
1

Continuous Production Scheduling MILP
Formulations Using Record Keeping Variables

Amin Samadi a, Christos T. Maravelias a,b
a Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
b Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08540

ABSTRACT

Most solution methods for mixed-integer linear programming (MILP) production scheduling models
have been developed for batch processes. In this paper, we employ integer variables, referred to as
record keeping variables (RKVs), into discrete-time continuous production scheduling MILP models
that facilitate efficient branching and lead to substantial reductions in solution time. We first
introduce different types of RKVs and determine which class of RKVs is the most effective. Second,
we explore branching priorities and demonstrate that prioritizing branching on RKVs, relative to
other binary variables, leads to further computational improvements. Next, we analyze system
attributes, such as task and unit utilization, to determine if prioritizing branching on specific RKVs
leads to additional computational enhancements. Our computational results show that the proposed
reformulations, in combination with implementing branching priorities, lead to significant
computational improvements of continuous production scheduling MILP models.

Keywords

Reformulation, solution method, discrete-time, continuous processes

2

Introduction

Production scheduling involves generating a schedule of tasks to achieve a specific production
objective. Being able to allocate resources in an efficient manner can reduce manufacturing costs,
increase facility throughput, and help meet product demands more effectively. Applications for
production scheduling range widely from batch production of low-volume products (e.g.,
pharmaceuticals) to continuous production of high-volume products (e.g., oil and gas refineries)1–4.
Given the crucial role production scheduling plays in plant operations, it is ubiquitous across
industries involving manufacturing. Thus, considerable efforts have been made to develop modeling
techniques that account for the diverse process characteristics present in each specific application.

Mathematical optimization is leveraged to assist decision-makers in developing effective production
schedules. Production scheduling problems can generally be formulated as mixed-integer linear
programming (MILP) models, and due to the specific restrictions of different applications,
researchers have developed optimization models that consider various process characteristics
including, but not limited to: multiple production environments5,6, complex storage restrictions7,8,
changeovers9–13, time-varying pricing14–16, utility consumption17, and material transfer restrictions18.
Accounting for these complex process characteristics enables MILP models to be implemented in a
range of industrial applications. However, the development of models that account for multiple
characteristics comes with its own challenges: even trivial scheduling instances are computationally
expensive. As the number of tasks, units, materials, and time periods increases, instances quickly
become intractable19. Thus, model complexity is a vital consideration, especially in cases when an
instance must be solved numerous times20,21.

Efforts to reduce the CPU times of production scheduling models have come in the form of
decomposition-based algorithms17,22,23, reformulations24–28, parallel computing tools29,30, and
tightening methods based on valid inequalities31–33. Many of these solution methods, however, are
restricted to specific problem types. In this paper, we focus on a simple and easily applicable,
reformulation technique that was first introduced by Velez and Maravelias involving the
incorporation of integer variables into production scheduling models24. Branching on these new
integer variables eliminate schedules with the same number of batches, which, in turn, eliminates
many symmetric solutions and reduces solution times. More work on these integer variables, termed
record keeping variables (RKVs) because they “keep record” of binary variables in the model, was
recently performed and additional sets of RKVs were proposed34. These RKVs were generated based
on: the number of times a task is processed, the number of times a unit processes a task, and the
number of tasks performed at a specific time. However, the aforementioned works only focused on
batch production scheduling models. The goal of this paper is to assess the strength of a new class of
RKVs exclusively defined for continuous production scheduling models, compare them to the original

3

model, prioritize branching on the RKVs, and rigorously study how branching priorities can impact
solution times. More precisely, we assess the impact of prioritizing branching on specific RKVs based
on associated system attributes to determine if some RKVs play a more pivotal role in reducing
computational resources.

This paper is structured as follows. First, we provide background on production environments and
two of the main types of processes. The notation and production scheduling model are reviewed prior
to introducing the RKVs. We then present the computational results comparing numerous
reformulations as well as solver configurations used to impose branching priorities. By comparing
the solution times of the different reformulations and solver configurations, we are able to discuss
observations regarding the impact of the RKVs relative to specific instance attributes.

Background

The three main types of production environments, as well as the frameworks that have been used to
represent them, are discussed. Then differences between batch and continuous processes are
delineated. After the benefits of discrete-time models are detailed, the modeling constraints are
introduced.

Continuous Production Scheduling

Production environments are often defined by restrictions on material handling. In sequential
production environments, every batch of material follows a specific route, and the mixing or splitting
of batches is not allowed since every batch must only be produced/consumed by a single task35. In
this work, we focus on the more general network environments because they allow for the
representation of more complex systems that do not necessarily follow defined stages. In network
environments, batch mixing and splitting is permitted, and tasks can produce/consume multiple
materials. Material recycling is also permitted. The two most common frameworks utilized to
represent network environments are the State-Task Network9 and Resource-Task Network36. Lastly,
there are hybrid environments which involve some combination of sequential and network
environments. For example, some materials might be produced in a sequential manner where
distinct batches are produced but then later get incrementally used as input by multiple batches, as
in network environments. A framework able to accurately represent hybrid environments would
need to explicitly denote the handling restrictions of every material as well as the processing types
of tasks; the General Material Task System was introduced to be able to represent a multitude of
material handling restrictions, various process types, transient operations, and even utilities.37

Furthermore, most processes can either be classified as batch or continuous. In the former, materials
are consumed at the beginning of a process and produced after the process has ended, while

4

continuous processes produce and consume materials simultaneously during their execution. For
batch processes, capacity relates to the size of batches (in kg of material processed), and processing
times can be fixed or variable based on the batch size. For continuous processes, capacity implies
processing rate (in kg/h of material processed), and processing time corresponds to the duration of
the process, which is neither strictly fixed nor dependent upon processing rate. As such, the single
degree of freedom of batch processes is batch size, whereas continuous processes have two:
processing rate and duration. These distinctions have modeling implications because constraints
enforcing fixed processing times are no longer applicable, and additional binary variables are needed
to describe the start/end of production, which is no longer fixed. Finally, continuous processes may
have significant transient operations, such as startups/shutdowns and direct transitions, which also
need to be modeled explicitly.

Model

We employ a discrete-time model (adapted from Wu and Maravelias38) because it has been shown to
display computational advantages when considering large instances in network environments39. For
example, they do not incur additional computational costs when material deliveries/shipments
occur, and they allow inventory and utility costs to be linearly modeled39. Additionally, modeling
time-varying utility pricing/availability and time-varying objective function weights requires no new
variables or constraints, and production/consumption can occur at intermediate points in time
relative to the beginning of a process, not just at the beginning and end40. Comprehensive overviews
of models employing different time grids, along with in-depth comparisons of their strengths and
weaknesses, can be found in the literature39,41,42.

We define a continuous task as any operation that continuously consumes input materials to produce
output materials. All continuous tasks are modeled through consecutive production subtasks that
last a single time period; that is, a “subtask” refers to the building blocks of a continuous task, and
production subtasks are one type of subtask. Certain continuous tasks require indirect transitions
such as startups and shutdowns or direct transitions, which occur between runs of two distinct
continuous tasks. These transient operations are also modeled as subtasks. A “run” refers to a string
of consecutive production subtasks being executed (i.e., production is continuously occurring), and
all subtasks corresponding to the same continuous task produce/consume the same materials (see
Figure 1). For simplicity, terms like startup subtasks, shutdown subtasks, and direct transition
subtasks will be used synonymously with startups, shutdowns, and direct transitions, respectively.

5

Figure 1. Gantt chart depicting a solution to an instance containing nine production subtasks (shown at the
top) and five units (shown on the y-axis) with a time horizon of 24 h. The unit a subtask can be processed in
can be found in the subtask name following the hyphen. Production subtasks TC1-4, TC2-4, TC3-5, and TC4-5
have two-hour startups and one-hour shutdowns, while TC3-5 and TC4-5 also have the ability to directly
transition to each other.

Fundamental Constraints

Sets and subsets are represented with uppercase bold letters and their respective indices, to denote
elements of these sets, with lowercase italic letters. Parameters are represented by lowercase Greek
letters, and variables are represented using italic uppercase letters (see Nomenclature). Materials
𝑘𝑘 ∈ 𝐊𝐊 are produced/consumed by subtasks 𝑖𝑖 ∈ 𝐈𝐈, which must be processed by units 𝑗𝑗 ∈ 𝐉𝐉.

The task-unit assignment constraint enforces that a unit can only execute one subtask at a time:

 � � 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−𝑡𝑡 + 𝑋𝑋�𝑗𝑗,𝑛𝑛+1
I

𝜏𝜏𝑖𝑖,𝑗𝑗−1

𝑡𝑡=0𝑖𝑖∈𝐈𝐈𝑗𝑗

= 1, ∀ 𝑗𝑗 ∈ 𝐉𝐉,𝑛𝑛 ∈ 𝐍𝐍, (1)

where binary variable 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 = 1 if subtask 𝑖𝑖 is processed by unit 𝑗𝑗 starting at time point 𝑛𝑛, binary
variable 𝑋𝑋�𝑗𝑗,𝑛𝑛

I = 1 if unit 𝑗𝑗 is idle during time period 𝑛𝑛, 𝜏𝜏𝑖𝑖,𝑗𝑗 is the processing time of subtask 𝑖𝑖 processed
by unit 𝑗𝑗, and 𝐈𝐈𝑗𝑗 is the subset of subtasks 𝑖𝑖 that can be processed by unit 𝑗𝑗.

The second fundamental constraint is the unit capacity constraint which enforces that processing
rates fall between the minimum and maximum allowable processing rates (𝛽𝛽𝑖𝑖,𝑗𝑗MIN and 𝛽𝛽𝑖𝑖,𝑗𝑗MAX):

𝛽𝛽𝑖𝑖,𝑗𝑗MIN𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 ≤ 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛 ≤ 𝛽𝛽𝑖𝑖,𝑗𝑗MAX𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛, ∀ 𝑖𝑖 ∈ 𝐈𝐈, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍, (2)

where the continuous, nonnegative variable 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛 is the processing rate of subtask 𝑖𝑖 in unit 𝑗𝑗 starting

at time point 𝑛𝑛. Next, the material balance constraint is:

𝜒𝜒𝑘𝑘MIN ≤ 𝑆𝑆𝑘𝑘,𝑛𝑛+1 = 𝑆𝑆𝑘𝑘,𝑛𝑛 + �� � 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛−𝑡𝑡
𝑡𝑡∈𝐓𝐓𝑖𝑖,𝑗𝑗

+𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈𝑘𝑘
+

+ �� � 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛−𝑡𝑡
𝑡𝑡∈𝐓𝐓𝑖𝑖,𝑗𝑗

−𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈𝑘𝑘
−

+ 𝜉𝜉𝑘𝑘,𝑛𝑛 ≤ 𝜒𝜒𝑘𝑘MAX,

∀ 𝑘𝑘 ∈ 𝐊𝐊,𝑛𝑛 ∈ 𝐍𝐍\{0}.

(3)

where the continuous, nonnegative variable 𝑆𝑆𝑘𝑘,𝑛𝑛 is the inventory level of material 𝑘𝑘 during time

period 𝑛𝑛; 𝐈𝐈𝑘𝑘+ and 𝐈𝐈𝑘𝑘− include the subtasks that produce and consume material 𝑘𝑘, respectively; 𝐉𝐉𝑖𝑖 is the

6

subset of units 𝑗𝑗 that can process subtask 𝑖𝑖; and 𝐓𝐓𝑖𝑖,𝑗𝑗+ = {1, 2, … , 𝜏𝜏𝑖𝑖,𝑗𝑗} and 𝐓𝐓𝑖𝑖,𝑗𝑗− = {0, 1, … , 𝜏𝜏𝑖𝑖,𝑗𝑗 − 1}

include time points with respect to the start of subtask 𝑖𝑖. The parameter 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡 is the conversion

coefficient of material 𝑘𝑘 produced (>0) or consumed (<0) by subtask 𝑖𝑖 after 𝑡𝑡 periods after the start
of a subtask. The first summation term in Eq. (3) is positive, and the second summation term is
negative according to the sign of 𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡. The 𝜉𝜉𝑘𝑘,𝑛𝑛 parameter is the net amount of material 𝑘𝑘 shipped at
time point 𝑛𝑛 (𝜉𝜉𝑘𝑘,𝑛𝑛 > 0 for deliveries arriving to the plant and 𝜉𝜉𝑘𝑘,𝑛𝑛 < 0 for orders departing the

plant); 𝜒𝜒𝑘𝑘MIN/𝜒𝜒𝑘𝑘MAX are the minimum/maximum inventory capacity for material 𝑘𝑘.

Transient Operations

Transient operations such as startups, shutdowns, and direct transitions are modeled by:

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 + � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗
𝑖𝑖′∈𝐈𝐈𝑖𝑖

SU

− � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
𝑖𝑖′∈𝐈𝐈𝑖𝑖

SD

+ � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗
𝑖𝑖′∈𝐈𝐈𝑖𝑖

DT+

− � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
𝑖𝑖′∈𝐈𝐈𝑖𝑖

DT−

= 0,

 ∀ 𝑖𝑖 ∈ 𝐈𝐈SS⋃𝐈𝐈DT, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍,

(4)

where 𝐈𝐈𝑖𝑖SU/𝐈𝐈𝑖𝑖SD include startups/shutdowns associated with production subtask 𝑖𝑖, and 𝐈𝐈𝑖𝑖DT+/𝐈𝐈𝑖𝑖DT−
include direct transitions to/from production subtask 𝑖𝑖. All production subtasks that involve startups
or shutdowns are included in subset 𝐈𝐈SS, and all production subtasks that have direct transitions
associated with them are included in subset 𝐈𝐈DT. Eq. (4) enforces that a unit 𝑗𝑗 must process subtask 𝑖𝑖
if the subtask was processed in the previous time period, a startup just took place, or a direct
transition to the subtask in question just took place. Conversely, a unit 𝑗𝑗 stops processing production
subtask 𝑖𝑖 if a shutdown or direct transition away from the subtask in question just took place.

To properly link transitions to their corresponding production subtask, we use:

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 ≥ � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗
𝑖𝑖′∈𝐈𝐈𝑖𝑖

TR+

, ∀ 𝑖𝑖 ∈ 𝐈𝐈SS⋃𝐈𝐈DT, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍. (5)

which enforces that after a transition is executed, the associated production subtask must start being
processed.

A constraint to track the activity of a unit is also written:

𝑋𝑋�𝑗𝑗,𝑛𝑛
I + � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛−𝜏𝜏𝑖𝑖′,𝑗𝑗

𝑖𝑖′∈𝐈𝐈𝑖𝑖
SD

− � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
𝑖𝑖′∈𝐈𝐈𝑖𝑖

SU

= 𝑋𝑋�𝑗𝑗,𝑛𝑛+1
I , ∀ 𝑗𝑗 ∈ 𝐉𝐉SS,𝑛𝑛 ∈ 𝐍𝐍, (6)

where subset 𝐉𝐉SS includes units involving startups or shutdowns. According to Eq. (6), a unit will start
or stop being idle when a shutdown finishes or a startup begins, respectively.

7

Run-Starting and Run-Ending

A continuous task is modeled using subtasks, and a run is defined as a string of consecutive, single-
period production subtasks. To describe the relationship between the start of a run, the end of a run,
and subtask execution during the run itself, Eqs. (7) and (8) are needed.

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S = 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 + 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E , ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍 (7)

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S + 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E ≤ 1, ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍 (8)

Subset 𝐈𝐈P includes all production subtasks, and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E equal 1 when a run starts and ends,
respectively; 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
E are directly linked to production subtasks and not transitions (see Figure

2). Eq. (8) enforces that both 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E cannot be equal to 1 during a run (i.e., when 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 both equal one) or during an idle period (i.e., when 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛−1 both equal zero) since

this would not accurately portray what is physically occurring in a facility; a run cannot start and end
at the same time.

Figure 2. Relevant binary variables are depicted to demonstrate which time points during task execution they
correspond to. Continuous task TA3 possesses a 2h starup and 1h shutdown. Note: 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S and𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
E do not equal

1 when a startup and shutdown occurs but when the production subtasks start and end, respectively.

Run Length

Minimum and maximum run length constraints can be enforced with Eqs. (9) and (10), respectively.

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 ≥ � 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛′
S

𝑛𝑛′∈𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MIN

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍 (9)

𝜏𝜏𝑖𝑖,𝑗𝑗MAX ≥ � 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛′

𝑛𝑛′∈𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MAX

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖,𝑛𝑛 ∈ 𝐍𝐍, (10)

where 𝜏𝜏𝑖𝑖,𝑗𝑗MIN/𝜏𝜏𝑖𝑖,𝑗𝑗MAX are the minimum/maximum run lengths, 𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MIN = {𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 1,𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MIN +

2, … ,𝑛𝑛}, and 𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛
MAX = {𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MAX,𝑛𝑛 − 𝜏𝜏𝑖𝑖,𝑗𝑗MAX + 1, … ,𝑛𝑛} with �𝐍𝐍𝑖𝑖,𝑗𝑗,𝑛𝑛

MAX� = 𝜏𝜏𝑖𝑖,𝑗𝑗MAX + 1.

8

Objective Function

The objective function to minimize total cost consists of three terms:

min � � 𝛾𝛾𝑘𝑘S𝑆𝑆𝑘𝑘,𝑛𝑛
𝑛𝑛∈𝐍𝐍\{0} 𝑘𝑘∈𝐊𝐊

+���(𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
X 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 + 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛

B 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍

)
𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈

+ ���(𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
Y 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S

𝑛𝑛∈𝐍𝐍

)
𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P

 (11)

The inventory, fixed subtask execution, variable subtask execution, and run-starting costs are 𝛾𝛾𝑘𝑘,𝑛𝑛
S ,

𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
X , 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛

B , and 𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
Y , respectively. The first term calculates the total inventory costs, the second term

calculates the fixed and variable costs associated with executing all subtasks, and the third term
calculates the costs associated with starting a run.

We make the following assumptions in our model: instance data is deterministic, every subtask ends
within the set scheduling horizon (this includes transient operations such as shutdowns), and
material transfer between units is instantaneous.

Methods

Although implementing RKVs may seem to trivially increase the number of variables in the model,
they appear to also allow solvers to perform branching more efficiently and close the optimality gap
faster. In the following sections, we discuss two classes of RKVs that can be generated based on the
two types of binary variables present in the model: the variables with the superscript “X” involve the
𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 binary variable and those with the superscript “Y” involve the 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S binary variable. We then

provide an example of how solvers can take advantage of RKVs to reduce solution times. This
technique has been shown to successfully reduce computational resources in batch scheduling
problems34,43, so we aim to study RKVs in the context of continuous production scheduling models
and assess their impact on solution times. Moreover, we analyze variable branching and how
prioritizing branching on specific RKVs can result in closing the optimality gap even more quickly.

RKVs involving 𝑿𝑿𝒊𝒊,𝒋𝒋,𝒏𝒏

We first introduce 𝑁𝑁𝑖𝑖,𝑗𝑗X , which is the sum of the 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 binary variable over all time points.

 �𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍

= 𝑁𝑁𝑖𝑖,𝑗𝑗X ≤ �
|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗

� , ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖, (12)

where 𝑁𝑁𝑖𝑖,𝑗𝑗X is bounded by the number of production subtask executions that can feasibly occur over
the time horizon; rounding down |𝐍𝐍|−1

𝜏𝜏𝑖𝑖,𝑗𝑗
 yields the maximum number of subtask executions possible.

Importantly, the upper bound is introduced because some MILP solvers recognize that RKVs are a
summation of other binary variables and substitute them out of the model prior to solving the
instance34. The introduction of bounds ensures that the RKVs are not substituted. In order to

9

decouple the effects of the bounds from the RKVs themselves, we tested the model that includes the
bounds only (see Supporting Information). The results demonstrate that simply introducing the
bounds without any RKVs appears to increase solution times.

We generate other RKVs that keep record of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 in various ways in order to produce new integer
variables that the solver can branch on. Variable 𝑁𝑁𝑖𝑖X is equal to the summation of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all units

and time points, tracking the total number of subtask executions for each production subtask.

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖

= 𝑁𝑁𝑖𝑖X ≤��
|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗

�
𝑗𝑗∈𝐉𝐉𝑖𝑖

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P (13)

The upper bound is calculated similarly, but a summation is taken over all units because 𝑁𝑁𝑖𝑖X is written
for every production subtask.

Eq. (14) sums 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks and time points, essentially tracking the number of times any

production subtask is executed on a particular unit over the time horizon:

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍𝑖𝑖∈𝐈𝐈P

= 𝑁𝑁𝑗𝑗X ≤ �
|𝐍𝐍| − 1

min
𝑖𝑖∈𝐈𝐈𝑗𝑗

�𝜏𝜏𝑖𝑖,𝑗𝑗�
� , ∀ 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖 (14)

The next RKV we introduce, 𝑁𝑁𝑛𝑛X, is written for time points, so the number of variables that the model
is increasing by correlates to the discretization of the time horizon.

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P

= 𝑁𝑁𝑛𝑛X ≤ |𝐉𝐉|, ∀ 𝑛𝑛 ∈ 𝐍𝐍\{|𝐍𝐍|}. (15)

The upper bound, |𝐉𝐉|, holds true because there cannot be more subtasks actively being processed
than the number of available units.

Lastly, we sum 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks, units, and time points to define 𝑁𝑁X:

���𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P

= 𝑁𝑁X ≤ min����
|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗

�
 

𝑗𝑗∈𝐉𝐉𝑖𝑖

 

𝑖𝑖∈𝐈𝐈P
,��

|𝐍𝐍| − 1
min
𝑖𝑖∈𝐈𝐈𝑗𝑗

�𝜏𝜏𝑖𝑖,𝑗𝑗�
�

 

𝑗𝑗∈𝐉𝐉𝑖𝑖

� (16)

The reader can deduce how the upper bound in Eq. (16) is calculated by noting the similarities of the
bounds in Eqs. (13) and (14). Eq. (16) additionally includes a summation over all production subtasks
for the first term within the min{∙} function and includes a summation over all units for the second
term within the min{∙} function. Subsequently, the minimum between the two calculated values
serves as the upper bound because the total number of subtask executions over all units and time
points cannot be larger than the bounds previously calculated in Eqs. (13) and (14).

10

RKVs involving 𝒀𝒀𝒊𝒊,𝒋𝒋,𝒏𝒏𝐒𝐒

We begin introducing the second class of RKVs by starting with 𝑁𝑁𝑖𝑖,𝑗𝑗Y , which is the sum of the 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆

binary variable over all time points.

�𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍

= 𝑁𝑁𝑖𝑖,𝑗𝑗Y ≤ �
|𝐍𝐍| − 1

𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN
� , ∀ 𝑖𝑖 ∈ 𝐈𝐈P, 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖, (17)

where 𝛼𝛼𝑖𝑖,𝑗𝑗MIN is the minimum time needed to transition to and from a run. Eq. (17) enforces an upper

bound based on the maximum number of runs that can be processed over the time horizon. If a
production subtask has no transition subtasks associated with it, 𝛼𝛼𝑖𝑖,𝑗𝑗MIN = 0. Together, 𝜏𝜏𝑖𝑖,𝑗𝑗MIN and 𝛼𝛼𝑖𝑖,𝑗𝑗MIN

sum up to the minimum amount of time a continuous task requires from startup to shut down.

If the summation of 𝑁𝑁𝑖𝑖,𝑗𝑗Y is taken over all units, we define 𝑁𝑁𝑖𝑖Y:

��𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖

= 𝑁𝑁𝑖𝑖Y ≤��
|𝐍𝐍| − 1

𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN
�

𝑗𝑗∈𝐉𝐉𝑖𝑖

, ∀ 𝑖𝑖 ∈ 𝐈𝐈P (18)

Once again, the upper bound is valid because the maximum number of runs possible for any
production subtask is the time horizon divided by 𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN added up for all units 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖.

The next RKV, 𝑁𝑁𝑗𝑗Y, is equal to the summation of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S over all production subtasks and time points:

��𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍𝑖𝑖∈𝐈𝐈P
= 𝑁𝑁𝑗𝑗Y ≤ �

|𝐍𝐍| − 1
min
𝑖𝑖∈𝐈𝐈P

�𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN�
� , ∀ 𝑗𝑗 ∈ 𝐉𝐉𝑖𝑖. (19)

The upper bound of 𝑁𝑁𝑗𝑗Y is the largest number of runs that can be processed in a unit 𝑗𝑗 over the time

horizon.

We also introduce 𝑁𝑁𝑛𝑛Y, which is the summation of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S binary variables over all production subtasks

and units able to process them.

��𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P
= 𝑁𝑁𝑛𝑛Y ≤ |𝐉𝐉|, ∀ 𝑛𝑛 ∈ 𝐍𝐍\{|𝐍𝐍|} (20)

For the same reason discussed for Eq. (15), the upper bound of 𝑁𝑁𝑛𝑛Y is the total number of units in the
system.

Finally, we take the summation of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S over all subtasks, units, and time points to yield 𝑁𝑁Y. This value

denotes the total number of runs that occur in all units during the time horizon.

11

���𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S

𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖𝑖𝑖∈𝐈𝐈P
= 𝑁𝑁Y ≤ min����

|𝐍𝐍| − 1
𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN

�
 

𝑗𝑗∈𝐉𝐉𝑖𝑖

 

𝑖𝑖∈𝐈𝐈P
,��

|𝐍𝐍| − 1
min
𝑖𝑖∈𝐈𝐈P

�𝜏𝜏𝑖𝑖,𝑗𝑗MIN + 𝛼𝛼𝑖𝑖,𝑗𝑗MIN�
�

 

𝑗𝑗∈𝐉𝐉𝑖𝑖

� (21)

The minimum of the bounds seen in Eq. (18) and (19) are used, but Eq. (21) additionally includes the
summation over all production subtasks for the first term within the min{∙} function and the
summation over all units for the second term within the min{∙} function.

Motivating Example

To demonstrate how RKVs allow solvers to branch more efficiently, we use the example in Figure 3
with an integer variable 𝑋𝑋 on the x-axis and an integer variable 𝑌𝑌 on the y-axis. The feasible region of
the linear programming (LP) relaxation is shown as the blue shaded region, and integer feasible
points are shown as yellow points. The objective function is to maximize 2𝑋𝑋 + 𝑌𝑌, and the level curve
of the objective function is shown as a purple line. Before any variable branching is performed, the
first solution of the LP relaxation is the purple point. A solver would then proceed to branch on an
integer variable such as 𝑋𝑋 or 𝑌𝑌 to reduce the feasible region of the LP relaxation; one such branch
could be 𝑋𝑋 ≤ 5 ∨ 𝑋𝑋 ≥ 6 (illustrated by the green dotted line). Without eliminating any integer
feasible solutions, this branch would allow the solver to yield the green point (5, 1.4), which is closer
to the optimal solution (circled in red) at point (5, 1). Note that there is no way to yield the optimal
solution after branching on 𝑋𝑋 or 𝑌𝑌 once; additional branching must occur to reduce the feasible region
before being able to yield the optimal solution. However, with the introduction of the RKV denoted
as 𝑁𝑁, which is equal to 𝑋𝑋 + 𝑌𝑌, the solver has the ability to branch on the new integer variable.
Branching on 𝑁𝑁, specifically 𝑁𝑁 ≤ 6 ∨ 𝑁𝑁 ≥ 7, results in eliminating the blue shaded region above the
red dotted line. Upon solving the instance again, the solver yields the optimal solution after only
branching once.

Figure 3. Motivating example illustrating efficient branching on RKVs. The level curve of the objective function
(maximize 2𝑋𝑋 + 𝑌𝑌) is shown to intercept the blue shaded region (feasible region of LP relaxation) at the purple
point (root node solution). After branching on the 𝑋𝑋 integer variable to enforce 𝑋𝑋 ≤ 5 ∨ 𝑋𝑋 ≥ 6 (shown by a
green dotted line), the next solution obtained is at the green point (5, 1.4). However, the presence of the RKV
𝑁𝑁 = 𝑋𝑋 + 𝑌𝑌 allows the solver to arrive at the optimal solution (5, 1) after only a single branch: 𝑁𝑁 ≤ 6 ∨ 𝑁𝑁 ≥ 7.

12

Results and Discussion

Performance profiles are used to compare the performance of optimization models because they
allow the illustration of large amounts of instance data44. Performance profiles aim to succinctly
illustrate the performance of different formulations and can be interpreted by recognizing that every
instance is solved by every formulation. Our data is normalized by the formulation that solved the
instance the fastest, so the performance curve for a formulation illustrates the ratio of the solution
time of that formulation relative to the best formulation time. The y-axis shows the fraction of all
instances that are solved faster than the fastest formulation when sped up by a performance
multiplier 𝑘𝑘, which is shown on the x-axis. Alternatively, one can view the performance multiplier k
as a value that solution times are divided by when compared against the fastest solution time for an
instance, and the y-axis denotes the fraction of all instances solved faster than the fastest solution
time after dividing by k. Therefore, every formulation eventually reaches a y-axis value of 1.0 given a
sufficiently large multiplier 𝑘𝑘, but the formulations approaching a y-axis value of 1.0 faster perform
better (i.e., the formulations that do not require a large multiplier 𝑘𝑘 to reach the fastest formulation
time perform better). This also implies that the starting y-axis value of a formulation at 𝑘𝑘 = 1 is the
fraction of all instances that a formulation solved the fastest.

To generate the performance profiles, all instances in this work are solved to optimality and sent to
a Linux computing cluster (2.8 GHz Intel Cascade Lake processors) with a resource limit of 24 hours
and 8 GB of memory. Additionally, GAMS version 36.1 is used with CPLEX 20.1 as the solver, but a
brief study was also performed to analyze the impact of RKVs when Gurobi 10.0.0 is used as the solver
(see Supporting Information).

Comparison of All RKVs

The first test we conducted evaluates the computational enhancements that implementing various
RKVs can yield. We used 96 cost minimization instances that were generated using a combination of
three systems, four demand profiles, two processing rate ranges (𝛽𝛽𝑖𝑖,𝑗𝑗MIN/𝛽𝛽𝑖𝑖,𝑗𝑗MAX), two run length ranges
(𝜏𝜏𝑖𝑖,𝑗𝑗MIN/𝜏𝜏𝑖𝑖,𝑗𝑗MAX), and three horizons (see Supporting Information for detailed instance data). We assess

the performance of adding each individual RKV to the model as well as many combinations of RKVs.
Note that the term “model” is used synonymously with “formulation”, but we specifically use the term
“reformulation” to refer to any models incorporating RKVs. Table 1 describes the naming convention
of the base reformulations, where we consider the addition of only one RKV. In cases where multiple
RKVs were added, the letters after the period are appended to the reformulation’s name. For example,
a model with Eqs. (12)-(14) would be denoted as “X.BIJ” because it incorporates the constraints in
the X.B, X.I, and X.J reformulations. In cases where RKVs from both classes (involving both 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and

13

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S binary variables) are implemented, a semicolon is used to separate the two classes. For example,

a model with Eqs. (15)-(18) would be denoted as “X.NA;Y.BI”.

Table 1. Naming convention of reformulations given the RKVs added to the original model (Eqs. (1)–(11)).
Reformulations Eqs. added RKVs added

X.B (12) 𝑁𝑁𝑖𝑖,𝑗𝑗X
X.I (13) 𝑁𝑁𝑖𝑖X
X.J (14) 𝑁𝑁𝑗𝑗X
X.N (15) 𝑁𝑁𝑛𝑛X
X.A (16) 𝑁𝑁X
Y.B (17) 𝑁𝑁𝑖𝑖,𝑗𝑗Y
Y.I (18) 𝑁𝑁𝑖𝑖Y
Y.J (19) 𝑁𝑁𝑗𝑗Y
Y.N (20) 𝑁𝑁𝑛𝑛Y
Y.A (21) 𝑁𝑁Y

Table 2 illustrates the number of variables that are added to a model when different RKV
reformulations are incorporated. Since the number of some RKVs depend on the number of units,
subtasks, or time periods, the overall number of variables being added are instance-specific.

Table 2. Number of variables in the original model and the variables added by RKV reformulations are shown
for three select instances (see Supporting Information for instance data).

Model System1.d1.e1.h24.t1 System2.d4.e2.h36.t2 System3.d3.e2.h36.t1
Original 4726 8622 6957

X.B 13 14 13
X.I 9 10 9
X.J 7 8 7
X.N 25 37 37
X.A 1 1 1
Y.B 13 14 13
Y.I 9 10 9
Y.J 7 8 7
Y.N 25 37 37
Y.A 1 1 1

Figure 4 illustrates the performance profile of the original model and seven other selected
reformulations. For clarity, we do not show all of the combinations of RKVs that were tested because
20 different profiles would be difficult to discern from each another (see Supporting Information for
all formulation data). The two reformulations that performed the best were Y.I and X.I;Y.I, so the 𝑁𝑁𝑖𝑖Y
RKV was present in both of the two best-performing reformulations. Interestingly, the reformulation
with all RKVs (X.BIJNA;Y.BIJNA) performed better than the original model but not as well as some of
the other reformulations with fewer RKVs. This implies that there is a tradeoff between providing
the solver with the ability to branch on RKVs to reduce solution times and increasing the number of

14

variables in the model. For example, when 𝑁𝑁𝑛𝑛X and 𝑁𝑁𝑛𝑛Y were removed from X.BIJNA;Y.BIJNA, resulting
in X.BIJA;Y.BIJA, the performance of the reformulation improved.

We observe that the inclusion of 𝑁𝑁𝑖𝑖Y has a substantial impact on reducing solution times considering
that Y.I has the fastest solution time for over 40% of all instances, and the second fastest
reformulation, X.I;Y.I, which has the fastest solution time for about 22% of all instances, also contains
𝑁𝑁𝑖𝑖Y. This is an interesting observation because X.I does not perform much differently from the original
model implying that the vast majority of solution time improvements exhibited by the X.I;Y.I
reformulation exclusively came from 𝑁𝑁𝑖𝑖Y. Much of the solution time improvements other
reformulations exhibited can also be attributed to the addition of 𝑁𝑁𝑖𝑖Y. It is clear that incorporating
various RKVs into the model can yield significant computation time improvements, but the most
noteworthy improvements come from the addition of Eq. (18).

Figure 4. The performance profiles of eight formulations are illustrated. All reformulations that incorporate
the RKVs involving 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S perform significantly better than the original model (red).

When we consider the implication of what the 𝑁𝑁𝑖𝑖Y RKV represents, it makes intuitive sense that
branching on a variable which tracks the number of runs will likely result in a significantly different
objective function value. Inversely, X.N and Y.N, two of the poorer performing reformulations, contain
RKVs that track the number of subtasks and runs executed at a time point 𝑛𝑛, respectively. Branching
on such variables is not likely to lead to a significant change (if any) in the objective function value
because branching on the number of subtasks/runs executed at time point 𝑛𝑛 could result in changes
that could be offset by a change in the number of subtasks/runs executed at time point 𝑛𝑛 + 1, yielding
a solution with a similar (or, in some cases, the exact same) objective function value. This is
exemplified when comparing the reformulation with all RKVs (X.BIJNA;Y.BIJNA) to the reformulation
with all RKVs except for 𝑁𝑁𝑛𝑛X and 𝑁𝑁𝑛𝑛Y (X.BIJA;Y.BIJA) because computational improvements can be seen
with the removal of these two RKVs.

15

Branching Priorities Using Subtask Utilization

Next, we test the impact of prioritizing branching on certain RKVs to determine whether further
reductions can be made to computation times. Note that changing branching priorities does not alter
a model’s constraints or variables but involves modifying the configuration of the solver, so the term
“reformulation” is inadequate for distinguishing between these configurations. Thus, we use the term
“configuration” to differentiate models that only differ in their branching priorities.

Given the findings in the previous subsection, we focus our branching prioritization efforts on the 𝑁𝑁𝑖𝑖Y
RKVs. Since there is an 𝑁𝑁𝑖𝑖Y integer variable for every production subtask 𝑖𝑖, less than a dozen total
variables are added to every instance. However, it is difficult to distinguish configurations from each
other when all 𝑁𝑁𝑖𝑖Y RKVs are present in the model and only a single variable’s branching priority is
being changed. To draw a clearer visual distinction between different configurations, we add all 𝑁𝑁𝑖𝑖Y
RKVs to the model (i.e., reformulation Y.I) and begin by prioritizing branching on one RKV based on
certain system attributes. Each successive configuration progressively prioritizes an additional 𝑁𝑁𝑖𝑖Y
RKV until all 𝑁𝑁𝑖𝑖Y RKVs are eventually prioritized (see Table 3 for example).

Using LP Relaxation to Calculate Utilization

The first system attribute that we use to determine branching priorities is utilization. In order to
determine how frequently a subtask is executed, a utilization metric (𝑈𝑈𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖) is calculated. In this
method, the LP relaxation is quickly solved and used to calculate

𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑖𝑖 = ��(𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
∗ 𝜏𝜏𝑖𝑖,𝑗𝑗

𝑛𝑛∈𝐍𝐍𝑗𝑗∈𝐉𝐉𝑖𝑖

+ � 𝑋𝑋𝑖𝑖′,𝑗𝑗,𝑛𝑛
∗ 𝜏𝜏𝑖𝑖′,𝑗𝑗

𝑖𝑖′∈𝐈𝐈𝑖𝑖
TR+⋃𝐈𝐈𝑖𝑖

TR−

), ∀ 𝑖𝑖 ∈ 𝐈𝐈P, (22)

where 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛
∗ is the solution of the LP relaxed problem. Note that the processing time of transitioning

to and from a production subtask is also considered; however, because 𝑁𝑁𝑖𝑖Y is written for production
subtasks, we correspondingly calculate 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 for every production subtask. The naming convention
of configurations with branching prioritization based on 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 are prefixed with “LPR” to denote that
the LP relaxation is used to determine branching priorities. Additionally, “M” is added to the
configuration names to denote that the prioritization order starts with RKVs associated with the most
utilized tasks (see Table 3).

Figure 5 illustrates the impact of prioritizing RKVs based on 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 , and the original model (red) with
no RKVs is shown for comparison. Configuration LPR.M.I0 does not prioritize any RKVs, but LPR.M.I1
prioritizes branching on the RKV associated with the most utilized task (based on the highest value
of 𝑈𝑈𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖). For configuration LPR.M.I2, we prioritize branching on the RKVs associated with the two
most utilized tasks; the RKV associated with the most utilized task is given the highest priority, and
the RKV associated with the second most utilized task is given the second highest priority. This

16

pattern is continued until all 𝑁𝑁𝑖𝑖Y RKVs are prioritized in the order of the most to least utilized task for
configuration LPR.M.I9, as shown in Table 3. Note that only branching on the 𝑁𝑁𝑖𝑖Y RKVs is prioritized,
that is, the 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S binary variables are not prioritized.

Table 3. Naming convention for the “LPR.M” configurations. Index 𝑖𝑖1 indicates the most utilized production
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2nd“ denotes second highest priority, etc.

Configuration Branching priorities
LPR.M.I0 None
LPR.M.I1 1st: 𝑁𝑁𝑖𝑖1Y
LPR.M.I2 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y
LPR.M.I3 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y , 3rd: 𝑁𝑁𝑖𝑖3Y

… …
LPR.M.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖1Y (1st) to 𝑁𝑁𝑖𝑖9Y (9th)

All configurations with some RKVs prioritized outperform the configuration with no branching
priorities (LPR.M.I0), and LPR.M.I9, which prioritizes all RKVs from most to least subtask utilization,
performs the best, solving over 50% of all instances the fastest.

Figure 5. The performance profiles of the original model (red) and five configurations of the Y.I reformulation.
Naming conventions given in Table 3. Some configurations are not depicted for clarity.

Comparing Highest and Lowest Utilization

Although Figure 5 illustrates that prioritizing branching on 𝑁𝑁𝑖𝑖Y can reduce solution times, the
decision to prioritize RKVs starting from the most to least utilized subtask is based on the intuition
that branching on variables for more utilized subtasks (bottlenecks) plays a larger role in closing the
optimality gap. To further study the impact of prioritizing RKVs based on subtask utilization, the
same experiment is run with the order of RKV prioritization reversed. The prefix “L” denotes
prioritizing from least to most utilization. The RKV corresponding to the least utilized subtask is
prioritized in configuration LPR.L.I1, the RKVs corresponding to the two least utilized subtasks are

17

prioritized in configuration LPR.L.I2, etc. The prioritization is also ordered from the RKV associated
with the least utilized subtask to the RKVs associated with more utilized subtasks (see Table 4).

The “LPR.M” and “LPR.L” configurations are compared in Figure 6. The LPR.L.I0 and LPR.M.I0
configurations can be used as controls because they are the exact same; they contain all 𝑁𝑁𝑖𝑖Y RKVs but
do not implement any branching priorities. Interestingly, the “LPR.L” configurations perform better
than their “LPR.M” counterparts. For example, LPR.L.I2 (dark green) performs better than LPR.M.I2
(light green). The same can be seen with LPR.L.I6 (light purple), which is one of the best performing
configurations, while its counterpart, LPR.M.I6 (dark blue), performs significantly worse. We
theorize that subtasks with a lower utilization could play an important role in closing the optimality
gap because there is more flexibility in the timing of their operations. Meanwhile, subtasks with high
utilization (bottlenecks) have less operational flexibility, so there are fewer feasible schedules for the
solver to investigate when fixing the associated decision variables. Thus, prioritizing branching on
RKVs associated with less utilized subtasks yields larger solution time reductions.

Table 4. Naming convention for the “LPR.L” configurations. Index 𝑖𝑖1 indicates the most utilized production
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2nd“ denotes second highest priority, etc.

Configuration Branching priorities
LPR.L.I0 None
LPR.L.I1 1st: 𝑁𝑁𝑖𝑖9Y
LPR.L.I2 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y
LPR.L.I3 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y , 3rd: 𝑁𝑁𝑖𝑖7Y

… …
LPR.L.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖9Y (1st) to 𝑁𝑁𝑖𝑖1Y (9th)

Figure 6. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in
Tables 3 and 4. Some configurations are not depicted for clarity.

18

Studying Equal Prioritization

We have only considered distinct branching prioritization for each RKV, that is, if a subtask has the
lowest utilization, its associated RKV is assigned the highest priority relative to all other RKVs.
Similarly, the RKV associated with the second-lowest subtask utilization is assigned the second-
highest prioritization, and this pattern continues accordingly. Here, we shift our focus to investigating
whether equal prioritization of RKVs has a more preferable impact on solution times (see Table 5).
Given our previous findings, we continue to start our prioritization efforts on RKVs associated with
the least to most utilized subtask. In Figure 7, the prefix “E” denotes that the prioritized RKVs have
the same priorities. Configurations range from I0 to I9 with the details given in Table 5. Once again,
LPR.E.I0 and LPR.L.I0 can be thought of as controls because they are the same configuration with no
prioritizations. There does not appear to be a noticeable difference between the two prioritization
methods when fewer RKVs are prioritized (I0, I2, and I4). However, when more than five RKVs are
prioritized (I6 and I9), a distinction can be seen where the configurations that prioritize RKVs equally
begin plateauing in performance. Configurations LPR.E.I6 and LPR.E.I9 perform similarly, as do
LPR.L.I6 and LPR.L.I9, but LPR.L.I9 performs better than LPR.E.I9.

Table 5. Naming convention for the “LPR.E” configurations. Index 𝑖𝑖1 indicates the most utilized production
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2nd“ denotes second highest priority, etc.

Configuration Branching priorities
LPR.E.I0 None
LPR.E.I1 1st: 𝑁𝑁𝑖𝑖9Y
LPR.E.I2 1st: 𝑁𝑁𝑖𝑖9Y , 1st: 𝑁𝑁𝑖𝑖8Y
LPR.E.I3 1st: 𝑁𝑁𝑖𝑖9Y , 1st: 𝑁𝑁𝑖𝑖8Y , 1st: 𝑁𝑁𝑖𝑖7Y

… …
LPR.E.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized with equal priorities

Figure 7. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in
Tables 4 and 5. Some configurations are not depicted for clarity.

19

Preliminary testing (not shown) was performed to determine the effect of implementing branching
priorities on RKVs when 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 and 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

S are not present in the objective function, which is unlikely

given that there are inherent costs associated with processing a subtask/run. Our findings show that
solution times increase.

Using DPA to Calculate Utilization

Samadi and Maravelias recently proposed a Demand Propagation Algorithm (DPA) to calculate
production lower bounds in continuous production scheduling problems33. Tightening constraints
that use the bounds calculated by the DPA can be implemented to reduce computational resources.
However, since the DPA calculates minimum production bounds for each subtask in a system, it, in a
sense, determines how utilized a subtask is for a given instance. As such, we investigate whether 𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑖𝑖
yields a better metric for subtask utilization in terms of reducing solution times or if the bound
calculated by the DPA is a better metric. We note that the DPA considers conversion coefficients,
maximum/minimum processing rates, maximum/minimum task durations, time horizon, and
demand profiles in its calculation of minimum production bounds.

The configurations using the DPA method of calculating subtask utilization have the prefix “DPA”.
Figure 8 compares the performance of the “LPR” to the “DPA” configurations. Similar to before, both
I0 configurations contain all 𝑁𝑁𝑖𝑖Y RKVs with no prioritizations, which means LPR.L.I0 and DPA.L.I0 are
the same configuration. Since in the previous subsections we demonstrated that prioritizing
branching on RKVs corresponding to the less utilized subtasks benefits solution times more, we
continue using this strategy. The naming convention for the “DPA” configurations are shown in Table
6, which is similar to the naming convention shown in Table 4 for the “LPR” configurations.

Though not significantly different, the “LPR” configuration appears to perform slightly better than
the “DPA” configurations. Not seeing a large discrepancy between the two methods is expected
because both attempt to rank subtasks based on utilization, so they should not be significantly
different from each other. From Figure 8, LPR.L.I9 and DPA.L.I9 both prioritize all RKVs in the order
of least to most utilized subtask, but LPR.L.I9 performs the best, having the fastest solution time for
over a third of instances. In terms of usefully ranking subtask utilization, it appears that the LP
relaxation method is a better metric for calculating subtask utilization than the DPA method.

Table 6. Naming convention for the “DPA.L” configurations. Index 𝑖𝑖1 indicates the most utilized production
subtask, 𝑖𝑖2 the second most utilized production subtask, etc. Ordinal numbers signify branching priorities: “1st“
denotes highest priority, “2nd“ denotes second highest priority, etc.

Configuration Branching priorities
DPA.L.I0 None
DPA.L.I1 1st: 𝑁𝑁𝑖𝑖9Y
DPA.L.I2 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y
DPA.L.I3 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y , 3rd: 𝑁𝑁𝑖𝑖7Y

20

… …
DPA.L.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖9Y (1st) to 𝑁𝑁𝑖𝑖1Y (9th)

Figure 8. The performance profiles of 8 configurations of the Y.I reformulation. Naming conventions given in
Tables 4 and 6. Some configurations are not depicted for clarity.

Branching Priorities Using Unit Demand

We previously considered subtask utilization to determine how impactful branching on specific RKVs
is. Another system attribute we investigate is unit “demand” because RKVs associated with units that
have a lot of operational flexibility might be more impactful in terms of solution times. The method
we use to calculate the demand of a unit (𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗) is by first solving the LP relaxation of an instance
and then summing the dual variable (𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞𝑗𝑗,𝑛𝑛

∗) of the unit’s clique constraint (Eq. (1)) over all time

points 𝑛𝑛:

𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞𝑗𝑗,𝑛𝑛
∗

𝑛𝑛∈𝐍𝐍

, ∀ 𝑗𝑗 ∈ 𝐉𝐉. (23)

Note that 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 is calculated for every unit, but 𝑁𝑁𝑖𝑖Y is written for every production subtask. For this

reason, we must link units to the subtasks that they can process in order to implement branching
priorities on the 𝑁𝑁𝑖𝑖Y RKVs. Some units can process multiple subtasks, so subtasks that correspond to
the same unit are all equally prioritized based on the unit’s calculated 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗. If multiple units have
the same 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 value, then all associated RKVs are equally prioritized.

Figure 9 illustrates the performance of several configurations (“DEM”) with branching priorities
based on 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 calculated using Eq. (23). Naming conventions for these configurations are shown in

Table 7. Ultimately, DEM.L.I9 and DEM.M.I9 prioritize all 𝑁𝑁𝑖𝑖Y RKVs, but DEM.L.I9 gives the RKVs
associated with units that have the least demand a higher branching priority while DEM.M.I9 gives
the RKVs associated with units that have the highest 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 a higher branching priority.

21

Table 7. Naming convention for the “DEM.M” and “DEM.L” configurations. Index 𝑖𝑖1 indicates the production
subtask associated with the highest 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 unit, etc. Ordinal numbers signify branching priorities: “1st“ denotes
highest priority, “2nd“ denotes second highest priority, etc.

Configuration Branching priorities
DEM.M.I0 None
DEM.M.I1 1st: 𝑁𝑁𝑖𝑖1Y
DEM.M.I2 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y
DEM.M.I3 1st: 𝑁𝑁𝑖𝑖1Y , 2nd: 𝑁𝑁𝑖𝑖2Y , 3rd: 𝑁𝑁𝑖𝑖3Y

… …
DEM.M.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖1Y (1st) to 𝑁𝑁𝑖𝑖9Y (9th)
DEM.L.I0 None
DEM.L.I1 1st: 𝑁𝑁𝑖𝑖9Y
DEM.L.I2 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y
DEM.L.I3 1st: 𝑁𝑁𝑖𝑖9Y , 2nd: 𝑁𝑁𝑖𝑖8Y , 3rd: 𝑁𝑁𝑖𝑖7Y

… …
DEM.L.I9 All 𝑁𝑁𝑖𝑖Y RKVs prioritized from 𝑁𝑁𝑖𝑖9Y (1st) to 𝑁𝑁𝑖𝑖1Y (9th)

Figure 9. The performance profiles of 10 configurations of the Y.I reformulation. Naming conventions given in
Table 7. Some configurations are not depicted for clarity.

Prioritizing branching on RKVs associated with lower 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 units first yields better computational

results. For example, DEM.L.I6 (light purple) performs better than DEM.M.I6 (dark blue), and
DEM.L.I4 (light blue) performs better than DEM.M.I4 (cyan). This is likely due to the same reasons
highlighted for Figure 6: when the solver focuses on branching on the RKVs associated with lower
𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 units (i.e., more operational flexibility), the optimality gap can be reduced more quickly.

Comparison of All Prioritization Methods

Finally, we compare the best configurations from the previous subsections: LPR.L.I9 (from the LP
relaxation calculation of subtask utilization), DPA.L.I9 (from the DPA calculation of subtask
utilization), and DEM.L.I9 (from the unit demand calculation). The results of these three
configurations, alongside the original model and the Y.I reformulation, are illustrated in Figure 10.

22

Figure 10. The performance profiles of the Y.I reformulation, three configurations of the Y.I reformulation, and
the original model.

The two methods that rely on calculating subtask utilization (LPR.L.I9 and DPA.L.I9) perform
similarly relative to the other profiles, but all three configurations with branching priorities perform
significantly better than the Y.I reformulation without any branching priorities. The best-performing
configuration was DEM.L.I9. When comparing with the original model, the DEM.L.I9 configuration
reduces the solution times of about 25% of instances by over an order of magnitude, and average
solution times for DEM.L.I9 are 5.5 times faster than the original model.

We conjecture that the “DEM” configurations reduce solution times better than the other
configurations because several units are not bottlenecks (or heavily utilized), which yields 𝐷𝐷𝐷𝐷𝑚𝑚𝑗𝑗 = 0

for these units, so their associated RKVs are equally prioritized. We hypothesize that this gives the
solver some additional branching flexibility (i.e., the option to select which of the equally prioritized
RKVs to branch on). This ultimately results in a combination of prioritizing branching on some RKVs
while not over-specifying priorities, which will strictly require the solver to focus branching on
specific RKVs in the order we determined. The flexibility that the “DEM” configurations afford the
solver are likely the cause of the computational improvements.

Conclusions

This work focuses on addressing the computational challenges inherent to production scheduling.
Specifically, we introduce RKVs into MILP models for general continuous production scheduling
problems. We show that the proposed reformulations, employing the new RKVs, are significantly
more efficient than the original models. Moreover, our results provide insights on how prioritizing
branching on RKVs, relative to other binary variables, offers further computational improvements.
Our analysis extends to the study of system attributes, such as subtask and unit utilization, to discern
the efficiency of prioritizing branching on RKVs associated with specific subtasks or units. Our results

23

suggest that such prioritization strategies can lead to additional enhancements; the best-performing
solver configurations of the Y.I reformulation reduced the solution times of over half of the instances
by a factor of 5, and for 25% of the instances by over an order of magnitude. We note that while the
above RKVs are implemented in a discrete-time MILP formulation, similar variables can be
introduced to continuous-time formulations or even other types of MILP models that have similar
structure.

Supporting Information

The “Supporting Information for Publication.docx” file contains information on instance generation,
and the “Supporting Information for Publication_Raw Data.xlsx” file contains raw solution time data.
This information is available free of charge via the Internet at https://pubs.acs.org.

Acknowledgements

The authors acknowledge financial support from the National Science Foundation under grant CBET-
2026980 and NEC Laboratories America, Inc.

Nomenclature

Sets

𝑖𝑖 ∈ 𝐈𝐈 subtasks

𝑗𝑗 ∈ 𝐉𝐉 units

𝑘𝑘 ∈ 𝐊𝐊 materials

𝑛𝑛 ∈ 𝐍𝐍 time points/periods

𝑡𝑡 ∈ 𝐓𝐓 time points/periods relative to the start of a subtask

Subsets

𝐈𝐈𝑗𝑗 subtasks that can be processed by unit 𝑗𝑗

𝐈𝐈𝑘𝑘+/𝐈𝐈𝑘𝑘− subtasks that produce/consume material 𝑘𝑘

𝐈𝐈DT production subtasks associated with direct transitions

𝐈𝐈𝑖𝑖DT+/𝐈𝐈𝑖𝑖DT− direct transitions to/from production subtask 𝑖𝑖

𝐈𝐈P production subtasks

𝐈𝐈𝑖𝑖SD shutdowns associated with production subtask 𝑖𝑖

https://pubs.acs.org/

24

𝐈𝐈SS production subtasks associated with startups or shutdowns

𝐈𝐈𝑖𝑖SU startups associated with production subtask 𝑖𝑖

𝐈𝐈𝑖𝑖TR+/𝐈𝐈𝑖𝑖TR− transitions to/from production subtask 𝑖𝑖

𝐉𝐉𝑖𝑖 units that can process subtask 𝑖𝑖

𝐉𝐉SS units associated with startups or shutdowns

Parameters

𝛼𝛼𝑖𝑖,𝑗𝑗MIN minimum time needed to transition to and from a run

𝛽𝛽𝑖𝑖,𝑗𝑗MIN/𝛽𝛽𝑖𝑖,𝑗𝑗MAX minimum/maximum processing rate

𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
B /𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛

X variable/fixed subtask execution cost

𝛾𝛾𝑖𝑖,𝑗𝑗,𝑛𝑛
Y run-starting cost

𝛾𝛾𝑘𝑘S inventory cost

𝜉𝜉𝑘𝑘,𝑛𝑛 material deliveries (>0) or orders (<0)

𝜌𝜌𝑖𝑖,𝑘𝑘,𝑡𝑡 conversion coefficient

𝜏𝜏𝑖𝑖,𝑗𝑗 processing time

𝜏𝜏𝑖𝑖,𝑗𝑗MIN/𝜏𝜏𝑖𝑖,𝑗𝑗MAX minimum/maximum run length

𝜒𝜒𝑘𝑘MIN/𝜒𝜒𝑘𝑘MAX minimum/maximum inventory capacity

Nonnegative Continuous Variables

𝐵𝐵𝑖𝑖,𝑗𝑗,𝑛𝑛 processing rate of subtask 𝑖𝑖 in unit 𝑗𝑗 starting at time point 𝑛𝑛

𝑆𝑆𝑘𝑘,𝑛𝑛 inventory level of material 𝑘𝑘 during time period 𝑛𝑛

Binary Variables

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 =1 if subtask 𝑖𝑖 is processed in unit 𝑗𝑗 staring at time point 𝑛𝑛

𝑋𝑋�𝑗𝑗,𝑛𝑛
I =1 if unit 𝑗𝑗 is idle during time period 𝑛𝑛

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
S /𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛

E =1 if a run of continuous task 𝑖𝑖 in unit 𝑗𝑗 starts/ends at time point 𝑛𝑛

Record Keeping Variables

𝑁𝑁𝑖𝑖,𝑗𝑗X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all time points 𝑛𝑛

𝑁𝑁𝑖𝑖X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all units 𝑗𝑗 and time points 𝑛𝑛

25

𝑁𝑁𝑗𝑗X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks 𝑖𝑖 and time points 𝑛𝑛

𝑁𝑁𝑛𝑛X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks 𝑖𝑖 and units 𝑗𝑗

𝑁𝑁X sum of 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑛𝑛 over all subtasks 𝑖𝑖, units 𝑗𝑗, and time points 𝑛𝑛

𝑁𝑁𝑖𝑖,𝑗𝑗Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆 over all time points 𝑛𝑛

𝑁𝑁𝑖𝑖Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆 over all units 𝑗𝑗 and time points 𝑛𝑛

𝑁𝑁𝑗𝑗Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆 over all subtasks 𝑖𝑖 and time points 𝑛𝑛

𝑁𝑁𝑛𝑛Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆 over all subtasks 𝑖𝑖 and units 𝑗𝑗

𝑁𝑁Y sum of 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑛𝑛
𝑆𝑆 over all subtasks 𝑖𝑖, units 𝑗𝑗, and time points 𝑛𝑛

26

References
1. Subrahmanyam S, Bassett MH, Pekny JF, Reklaitis G V. Issues in solving large scale planning,

design and scheduling problems in batch chemical plants. Comput Chem Eng. 1995;19(SUPPL.
1):577-582. doi:10.1016/0098-1354(95)87097-0

2. Harjunkoski I, Maravelias CT, Bongers P, et al. Scope for industrial applications of production
scheduling models and solution methods. Comput Chem Eng. 2014;62:161-193.
doi:10.1016/J.COMPCHEMENG.2013.12.001

3. Georgiadis GP, Elekidis AP, Georgiadis MC. Optimization-based scheduling for the process
industries: From theory to real-life industrial applications. Processes. 2019;7(7).
doi:10.3390/pr7070438

4. Kelly JD, Zyngier D. Unit-operation nonlinear modeling for planning and scheduling
applications. Optim Eng. 2017;18(1):133-154. doi:10.1007/S11081-016-9312-7/FIGURES/7

5. Zyngier D, Kelly JD. Optimization and Logistics Challenges in the Enterprise. Springer; 2009.

6. Castro PM, Westerlund J, Forssell S. Scheduling of a continuous plant with recycling of
byproducts: A case study from a tissue paper mill. Comput Chem Eng. 2009;33(1):347-358.
doi:10.1016/j.compchemeng.2008.10.004

7. Ku HM, Karimi IA. Scheduling in serial multiproduct batch processes with finite interstage
storage: mixed integer linear program formulation. Ind Eng Chem Res. 1988;27(10):1840-
1848.

8. Mendez CA, Cerda J. An MILP Continuous-Time Framework for Short-Term Scheduling of
Multipurpose Batch Processes Under Different Operation Strategies. Optim Eng. 2003;4:7-22.

9. Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch
operations-I. MILP formulation. Comput Chem Eng. 1993;17(2):211-227. doi:10.1016/0098-
1354(93)80015-F

10. Wolsey LA. MIP modelling of changeovers in production planning and scheduling problems.
Eur J Oper Res. 1997;99:154-165.

11. Cafaro DC, Grossmann IE. Strengthening discrete-time scheduling formulations by introducing
the concept of campaigns. Comput Chem Eng. 2020;143:107101.
doi:10.1016/J.COMPCHEMENG.2020.107101

12. Velez S, Dong Y, Maravelias CT. Changeover formulations for discrete-time mixed-integer
programming scheduling models. Eur J Oper Res. 2017;260(3):949-963.
doi:10.1016/j.ejor.2017.01.004

13. Kelly JD, Zyngier D. An improved MILP modeling of sequence-dependent switchovers for
discrete-time scheduling problems. Ind Eng Chem Res. 2007;46(14):4964-4973.
doi:10.1021/IE061572G/ASSET/IMAGES/LARGE/IE061572GF00007.JPEG

14. Basán NP, Grossmann IE, Gopalakrishnan A, Lotero I, Méndez CA. Novel MILP Scheduling
Model for Power-Intensive Processes under Time-Sensitive Electricity Prices. Ind Eng Chem
Res. 2018;57(5):1581-1592.
doi:10.1021/ACS.IECR.7B04435/SUPPL_FILE/IE7B04435_SI_001.PDF

15. Pattison RC, Touretzky CR, Johansson T, Harjunkoski I, Baldea M. Optimal Process Operations
in Fast-Changing Electricity Markets: Framework for Scheduling with Low-Order Dynamic
Models and an Air Separation Application. Ind Eng Chem Res. 2016;55(16):4562-4584.

27

doi:10.1021/acs.iecr.5b03499

16. Mitra S, Grossmann IE, Pinto JM, Arora N. Optimal production planning under time-sensitive
electricity prices for continuous power-intensive processes. Comput Chem Eng. 2012;38:171-
184. doi:10.1016/J.COMPCHEMENG.2011.09.019

17. Ferris MC, Maravelias CT, Sundaramoorthy A. Simultaneous batching and scheduling using
dynamic decomposition on a grid. INFORMS J Comput. 2009;21(3):398-410.
doi:10.1287/ijoc.1090.0339

18. Giménez DM, Henning GP, Maravelias CT. A novel network-based continuous-time
representation for process scheduling: Part I. Main concepts and mathematical formulation.
Comput Chem Eng. 2009;33(9):1511-1528. doi:10.1016/j.compchemeng.2009.03.007

19. Shaik MA, Floudas CA, Kallrath J, Pitz HJ. Production scheduling of a large-scale industrial
continuous plant: Short-term and medium-term scheduling. Comput Chem Eng.
2009;33(3):670-686. doi:10.1016/j.compchemeng.2008.08.013

20. Gupta D, Maravelias CT, Wassick JM. From rescheduling to online scheduling. Chem Eng Res
Des. 2016;116:83-97. doi:10.1016/J.CHERD.2016.10.035

21. McAllister RD, Rawlings JB, Maravelias CT. The inherent robustness of closed-loop scheduling.
Comput Chem Eng. 2022;159:107678. doi:10.1016/J.COMPCHEMENG.2022.107678

22. Bassett MH, Pekny JF, Reklaitis G V. Decomposition Techniques for the Solution of Large-Scale
Scheduling Problems. AIChE J. 1996;42(12):3373-3387.

23. Kopanos GM, Méndez CA, Puigjaner L. MIP-based decomposition strategies for large-scale
scheduling problems in multiproduct multistage batch plants: A benchmark scheduling
problem of the pharmaceutical industry. Eur J Oper Res. 2010;207(2):644-655.
doi:10.1016/J.EJOR.2010.06.002

24. Velez S, Maravelias CT. Reformulations and branching methods for mixed-integer
programming chemical production scheduling models. Ind Eng Chem Res. 2013;52(10):3832-
3841. doi:10.1021/ie303421h

25. Merchan AF, Maravelias CT. Reformulations of mixed-integer programming continuous-time
models for chemical production scheduling. Ind Eng Chem Res. 2014;53(24):10155-10165.
doi:10.1021/ie404274b

26. Sahinidis N V., Grossmann IE. Reformulation of multiperiod MILP models for planning and
scheduling of chemical processes. Comput Chem Eng. 1991;15(4):255-272. doi:10.1016/0098-
1354(91)85012-J

27. Yee KL, Shah N. Improving the efficiency of discrete time scheduling formulation. Comput
Chem Eng. 1998;22(SUPPL.1):S403-S410. doi:10.1016/S0098-1354(98)00081-7

28. Papageorgiou LG, Pantelides CC. Optimal campaign planning/scheduling of multipurpose
batch/semicontinuous plants. 2. A mathematical decomposition approach. Ind Eng Chem Res.
1996;35(2):510-529.
doi:10.1021/IE950082D/ASSET/IMAGES/LARGE/IE950082DF00020.JPEG

29. Subrahmanyam S, Kudva GK, Bassett MH, Pekny JF. Application of Plant Distributed Design
and Computing to Batch Scheduling. AIChE J. 1996;42(6):1648-1661.

30. Velez S, Maravelias CT. A branch-and-bound algorithm for the solution of chemical production
scheduling MIP models using parallel computing. Comput Chem Eng. 2013;55:28-39.
doi:10.1016/j.compchemeng.2013.03.030

28

31. Burkard RE, Hatzl J. Review, extensions and computational comparison of MILP formulations
for scheduling of batch processes. Comput Chem Eng. 2005;29(8):1752-1769.
doi:10.1016/j.compchemeng.2005.02.037

32. Janak SL, Floudas CA. Improving unit-specific event based continuous-time approaches for
batch processes: Integrality gap and task splitting. Comput Chem Eng. 2008;32(4-5):913-955.
doi:10.1016/j.compchemeng.2007.03.019

33. Samadi A, Maravelias CT. Computational enhancements of continuous production scheduling
MILPs using tightening constraints. Comput Chem Eng. 2024;184:108609.
doi:10.1016/J.COMPCHEMENG.2024.108609

34. Adelgren N, Maravelias CT. On the utility of production scheduling formulations including
record keeping variables. Comput Ind Eng. 2023;181(April):109330.
doi:10.1016/j.cie.2023.109330

35. Maravelias CT. Chemical Production Scheduling. Cambridge University Press; 2021.
doi:10.1017/9781316650998

36. Pantelides CC. Unified frameworks for optimal process planning and scheduling. In:
Proceedings on the Second Conference on Foundations of Computer Aided Operations. CACHE
Publications; 1994:253-274.

37. Samadi A, Maravelias CT. A Comprehensive Chemical Production Scheduling Representation.
Comput Chem Eng. Published online February 1, 2024:108552.
doi:10.1016/J.COMPCHEMENG.2023.108552

38. Wu Y, Maravelias CT. A general framework and optimization models for the scheduling of
continuous chemical processes. AIChE J. 2021;67(10):1-15. doi:10.1002/aic.17344

39. Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer
programming approaches for chemical production scheduling. Ind Eng Chem Res.
2011;50(9):5023-5040. doi:10.1021/ie101419z

40. Merchan AF, Velez S, Maravelias CT. Tightening methods for continuous-time mixed-integer
programming models for chemical production scheduling. AIChE J. 2013;59(12):4461-4467.
doi:10.1002/aic.14249

41. Floudas CA, Lin X. Continuous-time versus discrete-time approaches for scheduling of
chemical processes: a review. Comput Chem Eng. 2004;28(11):2109-2129.
doi:10.1016/J.COMPCHEMENG.2004.05.002

42. Méndez CA, Cerdá J, Grossmann IE, Harjunkoski I, Fahl M. State-of-the-art review of
optimization methods for short-term scheduling of batch processes. Comput Chem Eng.
2006;30(6-7):913-946. doi:10.1016/j.compchemeng.2006.02.008

43. Samadi A, Adelgren N, Maravelias CT. On discrete time chemical production scheduling MILP
models containing record keeping variables. Comput Aided Chem Eng. 2023;52:433-438.
doi:10.1016/B978-0-443-15274-0.50069-X

44. Dolan ED, Moré JJ. Benchmarking optimization software with performance profiles. Math
Program. 2002;91(2):201-213. doi:10.1016/S0167-2991(08)65284-2

29

FOR TABLE OF CONTENTS USE ONLY

Continuous Production Scheduling MILP Formulations Using Record Keeping
Variables

Amin Samadi a, Christos T. Maravelias a,b
a Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
b Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08540

	ABSTRACT
	Introduction
	Background
	Continuous Production Scheduling
	Model
	Fundamental Constraints
	Transient Operations
	Run-Starting and Run-Ending
	Run Length
	Objective Function

	Methods
	RKVs involving ,𝑿-𝒊,𝒋,𝒏.
	RKVs involving ,𝒀-𝒊,𝒋,𝒏-𝐒.
	Motivating Example

	Results and Discussion
	Comparison of All RKVs
	Branching Priorities Using Subtask Utilization
	Using LP Relaxation to Calculate Utilization
	Comparing Highest and Lowest Utilization
	Studying Equal Prioritization

	Using DPA to Calculate Utilization
	Branching Priorities Using Unit Demand
	Comparison of All Prioritization Methods

	Conclusions
	Supporting Information
	Acknowledgements
	Nomenclature
	Sets
	Subsets
	Parameters
	Nonnegative Continuous Variables
	Binary Variables
	Record Keeping Variables

	References

