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ABSTRACT

Most solution methods for mixed-integer linear programming (MILP) production scheduling models
have been developed for batch processes. In this paper, we employ integer variables, referred to as
record keeping variables (RKVs), into discrete-time continuous production scheduling MILP models
that facilitate efficient branching and lead to substantial reductions in solution time. We first
introduce different types of RKVs and determine which class of RKVs is the most effective. Second,
we explore branching priorities and demonstrate that prioritizing branching on RKVs, relative to
other binary variables, leads to further computational improvements. Next, we analyze system
attributes, such as task and unit utilization, to determine if prioritizing branching on specific RKVs
leads to additional computational enhancements. Our computational results show that the proposed
reformulations, in combination with implementing branching priorities, lead to significant

computational improvements of continuous production scheduling MILP models.
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Introduction

Production scheduling involves generating a schedule of tasks to achieve a specific production
objective. Being able to allocate resources in an efficient manner can reduce manufacturing costs,
increase facility throughput, and help meet product demands more effectively. Applications for
production scheduling range widely from batch production of low-volume products (e.g.,
pharmaceuticals) to continuous production of high-volume products (e.g., oil and gas refineries)!-4.
Given the crucial role production scheduling plays in plant operations, it is ubiquitous across
industries involving manufacturing. Thus, considerable efforts have been made to develop modeling

techniques that account for the diverse process characteristics present in each specific application.

Mathematical optimization is leveraged to assist decision-makers in developing effective production
schedules. Production scheduling problems can generally be formulated as mixed-integer linear
programming (MILP) models, and due to the specific restrictions of different applications,
researchers have developed optimization models that consider various process characteristics
including, but not limited to: multiple production environments>¢, complex storage restrictions’3,
changeovers®-13, time-varying pricing4-16, utility consumption!?, and material transfer restrictions?8.
Accounting for these complex process characteristics enables MILP models to be implemented in a
range of industrial applications. However, the development of models that account for multiple
characteristics comes with its own challenges: even trivial scheduling instances are computationally
expensive. As the number of tasks, units, materials, and time periods increases, instances quickly
become intractable?®. Thus, model complexity is a vital consideration, especially in cases when an

instance must be solved numerous times20.21,

Efforts to reduce the CPU times of production scheduling models have come in the form of
decomposition-based algorithms!7.2223, reformulations24-28, parallel computing tools2930, and
tightening methods based on valid inequalities31-33. Many of these solution methods, however, are
restricted to specific problem types. In this paper, we focus on a simple and easily applicable,
reformulation technique that was first introduced by Velez and Maravelias involving the
incorporation of integer variables into production scheduling models24. Branching on these new
integer variables eliminate schedules with the same number of batches, which, in turn, eliminates
many symmetric solutions and reduces solution times. More work on these integer variables, termed
record keeping variables (RKVs) because they “keep record” of binary variables in the model, was
recently performed and additional sets of RKVs were proposed3*. These RKVs were generated based
on: the number of times a task is processed, the number of times a unit processes a task, and the
number of tasks performed at a specific time. However, the aforementioned works only focused on
batch production scheduling models. The goal of this paper is to assess the strength of a new class of

RKVs exclusively defined for continuous production scheduling models, compare them to the original



model, prioritize branching on the RKVs, and rigorously study how branching priorities can impact
solution times. More precisely, we assess the impact of prioritizing branching on specific RKVs based
on associated system attributes to determine if some RKVs play a more pivotal role in reducing

computational resources.

This paper is structured as follows. First, we provide background on production environments and
two of the main types of processes. The notation and production scheduling model are reviewed prior
to introducing the RKVs. We then present the computational results comparing numerous
reformulations as well as solver configurations used to impose branching priorities. By comparing
the solution times of the different reformulations and solver configurations, we are able to discuss

observations regarding the impact of the RKVs relative to specific instance attributes.

Background

The three main types of production environments, as well as the frameworks that have been used to
represent them, are discussed. Then differences between batch and continuous processes are
delineated. After the benefits of discrete-time models are detailed, the modeling constraints are

introduced.

Continuous Production Scheduling

Production environments are often defined by restrictions on material handling. In sequential
production environments, every batch of material follows a specific route, and the mixing or splitting
of batches is not allowed since every batch must only be produced/consumed by a single task3s. In
this work, we focus on the more general network environments because they allow for the
representation of more complex systems that do not necessarily follow defined stages. In network
environments, batch mixing and splitting is permitted, and tasks can produce/consume multiple
materials. Material recycling is also permitted. The two most common frameworks utilized to
represent network environments are the State-Task Network? and Resource-Task Network3s. Lastly,
there are hybrid environments which involve some combination of sequential and network
environments. For example, some materials might be produced in a sequential manner where
distinct batches are produced but then later get incrementally used as input by multiple batches, as
in network environments. A framework able to accurately represent hybrid environments would
need to explicitly denote the handling restrictions of every material as well as the processing types
of tasks; the General Material Task System was introduced to be able to represent a multitude of

material handling restrictions, various process types, transient operations, and even utilities.3”

Furthermore, most processes can either be classified as batch or continuous. In the former, materials

are consumed at the beginning of a process and produced after the process has ended, while



continuous processes produce and consume materials simultaneously during their execution. For
batch processes, capacity relates to the size of batches (in kg of material processed), and processing
times can be fixed or variable based on the batch size. For continuous processes, capacity implies
processing rate (in kg/h of material processed), and processing time corresponds to the duration of
the process, which is neither strictly fixed nor dependent upon processing rate. As such, the single
degree of freedom of batch processes is batch size, whereas continuous processes have two:
processing rate and duration. These distinctions have modeling implications because constraints
enforcing fixed processing times are no longer applicable, and additional binary variables are needed
to describe the start/end of production, which is no longer fixed. Finally, continuous processes may
have significant transient operations, such as startups/shutdowns and direct transitions, which also

need to be modeled explicitly.
Model

We employ a discrete-time model (adapted from Wu and Maravelias38) because it has been shown to
display computational advantages when considering large instances in network environments3°. For
example, they do not incur additional computational costs when material deliveries/shipments
occur, and they allow inventory and utility costs to be linearly modeled3?. Additionally, modeling
time-varying utility pricing/availability and time-varying objective function weights requires no new
variables or constraints, and production/consumption can occur at intermediate points in time
relative to the beginning of a process, not just at the beginning and end#0. Comprehensive overviews
of models employing different time grids, along with in-depth comparisons of their strengths and

weaknesses, can be found in the literature3941.42,

We define a continuous task as any operation that continuously consumes input materials to produce
output materials. All continuous tasks are modeled through consecutive production subtasks that
last a single time period; that is, a “subtask” refers to the building blocks of a continuous task, and
production subtasks are one type of subtask. Certain continuous tasks require indirect transitions
such as startups and shutdowns or direct transitions, which occur between runs of two distinct
continuous tasks. These transient operations are also modeled as subtasks. A “run” refers to a string
of consecutive production subtasks being executed (i.e., production is continuously occurring), and
all subtasks corresponding to the same continuous task produce/consume the same materials (see
Figure 1). For simplicity, terms like startup subtasks, shutdown subtasks, and direct transition

subtasks will be used synonymously with startups, shutdowns, and direct transitions, respectively.
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Figure 1. Gantt chart depicting a solution to an instance containing nine production subtasks (shown at the
top) and five units (shown on the y-axis) with a time horizon of 24 h. The unit a subtask can be processed in
can be found in the subtask name following the hyphen. Production subtasks TC1-4, TC2-4, TC3-5, and TC4-5
have two-hour startups and one-hour shutdowns, while TC3-5 and TC4-5 also have the ability to directly
transition to each other.

Fundamental Constraints

Sets and subsets are represented with uppercase bold letters and their respective indices, to denote
elements of these sets, with lowercase italic letters. Parameters are represented by lowercase Greek
letters, and variables are represented using italic uppercase letters (see Nomenclature). Materials

k € Kare produced/consumed by subtasks i € I, which must be processed by units j € J.

The task-unit assignment constraint enforces that a unit can only execute one subtask at a time:

‘L'i’j—l
Z Z Xijnt + X1 =1, VjelneN, )
iEl]' t=0

where binary variable X; ;, = 1 if subtask i is processed by unit j starting at time point n, binary
variable )?J-I,n = 1ifunitj is idle during time period n, 7; ; is the processing time of subtask i processed

by unit j, and I; is the subset of subtasks i that can be processed by unit j.
The second fundamental constraint is the unit capacity constraint which enforces that processing
rates fall between the minimum and maximum allowable processing rates (ﬁi_le-IN and ﬁi_NJ[-AX):

MIN MAX S
Bij Xijn <Bijn<Bij Xijn  VIiE€ELjEJyneN, (2)

where the continuous, nonnegative variable B, j , is the processing rate of subtask i in unit j starting
at time point n. Next, the material balance constraint is:
MIN _ MAX
Xk SSkn+1 =Skt Z Z Z PiktBijn—t T Z Z Z PiktBijn—t +Skn <Xk
i€} JEJi teTy L€l jEJ; teTy; 3)

V k € K,n € N\{0}.

where the continuous, nonnegative variable Sy ,, is the inventory level of material k during time

period n; I} and Iy, include the subtasks that produce and consume material k, respectively; J; is the



subset of units j that can process subtask i; and TL-J”J- ={12,..,7;} and T;; = {0,1, ...,7;; — 1}
include time points with respect to the start of subtask i. The parameter p; ;. is the conversion
coefficient of material k produced (>0) or consumed (<0) by subtask i after t periods after the start
of a subtask. The first summation term in Eq. (3) is positive, and the second summation term is
negative according to the sign of p; ; ;. The & ,, parameter is the net amount of material k shipped at
time point n (¢, > 0 for deliveries arriving to the plant and ¢, < 0 for orders departing the
plant); yMIN /¥ MAX are the minimum/maximum inventory capacity for material k.

Transient Operations

Transient operations such as startups, shutdowns, and direct transitions are modeled by:
Xijn-1—Xijn+ Z Xi’,j,n—rirj - Z Xitjnt Z Xi’,j,n—‘ri/j - Z Xitin=0,
i'er}Y i'er’ i'erPT+ i'e1PT- (4)

vieISSUIPT,j e, neN,

where IiSU/IL-SD include startups/shutdowns associated with production subtask i, and IPT+/IPT_
include direct transitions to/from production subtask i. All production subtasks that involve startups

or shutdowns are included in subset IS5

, and all production subtasks that have direct transitions
associated with them are included in subset IPT. Eq. (4) enforces that a unit j must process subtask i
if the subtask was processed in the previous time period, a startup just took place, or a direct
transition to the subtask in question just took place. Conversely, a unit j stops processing production

subtask i if a shutdown or direct transition away from the subtask in question just took place.
To properly link transitions to their corresponding production subtask, we use:

Xijn = Z X vi€ISSUIPT,j e];,n €N.

= rjn=ty
i'El;-rR+

)

which enforces that after a transition is executed, the associated production subtask must start being

processed.

A constraint to track the activity of a unit is also written:

! _ ¢l i e 1SS
Xj,n + 2 Xi’,j,n—‘ri,'j - 2 Xi’,j,n = 4din+1 vjeJ>neN, (6)
i'erfP i'er}Y
where subset JSS includes units involving startups or shutdowns. According to Eq. (6), a unit will start

or stop being idle when a shutdown finishes or a startup begins, respectively.



Run-Starting and Run-Ending

A continuous task is modeled using subtasks, and a run is defined as a string of consecutive, single-
period production subtasks. To describe the relationship between the start of a run, the end of a run,

and subtask execution during the run itself, Egs. (7) and (8) are needed.

Yin=Xijn—Xijn-1tYin  VIEIFjEJnEN 7)
Y5.+Y5,<1,  viel’jej,neN (8)

Subset I? includes all production subtasks, and Yl-jc'j,n and YiFj,n equal 1 when a run starts and ends,

respectively; Yl-jc'j,n and YiFj,n are directly linked to production subtasks and not transitions (see Figure
2). Eq. (8) enforces that both Yl-jc‘j’n and ij_n cannot be equal to 1 during a run (i.e., when X; ; , and
Xi jn-1 both equal one) or during an idle period (i.e, when X; ; , and X; ;,_; both equal zero) since
this would not accurately portray what is physically occurring in a facility; a run cannot start and end

at the same time.

Continuous Task TC1
A

1 1 1 1 1 1 1 Tlme (h)
TimePoint(n) | 1 2 3 4 5 6 7 8 9

yPS—TCLj,n o 0 1 0 O O O O0 O
Yo-tcrjm 0 0 0 0 0 0 0 1 0
Xp-Tc1,jn o0 0 1 1 1 1 1 0 0

Ha—mei 1 0 0 0 0 0 0 0 O

Xsp_Tcijn 00 0 0 0 0 0 1 0

Figure 2. Relevant binary variables are depicted to demonstrate which time points during task execution they

correspond to. Continuous task TA3 possesses a 2h starup and 1h shutdown. Note: Ylsjn and}’ifsj-_n do not equal

1 when a startup and shutdown occurs but when the production subtasks start and end, respectively.
Run Length

Minimum and maximum run length constraints can be enforced with Egs. (9) and (10), respectively.

Xijm = 2 Yis’jn,, viel’,jeJ,neN )
n’ENE’ijTI:'
MAX , .
T =2 Xijn'» viell,je],neN, (10)
n’EN?’Ij?lX

where Tl!\’/[jIN / TL!\’/[]-AX

2,...,n},and NE’[]-‘%X ={n- T}\”[jAX,n — TL!\’/[]-AX +1,...,n} with |N£’Ijﬁlx| = T}\,’IjAX + 1.

are the minimum/maximum run lengths, N%I,I\II ={n-— TL!\,/[]-IN +1,n— T%-IN +



Objective Function

The objective function to minimize total cost consists of three terms:

min 2 2 YieSkn + Z Z Z WEnXijn + VEinBijn) + Z Z E(Vi‘,(j,nyi,sj,n) (11)

keKneN\{0} i€l jeJ; neN ieIP jeJ; neN

The inventory, fixed subtask execution, variable subtask execution, and run-starting costs are y,f’_n,
yffj_n, yi]_gj’n, and yf jn respectively. The first term calculates the total inventory costs, the second term
calculates the fixed and variable costs associated with executing all subtasks, and the third term

calculates the costs associated with starting a run.

We make the following assumptions in our model: instance data is deterministic, every subtask ends
within the set scheduling horizon (this includes transient operations such as shutdowns), and

material transfer between units is instantaneous.

Methods

Although implementing RKVs may seem to trivially increase the number of variables in the model,
they appear to also allow solvers to perform branching more efficiently and close the optimality gap
faster. In the following sections, we discuss two classes of RKVs that can be generated based on the
two types of binary variables present in the model: the variables with the superscript “X” involve the
X; jn binary variable and those with the superscript “Y” involve the Yl-,sj’n binary variable. We then
provide an example of how solvers can take advantage of RKVs to reduce solution times. This
technique has been shown to successfully reduce computational resources in batch scheduling
problems3443, so we aim to study RKVs in the context of continuous production scheduling models
and assess their impact on solution times. Moreover, we analyze variable branching and how

prioritizing branching on specific RKVs can result in closing the optimality gap even more quickly.

RKVs involving X ijn
We first introduce NL-)‘(J-, which is the sum of the X; ; ,, binary variable over all time points.
X IN| -1 . P
ZXi,j,n:Ni,jS —| Vviel',je], (12)
LJj

neN

where NL-)’(J- is bounded by the number of production subtask executions that can feasibly occur over
IN|—1

the time horizon; rounding down yields the maximum number of subtask executions possible.

Lj

Importantly, the upper bound is introduced because some MILP solvers recognize that RKVs are a
summation of other binary variables and substitute them out of the model prior to solving the

instance34. The introduction of bounds ensures that the RKVs are not substituted. In order to



decouple the effects of the bounds from the RKVs themselves, we tested the model that includes the
bounds only (see Supporting Information). The results demonstrate that simply introducing the

bounds without any RKVs appears to increase solution times.

We generate other RKVs that keep record of X; ; , in various ways in order to produce new integer
variables that the solver can branch on. Variable N is equal to the summation of X i,jn Over all units
and time points, tracking the total number of subtask executions for each production subtask.

|N|—1 .
ZZXLM—NX { ’ vielP (13)
J€li

j€J; neN

The upper bound is calculated similarly, but a summation is taken over all units because NX is written

for every production subtask.

Eq. (14) sums X; ; , over all subtasks and time points, essentially tracking the number of times any

production subtask is executed on a particular unit over the time horizon:

IN| — 1
E E X =NX<|—— Vje]J; 14
ijmn it = n {TL ]} J€J; (14)

ieIP neN i€l;

The next RKV we introduce, N, is written for time points, so the number of variables that the model
is increasing by correlates to the discretization of the time horizon.

Z in_,-_n =NX<lJl,  vneNN (15)

i€lP jeJ;

The upper bound, |J|, holds true because there cannot be more subtasks actively being processed

than the number of available units.

Lastly, we sum X; ; , over all subtasks, units, and time points to define N X,

Sy S em(TSE SN

i€lP je); neN iel? jej; Jeli | i€l

The reader can deduce how the upper bound in Eq. (16) is calculated by noting the similarities of the
boundsin Egs. (13) and (14). Eq. (16) additionally includes a summation over all production subtasks
for the first term within the min{-} function and includes a summation over all units for the second
term within the min{-} function. Subsequently, the minimum between the two calculated values
serves as the upper bound because the total number of subtask executions over all units and time

points cannot be larger than the bounds previously calculated in Egs. (13) and (14).



RKVs involving Y3

ijn

We begin introducing the second class of RKVs by starting with N;';, which is the sum of the ¥;>;

ij’ i,jn
binary variable over all time points.
NY |N| -1 . Ip ,
Yiin = Nij < TMIN | MIN|’ Viel,jeJ, (17)
7N Tij Lj
where aLNiIN is the minimum time needed to transition to and from a run. Eq. (17) enforces an upper

bound based on the maximum number of runs that can be processed over the time horizon. If a
production subtask has no transition subtasks associated with it, aMIN = (. Together, TMIN and aMIN

sum up to the minimum amount of time a continuous task requires from startup to shut down.

If the summation of NlY] is taken over all units, we define N;':

l]n_ MIN_I_aMIN ) Viel (18)

J€J; neN e

Once again, the upper bound is valid because the maximum number of runs possible for any

MIN + a,MIN

production subtask is the time horizon divided by 7;’ added up for all units j € J;.

The next RKV, N/, Y, is equal to the summation of Y%, . over all production subtasks and time points:

L]Tl

IN| -1 .
Z Z Lim = mln{TMIN + aMIN ’ Vi€l (19)

iel? neN ierP

The upper bound of NjY is the largest number of runs that can be processed in a unit j over the time

horizon.

We also introduce N,Y, which is the summation of Yl >in binary variables over all production subtasks

and units able to process them.

> D WS =Nl vaeNIND 20)

i€l? jeJ;
For the same reason discussed for Eq. (15), the upper bound ofN,’{ is the total number of units in the
system.
Finally, we take the summation of YlS] n over all subtasks, units, and time points to yield N Y This value

denotes the total number of runs that occur in all units during the time horizon.

10



ZZZY‘S' = NY < min 22 IN[ -1 Z IN| -1 1)
in < T%\’/I-IN + gMIN |’ min T%\'/[jIN n a%\’/IjIN}

i€l? j€J; neN iel? jej; - b J Jeli Lier?

The minimum of the bounds seen in Eq. (18) and (19) are used, but Eq. (21) additionally includes the
summation over all production subtasks for the first term within the min{-} function and the

summation over all units for the second term within the min{-} function.

Motivating Example

To demonstrate how RKVs allow solvers to branch more efficiently, we use the example in Figure 3
with an integer variable X on the x-axis and an integer variable Y on the y-axis. The feasible region of
the linear programming (LP) relaxation is shown as the blue shaded region, and integer feasible
points are shown as yellow points. The objective function is to maximize 2X + Y, and the level curve
of the objective function is shown as a purple line. Before any variable branching is performed, the
first solution of the LP relaxation is the purple point. A solver would then proceed to branch on an
integer variable such as X or Y to reduce the feasible region of the LP relaxation; one such branch
could be X <5V X = 6 (illustrated by the green dotted line). Without eliminating any integer
feasible solutions, this branch would allow the solver to yield the green point (5, 1.4), which is closer
to the optimal solution (circled in red) at point (5, 1). Note that there is no way to yield the optimal
solution after branching on X or Y once; additional branching must occur to reduce the feasible region
before being able to yield the optimal solution. However, with the introduction of the RKV denoted
as N, which is equal to X + Y, the solver has the ability to branch on the new integer variable.
Branching on N, specifically N < 6 VN > 7, results in eliminating the blue shaded region above the
red dotted line. Upon solving the instance again, the solver yields the optimal solution after only

branching once.

[[] LP Relaxation Feasible Region
e Integer Point
Integer Feasible Point
e  Root Node Solution
o  Standard Branching Solution
— Level Curve of Obj. Fct.

Branching (Standard)

Optimal solution

-- Branching on RKV

T T T T T
0 1 2 3 ¥ 4 5 6
Figure 3. Motivating example illustrating efficient branching on RKVs. The level curve of the objective function
(maximize 2X + Y) is shown to intercept the blue shaded region (feasible region of LP relaxation) at the purple
point (root node solution). After branching on the X integer variable to enforce X <5V X > 6 (shown by a
green dotted line), the next solution obtained is at the green point (5, 1.4). However, the presence of the RKV

N = X + Y allows the solver to arrive at the optimal solution (5, 1) after only a single branch: N < 6 VN > 7.

11



Results and Discussion

Performance profiles are used to compare the performance of optimization models because they
allow the illustration of large amounts of instance data*. Performance profiles aim to succinctly
illustrate the performance of different formulations and can be interpreted by recognizing that every
instance is solved by every formulation. OQur data is normalized by the formulation that solved the
instance the fastest, so the performance curve for a formulation illustrates the ratio of the solution
time of that formulation relative to the best formulation time. The y-axis shows the fraction of all
instances that are solved faster than the fastest formulation when sped up by a performance
multiplier k, which is shown on the x-axis. Alternatively, one can view the performance multiplier k
as a value that solution times are divided by when compared against the fastest solution time for an
instance, and the y-axis denotes the fraction of all instances solved faster than the fastest solution
time after dividing by k. Therefore, every formulation eventually reaches a y-axis value of 1.0 given a
sufficiently large multiplier k, but the formulations approaching a y-axis value of 1.0 faster perform
better (i.e., the formulations that do not require a large multiplier k to reach the fastest formulation
time perform better). This also implies that the starting y-axis value of a formulation at k = 1 is the

fraction of all instances that a formulation solved the fastest.

To generate the performance profiles, all instances in this work are solved to optimality and sent to
a Linux computing cluster (2.8 GHz Intel Cascade Lake processors) with a resource limit of 24 hours
and 8 GB of memory. Additionally, GAMS version 36.1 is used with CPLEX 20.1 as the solver, but a
brief study was also performed to analyze the impact of RKVs when Gurobi 10.0.0 is used as the solver

(see Supporting Information).

Comparison of All RKVs

The first test we conducted evaluates the computational enhancements that implementing various

RKVs can yield. We used 96 cost minimization instances that were generated using a combination of

three systems, four demand profiles, two processing rate ranges (,BLNJI-IN / ,Bilf’[jAX), two run length ranges

MIN MAX
(T /T

the performance of adding each individual RKV to the model as well as many combinations of RKVs.

), and three horizons (see Supporting Information for detailed instance data). We assess

Note that the term “model” is used synonymously with “formulation”, but we specifically use the term
“reformulation” to refer to any models incorporating RKVs. Table 1 describes the naming convention
of the base reformulations, where we consider the addition of only one RKV. In cases where multiple
RKVs were added, the letters after the period are appended to the reformulation’s name. For example,

a model with Egs. (12)-(14) would be denoted as “X.BI]” because it incorporates the constraints in

the X.B, X.I, and X.J reformulations. In cases where RKVs from both classes (involving both X; ; ,, and

12



Yisj n binary variables) are implemented, a semicolon is used to separate the two classes. For example,

a model with Egs. (15)-(18) would be denoted as “X.NA;Y.BI".

Table 1. Naming convention of reformulations given the RKVs added to the original model (Egs. (1)-(11)).

Reformulations Egs. added RKVs added
X.B (12) N
X1 (13) NX
XJ (14) NF
X.N (15) NX
XA (16) NX
Y.B (17) NY;
Y. (18) NY
YJ (19) NS
Y.N (20) NY
Y.A (21) NY

Table 2 illustrates the number of variables that are added to a model when different RKV
reformulations are incorporated. Since the number of some RKVs depend on the number of units,
subtasks, or time periods, the overall number of variables being added are instance-specific.

Table 2. Number of variables in the original model and the variables added by RKV reformulations are shown
for three select instances (see Supporting Information for instance data).

Model System1.d1.e1.h24.t1 System2.d4.e2.h36.t2 System3.d3.e2.h36.t1
Original 4726 8622 6957
X.B 13 14 13
X 9 10 9
XJ 7 8 7
X.N 25 37 37
XA 1 1 1
Y.B 13 14 13
Y.I 9 10 9
Y. 7 8 7
Y.N 25 37 37
Y.A 1 1 1

Figure 4 illustrates the performance profile of the original model and seven other selected
reformulations. For clarity, we do not show all of the combinations of RKVs that were tested because
20 different profiles would be difficult to discern from each another (see Supporting Information for
all formulation data). The two reformulations that performed the best were Y.I and X.I;Y.], so the Nl-Y
RKV was present in both of the two best-performing reformulations. Interestingly, the reformulation
with all RKVs (X.BIJNA;Y.BIJNA) performed better than the original model but not as well as some of
the other reformulations with fewer RKVs. This implies that there is a tradeoff between providing

the solver with the ability to branch on RKVs to reduce solution times and increasing the number of

13



variables in the model. For example, when NX and N,¥ were removed from X.BIJNA;Y.BIJNA, resulting

in X.BIJA;Y.BIJA, the performance of the reformulation improved.

We observe that the inclusion of N;¥ has a substantial impact on reducing solution times considering
that Y.I has the fastest solution time for over 40% of all instances, and the second fastest
reformulation, X.I;Y.I, which has the fastest solution time for about 22% of all instances, also contains
N;¥.This is an interesting observation because X.I does not perform much differently from the original
model implying that the vast majority of solution time improvements exhibited by the X.I;Y.I
reformulation exclusively came from NY. Much of the solution time improvements other
reformulations exhibited can also be attributed to the addition of N¥. It is clear that incorporating
various RKVs into the model can yield significant computation time improvements, but the most

noteworthy improvements come from the addition of Eq. (18).
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Figure 4. The performance profiles of eight formulations are illustrated. All reformulations that incorporate
the RKVs involving YLS]n perform significantly better than the original model (red).

When we consider the implication of what the N RKV represents, it makes intuitive sense that
branching on a variable which tracks the number of runs will likely result in a significantly different
objective function value. Inversely, X.N and Y.N, two of the poorer performing reformulations, contain
RKVs that track the number of subtasks and runs executed at a time point n, respectively. Branching
on such variables is not likely to lead to a significant change (if any) in the objective function value
because branching on the number of subtasks/runs executed at time point n could result in changes
that could be offset by a change in the number of subtasks/runs executed at time pointn + 1, yielding
a solution with a similar (or, in some cases, the exact same) objective function value. This is
exemplified when comparing the reformulation with all RKVs (X.BIJNA;Y.BIJNA) to the reformulation
with all RKVs except for NX and N,Y (X.BIJA;Y.BIJA) because computational improvements can be seen

with the removal of these two RKVs.
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Branching Priorities Using Subtask Utilization

Next, we test the impact of prioritizing branching on certain RKVs to determine whether further
reductions can be made to computation times. Note that changing branching priorities does not alter
a model’s constraints or variables but involves modifying the configuration of the solver, so the term
“reformulation” is inadequate for distinguishing between these configurations. Thus, we use the term

“configuration” to differentiate models that only differ in their branching priorities.

Given the findings in the previous subsection, we focus our branching prioritization efforts on the N,Y
RKVs. Since there is an N;¥ integer variable for every production subtask i, less than a dozen total
variables are added to every instance. However, it is difficult to distinguish configurations from each
other when all N;Y RKVs are present in the model and only a single variable’s branching priority is
being changed. To draw a clearer visual distinction between different configurations, we add all N
RKVs to the model (i.e., reformulation Y.I) and begin by prioritizing branching on one RKV based on
certain system attributes. Each successive configuration progressively prioritizes an additional N,Y
RKV until all NY RKVs are eventually prioritized (see Table 3 for example).

Using LP Relaxation to Calculate Utilization

The first system attribute that we use to determine branching priorities is utilization. In order to
determine how frequently a subtask is executed, a utilization metric (Util;) is calculated. In this
method, the LP relaxation is quickly solved and used to calculate

Util; = 2 Z(Xi*,j,nfi,j + Z Xir i nTi i) vielP, (22)

JEJineN i'elfR+yrfR-

where X; ; ,, is the solution of the LP relaxed problem. Note that the processing time of transitioning
to and from a production subtask is also considered; however, because Nl-Y is written for production
subtasks, we correspondingly calculate Utili; for every production subtask. The naming convention
of configurations with branching prioritization based on Utili; are prefixed with “LPR” to denote that
the LP relaxation is used to determine branching priorities. Additionally, “M” is added to the
configuration names to denote that the prioritization order starts with RKVs associated with the most

utilized tasks (see Table 3).

Figure 5 illustrates the impact of prioritizing RKVs based on Utili;, and the original model (red) with
no RKVs is shown for comparison. Configuration LPR.M.I0 does not prioritize any RKVs, but LPR.M.I1
prioritizes branching on the RKV associated with the most utilized task (based on the highest value
of Util;). For configuration LPR.M.I2, we prioritize branching on the RKVs associated with the two
most utilized tasks; the RKV associated with the most utilized task is given the highest priority, and
the RKV associated with the second most utilized task is given the second highest priority. This
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pattern is continued until all N RKVs are prioritized in the order of the most to least utilized task for

configuration LPR.M.I9, as shown in Table 3. Note that only branching on the N¥ RKVs is prioritized,
that s, the X; ; , and YL-S

>in binary variables are not prioritized.

Table 3. Naming convention for the “LPR.M” configurations. Index i1 indicates the most utilized production
subtask, i2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2"“ denotes second highest priority, etc.

Configuration Branching priorities
LPR.M.I0O None
LPR.M.I1 1st: N
LPR.M.I2 1st: N, 2nd: NS
LPR.M.I3 1st: NY, 2nd: NY, 3rd: N Y
LPR.M.I9 All N)Y RKVs prioritized from N (1st) to NS, (9t)

All configurations with some RKVs prioritized outperform the configuration with no branching
priorities (LPR.M.10), and LPR.M.I9, which prioritizes all RKVs from most to least subtask utilization,

performs the best, solving over 50% of all instances the fastest.
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Figure 5. The performance profiles of the original model (red) and five configurations of the Y.I reformulation.
Naming conventions given in Table 3. Some configurations are not depicted for clarity.

Comparing Highest and Lowest Utilization

Although Figure 5 illustrates that prioritizing branching on N;¥ can reduce solution times, the
decision to prioritize RKVs starting from the most to least utilized subtask is based on the intuition
that branching on variables for more utilized subtasks (bottlenecks) plays a larger role in closing the
optimality gap. To further study the impact of prioritizing RKVs based on subtask utilization, the
same experiment is run with the order of RKV prioritization reversed. The prefix “L” denotes
prioritizing from least to most utilization. The RKV corresponding to the least utilized subtask is

prioritized in configuration LPR.L.I1, the RKVs corresponding to the two least utilized subtasks are
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prioritized in configuration LPR.L.12, etc. The prioritization is also ordered from the RKV associated

with the least utilized subtask to the RKVs associated with more utilized subtasks (see Table 4).

The “LPR.M” and “LPR.L” configurations are compared in Figure 6. The LPR.L.I0 and LPR.M.I0
configurations can be used as controls because they are the exact same; they contain all N;Y RKVs but
do not implement any branching priorities. Interestingly, the “LPR.L” configurations perform better
than their “LPR.M” counterparts. For example, LPR.L.12 (dark green) performs better than LPR.M.12
(light green). The same can be seen with LPR.L.I6 (light purple), which is one of the best performing
configurations, while its counterpart, LPRM.I6 (dark blue), performs significantly worse. We
theorize that subtasks with a lower utilization could play an important role in closing the optimality
gap because there is more flexibility in the timing of their operations. Meanwhile, subtasks with high
utilization (bottlenecks) have less operational flexibility, so there are fewer feasible schedules for the
solver to investigate when fixing the associated decision variables. Thus, prioritizing branching on
RKVs associated with less utilized subtasks yields larger solution time reductions.

Table 4. Naming convention for the “LPR.L” configurations. Index i1 indicates the most utilized production

subtask, i2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2"“ denotes second highest priority, etc.

Configuration Branching priorities
LPR.L.IO None
LPR.L.I1 15t N
LPR.L.I2 1st: Njg, 2nd: Nig
LPR.L.I3 1st: NY, 2nd: NY 3rd: NY
LPR.L.I9 All N)Y RKVs prioritized from N (1) to N (9t)
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Figure 6. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in
Tables 3 and 4. Some configurations are not depicted for clarity.
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Studying Equal Prioritization

We have only considered distinct branching prioritization for each RKV, that is, if a subtask has the
lowest utilization, its associated RKV is assigned the highest priority relative to all other RKVs.
Similarly, the RKV associated with the second-lowest subtask utilization is assigned the second-
highest prioritization, and this pattern continues accordingly. Here, we shift our focus to investigating
whether equal prioritization of RKVs has a more preferable impact on solution times (see Table 5).
Given our previous findings, we continue to start our prioritization efforts on RKVs associated with
the least to most utilized subtask. In Figure 7, the prefix “E” denotes that the prioritized RKVs have
the same priorities. Configurations range from I0 to 19 with the details given in Table 5. Once again,
LPR.E.I0O and LPR.L.I0 can be thought of as controls because they are the same configuration with no
prioritizations. There does not appear to be a noticeable difference between the two prioritization
methods when fewer RKVs are prioritized (10, 12, and 14). However, when more than five RKVs are
prioritized (16 and 19), a distinction can be seen where the configurations that prioritize RKVs equally
begin plateauing in performance. Configurations LPR.E.I6 and LPR.E.I9 perform similarly, as do
LPR.L.I6 and LPR.L.I9, but LPR.L.I9 performs better than LPR.E.I9.

Table 5. Naming convention for the “LPR.E” configurations. Index i1 indicates the most utilized production

subtask, i2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2"“ denotes second highest priority, etc.

Configuration Branching priorities
LPR.E.I0 None
LPREI1 1ot Nig
LPRE.I2 15t NS, 15t Ny
LPRE.I3 15t NY, 15t NY, 1st: NS
LPR.E.I9 All N)Y RKVs prioritized with equal priorities
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Figure 7. The performance profiles of 10 configurations of the Y.l reformulation. Naming conventions given in
Tables 4 and 5. Some configurations are not depicted for clarity.
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Preliminary testing (not shown) was performed to determine the effect of implementing branching

priorities on RKVs when X; ;, and Yis are not present in the objective function, which is unlikely

Ij’n
given that there are inherent costs associated with processing a subtask/run. Our findings show that

solution times increase.

Using DPA to Calculate Utilization

Samadi and Maravelias recently proposed a Demand Propagation Algorithm (DPA) to calculate
production lower bounds in continuous production scheduling problems33. Tightening constraints
that use the bounds calculated by the DPA can be implemented to reduce computational resources.
However, since the DPA calculates minimum production bounds for each subtask in a system, it, in a
sense, determines how utilized a subtask is for a given instance. As such, we investigate whether Util;
yields a better metric for subtask utilization in terms of reducing solution times or if the bound
calculated by the DPA is a better metric. We note that the DPA considers conversion coefficients,
maximum/minimum processing rates, maximum/minimum task durations, time horizon, and

demand profiles in its calculation of minimum production bounds.

The configurations using the DPA method of calculating subtask utilization have the prefix “DPA”.
Figure 8 compares the performance of the “LPR” to the “DPA” configurations. Similar to before, both
10 configurations contain all N;Y RKVs with no prioritizations, which means LPR.L.I0 and DPA.L.I0 are
the same configuration. Since in the previous subsections we demonstrated that prioritizing
branching on RKVs corresponding to the less utilized subtasks benefits solution times more, we
continue using this strategy. The naming convention for the “DPA” configurations are shown in Table

6, which is similar to the naming convention shown in Table 4 for the “LPR” configurations.

Though not significantly different, the “LPR” configuration appears to perform slightly better than
the “DPA” configurations. Not seeing a large discrepancy between the two methods is expected
because both attempt to rank subtasks based on utilization, so they should not be significantly
different from each other. From Figure 8, LPR.L.I9 and DPA.L.I9 both prioritize all RKVs in the order
of least to most utilized subtask, but LPR.L.I9 performs the best, having the fastest solution time for
over a third of instances. In terms of usefully ranking subtask utilization, it appears that the LP
relaxation method is a better metric for calculating subtask utilization than the DPA method.

Table 6. Naming convention for the “DPA.L” configurations. Index i1 indicates the most utilized production

subtask, i2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2"“ denotes second highest priority, etc.

Configuration Branching priorities
DPA.L.IO None
DPA.L.I1 1st: Ny
DPA.L.I2 1st: N, 2nd: NY
DPA.L.I3 1st: NY, 2nd: NY 3rd: NY
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Figure 8. The performance profiles of 8 configurations of the Y.l reformulation. Naming conventions given in
Tables 4 and 6. Some configurations are not depicted for clarity.

Branching Priorities Using Unit Demand

We previously considered subtask utilization to determine how impactful branching on specific RKVs
is. Another system attribute we investigate is unit “demand” because RKVs associated with units that

have a lot of operational flexibility might be more impactful in terms of solution times. The method
we use to calculate the demand of a unit (Demy) is by first solving the LP relaxation of an instance

and then summing the dual variable (Cliqj,) of the unit’s clique constraint (Eq. (1)) over all time
points n:
Dem; = z Cliq;p, Vj€E]. (23)
neN

Note that Dem; is calculated for every unit, but N is written for every production subtask. For this

reason, we must link units to the subtasks that they can process in order to implement branching
priorities on the N;¥ RKVs. Some units can process multiple subtasks, so subtasks that correspond to
the same unit are all equally prioritized based on the unit’s calculated Dem;. If multiple units have

the same Dem; value, then all associated RKVs are equally prioritized.

Figure 9 illustrates the performance of several configurations (“DEM”) with branching priorities

based on Dem; calculated using Eq. (23). Naming conventions for these configurations are shown in
Table 7. Ultimately, DEM.L.I9 and DEM.M.I9 prioritize all N} RKVs, but DEM.L.I9 gives the RKVs

associated with units that have the least demand a higher branching priority while DEM.M.I9 gives
the RKVs associated with units that have the highest Dem; a higher branching priority.
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Table 7. Naming convention for the “DEM.M” and “DEM.L” configurations. Index i1 indicates the production
subtask associated with the highest Dem; unit, etc. Ordinal numbers signify branching priorities: “1s*“ denotes
highest priority, “2"" denotes second highest priority, etc.

Configuration Branching priorities
DEM.M.I0 None
DEM.M.I1 1st: N}
DEM.M.I2 1st: NjY, 2nd: Ny
DEM.M.I3 1st: NY, 2nd: NY, 3rd: N Y
DEM.M.I9 All N)Y RKVs prioritized from N (1st) to NS, (9th)
DEM.L.I0 None
DEM.L.I1 1st: N
DEM.L.I2 1st: N, 2nd: NY
DEM.L.I3 1st: NY, 2nd: NY 3rd: NY
DEM.L.I9 All N)Y RKVs prioritized from N (1st) to N;¥ (9t)
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Figure 9. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in
Table 7. Some configurations are not depicted for clarity.

Prioritizing branching on RKVs associated with lower Dem; units first yields better computational
results. For example, DEM.L.I6 (light purple) performs better than DEM.M.I6 (dark blue), and
DEM.L.I4 (light blue) performs better than DEM.M.I4 (cyan). This is likely due to the same reasons

highlighted for Figure 6: when the solver focuses on branching on the RKVs associated with lower

Dem; units (i.e, more operational flexibility), the optimality gap can be reduced more quickly.

Comparison of All Prioritization Methods

Finally, we compare the best configurations from the previous subsections: LPR.L.I9 (from the LP
relaxation calculation of subtask utilization), DPA.L.I9 (from the DPA calculation of subtask
utilization), and DEM.L.I9 (from the unit demand calculation). The results of these three

configurations, alongside the original model and the Y.l reformulation, are illustrated in Figure 10.
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Figure 10. The performance profiles of the Y.I reformulation, three configurations of the Y.l reformulation, and
the original model.

The two methods that rely on calculating subtask utilization (LPR.L.I9 and DPA.L.I9) perform
similarly relative to the other profiles, but all three configurations with branching priorities perform
significantly better than the Y.l reformulation without any branching priorities. The best-performing
configuration was DEM.L.I9. When comparing with the original model, the DEM.L.I9 configuration
reduces the solution times of about 25% of instances by over an order of magnitude, and average

solution times for DEM.L.I9 are 5.5 times faster than the original model.

We conjecture that the “DEM” configurations reduce solution times better than the other
configurations because several units are not bottlenecks (or heavily utilized), which yields Dem; = 0
for these units, so their associated RKVs are equally prioritized. We hypothesize that this gives the
solver some additional branching flexibility (i.e., the option to select which of the equally prioritized
RKVs to branch on). This ultimately results in a combination of prioritizing branching on some RKVs
while not over-specifying priorities, which will strictly require the solver to focus branching on
specific RKVs in the order we determined. The flexibility that the “DEM” configurations afford the

solver are likely the cause of the computational improvements.

Conclusions

This work focuses on addressing the computational challenges inherent to production scheduling.
Specifically, we introduce RKVs into MILP models for general continuous production scheduling
problems. We show that the proposed reformulations, employing the new RKVs, are significantly
more efficient than the original models. Moreover, our results provide insights on how prioritizing
branching on RKVs, relative to other binary variables, offers further computational improvements.
Our analysis extends to the study of system attributes, such as subtask and unit utilization, to discern

the efficiency of prioritizing branching on RKVs associated with specific subtasks or units. Our results
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suggest that such prioritization strategies can lead to additional enhancements; the best-performing
solver configurations of the Y.I reformulation reduced the solution times of over half of the instances
by a factor of 5, and for 25% of the instances by over an order of magnitude. We note that while the
above RKVs are implemented in a discrete-time MILP formulation, similar variables can be
introduced to continuous-time formulations or even other types of MILP models that have similar

structure.
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Nomenclature

Sets

i€l subtasks

JE ] units

ke K materials

n€ N time points/periods

te T time points/periods relative to the start of a subtask
Subsets

I; subtasks that can be processed by unit j

I /1 subtasks that produce/consume material k

1PT production subtasks associated with direct transitions
IPT+ JIPT= direct transitions to/from production subtask i

48 production subtasks

°P shutdowns associated with production subtask i
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ISS production subtasks associated with startups or shutdowns

Il-SU startups associated with production subtask i
ITR*/1TR= transitions to/from production subtask i

Ji units that can process subtask i

JSS units associated with startups or shutdowns
Parameters

a?,’[jm minimum time needed to transition to and from a run

,b’l-,N][-IN / ﬁi,NJI-AX minimum/maximum processing rate

Vil,3 i/ Vi),( in variable/fixed subtask execution cost
yg in run-starting cost

y,§ inventory cost

¢k material deliveries (>0) or orders (<0)
Pikt conversion coefficient

Ty processing time

TleIN / T}\’[jAX minimum/maximum run length

AN/ MAX minimum/maximum inventory capacity

Nonnegative Continuous Variables

Bijn processing rate of subtask i in unit j starting at time point n

Skn inventory level of material k during time period n

Binary Variables

Xijn =1 if subtask i is processed in unit j staring at time pointn

)?J-I,n =1 if unit j is idle during time period n

Yi_sj’n/YijEjln =1 if a run of continuous task i in unit j starts/ends at time pointn

Record Keeping Variables
NL-),(J- sum of X; ; , over all time points n

NX sum of X; ; , over all units j and time points n
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sum of X; ; , over all subtasks i and time points n
sum of X; ; , over all subtasks i and units j
sum of X; ; , over all subtasks i, units j, and time points n

sum of Y5,

i jn Over all time points n

sum of Y5,

ijn Over all units j and time points n

sum of Y5,

i jn Over all subtasks i and time points n

sum of Y5,

ijn Over all subtasks i and units j

sum of Y5,

ijn Over all subtasks i, units j, and time points n
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