
Real-Time State Estimation Using Recurrent Neural Network
and Topological Data Analysis

Arman Razmarashoolia, Daniel A. Salazar Martineza, Yang Kang Chua b, Simon Laflamme a,c,
and Chao Hub

aDepartment of Civil, Construction, and Environmental Engineering, Iowa State University,
Ames, IA, 50010, USA

bDepartment of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
cDepartment of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010,

USA

ABSTRACT

High-rate systems are defined as physical systems that undergo large perturbations, often exceeding 100 g’s,
over very short durations, often less than 100 milliseconds. Examples include blast mitigation mechanisms and
advanced weaponry. The use of control feedback to empower high-rate systems requires the capability to estimate
system states of interest in the realm of microseconds. However, due to the dynamics of these high-rate systems
being highly nonlinear and nonstationary, it is challenging to predict their behavior using conventional state
estimation methods. To address this issue, we conduct a study that explores the integration of topological data
analysis (TDA) and recurrent neural network (RNN) to improve predictive capabilities for high-rate systems.
Here, TDA features are used as the input to a machine learning algorithm to determine the state of a high-
rate system. We conduct practical evaluations using laboratory datasets from experiments in the dynamic
reproduction of projectiles in ballistic environments for advanced research (DROPBEAR), focusing on localizing
fast-changing boundary conditions on a cantilever beam. The study demonstrates the ability of the method to
classify and predict a system’s fundamental frequencies. This approach helps understand the structure of the
underlying high-rate dynamics, leading to improved accuracy and precision in state estimation and prediction.

Keywords: Structural health monitoring, high-rate systems, nonlinear time series, topological data analysis,
recurrent neural network, ensemble learning

1. INTRODUCTION

Algebraic topology and topological data analysis (TDA) have emerged as powerful tools in understanding complex
dynamic systems by extraction of pseudo-states and shape-like structures in data.1 The significance of these
methods lies in their ability to represent the essential characteristics of the system by utilizing Taken’s embedding
theorem, which facilitates the mapping of pseudo-states to dynamic states through a machine learning algorithm.2
This approach improves our understanding of complex problems across multiple fields, ranging from the analysis
of 3D shapes to the classification of electrocardiogram signals and time series data. The integration of TDA
with machine learning, particularly in analyzing non-linear datasets in noisy environments, has shown promise
in improving the accuracy and efficiency of classification algorithms.

High-rate systems are defined as those experiencing dynamic events with amplitudes exceeding 100 gn over
durations of less than 100 ms, such as blast mitigation systems, advanced weaponry, automotive airbag de-
ployment mechanisms, and hypersonic vehicles.3,4 The primary motivation behind conducting real-time state
estimation for these systems lies in enabling feedback mechanisms to enhance operational performance and safety.
Yet, this task is difficult, because these systems comprise large uncertainties in external loads, high levels of non-
stationarity and heavy disturbances, and unmodeled dynamics resulting from changes in system configuration.
Physics-based techniques have been proposed to conduct high-rate structural health monitoring, including a
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sliding mode observer-based algorithm for real-time state estimation based on a physical representation,5 and
a model reference adaptive system-based algorithm that can achieve computation speed in the sub-millisecond
time-frame.6 Data-based techniques have also been explored. A key challenge in data-based formulations is
in data scarcity arising, because high-rate experiments are expensive to conduct and may only include limited
dynamic responses.7 To address this issue, several studies proposed the use of transfer learning to train algo-
rithms.8,9 Of interest, recurrent neural networks are promising for modeling and predicting time series due to
their sequential organization, but they face the challenge of vanishing gradient issues. Gated neural networks,
such as long short-term memory (LSTM) architectures, can overcome these issues.10 Nonlinear time series mod-
eling has been effectively implemented using RNNs with LSTM cells.11 In particular, the authors have previously
shown promise in forecasting non-stationary time series in high-rate systems by decomposing the nonstationary
system into stationary systems and combining predictions from an ensemble of RNNs using a weighted sum.7

The focus of this paper is the real-time state estimation of dynamic systems using data-based techniques to
map time series measurements to structural states using TDA features, emphasizing the novel application of these
features as input to recurrent neural network (RNN) algorithms. The objective of this approach is to improve the
predictive capabilities of the RNNs using physical insights provided by TDA. This paper investigates the potential
of TDA features extracted from point clouds from time series data formed by delay vectors as input features
for RNN algorithms constructed with LSTM cells. The performance of the method is evaluated numerically
using laboratory datasets obtained from the dynamic reproduction of projectiles in ballistic environments for
advanced research (DROPBEAR) testbed. This dataset is selected due to the wide availability of experimental
datasets and the suitability of DROPBEAR datasets for validating and benchmarking the performance of high-
rate algorithms.7

The rest of the paper is organized as follows. Section 2 provides background information on time series
embedding and computational topology. Section 3 describes the datasets and the overall methodology used in
validating the algorithm. Section 4 presents and discusses the results. Section 5 presents our conclusion and
recommendations for future work.

2. BACKGROUND

In computational topology, we characterize the topological space by evaluating homology groups in a point cloud
formed by a finite number of points.12 The computation of homology groups can be done through a variety of
methods, but typically starts with the construction of simplicial complexes that create spaces using simplices.13
To determine topological invariants of point cloud data, a common approach is to assign a persistent simplicial
complex to the data and define its invariants. The simplicial complex associated with the point cloud is dependent
on the scale parameter ϵ. There are two major methods to associate a simplicial complex with the point cloud
data, namely the Cech Complex and Vietoris-Rips complex.? In this paper, our method utilizes the Vietoris-Rips
complex due to its computation efficiency for large datasets. With the Vietoris-Rips method, a group of points
span a k-simplex if and only if the pairwise distances between the vertices are all less than or equal to ϵ.13

In practical applications, determining the value of ϵ can be challenging as it often remains unknown. To
address this challenge, one can use a flexible approach that consists of keeping a record of various ϵ values,
and for each ϵ generate simplicial complexes. As the ϵ parameter varies, the homology groups change, and
new topological features may appear or disappear. Persistent homology tracks these changes by associating
each topological feature with a birth and death time. The output of persistent homology is a collection of all
topological features that can be represented by birth and death times in the form of a persistence diagram.14
These diagrams can be used to extract several TDA features, including bottleneck and Wasserstein Distance, the
persistence landscape and silhouette, and the number of off-diagonal points.15 To illustrate, Figure 1 shows the
Filtration of Rips complexes obtained from a point cloud consisting of 20 randomly scattered points in space,
each surrounded by expanding balls of radius ϵ. Initially, there are 20 connected components, one for each point,
forming feature H0 (Figure 1(a)). As the radius of the balls increases, they create a simplicial complex, here at
ϵ = 0.85. Under that radius, the last H0 dies and H1 is born from the creation of a hole (Figure 1(b)). The hole
H1 dies at ϵ ≥ 1.86 (Figure 1(c)). The associated persistence diagram that tracks the evolution of H0 and H1 is
plotted in Figure 1(d).
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In practice, data are often collected using sensors, which are then represented as time series. To perform
topological data analysis this time series must be converted into a point cloud format. This conversion is
effectively conducted using the framework established by Taken’s embedding theorem and its extensions.2,16,17
It consists of the transformation of time series data x(t) = [x1, x2, · · · , xm] into delay vectors χ(t) = [x(t),x(t−
τ),x(t − 2τ), · · · ,x(t − (d − 1)τ)]. Based on Taken’s embedding theorem, choosing the appropriate embedding
dimension and time delay can create an embedding that is topologically equivalent to the original dynamic
system. This technique can be utilized to calculate topological invariants of the system. Typically, the embedding
dimension is determined using the false nearest neighbor test and time delay through mutual information.7 It
is important to note that the Embedding theorem, regardless of its extension, does not apply to non-stationary
systems.

Figure 1: The filtration of Rips Complex. There are 20 points and 20 individual connected components in
(a) (feature H0). As the balls of radius ϵ expand, they connect and merge into one connected component.
Eventually, all of the points connect, after which H0 dies and a hole (feature H1) is initially born within the
connected components for ϵ = 0.85 (b). The hole dies for ϵ ≥ 1.86 as shown in (c). The associated persistence
diagram is plotted in (d).

3. METHODOLOGY

The DROPBEAR testbed was developed by the Air Force Research Laboratory to validate state estimation
algorithms for high-rate systems.5 As shown in Figure 2, this testbed consists of a cantilever beam subjected
to a fast-moving boundary condition using a movable cart. The dynamics of the beam can be altered by the
cart to simulate gradual changes in stiffness and/or excited by a impact hammer to simulate an impact load.
DROPBEAR can be simplified as a beam with a variable effective length, supported by fixed and roller supports
at its ends. The beam typically experiences free vibration, and in this context, its response x(t) can be simplified
to a single harmonic time series:

x(t) = A cos(ωt) = cos(2πft) (1)

where A is the amplitude, x(t) is the vertical acceleration, f is the natural (first) cyclic frequency in Hz, and t
is time in seconds. The fundamental frequency of the beam can be shown to be inversely proportional to the
square of its effective length.18

Previous studies have shown that the optimal embedding dimension for a single harmonic signal is two.19
However, this study considers a dimension of three to account for noise, and thus gives rise to a 3-dimensional
point cloud with its related persistence diagram features including connected components (H0), loops (H1), and
voids (H2). In noise-free data, the maximum persistence of H0 represents the maximum Euclidean distance
between points in the point cloud and it changes with varying frequency. The number of H0 points in the
persistence diagram represents the sampling rate of the system. Under high sampling rates, the value of H0
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converges to zero. Even though the number of H0 points is a non-informative feature, under a fixed sampling
rate, the normalized maximum persistence of H0 can be a reasonable indicator of the system’s frequency.

The maximum persistence of H1 represents the evolution of loops in the point cloud, an indication of peri-
odicity in the signal. As the frequency increases, the hole persists longer. Under this scenario, the maximum
persistence of H1 is born when the maximum persistence of H0 dies. To remove the effect of sampling rate on
the maximum persistence of H1, we introduced a new definition for maximum persistence of H1 considering zero
birth time which provides a better understanding of the persistence of topological features compared to normal-
ized maximum persistence of H0. Using a time delay parameter τ = 0.25/f , the harmonic signals form a unit
circle in phase-space. Below this τ , an ellipse forms, where its minor to major axis ratio affects the maximum
persistence of H1 so more circular ellipses yield higher persistence. Thus, the frequency of the harmonic signal,
under a specific τ , influences the maximum persistence of H1 by affecting the ellipse’s shape. It is important to
note that in noise-free scenarios H2 is absent because of the repetitive nature of periodic functions. When dealing
with a simple harmonic signal, we can easily correlate most of the TDA features to the maximum persistence
values within each homology group.20

To analyze our dynamics of interest, we had to address the nonstationarity caused by the moving boundary
condition. To do so, we applied two sliding windows over the dataset to extract local TDA features assuming
our system within these windows is stationary. The first window has a size of w = 1/fmin + τ , with fmin being
the minimum frequency of the system to ensure that the point cloud will form a complete loop, representing
H1. We define a second window that is smaller in size (w = 1/fmax + τ), which ensures that the points do not
overlap because as the frequency of the system increases, loops are likely to overlap, which can affect the value
of the maximum persistence of H0.

4. RESULTS AND DISCUSSION

We study the performance of our windowing method to extract the physically meaningful TDA feature H0 and
H1 for a non-stationary harmonic excitation. This study is conducted over two types of datasets: 1) a synthetic
noise-free harmonic signal; and 2) experimental data from DROPBEAR.

4.1 Synthetic Harmonic Signal
The synthetic harmonic signal is taken as

x(t) = cos(2πf(t)t) (2)

with f(t) varying between 20 and 50 Hz. The excitation is plotted in Figure 3 (grey solid line). In this excitation,
the frequency remains constant at 20 Hz for the first two seconds (0-2 seconds) before increasing to 50 Hz over
the next two seconds (2-4 seconds), after which it remains at 50 Hz for another 2 seconds (4-6 seconds), and then
decreases to 20 Hz and remains constant for another 2 seconds (6-8 seconds). The size of the moving windows
is w1 = 1/fmin + τ = 0.05 + 0.001 = 0.051 seconds for plotting H1, and w2 = 1/fmax + τ = 0.02 + 0.001 = 0.021
seconds for plotting H0. Data are embedded using τ = 0.001 seconds for both windows (0.25/fmax = 0.005
seconds). Figure 3 plots the evolution of maximum persistence of H0 and H1 compared to frequency signal. We
can observe that the normalized values of the maximum persistences of H0 and H1 change proportionally with
the frequency of the system, but with a delay compared to system’s change in frequency. This delay is caused
by the use of sliding windows take measurements in the past, and the magnitude of that delay depends on the
size of sliding window and is greater for H1 due to the larger window size in use.

4.2 DROPBEAR
The investigation is pursued using realistic datasets taken from DROPBEAR experimental testbed. The first
two datasets correspond to Dataset-6, where one experiment does not involve the use of an impact hammer
(test 9) and the other does (test 11).21 In these tests, the cart is initially located 50 mm from the clamp,
moves at 200 mm from the clamp, and comes back to its original position. The temporal location of the cart
is plotted in Figures 5 and 6 (black line). The maximum velocities and accelerations for both tests are 120
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mm/s and 250 mm/s2, respectively. The system’s fundamental frequency varies between 17.7 Hz (at 50 mm)
and 31.0 Hz (at 200 mm). Accelerometer data was acquired at 25 kHz. Data is embedded using τ = 0.004
seconds (0.25/fmax = 0.008 seconds) and the size of the moving windows are taken as 1/fmin + τ = 0.06 and
1/fmax + τ = 0.04 seconds. The window slides every 0.001 seconds to lessen computational demands. Figures 5
and 6 plot the maximum persistence for one homology group (H1) for tests 9 and 11, respectively. Results are
compared against those obtained using a short-time Fourier transform (STFT) conducted under a window size
of 4096 samples (equivalent to 0.164 seconds) and a window length overlap of 0.008 seconds. In these tests, the
initial part of the excitation produces a very noisy TDA feature due to the low acceleration of the signal when
the cart starts moving. As the cart begins to move, the maximum persistence of H1 correlates with the cart’s
location. In the middle and at the end of the excitation when the cart stays at one location, the signal becomes
less noisy due to the presence of free vibrations, leading to clearer TDA features. In test 11, due to the hammer
impact, we observe a richer signal and less noisy TDA features.

Figure 2: DROPBEAR testbed: (a) picture of the testbed; and (b) its schematic diagram.

4.3 Recurrent Neural Network Architecture
In this study, we employed an LSTM-based RNN architecture to model complex dynamics between cart location
and the maximum persistence of H1. Our model consisted of a sequential stack of LSTM cells of 512 units,
integrated with batch normalization and a dropout rate of 0.2 to enhance model generalization and avoid over-
fitting, followed by another LSTM layer of identical configuration to refine the features extracted. The model was
compiled with Adam optimizer and mean squared error loss function. Training was conducted over 550 epochs
with a batch size of 128, leveraging a split of 70% training and 30% validation data to monitor and prevent
overfitting.

Our experimental setup has distinct datasets for training and testing phase to evaluate the model’s predic-
tive capability. The algorithm was trained using data from test 9, which does not have the impact hammer.
Subsequently, the model’s generalization were tested using data from test 11 which has three hammer impacts.

The aim of this research is to determine if TDA features, specifically the maximum persistence of H1, can be
utilized in RNN to predict the dynamics of high-rate systems. The findings from DROPBEAR demonstrate that
the maximum persistence of H1 can be linked to the cart’s location. To assess the outcomes of the RNN, results
from the STFT are post-processed to map to the cart location by assuming a quadratic (physical) relationship.
Regression parameters are estimated using a least square estimator (LSE), which are listed in Table 1.

Next, we investigate how well the maximum persistence of H1 can be utilized to find the right cart location.
We evaluate its performance through three performance metrics (J1, J2, and J3) on the parts signal that remain
after removing the initial noisy section.

Metric J1 is the mean absolute error between the actual cart location and the mapped cart location for the
entire excitation or section of the excitation. Metric J2,i is the number of instances over the signal that the
estimation does not remain below a given distance i (in mm, here taken as i = 5, 10, and 20 mm, with 20 mm
arbitrarily taken as an acceptable target). Metric J3,i is the mean absolute error of the cart location when the
estimated cart position is within the given distance i (in mm). Table 2 presents results for these performance
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Figure 3: Evolution of TDA features constructed from H0 and H1 over a synthetic, noise-free harmonic signal.

metrics across the test. Metric J1 shows that our TDA-based method remains within acceptable ranges (under
20 mm), and that it tends to perform similarly to the STFT over very rapid changes in movements. Metric J2
shows that our TDA-based method maps within 20 mm of the correct cart location usually above 86% of the
time. Metric J3 shows that our TDA-based method performed at least similarly to the STFT-based method, if
not better (J3,20).

Table 1: Results from the LSE
Test Feature Intercept Slope R2

Test 9 STFT -0.13 1.070 0.98
Test 11 STFT -0.11 1.059 0.96

Table 2: Performance results for cart localization

J1 J2,5 J3,5 J2,10 J3,10 J2,20 J3,20
Test Feature (mm) (%) (mm) (%) (mm) (%) (mm)
Test 9 H1 14.0 88 2.4 42 6.8 14 8.7

(training dataset) STFT 11.9 81 2.8 48 5.6 14 10.6
Test 11 H1 15.1 75 2.9 47 4.8 10 9.7

(testing dataset) STFT 12.1 84 2.4 52 5.6 14 10.8
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Figure 4: Actual vs. predicted cart Location as a function of normalized H1: RNN model accuracy for test 9

Figure 5: Evolution of TDA features over test 9 (training dataset)

5. CONCLUSION

This research explored the effectiveness of employing topological data analysis (TDA) features as input to
a recurrent neural network for real-time estimation of high-rate systems. Specifically, the study focused on
detecting a rapidly moving cart using acceleration measurements. Initially, we simplified the problem by linking
TDA features to the frequency of a single harmonic signal. We investigated key TDA features from a physical
perspective for their applicability to high-rate systems and introduced a novel definition for the maximum
persistence of H1, which represents the largest void in the data. To address the nonstationary nature of these
systems, we proposed a method that utilizes multiple resolutions and sliding windows, along with a technique for
converting time series data into a point cloud. We tested this approach on synthetic data and demonstrated its
effectiveness by comparing the signal’s frequency to the maximum persistence of H1 and H0. The method was
applied to real data from DROPBEAR, focusing on the maximum persistence of H1 as input in an RNN with
one LSTM and multiple layers. Our results indicated that RNNs trained solely on the maximum persistence
of H1 could accurately determine the cart’s location. This observation remained true even under conditions of
higher cart acceleration and confirmed that trained RNNs could outperform the short-time Fourier transform
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Figure 6: Evolution of TDA features over test 11 (testing dataset)

(STFT) in some cases.

Overall, our findings suggest that TDA features are effective for monitoring dynamic systems with a domi-
nating, nonstationary fundamental frequency, and they can outperform traditional methods such as STFT under
certain scenarios. Future work will extend the study to multi-harmonic systems and explore the formulation of
ensemble RNNs to better link TDA features to the system’s states.
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