities within communities and provides an opportunity to make nationwide
567 assessments that can inform FEWS governance. Using equity metrics related to affordability, access,
568 quality, and climate risk, we developed a spatial index to understand the current condition of equitable
569 distribution of FEWS within the US.

570 Government agencies and decision-makers at local, regional, state, and federal levels should consider
571 barriers and potential equity implications when administering FEWS resources. The FEWS Equity Barriers
572 Index can support the comparison of entities across different geographical locations, as was shown in
573 this study. These comparisons could act as a catalyst for stakeholder-engaged conversations about best
574 practices that connect biophysical FEWS to social equity and well-being. Future work should focus on co-
575 producing specific pathways to reduce inequitable barriers in FEWS, especially those that can be
576 exacerbated by climate change or for census tracts with high barriers. Local community engaged
577 analyses (i.e., in a city or county) could also help to identify barriers that are difficult to measure
578 nationally, such as social and cultural preferences, perceptions, and experiences. Regarding affordability,
579 our work suggests that issues were systemic and caused by local sociopolitical factors, not solely the
580 naturally existing environment. These systemic issues should be addressed to ensure fair and just FEWS
581 access both now and in the future.

582

583 **Declaration of Generative AI and AI-assisted technologies in the writing process:** During the
584 preparation of this work, the authors used Grammarly AI to improve readability and clarity. After using
585 this tool, the authors reviewed and edited the content as needed and take full responsibility for the
586 content of the publication.

587

588 **References**

589 Albatayneh, A., 2023. Water Energy Food Nexus to Tackle Climate Change in the Eastern Mediterranean.
590 Air, Soil and Water Research 16. <https://doi.org/10.1177/11786221231170222>

591 Albert, C., Von Haaren, C., Othengrafen, F., Krätzig, S., Saathoff, W., 2017. Scaling Policy Conflicts in
592 Ecosystem Services Governance: A Framework for Spatial Analysis. *Journal of Environmental Policy
593 & Planning* 19, 574–592. <https://doi.org/10.1080/1523908X.2015.1075194>

594 Albrecht, J., Ramasubramanian, L., 2004. The moving target: A geographic index of relative wellbeing. *J
595 Med Syst* 28, 371–384. <https://doi.org/10.1023/B:JOMS.0000032852.57626.94>

596 Alhanaee, G., Sanders, K., Meshkati, N., 2017. Rising Temperatures, Rising Risks: The Food-Energy-Water
597 Nexus in the Persian Gulf. <https://doi.org/10.1021/acs.est.7b00688>

598 Allaire, M., Wu, H., Lall, U., 2018. National trends in drinking water quality violations. *Proc Natl Acad Sci
599 U S A* 115, 2078–2083. <https://doi.org/10.1073/pnas.1719805115>

600 American Council for an Energy-Efficient Economy, 2017. Guidelines for Low-Income Energy Efficiency
601 Programs [WWW Document]. URL <https://database.aceee.org/state/guidelines-low-income->
602 programs (accessed 11.19.23).

603 Anselin, L., 1995. Local Indicators of Spatial Association—LISA. *Geogr Anal* 27, 93–115.
604 <https://doi.org/10.1111/j.1538-4632.1995.tb00338.x>

605 Antrobus, D., Deardorff, T., Eischens, C., Griffith, B., Hennessy, T., Lefferts, B., Pollis, R., Rosa, C., Wagner,
606 D., 2017. Alaska Rural Water and Sanitation Working Group. IWA Publishing.

607 Balting, D.F., AghaKouchak, A., Lohmann, G., Ionita, M., 2021. Northern Hemisphere drought risk in a
608 warming climate. *npj Climate and Atmospheric Science* 2021 4:1 4, 1–13.
609 <https://doi.org/10.1038/s41612-021-00218-2>

610 Barnard, D.M., Green, T.R., Mankin, K.R., DeJonge, K.C., Rhoades, C.C., Kampf, S.K., Giovando, J., Wilkins,
611 M.J., Mahood, A.L., Sears, M.G., Comas, L.H., Gleason, S.M., Zhang, H., Fassnacht, S.R., Harmel,
612 R.D., Altenhofen, J., 2023. Wildfire and climate change amplify knowledge gaps linking mountain
613 source-water systems and agricultural water supply in the western United States. *Agric Water
614 Manag* 286, 108377. <https://doi.org/10.1016/J.AGWAT.2023.108377>

615 Bärring, L., Persson, G., 2006. Influence of Climate Change on Natural Hazards in Europe, Special Paper
616 of the Geological Survey of Finland.

617 Bauer, L., Breitwieser, A., Nunn, R., Shambaugh, J., 2018. Where Work Pays - How Does Where You Live
618 Matter for Your Earnings? Brookings Institute. Washington, DC, United States.

619 Bednar, D.J., Reames, T.G., Keoleian, G.A., 2017. The intersection of energy and justice: Modeling the
620 spatial, racial/ethnic and socioeconomic patterns of urban residential heating consumption and
621 efficiency in Detroit, Michigan. *Energy Build* 143, 25–34.
622 <https://doi.org/10.1016/j.enbuild.2017.03.028>

623 Bergendahl, J.A., Sarkis, J., Timko, M.T., 2018. Transdisciplinarity and the food energy and water nexus:
624 Ecological modernization and supply chain sustainability perspectives. *Resour Conserv Recycl* 133,
625 309–319. <https://doi.org/10.1016/j.resconrec.2018.01.001>

626 Biggs, E.M., Bruce, E., Boruff, B., Duncan, J.M.A., Horsley, J., Pauli, N., McNeill, K., Neef, A., Van Ogtrop,
627 F., Curnow, J., Haworth, B., Duce, S., Imanari, Y., 2015. Sustainable development and the water-
628 energy-food nexus: A perspective on livelihoods. *Environ Sci Policy* 54, 389–397.
629 <https://doi.org/10.1016/j.envsci.2015.08.002>

630 Bivand, R., 2022. R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data.
631 *Geogr Anal* 54, 488–518. <https://doi.org/10.1111/gean.12319>

632 Bivand, R.S., Wong, D.W.S., 2018. Comparing implementations of global and local indicators of spatial
633 association. *TEST* 27, 716–748. <https://doi.org/10.1007/s11749-018-0599-x>

634 Brinkley, C., Raj, S., Horst, M., 2017. Culturing Food Deserts: Recognizing the Power of Community-Based
635 Solutions. *Built Environ* 43, 328–342. <https://doi.org/10.2148/benv.43.3.328>

636 Brown, G., Reed, P., Raymond, C.M., 2020. Mapping place values: 10 lessons from two decades of public
637 participation GIS empirical research. *Applied Geography* 116, 102156.
638 <https://doi.org/10.1016/J.APGEOG.2020.102156>

639 Brown, M.A., Soni, A., Lapsa, M. V, Southworth, K., Cox, M., 2020a. High energy burden and low-income
640 energy affordability: conclusions from a literature review. *Progress in Energy* 2, 042003.
641 <https://doi.org/10.1088/2516-1083/abb954>

642 Brown, M.A., Soni, A., Lapsa, M. V, Southworth, K., 2020b. Low-Income Energy Affordability: Conclusions
643 from a Literature Review 12.

644 Brown, M.J., Spearing, L.A., Roy, A., Kaminsky, J.A., Faust, K.M., 2022. Drivers of Declining Water Access
645 in Alaska. *ACS ES and T Water* 2, 1411–1421.
646 https://doi.org/10.1021/ACSESTWATER.2C00167/SUPPL_FILE/EW2C00167_SI_001.PDF

647 Bullard, R.D., 1994. The Legacy of American Apartheid and Environmental Racism. *Journal of Civil Rights
648 and Economic Development* 9, 445–474.

649 Burga, S., 2022. The Strongest Hurricanes to Hit the U.S. in the Last 50 Years. *TIME*.
650 <https://time.com/6218275/strongest-hurricanes-us-map/>

651 Busse, M., Zscheischler, J., Zoll, F., Rogga, S., Siebert, R. 2023. Co-design approaches in land use related
652 sustainability science – A systematic review. *Land Use Policy* 129, 106623.
653 <https://doi.org/10.1016/j.landusepol.2023.106623>

654 Buylova, A., 2020. Spotlight on energy efficiency in Oregon: Investigating dynamics between energy use
655 and socio-demographic characteristics in spatial modeling of residential energy consumption.
656 <https://doi.org/10.1016/j.enpol.2020.111439>

657 Cardoso, D.S., Wichman, C.J., 2022. Water Affordability in the United States. *Water Resour Res* 58.
658 <https://doi.org/10.1029/2022WR032206>

659 Carrier, M., Apparicio, P., Kestens, Y., Séguin, A.M., Pham, H., Crouse, D., Siemiatycki, J., 2016.
660 Application of a Global Environmental Equity Index in Montreal: Diagnostic and Further
661 Implications. *Ann Am Assoc Geogr* 106, 1268–1285.
662 <https://doi.org/10.1080/24694452.2016.1197766>

663 Center for Disease Control and Prevention - Division of Nutrition, P.A. and O., 2012. Census tract level
664 state maps of the modified food environment index (mRFEI) [WWW Document]. URL
665 <https://stacks.cdc.gov/view/cdc/61367> (accessed 8.24.22). [dataset]

666 Chambers, R., 2006. Participatory Mapping and Geographic Information Systems: Whose Map? Who is
667 Empowered and Who Disempowered? Who Gains and Who Loses? *The Electronic Journal of
668 Information Systems in Developing Countries* 25, 1–11. <https://doi.org/10.1002/J.1681-4835.2006.TB00163.X>

670 Climate Central, 2022. Surging Weather-related Power Outages [WWW Document]. URL
671 <https://www.climatecentral.org/climate-matters/surging-weather-related-power-outages>
672 (accessed 11.19.23).

673 Cluett, R., Amann, J., Ou, S., 2016. Building Better Energy Efficiency Programs for Low-Income
674 Households. Washington, DC, United States.

675 Committee of the IEEE Power, D., Society, E., 2012. IEEE Guide for Electric Power Distribution Reliability
676 Indices Sponsored by the Transmission and Distribution Committee IEEE Power & Energy Society.

677 Cozzetto, K., Chief, K., Dittmer, K., Brubaker, M., Gough, R., Souza, K., Ettawageshik, F., Wotkyns, S.,
678 Opitz-Stapleton, S., Duren, S., Chavan, P., 2013. Climate change impacts on the water resources of
679 American Indians and Alaska Natives in the U.S. *Clim Change* 120, 569–584.
680 <https://doi.org/10.1007/S10584-013-0852-Y/METRICS>

681 Crowe, J., Lacy, C., Columbus, Y., 2018. Barriers to Food Security and Community Stress in an Urban Food
682 Desert. *Urban Science* 2. <https://doi.org/10.3390/urbansci2020046>

683 Cutter, S.L., Ash, K.D., Emrich, C.T., 2014. The geographies of community disaster resilience. *Global
684 Environmental Change* 29, 65–77. <https://doi.org/10.1016/J.GLOENVCHA.2014.08.005>

685 Dean, W.R., Sharkey, J.R., 2011. Food insecurity, social capital and perceived personal disparity in a
686 predominantly rural region of Texas: An individual-level analysis. *Soc Sci Med* 72, 1454–1462.
687 <https://doi.org/10.1016/j.socscimed.2011.03.015>

688 Desikan, A., MacKinney, T., Kalman, C., Carter, J.M., Reed, G., Goldman, G.T., 2023. An equity and
689 environmental justice assessment of anti-science actions during the Trump administration. *J Public
690 Health Policy*. <https://doi.org/10.1057/s41271-022-00390-6>

691 Do, V., McBrien, H., Flores, N.M., Northrop, A.J., Schlegelmilch, J., Kiang, M. V., Casey, J.A., 2023.
692 Spatiotemporal distribution of power outages with climate events and social vulnerability in the
693 USA. *Nature Communications* 2023 14:1 14, 1–13. <https://doi.org/10.1038/s41467-023-38084-6>

694 Doremus, J.M., Jacqz, I., Johnston, S., 2022. Sweating the energy bill: Extreme weather, poor
695 households, and the energy spending gap. *J Environ Econ Manage* 112, 102609.
696 <https://doi.org/10.1016/j.jeem.2022.102609>

697 Edison Electric Institute, 2023. EEI U.S. Member Company Service Territories [WWW Document]. URL
698 <https://www.eei.org/-/media/Project/EEI/Documents/About/EEI-Member-Map.pdf> (accessed
699 5.1.23). [dataset]

700 Endo, A., Tsurita, I., Burnett, K., Orencio, P.M., 2017. A review of the current state of research on the
701 water, energy, and food nexus. *J Hydrol Reg Stud* 11, 20–30.
702 <https://doi.org/10.1016/j.ejrh.2015.11.010>

703 Esri, 2022. Esri Consumer Spending data 2022/2027 in 2020 Census geography. [WWW Document]. Esri
704 Location Data. URL <https://doc.arcgis.com/en/esri-demographics/latest/regional-data/consumer-spending.htm> (accessed 1.23.23). [dataset]

705

706 Estoque, R.C. 2023. Complexity and diversity of nexuses: A review of the nexus approach in the
707 sustainability context. *Sci Total Environ* 854, 158612.
708 <https://doi.org/10.1016/j.scitotenv.2022.158612>

709 Executive Office of the President of the United States: Council on Environmental Quality, 2022. Climate
710 & Economic Justice Screening Tool [WWW Document]. URL
711 <https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5> (accessed 5.1.23).

712 Food and Agriculture Organization, 2014. The Water-Energy-Food Nexus: A new approach in support of
713 food security and sustainable agriculture. Rome, Italy.

714 Garcia, D.J., You, F., 2016. The water-energy-food nexus and process systems engineering: A new focus.
715 *Comput Chem Eng* 91, 49–67. <https://doi.org/10.1016/j.compchemeng.2016.03.003>

716 Garcia-Martin, M., Fagerholm, N., Bieling, C., Gounaris, D., Kizos, T., Printsmann, A., Müller, M.,
717 Lieskovský, J., Plieninger, T., 2017. Participatory mapping of landscape values in a Pan-European
718 perspective. *Landsc Ecol* 32, 2133–2150. <https://doi.org/10.1007/S10980-017-0531-X>/METRICS

719 Goldstein, B., Reames, T.G., Newell, J.P., 2022. Racial inequity in household energy efficiency and carbon
720 emissions in the United States: An emissions paradox. *Energy Res Soc Sci* 84, 102365.
721 <https://doi.org/10.1016/J.ERSS.2021.102365>

722 Gutierrez, K.S., LePrevost, C.E., 2016. Climate Justice in Rural Southeastern United States: A Review of
723 Climate Change Impacts and Effects on Human Health. *International Journal of Environmental
724 Research and Public Health* 2016, Vol. 13, Page 189 13, 189.
725 <https://doi.org/10.3390/IJERPH13020189>

726 Hakkarainen, V., Mäkinen-Rostedt, K., Horcea-Milcu, A., D'Amato, D., Jämsä, J., Soini, K. 2022.
727 Transdisciplinary research in natural resources management: Towards an integrative and
728 transformative use of co-concepts. *Sustain Dev* 30, 309-225. <https://doi.org/10.1002/sd.2276>

729 Helmstedt, K.J., Stokes-Draut, J.R., Larsen, A.E., Potts, M.D., 2018. Innovating at the food, water, and
730 energy interface. *J Environ Manage*. <https://doi.org/10.1016/j.jenvman.2017.12.026>

731 Hickel, K.A., Dotson, A., Thomas, T.K., Heavener, M., Hébert, J., Warren, J.A., 2018. The search for an
732 alternative to piped water and sewer systems in the Alaskan Arctic. *Environmental Science and
733 Pollution Research* 25, 32873–32880. <https://doi.org/10.1007/S11356-017-8815-X>/METRICS

734 Hinrichs, C.C., 2014. Transitions to sustainability: a change in thinking about food systems change? *Agric
735 Hum Values* 31, 143–155. <https://doi.org/10.1007/s10460-014-9479-5>

736 Hoolahan, C., Larkin, A., McLachlan, C., Falconer, R., Soutar, I., Suckling, J., Varga, L., Haltas, I.,
737 Druckman, A., Lumbroso, D., Scott, M., Gilmour, D., Ledbetter, R., McGrane, S., Mitchell, C., Yu, D.,
738 2018. Engaging stakeholders in research to address water–energy–food (WEF) nexus challenges.
739 *Sustain Sci* 13, 1415–1426. <https://doi.org/10.1007/S11625-018-0552-7>

740 Horst, M., Raj, S., Brinkley, C., 2016. Getting Outside the Supermarket Box: Alternatives to Getting
741 Outside the Supermarket Box: Alternatives to “Food Deserts.” *Progressive Planning* 207, 9–12.

742 Hsu, A., Sheriff, G., Chakraborty, T., Manya, D., 2021. Disproportionate exposure to urban heat island
743 intensity across major US cities. *Nat Commun* 12. <https://doi.org/10.1038/s41467-021-22799-5>

744 Huntington, H.P., Schmidt, J.I., Loring, P.A., Whitney, E., Aggarwal, S., Byrd, A.G., Dev, S., Dotson, A.D.,
745 Huang, D., Johnson, B., Karenzi, J., Penn, H.J.F., Salmon, A., Sambor, D.J., Schnabel, W.E., Wies,
746 R.W., Wilber, M., 2021. Applying the food–energy–water nexus concept at the local scale. *Nat
747 Sustain* 4, 672–679. <https://doi.org/10.1038/s41893-021-00719-1>

748 Internet of Water Initiative, Center for Geospatial Solutions, Lincoln Institute of Land Policy, 2022. Latest
749 U.S. Water Service Boundaries [WWW Document]. HydroShare. [dataset]

750 James, S.W., Friel, S., 2015. An integrated approach to identifying and characterising resilient urban food
751 systems to promote population health in a changing climate. *Public Health Nutr* 18, 2498–2508.
752 <https://doi.org/10.1017/S1368980015000610>

753 Kaddoura, S., El Khatib, S., 2017. Review of water-energy-food Nexus tools to improve the Nexus
754 modelling approach for integrated policy making. *Environ Sci Policy* 77, 114–121.
755 <https://doi.org/10.1016/j.envsci.2017.07.007>

756 Khan, Z., Abraham, E., Aggarwal, S., Ahmad Khan, M., Arguello, R., Babbar-Sebens, M., Bereslawski, J.L.,
757 Bielicki, J.M., Campana, P.E., Silva Carrazzone, M.E., Castanier, H., Chang, F.J., Collins, P., Conchado,
758 A., Dagani, K.R., Daher, B., Dekker, S.C., Delgado, R., Diuana, F.A., Doelman, J., Elshorbagy, A.A.,
759 Fan, C., Gaudioso, R., Gebrechorkos, S.H., Geli, H.M.E., Grubert, E., Huang, D., Huang, T., Ilyas, A.,
760 Ivakhnenko, A., Jewitt, G.P.W., Ferreira dos Santos, M.J., Jones, J.L., Kellner, E., Krueger, E.H.,
761 Kumar, I., Lamontagne, J., Lansu, A., Lee, S., Li, R., Linares, P., Marazza, D., Mascari, M.P.,
762 McManamay, R.A., Meng, M., Mereu, S., Miralles-Wilhelm, F., Mohtar, R., Muhammad, A., Opejin,
763 A.K., Pande, S., Parkinson, S., Payet-Burin, R., Ramdas, M., Ramos, E.P., Ray, S., Roberts, P.,
764 Sampedro, J., Sanders, K.T., Saray, M.H., Schmidt, J., Shanafield, M., Siddiqui, S., Suriano, M.,
765 Taniguchi, M., Trabucco, A., Tuninetti, M., Vinca, A., Weeser, B., White, D.D., Wild, T.B., Yadav, K.,
766 Yugeswaran, N., Yokohata, T., Yue, Q., 2022. Emerging Themes and Future Directions of Multi-
767 Sector Nexus Research and Implementation. *Front Environ Sci* 10.
768 <https://doi.org/10.3389/fenvs.2022.918085>

769 Klassen, S., Murphy, S., 2020. Equity as both a means and an end: Lessons for resilient food systems
770 from COVID-19. *World Dev* 136, 105104. <https://doi.org/10.1016/J.WORLDDEV.2020.105104>

771 Liang, J., Park, S., Zhao, T., 2020. Representative Bureaucracy, Distributional Equity, and Environmental
772 Justice. *Public Adm Rev* 80, 402–414. <https://doi.org/10.1111/puar.13160>

773 López-García, D., Cuéllar-Padilla, M., de Azevedo Olival, A., Paula Laranjeira, N., Ernesto Méndez, V.,
774 Peredo y Parada, S., Adriano Barbosa, C., Barrera Salas, C., Caswell, M., Cohen, R., Correro-
775 Humanes, A., García-García, V., Giessman, S.R., Pomar-León, A., Sastre-Morató, A., Tendero-Acín,
776 G. 2021. Building agroecology with people. Challenges of participatory methods to deepen on the
777 agroecological transition in different contexts. *J Rural Stud* 83, 257–267.
778 <https://doi.org/10.1016/j.jrurstud.2021.02.003>

779 Marcillo, C.E., Krometis, L.-A.H., 2019. Small towns, big challenges: Does rurality influence Safe Drinking
780 Water Act compliance? *AWWA Water Sci* 1, e1120. <https://doi.org/10.1002/aws2.1120>

781 Marino, E., White, D., Schweitzer, P., Chambers, M., Wisniewski, J., 2009. Drinking Water in
782 Northwestern Alaska: Using or Not Using Centralized Water Systems in Two Rural Communities.
783 *Arctic* 62, 75–82.

784 McKinney, M., Thorson, J.E., 2015. Resolving water conflicts in the American West. *Water Policy* 17,
785 679–706. <https://doi.org/10.2166/WP.2015.146>

786 Meehan, K., Jurjevich, J.R., Chun, N.M.J.W., Sherrill, J., 2020. Geographies of insecure water access and
787 the housing–water nexus in US cities. *Proceedings of the National Academy of Sciences* 117,
788 28700–28707. <https://doi.org/10.1073/PNAS.2007361117>

789 Memarzadeh, M., Moura, S., Horvath, A., 2019. Optimizing dynamics of integrated food-energy-water
790 systems under the risk of climate change. *Environmental Research Letters* 14, 074010.
791 <https://doi.org/10.1088/1748-9326/ab2104>

792 Moran, P.A.P., 1950. Notes on Continuous Stochastic Phenomena.

793 Moreira, L.L., Vanelli, F.M., Schwamback, D., Kobiayama, M., de Brito, M.M., 2023. Sensitivity analysis of
794 indicator weights for the construction of flood vulnerability indexes: A participatory approach.
795 *Frontiers in Water* 5. <https://doi.org/10.3389/frwa.2023.970469>

796 Mullin, M., 2020. The effects of drinking water service fragmentation on drought-related water security.
797 *Science* (1979) 368, 274–277. <https://doi.org/10.1126/SCIENCE.ABA7353>

798 Nar, M., Nar, M.Ş., 2019. An Updated Assessment of the OECD's Quality of Life Index. *PROBLEMY
799 EKOROZWOJU* 14, 7–18.

800 National Renewable Energy Laboratory, 2021. ResStock End-Use Load Profiles for the U.S. Building Stock
801 [WWW Document]. URL <https://www.nrel.gov/buildings/end-use-load-profiles.html> [dataset]

802 Newell, J.P., Goldstein, B., Foster, A., 2019. A 40-year review of food-energy-water nexus literature and
803 its application to the urban scale. *Environmental Research Letters* 14, 73003.
804 <https://doi.org/10.1088/1748-9326/ab0767>

805 Pappalardo, M., Debizet, G., 2020. Understanding the governance of innovative energy sharing in multi-
806 dwelling buildings through a spatial analysis of consumption practices. *Glob Transit* 2, 221–229.
807 <https://doi.org/10.1016/j.glt.2020.09.001>

808 Penn, H.J.F., Loring, P.A., Schnabel, W.E., 2017. Diagnosing water security in the rural North with an
809 environmental security framework. *J Environ Manage* 199, 91–98.
810 <https://doi.org/10.1016/J.JENVMAN.2017.04.088>

811 Pivo, G., 2014. Unequal access to energy efficiency in US multifamily rental housing: opportunities to
812 improve. *BUILDING RESEARCH AND INFORMATION* 42, 551–573.
813 <https://doi.org/10.1080/09613218.2014.905395>

814 R Core Team, 2022. R: A language and environment for statistical computing [WWW Document].
815 Foundation for Statistical Computing. URL <https://www.R-project.org/>

816 Reames, T.G., 2016. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic
817 disparities in urban residential heating energy efficiency. *Energy Policy* 97, 549–558.
818 <https://doi.org/10.1016/J.ENPOL.2016.07.048>

819 Rhone, A., Ver Ploeg, M., Williams, R., Breneman, V., 2019. Understanding Low-Income and Low-Access
820 Census Tracts Across the Nation: Subnational and Subpopulation Estimates of Access to Healthy
821 Food.

822 Schaible, G.D., Aillery, M.P., 2017. Challenges for US Irrigated Agriculture in the Face of Emerging
823 Demands and Climate Change, in: Competition for Water Resources: Experiences and Management
824 Approaches in the US and Europe. USDA Economic Research Service, Washington, DC, United
825 States, pp. 44–79. <https://doi.org/10.1016/B978-0-12-803237-4.00004-5>

826 Schaider, L.A., Swetschinski, L., Campbell, C., Rudel, R.A., 2019. Environmental justice and drinking water
827 quality: Are there socioeconomic disparities in nitrate levels in U.S. drinking water? *Environ Health*
828 18, 1–15. <https://doi.org/10.1186/s12940-018-0442-6>

829 Schmidt, J.I., Johnson, B., Huntington, H.P., Whitney, E., 2022. A framework for assessing food-energy-
830 water security: A FEW case studies from rural Alaska. *Science of The Total Environment* 821,
831 153355. <https://doi.org/10.1016/J.SCITOTENV.2022.153355>

832 Shu, Q., Scott, M., Todman, L., McGrane, S.J., 2021. Development of a prototype composite index for
833 resilience and security of water-energy-food (WEF) systems in industrialised nations.
834 *Environmental and Sustainability Indicators* 11, 100124.
835 <https://doi.org/10.1016/j.indic.2021.100124>

836 SimpleLab, EPIC, 2022. U.S. Community Water Systems Service Boundaries, v2.4.0 [WWW Document].
837 HydroShare. URL <http://www.hydroshare.org/resource/b11b8982eebd4843833932f085f71d92>
838 (accessed 10.11.22). [dataset]

839 Sodiq, A., Baloch, A.A.B., Khan, S.A., Sezer, N., Mahmoud, S., Jama, M., Abdelaal, A., 2019. Towards
840 modern sustainable cities: Review of sustainability principles and trends. *J Clean Prod* 227, 972–
841 1001. <https://doi.org/10.1016/j.jclepro.2019.04.106>

842 Spearing, L.A., Mehendale, P., Albertson, L., Kaminsky, J.A., Faust, K.M., 2022. What impacts water
843 services in rural Alaska? Identifying vulnerabilities at the intersection of technical, natural, human,
844 and financial systems. *J Clean Prod* 379, 134596. <https://doi.org/10.1016/J.JCLEPRO.2022.134596>

845 Stone, T.F., Dickey, L.C., Summers, H., Thompson, J.R., Rehmann, C.R., Zimmerman, E., Tyndall, J., 2023.
846 A systematic review of social equity in FEWS analyses. *Front Environ Sci* 11.
847 <https://doi.org/10.3389/fenvs.2023.1028306>

848 Sullivan, D.M., 2014. From Food Desert to Food Mirage: Race, Social Class, and Food Shopping in a
849 Gentrifying Neighborhood. *Adv Appl Sociol* 4, 30–35. <https://doi.org/10.4236/aasoci.2014.41006>

850 Taylor, D.E., Ard, K.J. 2015. Food availability and the food desert frame in Detroit: An overview of the
851 city's food system. *Environ Practice* 17, 102-133. <http://dx.doi.org/10.1017/S1466046614000544>

852 Tee Lewis, P.G., Chiu, W.A., Nasser, E., Proville, J., Barone, A., Danforth, C., Kim, B., Prozzi, J., Craft, E.,
853 2023. Characterizing vulnerabilities to climate change across the United States. *Environ Int* 172,
854 107772. <https://doi.org/10.1016/j.envint.2023.107772>

855 Teodoro, M.P., 2019. Water and sewer affordability in the United States. *AWWA Water Sci* 1, e1129.
856 <https://doi.org/10.1002/aws2.1129>

857 Teodoro, M.P., Saywitz, R.R., 2021. Water and sewer affordability in the United States: a 2019 update.
858 *AWWA Water Sci* 3, e1227. <https://doi.org/10.1002/AWS2.1176>

859 The Biden Administration, 2023. Justice40: A Whole-Of-Government Initiative.

860 Thomas, T.K., Hickel, K., Heavener, M., 2016. Extreme water conservation in Alaska: limitations in access
861 to water and consequences to health. *Public Health* 137, 59–61.
862 <https://doi.org/10.1016/J.PUHE.2016.06.002>

863 Tobler, W.R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region, *Geography*.

864 Tong, K., Ramaswami, A., Xu, C., Feiock, R., Schmitz, P., Ohlsen, M., 2021. Measuring social equity in
865 urban energy use and interventions using fine-scale data. *Proc Natl Acad Sci U S A* 118,
866 e2023554118. <https://doi.org/10.1073/pnas.2023554118>

867 Tonn, B., Rose, E., Hawkins, B., 2018. Evaluation of the U.S. department of energy's weatherization
868 assistance program: Impact results. *Energy Policy* 118, 279–290.
869 <https://doi.org/10.1016/J.ENPOL.2018.03.051>

870 Tonn, B., Rose, E., Marincic, M., 2023. Cascading benefits of low-income weatherization upon health and
871 household well-being. *Build Environ* 242, 110470.
872 <https://doi.org/10.1016/J.BUILDENV.2023.110470>

873 Tye, M.R., Wilhelmi, O. V., Pierce, A.L., Sharma, S., Nichersu, Iuliana, Wróblewski, M., Goszczyński, W.,
874 Wendel, J., Laborgne, P., Heyder, M., Nichersu, Iulian, 2022. The food water energy nexus in an
875 urban context: Connecting theory and practice for nexus governance. *Earth System Governance* 12,
876 100143. <https://doi.org/10.1016/j.esg.2022.100143>

877 University of South Carolina - Hazards & Vulnerability Research Institute (USC-HVRI), 2015. Baseline
878 Resilience Indicators for Communities (BRIC) [WWW Document]. National Alliance for Public Safety
879 GIS Foundation. URL
880 https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/bric/index.php (accessed 10.5.23). [dataset]

882 US Bureau of Labor Statistics, 2022. Consumer Expenditure Surveys. Washington DC, USA. [dataset]

883 US Census Bureau, 2020. 5-Year Estimates Selected Population Detailed Tables: Plumbing Facilities for
884 Occupied Housing Units [B25048] [WWW Document]. American Community Survey. [dataset]

885 US Department of Energy: Office of Economic Impact & Diversity, 2023. Energy Justice Dashboard
886 [WWW Document]. URL <https://energyjustice.egs.anl.gov/> (accessed 5.1.23).

887 US Energy Information Administration, 2021. Annual Electricity Power Industry Report, Form EIA-861
888 [WWW Document]. Electricity. URL <https://www.eia.gov/electricity/data/eia861/> (accessed
889 1.1.23). [dataset]

890 US Environmental Protection Agency, 2023a. US Grid Regions [WWW Document]. URL
891 <https://www.epa.gov/green-power-markets/us-grid-regions> (accessed 4.22.23).

892 US Environmental Protection Agency, 2023b. Drinking Water Dashboard Help | ECHO [WWW
893 Document]. Enforcement and Compliance History Online. URL <https://echo.epa.gov/help/drinking->
894 [water-qlik-dashboard-help#vio](#) (accessed 1.2.23).

895 US Environmental Protection Agency, 2022. Safe Drinking Water Information System Results Guide
896 [WWW Document]. URL <https://echo.epa.gov/help/facility-search/drinking-water-search-results->
897 [help#main-content](#) (accessed 7.31.22). [dataset]

898 US Environmental Protection Agency, 2021. Climate change and social vulnerability in the United States:
899 A focus on six impacts.

900 USDA Economic Research Service, 2022. Food Environment Atlas [WWW Document]. Economic
901 Research Service, Department of Agriculture. URL <https://data.nal.usda.gov/dataset/food->
902 [environment-atlas](#) (accessed 7.20.22). [dataset]

903 Ver Ploeg, M., Dutko, P., Breneman, V. 2014. Measuring Food Access and Food Deserts for Policy
904 Purposes. AEPP 37, 205-225. <https://doi.org/10.1093/aepp/ppu035>

905 Ver Ploeg, M., Mancino, L., Todd, J.E., Clay, D.M., Scharadin, B., 2015. Where Do Americans Usually Shop
906 for Food and How Do They Travel To Get There? Initial Findings From the National Household Food
907 Acquisition and Purchase Survey. Washington, DC, United States.

908 Vörösmarty, C.J., Melillo, J.M., Wuebbles, D.J., Jain, A.K., Ando, A.W., Chen, M., Tuler, S., Smith, R.,
909 Kicklighter, D., Corsi, F., Fekete, B., Miara, A., Bokhari, H.H., Chang, Joseph., Lin, T.-S., Maxfield, N.,
910 Sanyal, S., Zhang, J., 2023a. Applying the framework to study climate-induced extremes on food,
911 energy, and water systems (C-FEWS): The role of engineered and natural infrastructures,
912 technology, and environmental management in the United States Northeast and Midwest. Front
913 Environ Sci 11. <https://doi.org/10.3389/fenvs.2023.1070144>

914 Vörösmarty, C.J., Melillo, J.M., Wuebbles, D.J., Jain, A.K., Ando, A.W., Chen, M., Tuler, S., Smith, R.,
915 Kicklighter, D., Corsi, F., Fekete, B., Miara, A., Bokhari, H.H., Chang, J., Lin, T.S., Maxfield, N., Sanyal,
916 S., Zhang, J., Vignoles, D., 2023b. The C-FEWS framework: Supporting studies of climate-induced
917 extremes on food, energy, and water systems at the regional scale. Front Environ Sci 11.
918 <https://doi.org/10.3389/fenvs.2023.1069613>

919 Walker, K., Herman, M., 2023. *tidycensus*: Load US Census Boundary and Attribute Data as “tidyverse”
920 and ‘sf’-Ready Data Frames [WWW Document]. R package version 1.3.2. [dataset]

921 Wang, X., Varady, D.P., 2005. Using Hot-Spot Analysis to Study the Clustering of Section 8 Housing
922 Voucher Families. *Hous Stud* 20, 29–48. <https://doi.org/10.1080/0267303042000308714>

923 Watson, G., 2023. CEJST is a simple map, with big implications and attention to cumulative burdens
924 matters. [WWW Document]. Environmental Policy Innovation Center.

925 Weinberg, D.H., 2011. U.S. Neighborhood Income Inequality in the 2005-2009 Period.

926 White, D.D., Jones, J.L., Maciejewski, R., Aggarwal, R., Mascaro, G., 2017. Stakeholder analysis for the
927 food-energy-water nexus in Phoenix, Arizona: Implications for nexus governance. *Sustainability*
928 (Switzerland) 9. <https://doi.org/10.3390/su9122204>

929 Wickham, H., 2016. *ggplot2*: Elegant Graphics for Data Analysis.

930 Wilson, B., 2020. Urban Heat Management and the Legacy of Redlining. *Journal of the American
931 Planning Association* 86, 443–457. <https://doi.org/10.1080/01944363.2020.1759127>

932 Yadav, K., Geli, H.M.E., Cibils, A.F., Hayes, M., Fernald, A., Peach, J., Sawalhah, M.N., Tidwell, V.C.,
933 Johnson, L.E., Zaied, A.J., Gedefaw, M.G., 2021. An Integrated Food, Energy, and Water Nexus,
934 Human Well-Being, and Resilience (FEW-WISE) Framework: New Mexico. *Front Environ Sci* 9.
935 <https://doi.org/10.3389/fenvs.2021.667018>

936 Younger, M., Morrow-Almeida, H.R., Vindigni, S.M., Dannenberg, A.L., 2008. The Built Environment,
937 Climate Change, and Health. Opportunities for Co-Benefits. *Am J Prev Med* 35, 517–526.
938 <https://doi.org/10.1016/j.amepre.2008.08.017>

939 Zhu, Z., Ren, J., Liu, X., 2019. Green infrastructure provision for environmental justice: Application of the
940 equity index in Guangzhou, China. *Urban For Urban Green* 46, 126443.
941 <https://doi.org/10.1016/j.ufug.2019.126443>

942 Zimmerman, R., 1993. Social Equity and Environmental Risk. *Risk Analysis* 13, 649–666.
943 <https://doi.org/10.1111/j.1539-6924.1993.tb01327.x>

944 Zuzak, C., Mowrer, M., Goodenough, E., Burns, J., Ranalli, N., Rozelle, J., 2022. The national risk index:
945 establishing a nationwide baseline for natural hazard risk in the US. *Natural Hazards* 114, 2331–
946 2355. <https://doi.org/10.1007/s11069-022-05474-w> [dataset]

947