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ABSTRACT 

Most solution methods for mixed-integer linear programming (MILP) production scheduling models 
have been developed for batch processes. In this paper, we employ integer variables, referred to as 
record keeping variables (RKVs), into discrete-time continuous production scheduling MILP models 
that facilitate efficient branching and lead to substantial reductions in solution time. We first 
introduce different types of RKVs and determine which class of RKVs is the most effective. Second, 
we explore branching priorities and demonstrate that prioritizing branching on RKVs, relative to 
other binary variables, leads to further computational improvements. Next, we analyze system 
attributes, such as task and unit utilization, to determine if prioritizing branching on specific RKVs 
leads to additional computational enhancements. Our computational results show that the proposed 
reformulations, in combination with implementing branching priorities, lead to significant 
computational improvements of continuous production scheduling MILP models. 
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Introduction 

Production scheduling involves generating a schedule of tasks to achieve a specific production 
objective. Being able to allocate resources in an efficient manner can reduce manufacturing costs, 
increase facility throughput, and help meet product demands more effectively. Applications for 
production scheduling range widely from batch production of low-volume products (e.g., 
pharmaceuticals) to continuous production of high-volume products (e.g., oil and gas refineries)1–4. 
Given the crucial role production scheduling plays in plant operations, it is ubiquitous across 
industries involving manufacturing. Thus, considerable efforts have been made to develop modeling 
techniques that account for the diverse process characteristics present in each specific application. 

Mathematical optimization is leveraged to assist decision-makers in developing effective production 
schedules. Production scheduling problems can generally be formulated as mixed-integer linear 
programming (MILP) models, and due to the specific restrictions of different applications, 
researchers have developed optimization models that consider various process characteristics 
including, but not limited to: multiple production environments5,6, complex storage restrictions7,8, 
changeovers9–13, time-varying pricing14–16, utility consumption17, and material transfer restrictions18. 
Accounting for these complex process characteristics enables MILP models to be implemented in a 
range of industrial applications. However, the development of models that account for multiple 
characteristics comes with its own challenges: even trivial scheduling instances are computationally 
expensive. As the number of tasks, units, materials, and time periods increases, instances quickly 
become intractable19. Thus, model complexity is a vital consideration, especially in cases when an 
instance must be solved numerous times20,21. 

Efforts to reduce the CPU times of production scheduling models have come in the form of 
decomposition-based algorithms17,22,23, reformulations24–28, parallel computing tools29,30, and 
tightening methods based on valid inequalities31–33. Many of these solution methods, however, are 
restricted to specific problem types. In this paper, we focus on a simple and easily applicable, 
reformulation technique that was first introduced by Velez and Maravelias involving the 
incorporation of integer variables into production scheduling models24. Branching on these new 
integer variables eliminate schedules with the same number of batches, which, in turn, eliminates 
many symmetric solutions and reduces solution times. More work on these integer variables, termed 
record keeping variables (RKVs) because they “keep record” of binary variables in the model, was 
recently performed and additional sets of RKVs were proposed34. These RKVs were generated based 
on: the number of times a task is processed, the number of times a unit processes a task, and the 
number of tasks performed at a specific time. However, the aforementioned works only focused on 
batch production scheduling models. The goal of this paper is to assess the strength of a new class of 
RKVs exclusively defined for continuous production scheduling models, compare them to the original 
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model, prioritize branching on the RKVs, and rigorously study how branching priorities can impact 
solution times. More precisely, we assess the impact of prioritizing branching on specific RKVs based 
on associated system attributes to determine if some RKVs play a more pivotal role in reducing 
computational resources. 

This paper is structured as follows. First, we provide background on production environments and 
two of the main types of processes. The notation and production scheduling model are reviewed prior 
to introducing the RKVs. We then present the computational results comparing numerous 
reformulations as well as solver configurations used to impose branching priorities. By comparing 
the solution times of the different reformulations and solver configurations, we are able to discuss 
observations regarding the impact of the RKVs relative to specific instance attributes. 

Background 

The three main types of production environments, as well as the frameworks that have been used to 
represent them, are discussed. Then differences between batch and continuous processes are 
delineated. After the benefits of discrete-time models are detailed, the modeling constraints are 
introduced. 

Continuous Production Scheduling 

Production environments are often defined by restrictions on material handling. In sequential 
production environments, every batch of material follows a specific route, and the mixing or splitting 
of batches is not allowed since every batch must only be produced/consumed by a single task35. In 
this work, we focus on the more general network environments because they allow for the 
representation of more complex systems that do not necessarily follow defined stages. In network 
environments, batch mixing and splitting is permitted, and tasks can produce/consume multiple 
materials. Material recycling is also permitted. The two most common frameworks utilized to 
represent network environments are the State-Task Network9 and Resource-Task Network36. Lastly, 
there are hybrid environments which involve some combination of sequential and network 
environments. For example, some materials might be produced in a sequential manner where 
distinct batches are produced but then later get incrementally used as input by multiple batches, as 
in network environments. A framework able to accurately represent hybrid environments would 
need to explicitly denote the handling restrictions of every material as well as the processing types 
of tasks; the General Material Task System was introduced to be able to represent a multitude of 
material handling restrictions, various process types, transient operations, and even utilities.37 

Furthermore, most processes can either be classified as batch or continuous. In the former, materials 
are consumed at the beginning of a process and produced after the process has ended, while 
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continuous processes produce and consume materials simultaneously during their execution. For 
batch processes, capacity relates to the size of batches (in kg of material processed), and processing 
times can be fixed or variable based on the batch size. For continuous processes, capacity implies 
processing rate (in kg/h of material processed), and processing time corresponds to the duration of 
the process, which is neither strictly fixed nor dependent upon processing rate. As such, the single 
degree of freedom of batch processes is batch size, whereas continuous processes have two: 
processing rate and duration. These distinctions have modeling implications because constraints 
enforcing fixed processing times are no longer applicable, and additional binary variables are needed 
to describe the start/end of production, which is no longer fixed. Finally, continuous processes may 
have significant transient operations, such as startups/shutdowns and direct transitions, which also 
need to be modeled explicitly. 

Model 

We employ a discrete-time model (adapted from Wu and Maravelias38) because it has been shown to 
display computational advantages when considering large instances in network environments39. For 
example, they do not incur additional computational costs when material deliveries/shipments 
occur, and they allow inventory and utility costs to be linearly modeled39. Additionally, modeling 
time-varying utility pricing/availability and time-varying objective function weights requires no new 
variables or constraints, and production/consumption can occur at intermediate points in time 
relative to the beginning of a process, not just at the beginning and end40. Comprehensive overviews 
of models employing different time grids, along with in-depth comparisons of their strengths and 
weaknesses, can be found in the literature39,41,42. 

We define a continuous task as any operation that continuously consumes input materials to produce 
output materials. All continuous tasks are modeled through consecutive production subtasks that 
last a single time period; that is, a “subtask” refers to the building blocks of a continuous task, and 
production subtasks are one type of subtask. Certain continuous tasks require indirect transitions 
such as startups and shutdowns or direct transitions, which occur between runs of two distinct 
continuous tasks. These transient operations are also modeled as subtasks. A “run” refers to a string 
of consecutive production subtasks being executed (i.e., production is continuously occurring), and 
all subtasks corresponding to the same continuous task produce/consume the same materials (see 
Figure 1). For simplicity, terms like startup subtasks, shutdown subtasks, and direct transition 
subtasks will be used synonymously with startups, shutdowns, and direct transitions, respectively. 
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Figure 1. Gantt chart depicting a solution to an instance containing nine production subtasks (shown at the 
top) and five units (shown on the y-axis) with a time horizon of 24 h. The unit a subtask can be processed in 
can be found in the subtask name following the hyphen. Production subtasks TC1-4, TC2-4, TC3-5, and TC4-5 
have two-hour startups and one-hour shutdowns, while TC3-5 and TC4-5 also have the ability to directly 
transition to each other. 

Fundamental Constraints 

Sets and subsets are represented with uppercase bold letters and their respective indices, to denote 
elements of these sets, with lowercase italic letters. Parameters are represented by lowercase Greek 
letters, and variables are represented using italic uppercase letters (see Nomenclature). Materials 
𝑘𝑘 ∈ 𝐊𝐊 are produced/consumed by subtasks 𝑖𝑖 ∈ 𝐈𝐈, which must be processed by units 𝑗𝑗 ∈ 𝐉𝐉. 

The task-unit assignment constraint enforces that a unit can only execute one subtask at a time: 

 � � 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−𝑡𝑡 + 𝑋𝑋�𝑗𝑗,𝑛𝑛+1
I

𝜏𝜏𝑖𝑖,𝑗𝑗−1

𝑡𝑡=0𝑖𝑖∈𝐈𝐈𝑗𝑗

= 1, ∀ 𝑗𝑗 ∈ 𝐉𝐉,𝑛𝑛 ∈ 𝐍𝐍, (1) 

where binary variable 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 = 1 if subtask 𝑖𝑖 is processed by unit 𝑗𝑗 starting at time point 𝑛𝑛, binary 
variable 𝑋𝑋�𝑗𝑗,𝑛𝑛

I = 1 if unit 𝑗𝑗 is idle during time period 𝑛𝑛, 𝜏𝜏𝑖𝑖,𝑗𝑗  is the processing time of subtask 𝑖𝑖 processed 
by unit 𝑗𝑗, and 𝐈𝐈𝑗𝑗 is the subset of subtasks 𝑖𝑖 that can be processed by unit 𝑗𝑗. 

The second fundamental constraint is the unit capacity constraint which enforces that processing 
rates fall between the minimum and maximum allowable processing rates (𝛽𝛽𝑖𝑖,𝑗𝑗MIN and 𝛽𝛽𝑖𝑖,𝑗𝑗MAX): 

𝛽𝛽𝑖𝑖,𝑗𝑗MIN𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 ≤ 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛 ≤ 𝛽𝛽𝑖𝑖,𝑗𝑗MAX𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛, ∀ 𝑖𝑖 ∈ 𝐈𝐈, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍, (2) 

where the continuous, nonnegative variable 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛 is the processing rate of subtask 𝑖𝑖 in unit 𝑗𝑗 starting 

at time point 𝑛𝑛. Next, the material balance constraint is: 

𝜒𝜒𝑘𝑘MIN ≤ 𝑆𝑆𝑘𝑘,𝑛𝑛+1 = 𝑆𝑆𝑘𝑘,𝑛𝑛 + �� � 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛−𝑡𝑡
𝑡𝑡∈𝐓𝐓𝑖𝑖,𝑗𝑗

+𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈𝑘𝑘
+

+ �� � 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛−𝑡𝑡
𝑡𝑡∈𝐓𝐓𝑖𝑖,𝑗𝑗

−𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈𝑘𝑘
−

+ 𝜉𝜉𝑘𝑘,𝑛𝑛 ≤ 𝜒𝜒𝑘𝑘MAX,  

∀ 𝑘𝑘 ∈ 𝐊𝐊,𝑛𝑛 ∈ 𝐍𝐍\{0}. 

(3) 

where the continuous, nonnegative variable 𝑆𝑆𝑘𝑘,𝑛𝑛 is the inventory level of material 𝑘𝑘 during time 

period 𝑛𝑛; 𝐈𝐈𝑘𝑘+ and 𝐈𝐈𝑘𝑘− include the subtasks that produce and consume material 𝑘𝑘, respectively; 𝐉𝐉𝑖𝑖 is the 
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subset of units 𝑗𝑗 that can process subtask 𝑖𝑖; and 𝐓𝐓𝑖𝑖,𝑗𝑗+ = {1, 2, … , 𝜏𝜏𝑖𝑖,𝑗𝑗} and 𝐓𝐓𝑖𝑖,𝑗𝑗− = {0, 1, … , 𝜏𝜏𝑖𝑖,𝑗𝑗 − 1} 

include time points with respect to the start of subtask 𝑖𝑖. The parameter 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡 is the conversion 

coefficient of material 𝑘𝑘 produced (>0) or consumed (<0) by subtask 𝑖𝑖 after 𝑡𝑡 periods after the start 
of a subtask. The first summation term in Eq. (3) is positive, and the second summation term is 
negative according to the sign of 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡. The 𝜉𝜉𝑘𝑘,𝑛𝑛 parameter is the net amount of material 𝑘𝑘 shipped at 
time point 𝑛𝑛 (𝜉𝜉𝑘𝑘,𝑛𝑛 > 0 for deliveries arriving to the plant and 𝜉𝜉𝑘𝑘,𝑛𝑛 < 0 for orders departing the 

plant); 𝜒𝜒𝑘𝑘MIN/𝜒𝜒𝑘𝑘MAX are the minimum/maximum inventory capacity for material 𝑘𝑘. 

Transient Operations 

Transient operations such as startups, shutdowns, and direct transitions are modeled by: 

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 + � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗
𝑖𝑖′∈𝐈𝐈𝑖𝑖

SU

− � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
𝑖𝑖′∈𝐈𝐈𝑖𝑖

SD

+ � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗
𝑖𝑖′∈𝐈𝐈𝑖𝑖

DT+

− � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
𝑖𝑖′∈𝐈𝐈𝑖𝑖

DT−

= 0, 

 ∀ 𝑖𝑖 ∈ 𝐈𝐈SS⋃𝐈𝐈DT, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍, 

(4) 

where 𝐈𝐈𝑖𝑖SU/𝐈𝐈𝑖𝑖SD include startups/shutdowns associated with production subtask 𝑖𝑖, and 𝐈𝐈𝑖𝑖DT+/𝐈𝐈𝑖𝑖DT− 
include direct transitions to/from production subtask 𝑖𝑖. All production subtasks that involve startups 
or shutdowns are included in subset 𝐈𝐈SS, and all production subtasks that have direct transitions 
associated with them are included in subset 𝐈𝐈DT. Eq. (4) enforces that a unit 𝑗𝑗 must process subtask 𝑖𝑖 
if the subtask was processed in the previous time period, a startup just took place, or a direct 
transition to the subtask in question just took place. Conversely, a unit 𝑗𝑗 stops processing production 
subtask 𝑖𝑖 if a shutdown or direct transition away from the subtask in question just took place. 

To properly link transitions to their corresponding production subtask, we use: 

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 ≥  � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗
𝑖𝑖′∈𝐈𝐈𝑖𝑖

TR+

, ∀ 𝑖𝑖 ∈ 𝐈𝐈SS⋃𝐈𝐈DT, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍. (5) 

which enforces that after a transition is executed, the associated production subtask must start being 
processed. 

A constraint to track the activity of a unit is also written: 

𝑋𝑋�𝑗𝑗,𝑛𝑛
I + � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗

𝑖𝑖′∈𝐈𝐈𝑖𝑖
SD

− � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
𝑖𝑖′∈𝐈𝐈𝑖𝑖

SU

= 𝑋𝑋�𝑗𝑗,𝑛𝑛+1
I , ∀ 𝑗𝑗 ∈ 𝐉𝐉SS,𝑛𝑛 ∈ 𝐍𝐍, (6) 

where subset 𝐉𝐉SS includes units involving startups or shutdowns. According to Eq. (6), a unit will start 
or stop being idle when a shutdown finishes or a startup begins, respectively. 
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Run-Starting and Run-Ending 

A continuous task is modeled using subtasks, and a run is defined as a string of consecutive, single-
period production subtasks. To describe the relationship between the start of a run, the end of a run, 
and subtask execution during the run itself, Eqs. (7) and (8) are needed. 

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S = 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 + 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E , ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍 (7) 

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S + 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E ≤ 1, ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍 (8) 

Subset 𝐈𝐈P includes all production subtasks, and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S  and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E  equal 1 when a run starts and ends, 
respectively; 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S  and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
E  are directly linked to production subtasks and not transitions (see Figure 

2). Eq. (8) enforces that both 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S  and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E  cannot be equal to 1 during a run (i.e., when 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 both equal one) or during an idle period (i.e., when 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 both equal zero) since 

this would not accurately portray what is physically occurring in a facility; a run cannot start and end 
at the same time. 

 
Figure 2. Relevant binary variables are depicted to demonstrate which time points during task execution they 
correspond to. Continuous task TA3 possesses a 2h starup and 1h shutdown. Note: 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S  and𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
E  do not equal 

1 when a startup and shutdown occurs but when the production subtasks start and end, respectively. 

Run Length 

Minimum and maximum run length constraints can be enforced with Eqs. (9) and (10), respectively. 

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 ≥  � 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛′
S

𝑛𝑛′∈𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MIN

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍 (9) 

𝜏𝜏𝑖𝑖,𝑗𝑗MAX ≥  � 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛′

𝑛𝑛′∈𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MAX

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍, (10) 

where 𝜏𝜏𝑖𝑖,𝑗𝑗MIN/𝜏𝜏𝑖𝑖,𝑗𝑗MAX are the minimum/maximum run lengths, 𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MIN = {𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 1,𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MIN +

2, … ,𝑛𝑛}, and 𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MAX = {𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MAX,𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MAX + 1, … ,𝑛𝑛} with �𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛

MAX� = 𝜏𝜏𝑖𝑖,𝑗𝑗MAX + 1. 
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Objective Function 

The objective function to minimize total cost consists of three terms: 

min  � � 𝛾𝛾𝑘𝑘S𝑆𝑆𝑘𝑘,𝑛𝑛
𝑛𝑛∈𝐍𝐍\{0} 𝑘𝑘∈𝐊𝐊

+���(𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
X 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 + 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛

B 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍

)
𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈

+  ���(𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
Y 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S

𝑛𝑛∈𝐍𝐍

)
𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P

 (11) 

The inventory, fixed subtask execution, variable subtask execution, and run-starting costs are 𝛾𝛾𝑘𝑘,𝑛𝑛
S , 

𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
X , 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛

B , and 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
Y , respectively. The first term calculates the total inventory costs, the second term 

calculates the fixed and variable costs associated with executing all subtasks, and the third term 
calculates the costs associated with starting a run. 

We make the following assumptions in our model: instance data is deterministic, every subtask ends 
within the set scheduling horizon (this includes transient operations such as shutdowns), and 
material transfer between units is instantaneous. 

Methods 

Although implementing RKVs may seem to trivially increase the number of variables in the model, 
they appear to also allow solvers to perform branching more efficiently and close the optimality gap 
faster. In the following sections, we discuss two classes of RKVs that can be generated based on the 
two types of binary variables present in the model: the variables with the superscript “X” involve the 
𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 binary variable and those with the superscript “Y” involve the 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S  binary variable. We then 

provide an example of how solvers can take advantage of RKVs to reduce solution times. This 
technique has been shown to successfully reduce computational resources in batch scheduling 
problems34,43, so we aim to study RKVs in the context of continuous production scheduling models 
and assess their impact on solution times. Moreover, we analyze variable branching and how 
prioritizing branching on specific RKVs can result in closing the optimality gap even more quickly. 

RKVs involving 𝑿𝑿𝒊𝒊,𝒋𝒋,𝒏𝒏 

We first introduce 𝑁𝑁𝑖𝑖,𝑗𝑗X , which is the sum of the 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 binary variable over all time points. 

 �𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍

= 𝑁𝑁𝑖𝑖,𝑗𝑗X ≤ �
|𝐍𝐍| − 1 
𝜏𝜏𝑖𝑖,𝑗𝑗

� , ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖, (12) 

where 𝑁𝑁𝑖𝑖,𝑗𝑗X  is bounded by the number of production subtask executions that can feasibly occur over 
the time horizon; rounding down |𝐍𝐍|−1

𝜏𝜏𝑖𝑖,𝑗𝑗
 yields the maximum number of subtask executions possible. 

Importantly, the upper bound is introduced because some MILP solvers recognize that RKVs are a 
summation of other binary variables and substitute them out of the model prior to solving the 
instance34. The introduction of bounds ensures that the RKVs are not substituted. In order to 
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decouple the effects of the bounds from the RKVs themselves, we tested the model that includes the 
bounds only (see Supporting Information). The results demonstrate that simply introducing the 
bounds without any RKVs appears to increase solution times. 

We generate other RKVs that keep record of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 in various ways in order to produce new integer 
variables that the solver can branch on. Variable 𝑁𝑁𝑖𝑖X is equal to the summation of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all units 

and time points, tracking the total number of subtask executions for each production subtask. 

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖

= 𝑁𝑁𝑖𝑖X ≤��
|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗

�
𝑗𝑗∈𝐉𝐉𝑖𝑖

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P (13) 

The upper bound is calculated similarly, but a summation is taken over all units because 𝑁𝑁𝑖𝑖X is written 
for every production subtask. 

Eq. (14) sums 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks and time points, essentially tracking the number of times any 

production subtask is executed on a particular unit over the time horizon: 

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍𝑖𝑖∈𝐈𝐈P

= 𝑁𝑁𝑗𝑗X ≤ �
|𝐍𝐍| − 1

min
𝑖𝑖∈𝐈𝐈𝑗𝑗

�𝜏𝜏𝑖𝑖,𝑗𝑗�
� , ∀ 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 (14) 

The next RKV we introduce, 𝑁𝑁𝑛𝑛X, is written for time points, so the number of variables that the model 
is increasing by correlates to the discretization of the time horizon. 

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P

= 𝑁𝑁𝑛𝑛X ≤ |𝐉𝐉|, ∀ 𝑛𝑛 ∈ 𝐍𝐍\{|𝐍𝐍|}. (15) 

The upper bound, |𝐉𝐉|, holds true because there cannot be more subtasks actively being processed 
than the number of available units. 

Lastly, we sum 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks, units, and time points to define 𝑁𝑁X: 

���𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P

= 𝑁𝑁X ≤ min����
|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗

�
 

𝑗𝑗∈𝐉𝐉𝑖𝑖

 

𝑖𝑖∈𝐈𝐈P
,��

|𝐍𝐍| − 1
min
𝑖𝑖∈𝐈𝐈𝑗𝑗

�𝜏𝜏𝑖𝑖,𝑗𝑗�
�

 

𝑗𝑗∈𝐉𝐉𝑖𝑖

� (16) 

The reader can deduce how the upper bound in Eq. (16) is calculated by noting the similarities of the 
bounds in Eqs. (13) and (14). Eq. (16) additionally includes a summation over all production subtasks 
for the first term within the min{∙} function and includes a summation over all units for the second 
term within the min{∙} function. Subsequently, the minimum between the two calculated values 
serves as the upper bound because the total number of subtask executions over all units and time 
points cannot be larger than the bounds previously calculated in Eqs. (13) and (14). 
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RKVs involving 𝒀𝒀𝒊𝒊,𝒋𝒋,𝒏𝒏𝐒𝐒  

We begin introducing the second class of RKVs by starting with 𝑁𝑁𝑖𝑖,𝑗𝑗Y , which is the sum of the 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆  

binary variable over all time points. 

�𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍

= 𝑁𝑁𝑖𝑖,𝑗𝑗Y ≤ �
|𝐍𝐍| − 1

𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN
� , ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖, (17) 

where 𝛼𝛼𝑖𝑖,𝑗𝑗MIN is the minimum time needed to transition to and from a run. Eq. (17) enforces an upper 

bound based on the maximum number of runs that can be processed over the time horizon. If a 
production subtask has no transition subtasks associated with it, 𝛼𝛼𝑖𝑖,𝑗𝑗MIN = 0. Together, 𝜏𝜏𝑖𝑖,𝑗𝑗MIN and 𝛼𝛼𝑖𝑖,𝑗𝑗MIN 

sum up to the minimum amount of time a continuous task requires from startup to shut down. 

If the summation of 𝑁𝑁𝑖𝑖,𝑗𝑗Y  is taken over all units, we define 𝑁𝑁𝑖𝑖Y: 

��𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖

= 𝑁𝑁𝑖𝑖Y ≤��
|𝐍𝐍| − 1

𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN
�

𝑗𝑗∈𝐉𝐉𝑖𝑖

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P (18) 

Once again, the upper bound is valid because the maximum number of runs possible for any 
production subtask is the time horizon divided by 𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN added up for all units 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖. 

The next RKV, 𝑁𝑁𝑗𝑗Y, is equal to the summation of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S  over all production subtasks and time points: 

��𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍𝑖𝑖∈𝐈𝐈P
= 𝑁𝑁𝑗𝑗Y ≤ �

|𝐍𝐍| − 1
min
𝑖𝑖∈𝐈𝐈P

�𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN�
� , ∀ 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖. (19) 

The upper bound of 𝑁𝑁𝑗𝑗Y is the largest number of runs that can be processed in a unit 𝑗𝑗 over the time 

horizon. 

We also introduce 𝑁𝑁𝑛𝑛Y, which is the summation of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S  binary variables over all production subtasks 

and units able to process them. 

��𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P
= 𝑁𝑁𝑛𝑛Y ≤ |𝐉𝐉|, ∀ 𝑛𝑛 ∈ 𝐍𝐍\{|𝐍𝐍|} (20) 

For the same reason discussed for Eq. (15), the upper bound of 𝑁𝑁𝑛𝑛Y is the total number of units in the 
system. 

Finally, we take the summation of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S  over all subtasks, units, and time points to yield 𝑁𝑁Y. This value 

denotes the total number of runs that occur in all units during the time horizon. 
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���𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P
= 𝑁𝑁Y ≤ min����

|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN

�
 

𝑗𝑗∈𝐉𝐉𝑖𝑖

 

𝑖𝑖∈𝐈𝐈P
,��

|𝐍𝐍| − 1
min
𝑖𝑖∈𝐈𝐈P

�𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN�
�

 

𝑗𝑗∈𝐉𝐉𝑖𝑖

� (21) 

The minimum of the bounds seen in Eq. (18) and (19) are used, but Eq. (21) additionally includes the 
summation over all production subtasks for the first term within the min{∙} function and the 
summation over all units for the second term within the min{∙} function. 

Motivating Example 

To demonstrate how RKVs allow solvers to branch more efficiently, we use the example in Figure 3 
with an integer variable 𝑋𝑋 on the x-axis and an integer variable 𝑌𝑌 on the y-axis. The feasible region of 
the linear programming (LP) relaxation is shown as the blue shaded region, and integer feasible 
points are shown as yellow points. The objective function is to maximize 2𝑋𝑋 + 𝑌𝑌, and the level curve 
of the objective function is shown as a purple line. Before any variable branching is performed, the 
first solution of the LP relaxation is the purple point. A solver would then proceed to branch on an 
integer variable such as 𝑋𝑋 or 𝑌𝑌 to reduce the feasible region of the LP relaxation; one such branch 
could be 𝑋𝑋 ≤ 5 ∨ 𝑋𝑋 ≥ 6 (illustrated by the green dotted line). Without eliminating any integer 
feasible solutions, this branch would allow the solver to yield the green point (5, 1.4), which is closer 
to the optimal solution (circled in red) at point (5, 1). Note that there is no way to yield the optimal 
solution after branching on 𝑋𝑋 or 𝑌𝑌 once; additional branching must occur to reduce the feasible region 
before being able to yield the optimal solution. However, with the introduction of the RKV denoted 
as 𝑁𝑁, which is equal to 𝑋𝑋 + 𝑌𝑌, the solver has the ability to branch on the new integer variable. 
Branching on 𝑁𝑁, specifically 𝑁𝑁 ≤ 6 ∨ 𝑁𝑁 ≥ 7, results in eliminating the blue shaded region above the 
red dotted line. Upon solving the instance again, the solver yields the optimal solution after only 
branching once. 

 
Figure 3. Motivating example illustrating efficient branching on RKVs. The level curve of the objective function 
(maximize 2𝑋𝑋 + 𝑌𝑌) is shown to intercept the blue shaded region (feasible region of LP relaxation) at the purple 
point (root node solution). After branching on the 𝑋𝑋 integer variable to enforce 𝑋𝑋 ≤ 5 ∨ 𝑋𝑋 ≥ 6 (shown by a 
green dotted line), the next solution obtained is at the green point (5, 1.4). However, the presence of the RKV 
𝑁𝑁 = 𝑋𝑋 + 𝑌𝑌 allows the solver to arrive at the optimal solution (5, 1) after only a single branch: 𝑁𝑁 ≤ 6 ∨ 𝑁𝑁 ≥ 7. 
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Results and Discussion 

Performance profiles are used to compare the performance of optimization models because they 
allow the illustration of large amounts of instance data44. Performance profiles aim to succinctly 
illustrate the performance of different formulations and can be interpreted by recognizing that every 
instance is solved by every formulation. Our data is normalized by the formulation that solved the 
instance the fastest, so the performance curve for a formulation illustrates the ratio of the solution 
time of that formulation relative to the best formulation time. The y-axis shows the fraction of all 
instances that are solved faster than the fastest formulation when sped up by a performance 
multiplier 𝑘𝑘, which is shown on the x-axis. Alternatively, one can view the performance multiplier k 
as a value that solution times are divided by when compared against the fastest solution time for an 
instance, and the y-axis denotes the fraction of all instances solved faster than the fastest solution 
time after dividing by k. Therefore, every formulation eventually reaches a y-axis value of 1.0 given a 
sufficiently large multiplier 𝑘𝑘, but the formulations approaching a y-axis value of 1.0 faster perform 
better (i.e., the formulations that do not require a large multiplier 𝑘𝑘 to reach the fastest formulation 
time perform better). This also implies that the starting y-axis value of a formulation at 𝑘𝑘 = 1 is the 
fraction of all instances that a formulation solved the fastest. 

To generate the performance profiles, all instances in this work are solved to optimality and sent to 
a Linux computing cluster (2.8 GHz Intel Cascade Lake processors) with a resource limit of 24 hours 
and 8 GB of memory. Additionally, GAMS version 36.1 is used with CPLEX 20.1 as the solver, but a 
brief study was also performed to analyze the impact of RKVs when Gurobi 10.0.0 is used as the solver 
(see Supporting Information). 

Comparison of All RKVs 

The first test we conducted evaluates the computational enhancements that implementing various 
RKVs can yield. We used 96 cost minimization instances that were generated using a combination of 
three systems, four demand profiles, two processing rate ranges (𝛽𝛽𝑖𝑖,𝑗𝑗MIN/𝛽𝛽𝑖𝑖,𝑗𝑗MAX), two run length ranges 
(𝜏𝜏𝑖𝑖,𝑗𝑗MIN/𝜏𝜏𝑖𝑖,𝑗𝑗MAX), and three horizons (see Supporting Information for detailed instance data). We assess 

the performance of adding each individual RKV to the model as well as many combinations of RKVs. 
Note that the term “model” is used synonymously with “formulation”, but we specifically use the term 
“reformulation” to refer to any models incorporating RKVs. Table 1 describes the naming convention 
of the base reformulations, where we consider the addition of only one RKV. In cases where multiple 
RKVs were added, the letters after the period are appended to the reformulation’s name. For example, 
a model with Eqs. (12)-(14) would be denoted as “X.BIJ” because it incorporates the constraints in 
the X.B, X.I, and X.J reformulations. In cases where RKVs from both classes (involving both 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 
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𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S  binary variables) are implemented, a semicolon is used to separate the two classes. For example, 

a model with Eqs. (15)-(18) would be denoted as “X.NA;Y.BI”. 

Table 1. Naming convention of reformulations given the RKVs added to the original model (Eqs. (1)–(11)). 
Reformulations Eqs. added RKVs added 

X.B (12) 𝑁𝑁𝑖𝑖,𝑗𝑗X  
X.I (13) 𝑁𝑁𝑖𝑖X 
X.J (14) 𝑁𝑁𝑗𝑗X 
X.N (15) 𝑁𝑁𝑛𝑛X 
X.A (16) 𝑁𝑁X 
Y.B (17) 𝑁𝑁𝑖𝑖,𝑗𝑗Y  
Y.I (18) 𝑁𝑁𝑖𝑖Y 
Y.J (19) 𝑁𝑁𝑗𝑗Y 
Y.N (20) 𝑁𝑁𝑛𝑛Y 
Y.A (21) 𝑁𝑁Y 

Table 2 illustrates the number of variables that are added to a model when different RKV 
reformulations are incorporated. Since the number of some RKVs depend on the number of units, 
subtasks, or time periods, the overall number of variables being added are instance-specific. 

Table 2. Number of variables in the original model and the variables added by RKV reformulations are shown 
for three select instances (see Supporting Information for instance data). 

Model System1.d1.e1.h24.t1 System2.d4.e2.h36.t2 System3.d3.e2.h36.t1 
Original 4726 8622 6957 

X.B 13 14 13 
X.I 9 10 9 
X.J 7 8 7 
X.N 25 37 37 
X.A 1 1 1 
Y.B 13 14 13 
Y.I 9 10 9 
Y.J 7 8 7 
Y.N 25 37 37 
Y.A 1 1 1 

Figure 4 illustrates the performance profile of the original model and seven other selected 
reformulations. For clarity, we do not show all of the combinations of RKVs that were tested because 
20 different profiles would be difficult to discern from each another (see Supporting Information for 
all formulation data). The two reformulations that performed the best were Y.I and X.I;Y.I, so the 𝑁𝑁𝑖𝑖Y 
RKV was present in both of the two best-performing reformulations. Interestingly, the reformulation 
with all RKVs (X.BIJNA;Y.BIJNA) performed better than the original model but not as well as some of 
the other reformulations with fewer RKVs. This implies that there is a tradeoff between providing 
the solver with the ability to branch on RKVs to reduce solution times and increasing the number of 
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variables in the model. For example, when 𝑁𝑁𝑛𝑛X and 𝑁𝑁𝑛𝑛Y were removed from X.BIJNA;Y.BIJNA, resulting 
in X.BIJA;Y.BIJA, the performance of the reformulation improved. 

We observe that the inclusion of 𝑁𝑁𝑖𝑖Y has a substantial impact on reducing solution times considering 
that Y.I has the fastest solution time for over 40% of all instances, and the second fastest 
reformulation, X.I;Y.I, which has the fastest solution time for about 22% of all instances, also contains 
𝑁𝑁𝑖𝑖Y. This is an interesting observation because X.I does not perform much differently from the original 
model implying that the vast majority of solution time improvements exhibited by the X.I;Y.I 
reformulation exclusively came from 𝑁𝑁𝑖𝑖Y. Much of the solution time improvements other 
reformulations exhibited can also be attributed to the addition of 𝑁𝑁𝑖𝑖Y. It is clear that incorporating 
various RKVs into the model can yield significant computation time improvements, but the most 
noteworthy improvements come from the addition of Eq. (18). 

 
Figure 4. The performance profiles of eight formulations are illustrated. All reformulations that incorporate 
the RKVs involving 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S  perform significantly better than the original model (red). 

When we consider the implication of what the 𝑁𝑁𝑖𝑖Y RKV represents, it makes intuitive sense that 
branching on a variable which tracks the number of runs will likely result in a significantly different 
objective function value. Inversely, X.N and Y.N, two of the poorer performing reformulations, contain 
RKVs that track the number of subtasks and runs executed at a time point 𝑛𝑛, respectively. Branching 
on such variables is not likely to lead to a significant change (if any) in the objective function value 
because branching on the number of subtasks/runs executed at time point 𝑛𝑛 could result in changes 
that could be offset by a change in the number of subtasks/runs executed at time point 𝑛𝑛 + 1, yielding 
a solution with a similar (or, in some cases, the exact same) objective function value. This is 
exemplified when comparing the reformulation with all RKVs (X.BIJNA;Y.BIJNA) to the reformulation 
with all RKVs except for 𝑁𝑁𝑛𝑛X and 𝑁𝑁𝑛𝑛Y (X.BIJA;Y.BIJA) because computational improvements can be seen 
with the removal of these two RKVs. 
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Branching Priorities Using Subtask Utilization 

Next, we test the impact of prioritizing branching on certain RKVs to determine whether further 
reductions can be made to computation times. Note that changing branching priorities does not alter 
a model’s constraints or variables but involves modifying the configuration of the solver, so the term 
“reformulation” is inadequate for distinguishing between these configurations. Thus, we use the term 
“configuration” to differentiate models that only differ in their branching priorities. 

Given the findings in the previous subsection, we focus our branching prioritization efforts on the 𝑁𝑁𝑖𝑖Y 
RKVs. Since there is an 𝑁𝑁𝑖𝑖Y integer variable for every production subtask 𝑖𝑖, less than a dozen total 
variables are added to every instance. However, it is difficult to distinguish configurations from each 
other when all 𝑁𝑁𝑖𝑖Y RKVs are present in the model and only a single variable’s branching priority is 
being changed. To draw a clearer visual distinction between different configurations, we add all 𝑁𝑁𝑖𝑖Y 
RKVs to the model (i.e., reformulation Y.I) and begin by prioritizing branching on one RKV based on 
certain system attributes. Each successive configuration progressively prioritizes an additional 𝑁𝑁𝑖𝑖Y 
RKV until all 𝑁𝑁𝑖𝑖Y RKVs are eventually prioritized (see Table 3 for example). 

Using LP Relaxation to Calculate Utilization 

The first system attribute that we use to determine branching priorities is utilization. In order to 
determine how frequently a subtask is executed, a utilization metric (𝑈𝑈𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖) is calculated. In this 
method, the LP relaxation is quickly solved and used to calculate 

𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑖𝑖 = ��(𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
∗ 𝜏𝜏𝑖𝑖,𝑗𝑗

𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖

+ � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
∗ 𝜏𝜏𝑖𝑖′,𝑗𝑗

𝑖𝑖′∈𝐈𝐈𝑖𝑖
TR+⋃𝐈𝐈𝑖𝑖

TR−

), ∀ 𝑖𝑖 ∈ 𝐈𝐈P, (22) 

where 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
∗  is the solution of the LP relaxed problem. Note that the processing time of transitioning 

to and from a production subtask is also considered; however, because 𝑁𝑁𝑖𝑖Y is written for production 
subtasks, we correspondingly calculate 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖  for every production subtask. The naming convention 
of configurations with branching prioritization based on 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖  are prefixed with “LPR” to denote that 
the LP relaxation is used to determine branching priorities. Additionally, “M” is added to the 
configuration names to denote that the prioritization order starts with RKVs associated with the most 
utilized tasks (see Table 3). 

Figure 5 illustrates the impact of prioritizing RKVs based on 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 , and the original model (red) with 
no RKVs is shown for comparison. Configuration LPR.M.I0 does not prioritize any RKVs, but LPR.M.I1 
prioritizes branching on the RKV associated with the most utilized task (based on the highest value 
of 𝑈𝑈𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖). For configuration LPR.M.I2, we prioritize branching on the RKVs associated with the two 
most utilized tasks; the RKV associated with the most utilized task is given the highest priority, and 
the RKV associated with the second most utilized task is given the second highest priority. This 
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pattern is continued until all 𝑁𝑁𝑖𝑖Y RKVs are prioritized in the order of the most to least utilized task for 
configuration LPR.M.I9, as shown in Table 3. Note that only branching on the 𝑁𝑁𝑖𝑖Y RKVs is prioritized, 
that is, the 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S  binary variables are not prioritized. 

Table 3. Naming convention for the “LPR.M” configurations. Index 𝑖𝑖1 indicates the most utilized production 
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“ 
denotes highest priority, “2nd“ denotes second highest priority, etc. 

Configuration Branching priorities 
LPR.M.I0 None 
LPR.M.I1 1st: 𝑁𝑁𝑖𝑖1Y  
LPR.M.I2 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y  
LPR.M.I3 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y , 3rd: 𝑁𝑁𝑖𝑖3Y  

… … 
LPR.M.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖1Y  (1st) to 𝑁𝑁𝑖𝑖9Y  (9th) 

All configurations with some RKVs prioritized outperform the configuration with no branching 
priorities (LPR.M.I0), and LPR.M.I9, which prioritizes all RKVs from most to least subtask utilization, 
performs the best, solving over 50% of all instances the fastest. 

 
Figure 5. The performance profiles of the original model (red) and five configurations of the Y.I reformulation. 
Naming conventions given in Table 3. Some configurations are not depicted for clarity. 

Comparing Highest and Lowest Utilization 

Although Figure 5 illustrates that prioritizing branching on 𝑁𝑁𝑖𝑖Y can reduce solution times, the 
decision to prioritize RKVs starting from the most to least utilized subtask is based on the intuition 
that branching on variables for more utilized subtasks (bottlenecks) plays a larger role in closing the 
optimality gap. To further study the impact of prioritizing RKVs based on subtask utilization, the 
same experiment is run with the order of RKV prioritization reversed. The prefix “L” denotes 
prioritizing from least to most utilization. The RKV corresponding to the least utilized subtask is 
prioritized in configuration LPR.L.I1, the RKVs corresponding to the two least utilized subtasks are 
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prioritized in configuration LPR.L.I2, etc. The prioritization is also ordered from the RKV associated 
with the least utilized subtask to the RKVs associated with more utilized subtasks (see Table 4). 

The “LPR.M” and “LPR.L” configurations are compared in Figure 6. The LPR.L.I0 and LPR.M.I0 
configurations can be used as controls because they are the exact same; they contain all 𝑁𝑁𝑖𝑖Y RKVs but 
do not implement any branching priorities. Interestingly, the “LPR.L” configurations perform better 
than their “LPR.M” counterparts. For example, LPR.L.I2 (dark green) performs better than LPR.M.I2 
(light green). The same can be seen with LPR.L.I6 (light purple), which is one of the best performing 
configurations, while its counterpart, LPR.M.I6 (dark blue), performs significantly worse. We 
theorize that subtasks with a lower utilization could play an important role in closing the optimality 
gap because there is more flexibility in the timing of their operations. Meanwhile, subtasks with high 
utilization (bottlenecks) have less operational flexibility, so there are fewer feasible schedules for the 
solver to investigate when fixing the associated decision variables. Thus, prioritizing branching on 
RKVs associated with less utilized subtasks yields larger solution time reductions. 

Table 4. Naming convention for the “LPR.L” configurations. Index 𝑖𝑖1 indicates the most utilized production 
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“ 
denotes highest priority, “2nd“ denotes second highest priority, etc. 

Configuration Branching priorities 
LPR.L.I0 None 
LPR.L.I1 1st: 𝑁𝑁𝑖𝑖9Y  
LPR.L.I2 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y  
LPR.L.I3 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y , 3rd: 𝑁𝑁𝑖𝑖7Y  

… … 
LPR.L.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖9Y  (1st) to 𝑁𝑁𝑖𝑖1Y  (9th) 

 
Figure 6. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in 
Tables 3 and 4. Some configurations are not depicted for clarity. 
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Studying Equal Prioritization 

We have only considered distinct branching prioritization for each RKV, that is, if a subtask has the 
lowest utilization, its associated RKV is assigned the highest priority relative to all other RKVs. 
Similarly, the RKV associated with the second-lowest subtask utilization is assigned the second-
highest prioritization, and this pattern continues accordingly. Here, we shift our focus to investigating 
whether equal prioritization of RKVs has a more preferable impact on solution times (see Table 5). 
Given our previous findings, we continue to start our prioritization efforts on RKVs associated with 
the least to most utilized subtask. In Figure 7, the prefix “E” denotes that the prioritized RKVs have 
the same priorities. Configurations range from I0 to I9 with the details given in Table 5. Once again, 
LPR.E.I0 and LPR.L.I0 can be thought of as controls because they are the same configuration with no 
prioritizations. There does not appear to be a noticeable difference between the two prioritization 
methods when fewer RKVs are prioritized (I0, I2, and I4). However, when more than five RKVs are 
prioritized (I6 and I9), a distinction can be seen where the configurations that prioritize RKVs equally 
begin plateauing in performance. Configurations LPR.E.I6 and LPR.E.I9 perform similarly, as do 
LPR.L.I6 and LPR.L.I9, but LPR.L.I9 performs better than LPR.E.I9. 

Table 5. Naming convention for the “LPR.E” configurations. Index 𝑖𝑖1 indicates the most utilized production 
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“ 
denotes highest priority, “2nd“ denotes second highest priority, etc. 

Configuration Branching priorities 
LPR.E.I0 None 
LPR.E.I1 1st: 𝑁𝑁𝑖𝑖9Y  
LPR.E.I2 1st: 𝑁𝑁𝑖𝑖9Y , 1st: 𝑁𝑁𝑖𝑖8Y  
LPR.E.I3 1st: 𝑁𝑁𝑖𝑖9Y , 1st: 𝑁𝑁𝑖𝑖8Y , 1st: 𝑁𝑁𝑖𝑖7Y  

… … 
LPR.E.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized with equal priorities 

 
Figure 7. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in 
Tables 4 and 5. Some configurations are not depicted for clarity. 
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Preliminary testing (not shown) was performed to determine the effect of implementing branching 
priorities on RKVs when 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S  are not present in the objective function, which is unlikely 

given that there are inherent costs associated with processing a subtask/run. Our findings show that 
solution times increase. 

Using DPA to Calculate Utilization 

Samadi and Maravelias recently proposed a Demand Propagation Algorithm (DPA) to calculate 
production lower bounds in continuous production scheduling problems33. Tightening constraints 
that use the bounds calculated by the DPA can be implemented to reduce computational resources. 
However, since the DPA calculates minimum production bounds for each subtask in a system, it, in a 
sense, determines how utilized a subtask is for a given instance. As such, we investigate whether 𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑖𝑖  
yields a better metric for subtask utilization in terms of reducing solution times or if the bound 
calculated by the DPA is a better metric. We note that the DPA considers conversion coefficients, 
maximum/minimum processing rates, maximum/minimum task durations, time horizon, and 
demand profiles in its calculation of minimum production bounds. 

The configurations using the DPA method of calculating subtask utilization have the prefix “DPA”. 
Figure 8 compares the performance of the “LPR” to the “DPA” configurations. Similar to before, both 
I0 configurations contain all 𝑁𝑁𝑖𝑖Y RKVs with no prioritizations, which means LPR.L.I0 and DPA.L.I0 are 
the same configuration. Since in the previous subsections we demonstrated that prioritizing 
branching on RKVs corresponding to the less utilized subtasks benefits solution times more, we 
continue using this strategy. The naming convention for the “DPA” configurations are shown in Table 
6, which is similar to the naming convention shown in Table 4 for the “LPR” configurations.  

Though not significantly different, the “LPR” configuration appears to perform slightly better than 
the “DPA” configurations. Not seeing a large discrepancy between the two methods is expected 
because both attempt to rank subtasks based on utilization, so they should not be significantly 
different from each other. From Figure 8, LPR.L.I9 and DPA.L.I9 both prioritize all RKVs in the order 
of least to most utilized subtask, but LPR.L.I9 performs the best, having the fastest solution time for 
over a third of instances. In terms of usefully ranking subtask utilization, it appears that the LP 
relaxation method is a better metric for calculating subtask utilization than the DPA method. 

Table 6. Naming convention for the “DPA.L” configurations. Index 𝑖𝑖1 indicates the most utilized production 
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“ 
denotes highest priority, “2nd“ denotes second highest priority, etc. 

Configuration Branching priorities 
DPA.L.I0 None 
DPA.L.I1 1st: 𝑁𝑁𝑖𝑖9Y  
DPA.L.I2 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y  
DPA.L.I3 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y , 3rd: 𝑁𝑁𝑖𝑖7Y  
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… … 
DPA.L.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖9Y  (1st) to 𝑁𝑁𝑖𝑖1Y  (9th) 

 
Figure 8. The performance profiles of 8 configurations of the Y.I reformulation. Naming conventions given in 
Tables 4 and 6. Some configurations are not depicted for clarity. 

Branching Priorities Using Unit Demand 

We previously considered subtask utilization to determine how impactful branching on specific RKVs 
is. Another system attribute we investigate is unit “demand” because RKVs associated with units that 
have a lot of operational flexibility might be more impactful in terms of solution times. The method 
we use to calculate the demand of a unit (𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗) is by first solving the LP relaxation of an instance 
and then summing the dual variable (𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞𝑗𝑗,𝑛𝑛

∗ ) of the unit’s clique constraint (Eq. (1)) over all time 

points 𝑛𝑛: 

𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞𝑗𝑗,𝑛𝑛
∗

𝑛𝑛∈𝐍𝐍

, ∀ 𝑗𝑗 ∈ 𝐉𝐉. (23) 

Note that 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗  is calculated for every unit, but 𝑁𝑁𝑖𝑖Y is written for every production subtask. For this 

reason, we must link units to the subtasks that they can process in order to implement branching 
priorities on the 𝑁𝑁𝑖𝑖Y RKVs. Some units can process multiple subtasks, so subtasks that correspond to 
the same unit are all equally prioritized based on the unit’s calculated 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗. If multiple units have 
the same 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 value, then all associated RKVs are equally prioritized. 

Figure 9 illustrates the performance of several configurations (“DEM”) with branching priorities 
based on 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 calculated using Eq. (23). Naming conventions for these configurations are shown in 

Table 7. Ultimately, DEM.L.I9 and DEM.M.I9 prioritize all 𝑁𝑁𝑖𝑖Y RKVs, but DEM.L.I9 gives the RKVs 
associated with units that have the least demand a higher branching priority while DEM.M.I9 gives 
the RKVs associated with units that have the highest 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 a higher branching priority. 
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Table 7. Naming convention for the “DEM.M” and “DEM.L” configurations. Index 𝑖𝑖1 indicates the production 
subtask associated with the highest 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 unit, etc. Ordinal numbers signify branching priorities: “1st“ denotes 
highest priority, “2nd“ denotes second highest priority, etc. 

Configuration Branching priorities 
DEM.M.I0 None 
DEM.M.I1 1st: 𝑁𝑁𝑖𝑖1Y  
DEM.M.I2 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y  
DEM.M.I3 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y , 3rd: 𝑁𝑁𝑖𝑖3Y  

… … 
DEM.M.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖1Y  (1st) to 𝑁𝑁𝑖𝑖9Y  (9th) 
DEM.L.I0 None 
DEM.L.I1 1st: 𝑁𝑁𝑖𝑖9Y  
DEM.L.I2 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y  
DEM.L.I3 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y , 3rd: 𝑁𝑁𝑖𝑖7Y  

… … 
DEM.L.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖9Y  (1st) to 𝑁𝑁𝑖𝑖1Y  (9th) 

 
Figure 9. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in 
Table 7. Some configurations are not depicted for clarity. 

Prioritizing branching on RKVs associated with lower 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗  units first yields better computational 

results. For example, DEM.L.I6 (light purple) performs better than DEM.M.I6 (dark blue), and 
DEM.L.I4 (light blue) performs better than DEM.M.I4 (cyan). This is likely due to the same reasons 
highlighted for Figure 6: when the solver focuses on branching on the RKVs associated with lower 
𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 units (i.e., more operational flexibility), the optimality gap can be reduced more quickly. 

Comparison of All Prioritization Methods 

Finally, we compare the best configurations from the previous subsections: LPR.L.I9 (from the LP 
relaxation calculation of subtask utilization), DPA.L.I9 (from the DPA calculation of subtask 
utilization), and DEM.L.I9 (from the unit demand calculation). The results of these three 
configurations, alongside the original model and the Y.I reformulation, are illustrated in Figure 10. 
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Figure 10. The performance profiles of the Y.I reformulation, three configurations of the Y.I reformulation, and 
the original model. 

The two methods that rely on calculating subtask utilization (LPR.L.I9 and DPA.L.I9) perform 
similarly relative to the other profiles, but all three configurations with branching priorities perform 
significantly better than the Y.I reformulation without any branching priorities. The best-performing 
configuration was DEM.L.I9. When comparing with the original model, the DEM.L.I9 configuration 
reduces the solution times of about 25% of instances by over an order of magnitude, and average 
solution times for DEM.L.I9 are 5.5 times faster than the original model. 

We conjecture that the “DEM” configurations reduce solution times better than the other 
configurations because several units are not bottlenecks (or heavily utilized), which yields 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 = 0 

for these units, so their associated RKVs are equally prioritized. We hypothesize that this gives the 
solver some additional branching flexibility (i.e., the option to select which of the equally prioritized 
RKVs to branch on). This ultimately results in a combination of prioritizing branching on some RKVs 
while not over-specifying priorities, which will strictly require the solver to focus branching on 
specific RKVs in the order we determined. The flexibility that the “DEM” configurations afford the 
solver are likely the cause of the computational improvements. 

Conclusions 

This work focuses on addressing the computational challenges inherent to production scheduling. 
Specifically, we introduce RKVs into MILP models for general continuous production scheduling 
problems. We show that the proposed reformulations, employing the new RKVs, are significantly 
more efficient than the original models. Moreover, our results provide insights on how prioritizing 
branching on RKVs, relative to other binary variables, offers further computational improvements. 
Our analysis extends to the study of system attributes, such as subtask and unit utilization, to discern 
the efficiency of prioritizing branching on RKVs associated with specific subtasks or units. Our results 
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suggest that such prioritization strategies can lead to additional enhancements; the best-performing 
solver configurations of the Y.I reformulation reduced the solution times of over half of the instances 
by a factor of 5, and for 25% of the instances by over an order of magnitude. We note that while the 
above RKVs are implemented in a discrete-time MILP formulation, similar variables can be 
introduced to continuous-time formulations or even other types of MILP models that have similar 
structure. 
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Nomenclature 

Sets 

𝑖𝑖 ∈  𝐈𝐈  subtasks 

𝑗𝑗 ∈  𝐉𝐉  units 

𝑘𝑘 ∈  𝐊𝐊  materials 

𝑛𝑛 ∈  𝐍𝐍  time points/periods 

𝑡𝑡 ∈  𝐓𝐓  time points/periods relative to the start of a subtask 

Subsets 

𝐈𝐈𝑗𝑗 subtasks that can be processed by unit 𝑗𝑗 

𝐈𝐈𝑘𝑘+/𝐈𝐈𝑘𝑘− subtasks that produce/consume material 𝑘𝑘 

𝐈𝐈DT production subtasks associated with direct transitions 

𝐈𝐈𝑖𝑖DT+/𝐈𝐈𝑖𝑖DT− direct transitions to/from production subtask 𝑖𝑖 

𝐈𝐈P production subtasks 

𝐈𝐈𝑖𝑖SD shutdowns associated with production subtask 𝑖𝑖 

https://pubs.acs.org/
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𝐈𝐈SS production subtasks associated with startups or shutdowns 

𝐈𝐈𝑖𝑖SU startups associated with production subtask 𝑖𝑖 

𝐈𝐈𝑖𝑖TR+/𝐈𝐈𝑖𝑖TR− transitions to/from production subtask 𝑖𝑖 

𝐉𝐉𝑖𝑖 units that can process subtask 𝑖𝑖 

𝐉𝐉SS units associated with startups or shutdowns 

Parameters 

𝛼𝛼𝑖𝑖,𝑗𝑗MIN minimum time needed to transition to and from a run 

𝛽𝛽𝑖𝑖,𝑗𝑗MIN/𝛽𝛽𝑖𝑖,𝑗𝑗MAX minimum/maximum processing rate 

𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
B /𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛

X  variable/fixed subtask execution cost 

𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
Y  run-starting cost 

𝛾𝛾𝑘𝑘S inventory cost 

𝜉𝜉𝑘𝑘,𝑛𝑛 material deliveries (>0) or orders (<0) 

𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡 conversion coefficient 

𝜏𝜏𝑖𝑖,𝑗𝑗 processing time 

𝜏𝜏𝑖𝑖,𝑗𝑗MIN/𝜏𝜏𝑖𝑖,𝑗𝑗MAX minimum/maximum run length 

𝜒𝜒𝑘𝑘MIN/𝜒𝜒𝑘𝑘MAX minimum/maximum inventory capacity 

Nonnegative Continuous Variables 

𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛 processing rate of subtask 𝑖𝑖 in unit 𝑗𝑗 starting at time point 𝑛𝑛 

𝑆𝑆𝑘𝑘,𝑛𝑛 inventory level of material 𝑘𝑘 during time period 𝑛𝑛 

Binary Variables 

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 =1 if subtask 𝑖𝑖 is processed in unit 𝑗𝑗 staring at time point 𝑛𝑛 

𝑋𝑋�𝑗𝑗,𝑛𝑛
I  =1 if unit 𝑗𝑗 is idle during time period 𝑛𝑛 

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S /𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E  =1 if a run of continuous task 𝑖𝑖 in unit 𝑗𝑗 starts/ends at time point 𝑛𝑛 

Record Keeping Variables 

𝑁𝑁𝑖𝑖,𝑗𝑗X  sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all time points 𝑛𝑛 

𝑁𝑁𝑖𝑖X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all units 𝑗𝑗 and time points 𝑛𝑛 
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𝑁𝑁𝑗𝑗X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks 𝑖𝑖 and time points 𝑛𝑛 

𝑁𝑁𝑛𝑛X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks 𝑖𝑖 and units 𝑗𝑗 

𝑁𝑁X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks 𝑖𝑖, units 𝑗𝑗, and time points 𝑛𝑛 

𝑁𝑁𝑖𝑖,𝑗𝑗Y  sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆  over all time points 𝑛𝑛 

𝑁𝑁𝑖𝑖Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆  over all units 𝑗𝑗 and time points 𝑛𝑛 

𝑁𝑁𝑗𝑗Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆  over all subtasks 𝑖𝑖 and time points 𝑛𝑛 

𝑁𝑁𝑛𝑛Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆  over all subtasks 𝑖𝑖 and units 𝑗𝑗 

𝑁𝑁Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆  over all subtasks 𝑖𝑖, units 𝑗𝑗, and time points 𝑛𝑛 
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