
One-Tape Turing Machine and Branching
Program Lower Bounds for MCSP
Mahdi Cheraghchi £�

Department of EECS, University of Michigan, Ann Arbor, MI, USA

Shuichi Hirahara £�

National Institute of Informatics, Tokyo, Japan

Dimitrios Myrisiotis £ �

School of Computing, National University of Singapore, Singapore

Yuichi Yoshida £�

National Institute of Informatics, Tokyo, Japan

Abstract
For a size parameter s : N → N, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is
the problem of deciding whether the minimum circuit size of a given function f : {0, 1}n → {0, 1}
(represented by a string of length N := 2n) is at most a threshold s(n). A recent line of work
exhibited “hardness magnification” phenomena for MCSP: A very weak lower bound for MCSP
implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams
(STOC 2019) implicitly showed that, for some constant µ1 > 0, if MCSP[2µ1·n] cannot be computed
by a one-tape Turing machine (with an additional one-way read-only input tape) running in time
N1.01, then P ̸= NP.

In this paper, we present the following new lower bounds against one-tape Turing machines and
branching programs:
1. A randomized two-sided error one-tape Turing machine (with an additional one-way read-only

input tape) cannot compute MCSP[2µ2·n] in time N1.99, for some constant µ2 > µ1.
2. A non-deterministic (or parity) branching program of size o(N1.5/ log N) cannot compute MKTP,

which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly
applying the Nečiporuk method to MKTP, which previously appeared to be difficult.

3. The size of any non-deterministic, co-non-deterministic, or parity branching program computing
MCSP is at least N1.5−o(1).

These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing
machines and non-deterministic branching programs, and essentially match the best-known lower
bounds for any explicit functions against these computational models.

The first result is based on recent constructions of pseudorandom generators for read-once
oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS
2018; Viola 2019). En route, we obtain several related results:
1. There exists a (local) hitting set generator with seed length Õ(

√
N) secure against read-once

polynomial-size non-deterministic branching programs on N -bit inputs.
2. Any read-once co-non-deterministic branching program computing MCSP must have size at least

2Ω̃(N).

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Pseudorandomness and derandomization

Keywords and phrases Minimum Circuit Size Problem, Kolmogorov Complexity, One-Tape Turing
Machines, Branching Programs, Lower Bounds, Pseudorandom Generators, Hitting Set Generators

Funding Mahdi Cheraghchi: M. Cheraghchi’s research is supported in part by the NSF awards
CCF-2006455 and CCF-2107345.

Acknowledgements This work was done while Dimitrios Myrisiotis was with the Department of
Computing, Imperial College London, London, UK. We would like to express our gratitude to

mailto:mahdich@umich.edu
http://mahdi.ch
mailto:s_hirahara@nii.ac.jp
https://researchmap.jp/shuichi.hirahara/
mailto:dimitris@nus.edu.sg
https://dimyrisiotis.github.io/
mailto:yyoshida@nii.ac.jp
http://research.nii.ac.jp/~yyoshida/

2 One-tape Turing machine and branching program lower bounds for MCSP

Emanuele Viola and Osamu Watanabe for bringing to our attention the works by Kalyanasundaram
and Schnitger [28] and Watanabe [43], respectively, and for helpful discussions. In particular, we
thank Emanuele Viola for explaining to us his works [17, 42]. We thank Rahul Santhanam for
pointing out that Nečiporuk’s method can be applied to not only MKtP but also MKTP. We thank
Chin Ho Lee for answering our questions regarding his work [29]. We thank Paul Beame for bringing
his work [7] to our attention. We thank Valentine Kabanets, Zhenjian Lu, Igor C. Oliveira, and Ninad
Rajgopal for illuminating discussions. Finally, we would like to thank the anonymous reviewers for
their constructive feedback.

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks whether a given Boolean function f :
{0, 1}n → {0, 1} can be computed by some Boolean circuit of size at most a given threshold s.
Here the function f is represented by the truth table of f , i.e., the string of length N := 2n

that is obtained by concatenating all the outputs of f . For a size parameter s : N → N, its
parameterized version is denoted by MCSP[s]: That is, MCSP[s] asks if the minimum circuit
size of a function f : {0, 1}n → {0, 1} is at most s(n).

MCSP is one of the most fundamental problems in complexity theory, because of its
connection to various research areas, such as circuit complexity [38, 27, 24, 33, 23, 2], learning
theory [9], and cryptography [38, 18, 20]. It is easy to see that MCSP ∈ NP because, given a
circuit C of size s as an NP certificate, one can check whether C computes the given function
f in time NO(1). On the other hand, its NP-completeness is a long-standing open question,
which dates back to the introduction of the theory of NP-completeness (cf. [4]), and it has
an application to the equivalence between the worst-case and average-case complexity of NP
(cf. [20]).

Recently, a line of work exhibited surprising connections between very weak lower
bounds of MCSP and important open questions of complexity theory, informally termed as
“hardness magnification” phenomena. Oliveira and Santhanam [37] (later with Pich [36])
showed that, if an approximation version of MCSP cannot be computed by a circuit of
size N1.01, then NP ̸⊆ P/poly (in particular, P ̸= NP follows). Similarly, McKay, Murray,
and Williams [32] showed that, if MCSP[s(n)] cannot be computed by a 1-pass streaming
algorithm of poly (s(n)) space and poly (s(n)) update time, then P ̸= NP. Therefore, in order
to obtain a breakthrough result, it is sufficient to obtain a very weak lower bound for MCSP.

Are hardness magnification phenomena plausible approaches for resolving the P versus
NP question? We do not know the answer yet. However, it should be noted that, as argued
in [3, 37], hardness magnification phenomena appear to bypass the natural proof barrier
of Razborov and Rudich [38], which is one of the major barriers of complexity theory for
resolving the P versus NP question. Most of lower bound proof techniques of complexity
theory are “natural” in the following sense: Given a lower bound proof for a circuit class
C, one can interpret it as an efficient average-case algorithm for solving C-MCSP (i.e., one
can efficiently decide whether a given Boolean function f can be computed by a small
C-circuit when the input f is chosen uniformly at random; cf. Hirahara and Santhanam [22]).
Razborov and Rudich [38] showed that such a “natural proof” technique is unlikely to
resolve NP ̸⊆ P/poly; thus we need to develop fundamentally new proof techniques. There
seems to be no simple argument that naturalizes proof techniques of hardness magnification
phenomena; hence, investigating hardness magnification phenomena could lead us to a new
non-natural proof technique.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 3

1.1 Our results
1.1.1 Lower bounds against one-tape Turing machines
Motivated by hardness magnification phenomena, we study the time required to compute
MCSP by using a one-tape Turing machine. We first observe that the hardness magnification
phenomena of [32] imply that a barely superlinear time lower bound for a one-tape Turing
machine is sufficient for resolving the P versus NP question.

▶ Theorem 1 (A corollary of McKay, Murray, and Williams [32]; see Appendix A). There exists
a small constant µ > 0 such that if MCSP[2µ·n] ̸∈ DTIME1

[
N1.01]

, then P ̸= NP.

Here, we denote by DTIME1[t(N)] the class of languages that can be computed by a
Turing machine equipped with a one-way read-only input tape and a two-way read/write
work tape running in time O(t(N)) on inputs of length N . We note that it is rather counter-
intuitive that there is a universal constant µ > 0; it is instructive to state Theorem 1 in the
following logically equivalent way: If MCSP[2µ·n] ̸∈ DTIME1

[
N1.01]

for all constants µ > 0,
then P ̸= NP.1

One of our main results is a nearly quadratic lower bound on the time complexity of a
randomized one-tape Turing machine (with one additional read-only one-way input tape)
computing MCSP.

▶ Theorem 2. There exists some constant 0 < µ < 1 such that MCSP[2µ·n] is not in
BPTIME1

[
N1.99]

.

Here, BPTIME1[t(N)] denotes the class of languages that can be computed by a two-
sided-error randomized Turing machine equipped with a one-way read-only input tape and
a two-way read/write work tape running in time t(N) on inputs of length N ; we say that
a two-sided-error randomized algorithm computes a problem if it outputs a correct answer
with high probability (say, with probability at least 2/3) over the internal randomness of the
algorithm.

Previously, no non-trivial lower bound on the time complexity required for computing
MCSP by a Turing machine was known. Moreover, Theorem 2 essentially matches the
best-known lower bound for this computational model; namely, the lower bound due to
Kalyanasundaram and Schnitger [28], who showed that Element Distinctness is not in
BPTIME1

[
o
(
N2/ log N

)]
.

Our lower bound against BPTIME1
[
N1.99]

is much stronger than the required lower
bound (i.e, DTIME1

[
N1.01]

) of the hardness magnification phenomenon of Theorem 1.
However, Theorem 2 falls short of the hypothesis of the hardness magnification phenomenon
of Theorem 1 because of the choice of the size parameter. In the hardness magnification
phenomenon, we need to choose the size parameter to be 2µ·n for some small constant µ > 0,
whereas, in our lower bound, we will choose µ to be some constant close to 1. That is, what
is missing for proving P ̸= NP is to decrease the size parameter from 2(1−o(1))·n to 2o(n) in
Theorem 2, or to increase the size parameter from 2o(n) to 2(1−o(1))·n in Theorem 1.

Next, we investigate the question of whether hardness magnification phenomena on
MCSP[s(n)] such as Theorem 1 can be proved when the size parameter s(n) is large, as
posed by Chen, Jin, and Williams [11]. As observed in [10], most existing proof techniques
on hardness magnification phenomena are shown by constructing an oracle algorithm which

1 Observe that ∃µ, (P (µ) ⇒ Q) is logically equivalent to ∃µ, (¬P (µ) ∨ Q), which is equivalent to
¬(∀µ, P (µ)) ∨ Q.

4 One-tape Turing machine and branching program lower bounds for MCSP

makes short queries to some oracle. For example, behind the hardness magnification
phenomena of Theorem 1 is a nearly-linear-time oracle algorithm that solves MCSP[2o(n)] by
making queries of length 2o(n) to some PH oracle (see Corollary 22 for a formal statement).
Chen, Hirahara, Oliveira, Pich, Rajgopal, and Santhanam [10] showed that most lower bound
proof techniques can be generalized to such an oracle algorithm, thereby explaining the
difficulty of combining hardness magnification phenomena with lower bound proof techniques.
Following [10], we observe that our lower bound (Theorem 3) can be generalized to a lower
bound against an oracle algorithm which makes short queries.

▶ Theorem 3. Let O ⊆ {0, 1}∗ be any oracle. Then, for every constant 1/2 < µ < 1,
MCSP[2µ·n] on truth tables of size N := 2n is not in BPTIMEO

1

[
N1+µ′

]
for some constant

µ′ > 0, where all of the strings queried to O are of length No(1).

Theorem 3 can be seen as a partial answer to the question posed by [11]: It is impossible
to extend the hardness magnification phenomena of Theorem 1 to MCSP[2µn] for µ > 1/2
by using similar techniques used in [32]. Recall that the proof techniques behind [32] are
to construct a nearly-linear-time oracle algorithm that solves MCSP[2µn] by making short
queries to some oracle; the existence of such an oracle algorithm is ruled out by Theorem 3
when µ > 1/2. Therefore, in order to obtain a hardness magnification phenomenon for
MCSP[20.51n], one needs to develop a completely different proof technique that does not rely
on constructing an oracle algorithm that makes short queries.

1.1.2 Lower bounds against branching programs
Another main result of this work is a lower bound against non-deterministic branching
programs. We make use of Nečiporuk’s method, which is a standard proof technique for
proving a lower bound against branching programs. However, it appeared previously that
Nečiporuk’s method is not directly applicable to the problems such as MCSP [22]. In this
paper, we develop a new proof technique for applying Nečiporuk’s method to a variant of
MCSP, called MKTP. MKTP is the problem of deciding whether KT(x) ≤ s given (x, s) as
input. Here KT(x) is defined as the minimum, over all programs M and integers t, of |M | + t

such that, for every i, M outputs the i-th bit of x in time t given an index i as input [1]. We
prove lower bounds against general branching programs and non-deterministic branching
programs by using Nečiporuk’s method.

▶ Theorem 4. The size of a branching program computing MKTP is at least Ω(N2/ log2 N).
The size of a non-deterministic branching program or a parity branching program computing
MKTP is at least Ω(N1.5/ log N).

Theorem 4 gives the first non-trivial lower bounds against non-deterministic and parity
branching programs for MKTP and, in addition, these are the best lower bounds which
can be obtained by using Nečiporuk’s method (cf. [7]). Previously, by using a pseudoran-
dom generator for branching programs constructed by [25], it was shown in [36, 12] that
(deterministic) branching programs require N2−o(1) size to compute MCSP and MKTP.2
Surprisingly, Theorem 4 is proved without using a pseudorandom generator nor a weaker
object called a hitting set generator.

2 It is worthy of note that Theorem 4 mildly improves the lower bounds of [36, 12] to Ω(N2/ log2 N) by
directly applying Nečiporuk’s method, which matches the state-of-the-art lower bound for any explicit
function up to a constant factor.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 5

At this point it is interesting to mention that the results of Theorem 4 hold for MKtP
too — a resource-bounded Kolmogorov complexity measure that is similar to MKTP. We
emphasize that it is surprising that a lower bound for MKtP can be obtained without using
a hitting set generator; indeed, the complexity of MKtP is closely related to a hitting set
generator, and in many settings (especially when the computational model is capable of
computing XOR), a lower bound for MKtP and the existence of a hitting set generator are
equivalent [20, 21].

The proof technique of Theorem 4 is applicable to problems of computing various
resource-bounded Kolmogorov complexity measures, such as MKtP. However, we fail to
apply Nečiporuk’s method to MCSP, despite that circuit complexity can also be regarded
as a version of resource-bounded Kolmogorov complexity. The KT-complexity of the truth
table of a function f and the minimum circuit size of f are polynomially related to each
other [1]; unfortunately, the relationship between circuit complexity and KT-complexity is
not tight enough for our argument to work. Nevertheless, we were able to use a different
approach to present the first non-trivial lower bound for MCSP against non-deterministic
branching programs.

▶ Theorem 5. The size of any non-deterministic, co-non-deterministic, or parity branching
program computing MCSP is at least N1.5−o(1).

The proof of Theorem 5 is based on a pseudorandom generator construction of Impagliazzo,
Meka, and Zuckerman [25]. We show that their construction actually provides a pseudorandom
generator of seed length s2/3+o(1) that fools non-deterministic, co-non-deterministic, and
parity branching programs of size s.

Along the way, we obtain several new results regarding a lower bound for MCSP and a
hitting set generator. A hitting set generator (HSG) H : {0, 1}λ(N) → {0, 1}N for a circuit
class C is a function such that, for any circuit C from C that accepts at least (1/2) · 2N

strings of length N , there exists some seed z ∈ {0, 1}λ(N) such that C accepts H(z).
We present a hitting set generator secure against read-once non-deterministic branching

programs, based on a pseudorandom generator constructed by Forbes and Kelley [14].

▶ Theorem 6. There exists an explicit construction of a (local) hitting set generator H :
{0, 1}Õ

(√
N ·log s

)
→ {0, 1}N for read-once non-deterministic branching programs of size s.

Previously, Andreev, Baskakov, Clementi, and Rolim [6] constructed a hitting set generator
with non-trivial seed length for read-k-times non-deterministic branching programs, but their
seed length is as large as N − o(N). Theorem 6 improves the seed length to Õ(

√
N · log s).

As an immediate corollary, we obtain a lower bound for MCSP against read-once non-
deterministic branching programs.

▶ Corollary 7. Any read-once co-non-deterministic branching program that computes MCSP
must have size at least 2Ω̃(N).

1.2 Our techniques
1.2.1 Local HSGs for MCSP lower bounds
For a circuit class C, a general approach for obtaining a C-lower bound for MCSP is by
constructing a “local” hitting set generator (or a pseudorandom generator (PRG), which is a
stronger notion) secure against C. Here, we say that a function G : {0, 1}s → {0, 1}N is local
if, for every z, the ith bit of G(z) is “easy to compute” from the index i; more precisely, for

6 One-tape Turing machine and branching program lower bounds for MCSP

every seed z, there exists some circuit C of size at most s such that C outputs the ith bit of
G(z) on input i ∈ [N]. Note here that G(z) is a YES instance of MCSP[s], whereas a string w

chosen uniformly at random is a NO instance of MCSP[s] with high probability. This means
that any C-algorithm that computes MCSP[s] distinguishes the pseudorandom distribution
G(z) from the uniform distribution w, and hence the existence of C-algorithm for MCSP[s]
implies that there exists no local hitting set generator secure against C. This approach has
been used in several previous works, e.g., [38, 1, 22, 12]. In fact, it is worthy of note that, in
some sense, this is the only approach — at least for a general polynomial-size circuit class
C = P/poly, because Hirahara [20] showed that a lower bound for an approximation version
of MCSP is equivalent to the existence of a local HSG.

At the core of our results is the recent breakthrough result of Forbes and Kelley [14],
who constructed the first pseudorandom generator with polylog(n) seed length that fools
unknown-order read-once oblivious branching programs. Viola [42] used their construction to
obtain a pseudorandom generator that fools deterministic Turing machines (DTMs). Herein,
we generalize his result to the case of randomized Turing machine (RTMs), and the case of
two-sided-error randomized Turing machine (BPTIME1[t(N)]).3 At a high level, our crucial
idea is that Viola’s proof does not exploit the uniformity of Turing machines, and hence a
good coin flip sequence of a randomized oracle algorithm and all of its (small enough) oracle
queries and corresponding answers can be fixed as non-uniformity (Lemma 26). In addition,
by a careful examination of the Forbes-Kelley PRG, we show that their PRG is local; this
gives rise to a local PRG that fools BPTIME1[t(N)], which will complete a proof of our main
result (Theorem 3).

We note that the proof above implicitly shows an exponential-size lower bound for MCSP
against read-once oblivious branching programs, which was previously not known. Corollary 7
generalizes this lower bound to the case of co-non-deterministic read-once (not necessarily
oblivious) branching program. In order to prove this, we make use of PRGs that fool
combinatorial rectangles (e.g., [14, 29]). We present a general transformation from a PRG
for combinatorial rectangles into a HSG for non-deterministic read-once branching program,
by using the proof technique of Borodin, Razborov, and Smolensky [8]; see Theorem 6.

1.2.2 Nečiporuk’s method for MKTP lower bounds
In order to apply Nečiporuk’s method to MKTP, we need to give a lower bound on the
number of distinct subfunctions that can be obtained by fixing all but O(log n) bits.

The idea of counting distinct subfunctions of MKTP is to show that a random restriction
which leaves O(log n) variables free induces different subfunctions with high probability.
Specifically, partition the input variables [n] into m := n/O(log n) blocks, pick m − 1
strings ρ := ρ2 · · · ρm ∈ ({0, 1}O(log n))m−1 randomly, and consider the restricted function
f↾ρ(ρ1) := MKTP(ρ1ρ2 · · · ρm, θ) for some threshold function θ to be chosen later. Then, the
string ρiρ2 · · · ρm is compressible when i ∈ {2, · · · , m} whereas the string ρ1ρ2 · · · ρm is not
compressible when ρ1 is chosen randomly. This holds as, in the former case, there exists a
k ∈ {2, . . . , m} such that ρi = ρk and this yields a description for the string ρiρ2 · · · ρm that
is shorter than most of its descriptions in the latter case. Let now θ be an upper bound on
the KT complexity of ρiρ2 · · · ρm in the case where i ∈ {2, · · · , m}. Therefore, f↾ρ(ρi) = 1
for any ρ and i ∈ {2, · · · , m}, and f↾ρ(ρ1) = 0 with high probability over random ρ and ρ1.

3 We emphasize that the notion of PRGs secure against these three computational models is different.
See Definition 14, Definition 17, and Lemma 19.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 7

This implies that, with high probability over the random restrictions ρ and ρ′, it is the case
that f↾ρ ̸≡ f↾ρ′ . This is so as, for every i ∈ {2, . . . , m}, the probability over the random
restrictions ρ and ρ′ that the string ρi is such that f↾ρ′(ρi) = f↾ρ(ρi) is small, by the fact
that f↾ρ(ρi) = 1 for any ρ and the fact that f↾ρ′(ρi) = 0 with high probability over random
ρi and ρ′ (and therefore with high probability over random ρ and ρ′ as well).

Unfortunately, the probability that f↾ρ ≡ f↾ρ′ holds may not be exponentially small. As
a consequence, a lower bound on the number of distinct subfunctions that can be directly
obtained from this fact may not be exponential. In contrast, we need to prove an exponential
lower bound on the number of distinct subfunctions in order to obtain the state-of-the-art
lower bound via Nečiporuk’s method.

In order to make the argument work, we exploit symmetry of information for (resource-
unbounded) Kolmogorov complexity and Kolmogorov-randomness. Instead of picking ρ and
ρ′ randomly, we keep a set P which contains restrictions ρ that induce distinct subfunctions.
Starting from P := ∅, we add one Kolmogorov-random restriction ρ to P so that the property
of P is preserved. By using symmetry of information for Kolmogorov complexity, we can
argue that one can add a restriction to P until P becomes as large as 2Ω(n), which proves
that the number of distinct subfunctions of MKTP is exponentially large. Details can be
found in Section 6.

1.3 Related work

Chen, Jin, and Williams [11] generalized hardness magnification phenomena to arbitrary
sparse languages in NP. Note that MCSP[2µn] is a sparse language in the sense that the
number of YES instances of MCSP[2µn] is at most 2Õ(2µn), which is much smaller than the
number 22n of all the instances of length 2n. Hirahara [21] proved that a super-linear-size
lower bound on co-non-deterministic branching programs for computing an approximation
and space-bounded variant of MKtP implies the existence of a hitting set generator secure
against read-once branching programs (and, in particular, RL = L).

Regarding unconditional lower bounds for MCSP, Razborov and Rudich [38] showed that
there exists no AC0-natural property useful against AC0[⊕], which in particular implies that
MCSP ̸∈ AC0; otherwise, the complement of MCSP would yield an AC0-natural property
useful against P/poly ⊇ AC0[⊕]. Hirahara and Santhanam [22] proved that MCSP essentially
requires quadratic-size de Morgan formulas. Cheraghchi, Kabanets, Lu, and Myrisiotis [12]
proved that MCSP essentially requires cubic-size de Morgan formulas as well as quadratic-size
(general, unconstrained) branching programs. Golovnev, Ilango, Impagliazzo, Kabanets,
Kolokolova, and Tal [16] proved that, for any prime p, MCSP requires constant-depth circuits,
that are augmented with MODp gates, of weakly-exponential size.

The state-of-the-art time lower bound against DTMs on inputs of size n is Ω
(
n2)

, proved
by Maass [30], for the Polydromes function (which is a generalization of Palindromes).
Regarding the case when the considered DTMs have a two-way read-only input tape, Maass
and Schorr [31] proved that there is some problem in Σ2TIME[n] that requires Ω

(
n3/2/ log6 n

)
time to compute on such machines. As mentioned earlier, in Section 1.1, the state-of-the-art
time lower bound against RTMs is due to Kalyanasundaram and Schnitger [28], who showed
that Element Distinctness is not in BPTIME1

[
o
(
N2/ log N

)]
.

Viola [42] gave a PRG that fools RTMs that run in time n1+Ω(1); this also yields a n1+Ω(1)

time lower bound against such machines. To do this, Viola extended prior work [31, 41] on
simulating any RTM by a sum of ROBPs (see Lemma 24) and then employed the PRG by

8 One-tape Turing machine and branching program lower bounds for MCSP

Haramaty, Lee, and Viola [17] that fools ROBPs;4 it is a straightforward observation [42],
then, that the Forbes-Kelley PRG [14] (which appeared afterwards and was inspired by the
PRG by Haramaty, Lee, and Viola) yields a PRG of nearly quadratic stretch that fools RTMs
and, therefore, a nearly quadratic lower bound against the same model as well. Moreover,
Viola [42] showed that there exists some problem in Σ3TIME[n] that requires n1+Ω(1) time
to compute on any RTM that has the extra feature of a two-way read-only input tape; one
of the ingredients of this result, is again the PRG by Haramaty, Lee, and Viola [17].

For the case of one-tape TMs with no extra tapes, Hennie [19] proved in 1965 that
the Palindromes function requires Ω

(
n2)

time to compute. Van Melkebeek and Raz [41]
observed fixed-polynomial time lower bounds for SAT against non-deterministic TMs with
a d-dimensional read/write two-way work tape and a random access read-only input tape;
these lower bounds depend on d.

1.4 Organization
In Section 2, we give the necessary background. The main ideas of Theorem 3 and Theorem 6
are described in Section 3 and Section 4, respectively. In Section 5, we show that the
pseudorandom generators we make use of are local, which will complete the proofs of
Theorem 3 and Theorem 6. We prove Theorem 5 in Section 7 and Theorem 1 in Appendix A.

2 Preliminaries

All logarithms are considered to be taken to the base 2. Let x ∈ {0, 1}n be a string; we
denote by xi the i-th bit of x. If L ⊆ {0, 1}∗ is a language, then coL denotes {0, 1}∗ \ L. If
C is a class of circuits (say), then coC denotes a class of circuits C such that C = ¬C ′ for
some C ′ ∈ C.

2.1 Restrictions
Let ρ ∈ {0, 1, ∗}n be a restriction. We define the set of active (or unrestricted) variables of ρ

to be the set {i ∈ [n] | ρ(i) = ∗}.
Let f : {0, 1}n → {0, 1} be a Boolean function and ρ ∈ {0, 1, ∗}n a restriction. The

ρ-restricted version of f is a function, denoted by f↾ρ, such that for any x ∈ {0, 1}n it is the
case that f↾ρ(x) := f(y) where y ∈ {0, 1}n and, for all 1 ≤ i ≤ n, yi := ρ(i) if ρ(i) ∈ {0, 1},
else yi := xi.

We say that a distribution of restrictions D on {0, 1, ∗}n is p-regular if for every i ∈ [n] it
is the case that Prρ∼D[ρ(i) = ∗] = p.

We say that a distribution of restrictions D on {0, 1, ∗}n is k-wise independent if any k

coordinates of D are independent.

2.2 Circuit complexity
Let f : {0, 1}n → {0, 1}. We define the circuit complexity of f , denoted by CC(f), to be
equal to the size (i.e., the number of gates) of the smallest bounded fan-in unbounded fan-out
Boolean circuit, over the {AND, OR, NOT} = {∧, ∨, ¬} basis, that, on input x, outputs

4 It should be noted that before Haramaty, Lee, and Viola [17] and Viola [42], the problem of designing
PRGs of polynomial stretch that fool RTMs was wide open despite intense research efforts.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 9

f(x). For a string y ∈ {0, 1}2n

, we denote by CC(y) the circuit complexity of the function
fy : {0, 1}n → {0, 1} encoded by y; i.e., fy(x) = yx, for any x ∈ {0, 1}n.

A standard counting argument shows that a random function attains nearly maximum
circuit complexity with high probability.

▶ Proposition 8 ([39]). For any function s : N → N with s(n) = o(2n/n), it holds that

Pr
x∼{0,1}2n

[CC(x) ≤ s(n)] = o(1),

for all large n ∈ N.

▶ Definition 9 (Minimum Circuit Size Problem [27]). We define MCSP as

MCSP :=
{

(x, θ) ∈ {0, 1}2n

× {0, 1}n | CC(x) ≤ θ
}

n∈N
,

and its parameterized version as

MCSP[s(n)] :=
{

x ∈ {0, 1}2n

| CC(x) ≤ s(n)
}

n∈N
,

for a size parameter s : N → N.

Note that in Definition 9 the size θ denotes a number in {0, . . . , 2n − 1}.

2.3 Turing machines

Throughout this paper, we consider a Turing machine that has one work tape and a one-way
input tape. In this context, “one-way” means that the tape-head may move only from left to
right.

A deterministic Turing machine (DTM) is a Turing machine with two tapes: A two-way
read/write work tape and a one-way read-only input tape. Let x ∈ {0, 1}∗ and M be a DTM;
we write M(x) to denote the output of M when its input tape is initialized with x and its
work tape is empty. Let t : N → N be time-constructible. The class of languages L ⊆ {0, 1}∗

decided by some O(1)-state time-t DTM is denoted by DTIME1[t].
We also consider a randomized variant of DTMs. A randomized Turing machine (RTM)

is a Turing machine with three tapes: A two-way read/write work tape, a one-way read-only
input tape, and a one-way read-only random tape. Let x, r ∈ {0, 1}∗ and M be a RTM;
we write M(x, r) to denote the output of M when its input tape contains x, its work tape
is empty, and its random tape contains r. Let t : N → N be time-constructible. For a
language L ⊆ {0, 1}∗ and a RTM M , we say that M decides L with two-sided error if
Prr[M(x, r) = 1] ≥ 2

3 for every input x ∈ L and Prr[M(x, r) = 0] ≥ 2
3 for every input x ̸∈ L.

The class of languages L ⊆ {0, 1}∗ decided by some O(1)-state time-t RTM with two-sided
error is denoted by BPTIME1[t].

A randomized oracle Turing machine (oracle RTM) is a Turing machine with four tapes:
A two-way read/write work tape, a one-way read-only input tape, a one-way read-only
random tape, and an oracle tape. This model is identical to the randomized Turing machine
model apart from the oracle tape, which is a standard oracle tape. The class of languages
L ⊆ {0, 1}∗ decided by some O(1)-state time-t oracle RTM, with access to some oracle
O ⊆ {0, 1}∗, with two-sided error is denoted by BPTIMEO

1 [t].

10 One-tape Turing machine and branching program lower bounds for MCSP

2.4 Streaming algorithms
A space-s(n) streaming algorithm with update time u(n) on an input x ∈ {0, 1}n has a
working storage of s(n) bits. At any point the algorithm can either choose to perform one
operation on O(1) bits in storage or it can choose to read the next bit from the input. The
total time between two next-bit reads is at most u(n) and the final outcome is reported in
O(u(n)) time. A streaming algorithm A is said to be one-pass if A reads its input exactly
once.

▶ Lemma 10. Any one-pass streaming algorithm with t(N) update time, on inputs of length
N , can be simulated by a one-tape Turing machine with a one-way read-only input tape
running in time O(N · poly(t(N))).

Proof. Recall that a streaming algorithm reads one bit of its input from left to right, and
each consecutive read operation occurs within t(N) time steps. Thus, it takes N · poly(t(N))
time-steps in total to finish the computation on inputs of length N in the standard multi-tape
Turing machine model, as the size of the input is N and poly(t(N)) time-steps suffice for
some multi-tape Turing machine to perform an update [13]. For any time constructible
function T : N → N, a one-tape Turing machine can simulate a T (n)-time multi-tape Turing
machine within O(T (n)2) steps. Thus, a streaming algorithm can be simulated in time
N · (poly(t(N)))2 = N · poly(t(N)) by a one-tape Turing machine. ◀

2.5 Branching programs
A branching program (BP) is a directed acyclic graph with three special vertices: a start
vertex s (the source) and two finish vertices, namely an accepting vertex h1 and a rejecting
vertex h0 (the sinks).

On input x ∈ {0, 1}n, the computation starts at s and follows a directed path from s

to some hb, with b ∈ {0, 1}. On this occasion, the output of the computation is b. In each
step, the computation queries some input xi, for i ∈ [n], and then visits some other node
depending on the value of the variable just queried namely 0 or 1, through an edge with
label “xi = 0” or “xi = 1,” respectively.

A branching program P decides a language L ⊆ {0, 1}∗ in the natural way, i.e., x ∈ L if
and only if, on input x, the computation path that P follows starts at s and finishes at h1.
If the branching program is layered (whereby the nodes are partitioned into a number of
layers, and edges go only from nodes in one layer to nodes in the next; the start node is in
the first layer and the sink nodes in the last) and the variable queried within each layer is the
same, then the branching program is called oblivious. If the branching program queries each
variable at most once, then the branching program is called a read-once branching program
(ROBP). If the branching program is oblivious and always queries the variables in some
known order, where it is known beforehand which variable is queried at each layer, then the
branching program is called known-order, else it is called unknown-order.

A branching program is called non-deterministic if some of its vertices have an arbitrary
number of outgoing edges (i.e., if this number is not 2) or if some of its vertices have edges
that do not refer to the same input variable. Non-deterministic branching programs may also
have unlabelled edges, as well. Due to the nature of a non-deterministic branching program,
it is possible that a computation never reaches either h0 or h1 as there can be some node
with edges that their labels are all false according to the input at hand; in this case, we
assume that the computation halts in a rejecting state.

A non-deterministic branching program computes a function f : {0, 1}n → {0, 1} if, for
every x ∈ {0, 1}n such that f(x) = 1, there is some s-h1 path and for every x ∈ {0, 1}n such

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 11

that f(x) = 0, all computations end in a rejecting state. (In this case, we may call h1 a
target state.)

A co-non-deterministic branching program computes a function f : {0, 1}n → {0, 1} if, for
every x ∈ {0, 1}n such that f(x) = 1, all source-to-sink paths are s-h1 paths and for every
x ∈ {0, 1}n such that f(x) = 0, there exists some rejecting computation.

A parity branching program is a branching program that has counting semantics. That is,
a parity branching program computes a function f : {0, 1}n → {0, 1} if, for every x ∈ {0, 1}n

such that f(x) = 1, there is an odd number of s-h1 paths and for every x ∈ {0, 1}n such that
f(x) = 0, there is an even number of s-h1 paths.

We define the size of a branching program to be the number of its labelled edges. The
following two lemmas will come handy later.

▶ Lemma 11. Let f be a Boolean function. Then, f can be computed by a size-s parity
branching program if and only if the complement of f can be computed by a size-s parity
branching program.

Proof. It would suffice to prove only one of the directions, say the forward direction. Let f

be a Boolean function that is computed by a non-deterministic parity branching program P

of size s, and let g := ¬f be the complement of f . Let σ be the start vertex of P and let τ

be the target vertex of P , whereby an input x is accepted by P if and only if the number of
σ-τ paths is odd.

Let P ′ be a non-deterministic branching program that is identical to P but has an
additional unlabelled edge from σ to τ . (If P already contains such an edge, then we add
another one to P ′ anyway.)

Let x be such that g(x) = 1; then, f(x) = 0 and so there are an even number of σ-τ paths
in P ; therefore there are an odd number of σ-τ paths in P ′. The case of x such that g(x) = 0
is identical. This concludes the correctness of P ′ as a parity branching program for g.

As unlabelled edges are not counted towards the size of branching programs, we get that
the size of P ′ is equal to that of P , which is s. This concludes the proof. ◀

Lemma 11 yields the following corollary.

▶ Corollary 12. The computational model of parity branching programs is closed under taking
complements.

▶ Lemma 13. A non-deterministic, co-non-deterministic, or parity branching program of
size s can be described by O

(
s2 log s

)
bits.

Proof. This is true as a size-s non-deterministic, co-non-deterministic, or parity branching
program P has s labelled edges and therefore at most s + 1 vertices, as the vertices that are
incident only on unlabelled edges can be removed and the edges that they used to touch
can be redirected or removed, without loss of generality. (Also, new unlabelled edges can be
added during this step, so that the new non-deterministic, co-non-deterministic, or parity
branching program operates as the original.) For that matter, P has O

(
s2)

unlabelled edges.
As O(log s) bits suffice to describe any edge, the result follows. ◀

2.6 Pseudorandom generators and hitting set generators
We recall the standard notions of pseudorandom generators and hitting set generators. In
what follows, Pr[E] denotes the probability that the event E occurs and Exp[X] denotes
the expected value of the random variable X.

12 One-tape Turing machine and branching program lower bounds for MCSP

▶ Definition 14. Let s : N → N be a function, C be a circuit class, and 0 < ε < 1. A
pseudorandom generator (PRG) that ε-fools C is a function G : {0, 1}s(n) → {0, 1}n such
that∣∣∣∣∣ Exp

x∼{0,1}n
[C(x)] − Exp

y∼{0,1}s(n)
[C(G(y))]

∣∣∣∣∣ ≤ ε,

for any circuit C ∈ C. The value s(n) is referred to as the seed length of G.

▶ Definition 15. Let s : N → N be a function, C be a circuit class, and 0 < ε < 1. A hitting
set generator (HSG) ε-secure against C is a function G : {0, 1}s(n) → {0, 1}n such that

Pr
x∼{0,1}n

[C(x) = 1] ≥ ε =⇒ C(H(y)) = 1 for some y ∈ {0, 1}s(n)
,

for any circuit C ∈ C. By default, we choose ε := 1/2.

We observe that a PRG is a notion stronger than that of a HSG.

▶ Lemma 16. Let C be a circuit class. If G : {0, 1}s → {0, 1}n is a PRG that ε-fools C, then
G is a HSG that is ε′-secure against C for any ε′ > ε.

Proof. Let C ∈ C be a circuit. Towards a contradiction, assume that G is not a HSG that is
ε′-secure against C; that is, Pry[C(y) = 1] ≥ ε′ and for all y ∈ {0, 1}n such that C(y) = 1
there is no x ∈ {0, 1}s such that G(x) = y. However, by the definition of G,∣∣∣∣Pr

x
[C(G(x)) = 1] − Pr

y
[C(y) = 1]

∣∣∣∣ ≤ ε < ε′,

or Prx[C(G(x)) = 1] > 0; that is, there exists some x ∈ {0, 1}s such that C(G(x)) = 1. This
establishes the desired contradiction. ◀

For our purpose, it is useful to extend the notion of PRG to a pseudorandom generator
that fools randomized algorithms.

▶ Definition 17. For a function s : N → N and a parameter 0 < ε < 1, a function
G : {0, 1}s(n) → {0, 1}n is said to be a pseudorandom generator that ε-fools q-state time-t
RTMs if∣∣∣∣∣∣∣∣ Exp

x∼{0,1}n,

r∼{0,1}t

[M(x, r)] − Exp
y∼{0,1}s(n),

r∼{0,1}t

[M(G(y) , r)]

∣∣∣∣∣∣∣∣ ≤ ε,

for any q-state time-t RTM M .

2.7 MCSP lower bounds from local HSGs
For a function G : {0, 1}s → {0, 1}n, we say that G is local [12] if CC(G(z)) ≤ s for every
string z ∈ {0, 1}s. We make use of the following standard fact.

▶ Lemma 18. Let s : N → N be a function such that s(n) = o(2n/n), and N := 2n. Suppose
that there exists a local hitting set generator H : {0, 1}s(n) → {0, 1}N that is secure against a
circuit class C. Then, MCSP[s(n)] ̸∈ coC.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 13

Proof. We prove the contrapositive. Let C ∈ coC be a circuit that computes MCSP[s(n)].
Since CC(H(z)) ≤ s(n), we have H(z) ∈ MCSP[s(n)]; thus C(H(z)) = 1, for every z ∈
{0, 1}s(n). For a random w ∼ {0, 1}N , it follows from Proposition 8 that w ̸∈ MCSP[s(n)]
with probability 1 − o(1); hence C(w) = 0 for most w. Therefore, ¬C ∈ C accepts at least a
half of {0, 1}N but rejects every string in the range of H, which contradicts the security of
the hitting set generator H. ◀

We observe that a local pseudorandom generator for time-t RTMs also “fools”
BPTIME1[t(N)] in the following sense.

▶ Lemma 19. Let s, t : N → N be functions, such that s(n) = o(2n/n), and N := 2n. Suppose
that there exists a family of local pseudorandom generators G = {Gn : {0, 1}s(n) → {0, 1}N }n∈N
such that, for every n ∈ N, Gn (1/6)-fools time-t(N) RTMs. Then, MCSP[s(n)] is not in
BPTIME1[t(N)].

Proof. We prove the contrapositive. Let M be a time-t RTM that decides MCSP[s(n)]. Fix
any n ∈ N. For any seed z ∈ {0, 1}s(n), we have Gn(z) ∈ MCSP[s(n)] since Gn is local. Thus,
Prr[M(Gn(z), r) = 1] ≥ 2/3. On the other hand, pick a string w ∈ {0, 1}N chosen uniformly
at random. By the counting argument of Proposition 8, we get Prw[w ̸∈ MCSP[s(n)]] ≥
1 − o(1). Thus, we have Prw,r[M(w, r) = 1] ≤ o(1) + 1/3 < 1/2. Therefore,

Pr
z,r

[M(Gn(z), r) = 1] − Pr
w,r

[M(w, r) = 1] >
2
3 − 1

2 = 1
6 ,

which means that Gn does not fool RTMs. ◀

3 MCSP lower bounds against one-tape oracle RTMs

In this section, we present a proof of our main result.

▶ Theorem 20 (Theorem 3, restated). Let O ⊆ {0, 1}∗ be any language. Then, for
every constant 1/2 < µ < 1, MCSP[2µ·n] on truth tables of size N := 2n is not in
BPTIMEO

1

[
N2·(µ′−o(1))

]
for all 1/2 < µ′ < µ, where all of the strings queried to O are

of length No(1).

3.1 Connections to hardness magnification
As discussed in Section 1.1.1, Theorem 20 implies that establishing hardness magnification
phenomena for MCSP, when the circuit size threshold parameter is 20.51n, would require
the development of new techniques; see Remark 23. To explain why this is true, we shall
first require the following result by McKay, Murray, and Williams [32] that gives an oracle
streaming algorithm for MCSP.

▶ Lemma 21 ([32, Theorem 1.2]). Let s : N → N be a size function, with s(n) ≥ n for all
n, and N := 2n. Then, there is a one-pass streaming algorithm for MCSP[s(n)] on N-bit
inputs running in N · Õ(s(n)) time with Õ

(
s(n)2

)
update time and Õ(s(n)) space, using an

oracle for Σ3SAT with queries of length Õ(s(n)).

A corollary of Lemma 21 and Lemma 10 is the following.

▶ Corollary 22 (Consequences of hardness magnification from currently known techniques).
Let s : N → N be a size function. Then, MCSP[s(n)] on truth tables of length N := 2n is
in DTIMEO

1 [N · poly(s(n))], for some O ∈ ΣP
3 , where all of the strings queried to O are of

length at most poly(s(n)).

14 One-tape Turing machine and branching program lower bounds for MCSP

The following remark summarizes the main idea of this subsection.

▶ Remark 23. By Corollary 22, we see that if s(n) = 2µ·n, for µ = o(1), then MCSP[s(n)] is
in DTIMEO

1
[
N1+o(1)], where all of the strings queried to O are of length No(1). In light of

this observation, Theorem 20 is important for the following reason. As DTIMEO
1

[
N1+o(1)]

is a subset of BPTIMEO
1

[
N2·(µ′−o(1))

]
for all 1/2 < µ′ < 1 and all languages O ⊆ {0, 1}∗,

Theorem 20 shows that establishing hardness magnification phenomena for MCSP[s(n)] like
that of Theorem 1, when s(n) = 2µ·n for any constant 1/2 < µ < 1, would require the
development of techniques that do not rely on designing oracle algorithms that make short
oracle queries.

3.1.1 Comparison with the locality barrier
Chen, Hirahara, Oliveira, Pich, Rajgopal, and Santhanam [10] introduced the “locality barrier”
to explain why it will be difficult to acquire a major complexity breakthrough through the
lens of hardness magnification. Their reasoning goes as follows:

Existing magnification theorems unconditionally show that problems, against which
some circuit lower bound implies a complexity-theoretic breakthrough, admit highly
efficient small fan-in oracle circuits, while lower bound techniques against weak circuit
models quite often easily extend to circuits containing such oracles.

Our Remark 23, therefore, is close in spirit to the results of Chen et al. [10]: We make use
of a lower bound (Theorem 20) to motivate the development of new techniques for proving
hardness magnification phenomena while Chen et al. make use of hardness magnification
phenomena to motivate the development of new techniques for acquiring lower bounds; a
notable difference is that we consider one-tape Turing machines while they consider Boolean
circuits.

3.2 Proof of Theorem 20
In order to prove Theorem 20, our goal is to construct a local pseudorandom generator
that fools oracle RTMs and then apply Lemma 19. Viola [42] constructed a pseudorandom
generator that fools the one-tape Turing machine model (DTM).5 We will show that, in fact,
the same construction fools oracle RTMs as well. In order to do so, we recall the idea of
Viola [42]. The idea is that, in order to fool DTMs, it is sufficient to use a PRG that ε-fools
ROBPs for an exponentially small ε. This is because time-t DTMs can be written as the
sum of an exponential number of ROBPs.

▶ Lemma 24 (Viola [42]). Let n ∈ N and M be a q-state time-t DTM. Then, there is a family
{Pα}α∈A of n-input ROBPs of width exp

(
O

(√
t · log(tq)

))
such that, for any x ∈ {0, 1}n,

M(x) =
∑
α∈A

Pα(x),

where |A| ≤ (tq)O(√
t).

5 We note that our definition of PRG is different from that of [42] in that a random tape is not regarded
as an input tape.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 15

By a simple calculation (cf. Section 5), any pseudorandom generator that ε/|A|-fools
ROBPs also ε-fools DTMs. Viola [42] then used the pseudorandom generator of Forbes and
Kelley [14] that fools ROBPs. By a careful examination, we will show that the Forbes-Kelley
pseudorandom generator is local; see Corollary 44 in Section 5.

▶ Theorem 25 (Forbes-Kelley PRG is local). There exists a local pseudorandom generator
with seed length Õ

(
(
√

t + log(1/ε)) · log q
)

that ε-fools q-state time-t n-input DTMs for any
t ≥ n.

Our main idea for obtaining an oracle randomized Turing machine lower bound is that
Viola’s reduction can be applied to non-uniform computational models, i.e., q-state Turing
machines where q can become large as the input length becomes large. More specifically, it
is possible to incorporate all possible oracle queries (along with their answers) and any good
coin flip sequence r into the internal states of DTMs.

▶ Lemma 26. For an input length n ∈ N, for any q-state time-t oracle RTM M , that only
queries strings of length at most ℓ to its oracle O, and a coin flip sequence r ∈ {0, 1}t, there
exists some

(
q · 2ℓ · t

)
-state time-t DTM M ′ such that M ′(x) = MO(x, r) for every input

x ∈ {0, 1}n.

Proof. Let QM denote the set of the states of M . We define the set of the states of M ′ as

QM ′ :=
{

(q, s, b, i) ∈ QM × {0, 1}ℓ × {0, 1} × [t] | O(s) = b
}

.

The transition from the state (q, s, b, i) ∈ QM ′ can be defined in a natural way, by using the
i-th bit of r, namely ri, the state q, and the fact that O(s) = b. ◀

▶ Corollary 27. There exists a local pseudorandom generator with seed length σ(t, q, ε) =
Õ

(
(
√

t + log(1/ε)) · log(q · 2ℓ · t)
)

that ε-fools q-state time-t n-input oracle RTMs that may
only query strings of length at most ℓ to their oracle, for any t ≥ n.

Proof. We hard-code the oracle queries and their answers in the internal states and, moreover,
we use an averaging argument to fix one good coin flip sequence r. Let M be any q-state
time-t oracle RTM that may query to its oracle O strings of length at most ℓ. Let G be a
PRG from Theorem 25. We have that∣∣∣∣∣ Exp

r∼{0,1}t

[
Exp

x∼{0,1}n

[
MO(x, r)

]]
− Exp

r∼{0,1}t

[
Exp

y∼{0,1}σ(t,q,ε)

[
MO(G(y), r)

]]∣∣∣∣∣
=

∣∣∣∣Exp
r

[
Exp

x

[
MO(x, r)

]
− Exp

y

[
MO(G(y), r)

]]∣∣∣∣
≤ Exp

r

[∣∣∣∣Exp
x

[
MO(x, r)

]
− Exp

y

[
MO(G(y), r)

]∣∣∣∣]
≤

∣∣∣∣Exp
x

[
MO(x, r∗)

]
− Exp

y

[
MO(G(y), r∗)

]∣∣∣∣ ,

for some r∗ ∈ {0, 1}t, by an averaging argument. By applying Lemma 26, for MO, O, and
r∗, we obtain an equivalent

(
q · 2ℓ · t

)
-state time-t DTM M ′. The result now follows from

Theorem 25. Specifically,∣∣∣∣Exp
x

[
MO(x, r∗)

]
− Exp

y

[
MO(G(y), r∗)

]∣∣∣∣ =
∣∣∣∣Exp

x
[M ′(x)] − Exp

y
[M ′(G(y))]

∣∣∣∣ ≤ ε. ◀

16 One-tape Turing machine and branching program lower bounds for MCSP

Proof of Theorem 20. Take the local pseudorandom generator G of Corollary 27 with
parameter ε := 1/6. Let 1/2 < µ′ < µ < 1 be arbitrary constants. Let t, s, ℓ : N → N be
functions such that t(N) = N2·(µ′−o(1)), s(n) = 2µ·n, and ℓ(n) = 2o(n). Then, the seed
length of G is at most

Õ
(√

t(N) · (log q + ℓ(n))
)

≤ Õ(Nµ′−o(1)+o(1)) ≤ s(n),

where N = 2n. Since s(n) = o(2n/n), by Lemma 19, we obtain that MCSP[s(n)] ̸∈
BPTIMEO

1 [t(N)], where all of the strings queried to O are of length No(1). ◀

4 HSGs against non-deterministic ROBPs

In this section, we present a construction of hitting set generator secure against non-
deterministic ROBPs.

▶ Theorem 28 (Theorem 6, restated). There exists a local hitting set generator
H : {0, 1}Õ

(√
n·log s

)
→ {0, 1}n for n-input size-s read-once non-deterministic branching

programs.

As a corollary, we obtain an exponential-size lower bound for co-non-deterministic read-
once branching programs that compute MCSP.

▶ Corollary 29 (Corollary 7, restated). Any read-once co-non-deterministic branching program
that computes MCSP must have size at least 2Ω̃(N).

Proof. Immediate from Lemma 18 and Theorem 28. ◀

Herein, we present a general connection from a pseudorandom generator for combinatorial
rectangles to a hitting set generator for non-deterministic ROBPs. Below, for x ∈ {0, 1}n

and S ⊆ [n], we denote by x|S the |S|-bit string obtained by concatenating xi for each i ∈ S.

▶ Definition 30 (Combinatorial rectangles). Let n ∈ N. A combinatorial rectangle of k

products and width m is a function π : {0, 1}n → {0, 1} of the form

π(x) =
k∧

j=1
fj

(
x|Sj

)
,

for every x ∈ {0, 1}n, where k ∈ N, fj : {0, 1}m → {0, 1} and |Sj | ≤ m, for all 1 ≤ j ≤ k,
and the sets {Sj}k

j=1 are disjoint subsets of [n].

▶ Theorem 31 (Local PRG for combinatorial rectangles). There exists a local pseudorandom
generator G : {0, 1}r → {0, 1}n that ε-fools the class of combinatorial rectangles of k products
and width m, where the seed length r is Õ(m + log(k/ε)) · polylog(n).

We defer the proof of Theorem 31 to Section 5 (cf. Theorem 45). For the proof of The-
orem 28, we shall invoke the following lemma first, by Borodin, Razborov, and Smolensky [8].

▶ Lemma 32 (Borodin, Razborov, and Smolensky [8]). Let n, k, s ∈ N, m := n/k ≥ 1, and
t := O

(
(2s)2k

)
. Let f : {0, 1}n → {0, 1} be a function that can be computed by a read-once

non-deterministic branching program of size s. Then, there exist combinatorial rectangles
π1, . . . , πt of k products and width m such that, for all x ∈ {0, 1}n,

f(x) =
t∨

i=1
πi(x) .

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 17

Proof of Theorem 28. Let G : {0, 1}r → {0, 1}n be the local PRG of Theorem 31 that fools
k-product combinatorial rectangles of width m (where k and m are parameters that we shall set
later). We prove that G is a hitting set generator secure against read-once non-deterministic
branching programs of size s. To this end, let f be any read-once non-deterministic branching
program of size s such that f(G(z)) = 0 for every seed z ∈ {0, 1}r. We claim that
Prw[f(w) = 1] < 1

2 . By Lemma 32, f can be written as an OR of t combinatorial rectangles
π1, . . . , πt. By the assumption, for every seed z, we have

∨
i πi(G(z)) = f(G(z)) = 0, and

thus πi(G(z)) = 0. By the fact that the pseudorandom generator G ε-fools combinatorial
rectangles, it holds that, for all 1 ≤ i ≤ t,∣∣∣∣ Pr

x∼{0,1}n
[πi(x) = 1] − Pr

z∼{0,1}r
[πi(G(z)) = 1]

∣∣∣∣ ≤ ε

or

Pr
x∼{0,1}n

[πi(x) = 1] ≤ ε.

Hence,

Pr
x∼{0,1}n

[f(x) = 1] = Pr
x∼{0,1}n

[
t∨

i=1
πi(x) = 1

]
≤

t∑
i=1

Pr
x∼{0,1}n

[πi(x) = 1] ≤ t · ε.

Choosing ε := 1/(4t), this probability is bounded by 1/4. It remains to choose the parameter
k so that the seed length r is minimized. We have

r = polylog(n) · Õ(m + log(k/ε)) = Õ(n/k + k · log s) = Õ
(√

n · log s
)

,

by setting k :=
√

n/ log s. ◀

5 The Forbes-Kelley PRG is local

In this section, we show that the Forbes-Kelley PRG is local (up to some overhead in the
seed length), which will complete the proofs of Section 3 and Section 4.

In the following proofs, for each pseudorandom generator G : {0, 1}s → {0, 1}n with seed
length s, we will show that CC(G(z)) ≤ Õ(s) · polylog(n) for every seed z ∈ {0, 1}s. This
naturally gives rise to a local pseudorandom generator of seed length Õ(s) · polylog(n), by
simply ignoring a part of the seed.

We first recapitulate biased and almost k-wise independent distributions; these are
primitives used in Forbes-Kelley PRG.

5.1 Biased and almost k-wise independent distributions
▶ Definition 33. Let n ∈ N and 0 < δ < 1. A random variable X = (x1, . . . , xn) over
{0, 1}n is said to be δ-biased with respect to the distribution D if, for any S ⊆ [n], it is the
case that∣∣∣∣∣ Pr

X∼D

[∏
i∈S

(−1)xi = 1
]

− Pr
X∼{0,1}n

[∏
i∈S

(−1)xi = −1
]∣∣∣∣∣ ≤ δ.

On this occasion, we also say that D is a δ-biased distribution over {0, 1}n.

Below, we define almost k-wise independent distributions.

18 One-tape Turing machine and branching program lower bounds for MCSP

▶ Definition 34. Let n ∈ N, 0 < γ < 1, and k > 0. A random variable X = (x1, . . . , xn)
over {0, 1}n is said to be γ-almost k-wise independent with respect to the distribution D if,
for any k indices 1 ≤ i1 < i2 < · · · < ik ≤ n, it is the case that∑

α∈{0,1}k

∣∣∣∣ Pr
X∼D

[xi1 · · · xik
= α] − Pr

X∼{0,1}n
[xi1 · · · xik

= α]
∣∣∣∣ ≤ γ.

On this occasion, we also say that D is a γ-almost k-wise independent distribution over
{0, 1}n.
▶ Definition 35. Let n, k ∈ N, with k ≤ n. A random variable X = (x1, . . . , xn) over {0, 1}n

is said to be k-wise independent with respect to the distribution D if X is 0-almost k-wise
independent with respect to the distribution D. On this occasion, we also say that D is a
k-wise independent distribution.

It is known that a k-wise independent distribution over {0, 1}n may be sampled by using
O(k log n) random bits [40]. The following lemma upper-bounds the circuit complexity of
some k-wise independent distribution.
▶ Theorem 36 ([12, 15, 40]). There exists a local k-wise independent generator G : {0, 1}s →
{0, 1}n with seed length s = k · Õ(log n).

We next show that there exists a local ε-biased generator.
▶ Theorem 37 (The complexity of multiplication; cf. [15]). For an integer m > 0, let the
elements in F2m be represented by m-bit strings. Then, there exists a circuit of size Õ(m)
that, on input x, y ∈ F2m , outputs the m-bit representation of the product x · y.
▶ Theorem 38. There exists a local ε-biased generator G : {0, 1}s → {0, 1}n with seed length
s = Õ(log(n/ε)) · log n.
Proof. We use the standard construction of an ε-biased generator G0 of [5]. Let m :=
log(n/ε), and take a field of size 2m. For random seeds a, b ∈ F2m of length 2m, the ith bit
of G0(a, b) is defined as

〈
ai, b

〉
, i.e., the inner product of the binary representations of ai and

b. It was shown in [5] that, for a, b chosen uniformly at random from F2m , the distribution
of G0(a, b) is ε-biased.

We claim that, for every a, b ∈ F2m , there exists a circuit of size O(log(n/ε) · log n) that
takes i ∈ [n] as an input of length log n and computes

〈
ai, b

〉
. Indeed, we hardwire a2j for

all j ≤ log n into a circuit; given an input i ∈ [n], one can compute ai by multiplying a2j for
all j such that the j-th bit of the binary representation of i is 1. This can be done with a
circuit of size Õ(m) · log n by using Theorem 37. It remains to compute the inner product of
ai and b, which can be done with a linear-size circuit. Overall, we obtain a circuit of size
Õ(m) · log n.

The local ε-biased generator G is defined as a version of G0 such that a part c of the seed
is ignored: i.e., G(a, b, c) := G0(a, b), where a, b ∈ F2m and |c| = Õ(m) · log n. ◀

Finally, we present a local δ-almost k-wise independent generator.
▶ Lemma 39 ([34]). Let 0 < δ < 1 and D be an δ-biased distribution over n-bit strings.
Then, for any k ∈ N, D is a

(
2k/2 · δ

)
-almost k-wise independent distribution over n-bit

strings.
▶ Theorem 40. There exists a local δ-almost k-wise independent generator G : {0, 1}s →
{0, 1}n with seed length s = Õ(k + log(n/δ)) · log n.
Proof. By setting ε := 2−k/2 · δ, the local ε-biased pseudorandom generator of Theorem 38
is a local δ-almost k-wise independent generator by using Lemma 39. ◀

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 19

5.2 The Forbes-Kelley PRG
▶ Definition 41 (Forbes-Kelley PRG [14]). Let n, δ, γ, r, k be some parameters chosen later.
Let D1, . . . , Dr be r independent δ-biased distributions and let T1, . . . , Tr be r independent
γ-almost k-wise independent distributions over {0, 1}n. We define GFK

r inductively as follows.
Let GFK

1 be some 320k-wise independent distribution and let

GFK
i+1 := Di + Ti ∧ GFK

i ,

for all 1 ≤ i ≤ r − 1, where ∧ denotes bitwise AND and + denotes bitwise XOR.

▶ Theorem 42 (Correctness of Forbes-Kelley PRG [14]). For parameters n, w ∈ N and ε > 0,
choose the parameters as follows: r := ⌈log n⌉, k := ⌈3 log(nw/ε)⌉, γ := (nw/ε)−9, and
δ := (nwL/ε)−3, where L :=

(
n
k

)
w1/2. Then, GFK

r : {0, 1}s → {0, 1}n is a pseudoran-
dom generator that ε-fools unknown-order ROBPs of width w, where the seed length s is
O

(
log(nw/ε) · log2 n

)
.

▶ Theorem 43. There exists a local pseudorandom generator of seed length
Õ

(
log(nw/ε) · log3 n

)
that ε-fools unknown-order n-input ROBPs of width w.

Proof. We instantiate the Forbes-Kelley pseudorandom generator GFK
r by using the paramet-

ers of Theorem 42 and using the construction of local generators of Theorem 38, Theorem 40,
and Theorem 36 for Di, Ti, and GFK

1 , respectively (this achieves the seed length given in the
statement of Theorem 42).

For a distribution D, we denote by CC(D) the maximum of CC(D) over all strings D in
the range of D. We claim that CC

(
GFK

r

)
is at most Õ

(
log(nw/ε) · log3 n

)
. By Theorem 38

and Theorem 40, we have CC(Di) ≤ Õ(log(n/δ)) · log n and CC(Ti) ≤ Õ(k + log(n/γ)) · log n

for all i. Therefore, since GFK
i+1 = Di + Ti ∧ GFK

i , we obtain

CC
(
GFK

i+1
)

≤ CC(Di) + CC(Ti) + CC
(
GFK

i

)
+ O(1)

for any i ∈ [r − 1]. We also have CC
(
GFK

1
)

≤ k · Õ(log n) from Theorem 36. Therefore,

CC
(
GFK

r

)
≤ r · Õ(k + log(n/γδ)) · log n + k · Õ(log n) = Õ(log(nw/ε) log3(n)). ◀

▶ Corollary 44 (A restatement of Theorem 25). There exists a local pseudorandom generator
with seed length Õ

(
(
√

t + log(1/ε)) · log q
)

that ε-fools q-state time-t n-input DTMs, for any
t ≥ n.

Proof. By Lemma 24, any q-state time-t DTM M can be written as the sum of ROBPs
{Pα}α∈A so that M(x) =

∑
α∈A Pα(x), where |A| ≤ (tq)O(

√
t). We set ε′ := ε/|A| and use

the local pseudorandom generator GFK
r of Theorem 43 that ε′-fools ROBPs of width w,

where w = (tq)O(
√

t). Then, GFK
r is a PRG that ε-fools DTMs because∣∣∣∣Exp

z,w

[
M(GFK

r (z)) − M(w)
]∣∣∣∣ ≤

∑
α∈A

∣∣∣∣Exp
z,w

[
Pα(GFK

r (z)) − Pα(w)
]∣∣∣∣ ≤ ε. ◀

5.3 Local PRG for combinatorial rectangles
▶ Theorem 45 (Local PRG for combinatorial rectangles). There exists a local pseudorandom
generator G : {0, 1}s → {0, 1}n that ε-fools the class of combinatorial rectangles of k products
and width m, where the seed length s is Õ

(
(m + log(k/ε)) · log3 n

)
.

20 One-tape Turing machine and branching program lower bounds for MCSP

We mention that Lee [29] showed that in the case of product tests (which contain
combinatorial rectangles as a special case), the analysis of the Forbes-Kelley PRG can be
improved, and obtained a PRG with nearly optimal seed length. This optimization would
improve our results at most a polylog(n) factor; for the sake of simplicity, we make use of
the Forbes-Kelley PRG.

Proof of Theorem 45. Suppose that a function f is computed by a combinatorial rectangle
of k products and width m. Namely, there exist some functions {fi}i and disjoint subsets
S1, · · · , Sk ⊆ [n], where |Si| ≤ m, such that f(x) =

∧
i∈[k] fi(x|Si

), for every x. Since any
function fi on m inputs can be written as a width-2m ROBP, one can observe that f can
be computed by a ROBP of width 2m + 1. Using the local PRG of Theorem 43 for width
w := 2m + 1, we obtain a local PRG for combinatorial rectangles. ◀

6 MKTP lower bounds against branching programs

In this section, we develop a proof technique for applying Nečiporuk’s method to MKTP
and prove Theorem 4. The KT-complexity is formally defined as follows.

▶ Definition 46. Let U be an efficient universal Turing machine. For a string x ∈ {0, 1}∗,
the KT-complexity of x is defined as follows.

KT(x) := min{|d| + t | Ud(i) outputs xi in time t for every i ∈ [|x| + 1]}.

Here we define xi as the ith bit of x if i ≤ |x| and ⊥ otherwise.

For a threshold θ : N → N, we denote by MKTP[θ] the problem of deciding whether
KT(x) ≤ θ(|x|) given a string x ∈ {0, 1}∗ as input.

For a function f : {0, 1}n → {0, 1}, we partition the input variables [n] into disjoint blocks
V1, · · · , Vm, where |Vi| = v for each i ∈ [m] and n = vm. (v = O(log n) will be chosen later.)
The idea of the Nečiporuk’s method is to lower-bound the number of subfunctions. For each
i ∈ [m], we define ci(f) to be the number of distinct functions f↾ρ such that ρ : [n] → {0, 1, ∗}
is a restriction with ρ−1(∗) = Vi.

The Nečiporuk method can be then summarized as follows.

▶ Theorem 47 (Nečiporuk [35]; cf. [26, Theorem 15.1]). The size of a branching program
computing f is at least Ω (

∑m
i=1 log ci(f)/ log log ci(f)). The size of a non-deterministic

branching program or a parity branching program computing f is at least Ω
(∑m

i=1
√

log ci(f)
)

.
In both of these results the value of m is n/O(log n).

Our main technical result of this section is the following.

▶ Theorem 48. Let f : {0, 1}n → {0, 1} be MKTP[θ] on n-bit inputs for θ := n−3c log n−4,
where c > 0 is a universal constant. Then, for every i ∈ [m], it holds that ci(f) = 2Ω(n).

The lower bounds for branching programs (Theorem 4) immediately follow from The-
orem 48 and Theorem 47.

In our proof of Theorem 48, we only need the following two properties of KT-complexity.
1. The resource-unbounded Kolmogorov complexity6 provides a lower bound on the KT-

complexity. That is, K(x) ≤ KT(x) for any x ∈ {0, 1}∗.

6 Let U be an efficient universal Turing machine. For a string x ∈ {0, 1}∗, the resource-unbounded
Kolmogorov complexity of x is defined as K(x) := min{|d| | Ud(i) outputs xi for every i ∈ [|x| + 1]}.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 21

2. For any strings ρ1, · · · , ρm ∈ {0, 1}v such that there exist distinct indices i ≠ j ∈ [m]
such that ρi = ρj , we have KT(ρ1 · · · ρm) ≤ (m − 1) · v + O(log n). This is because each
bit of the string ρ1 · · · ρm can be described by the strings {ρ1, · · · , ρm} \ {ρj} and the
index j ∈ [m] in time O(log n).7

For simplicity, we focus on the case when i = 1; the other cases can be proved similarly.
The idea of the proof is the following. Imagine that we pick ρ ∈ {∗}V1 × {0, 1}V2∪···∪Vm

uniformly at random. (Here we identify a restriction with a string in {0, 1, ∗}[n].) We denote
by ρ2 ∈ {0, 1}V2 , · · · , ρm ∈ {0, 1}Vm the random bits such that ρ = ∗V1ρ2 · · · ρm. We will
sometimes identify ρ2 · · · ρm with ρ.

Let f := MKTP[θ], and consider the function f↾ρ : {0, 1}V1 → {0, 1} obtained by restrict-
ing f by ρ. Then, we expect that f↾ρ(ρi) = 1 for any i ∈ {2, · · · , m} since KT(ρiρ2 · · · ρm)
is small, whereas f↾ρ(U) = 0 for a random U ∼ {0, 1}V1 with high probability. Thus, the
function f↾ρ is likely to be distinct for a randomly chosen ρ.

In order to make the argument formal, we proceed as follows. Pick ρ randomly. Then we
add it to a set P while keeping the promise that the map ρ ∈ P 7→ f↾ρ is injective (meaning
that each restriction ρ in P yields a unique restricted function f↾ρ). We will show that one
can keep adding ρ until the size of P becomes exponentially large. This will conclude the
proof of Theorem 48.

We will make use of symmetry of information of (resource-unbounded) Kolmogorov
complexity.

▶ Lemma 49. There exists a constant c > 0 such that, for any strings x, y ∈ {0, 1}∗,

K(xy) ≥ K(x) + K(y | x) − c log K(xy) .

We focus on restrictions ρ such that ρ is Kolmogorov-random. To this end, define

R := {ρ ∈ {0, 1}V2∪···∪Vm | K(ρ) ≥ |ρ| − 1}

as the set of Kolmogorov-random restrictions ρ. By the standard counting argument, we
have

Pr
ρ

[ρ ̸∈ R] ≤
|ρ|−2∑
i=1

2i/2|ρ| ≤ 1
2 .

The following lemma is the key for counting the number of distinct subfunctions.

▶ Lemma 50. Let ρ′ ∈ R be an arbitrary restriction and define θ := n − v + c log n. If
f↾ρ ≡ f↾ρ′ , then K(ρi | ρ′) ≤ 2c log n + 1 for any i ∈ {2, · · · , m}.

Proof. For each i ∈ [m] \ {1},

KT(ρiρ2 · · · ρm) ≤ |ρ2| + · · · + |ρm| + O(log n) ≤ (m − 1) · v + c log n ≤ θ.

This means that ρiρ2 · · · ρm is a YES instance of MKTP[θ]. Therefore, we have 1 = f↾ρ(ρi) =
f↾ρ′(ρi), which implies that KT(ρiρ

′
2 · · · ρ′

m) ≤ θ. By the symmetry of information,

θ ≥ KT(ρiρ
′
2 · · · ρ′

m) ≥ K(ρiρ
′
2 · · · ρ′

m) ≥ K(ρ′
2 · · · ρ′

m) + K(ρi | ρ′
2 · · · ρ′

m) − c log n.

Since ρ′ ∈ R, we have K(ρ′
2 · · · ρ′

m) ≥ v(m − 1) − 1 = n − v − 1. Therefore,

K(ρi | ρ′
2 · · · ρ′

m) ≤ θ + c log n − (n − v − 1) = 2c log n + 1. ◀

7 Here we assume that the universal Turing machine is efficient. If the universal Turing machine is slower
and the time is polylog(n), we obtain a branching program size lower bound of n2/polylog(n).

22 One-tape Turing machine and branching program lower bounds for MCSP

Now we set v := 4c log n + 4. Then, for any ρ′ ∈ R,

Pr
ρ

[f↾ρ ≡ f↾ρ′] ≤ Pr[∀i ∈ [m] \ {1}, K(ρi | ρ′) ≤ v/2 − 1]

≤ (2v/2/2v)m−1

= 2−n/2+v/2

≤ 2−n/3.

In particular, for any P ⊆ R, by the union bound, we obtain

Pr
ρ

[∃ρ′ ∈ P, f↾ρ ≡ f↾ρ′] ≤ |P | · 2−n/3.

Therefore,

Pr
ρ

[ρ ̸∈ R or ∃ρ′ ∈ P, f↾ρ ≡ f↾ρ′] ≤ 1/2 + |P | · 2−n/3,

which is strictly less than 1 if |P | < 2n/3−1. To summarize, we established the following
property.

▶ Corollary 51. For any P ⊆ R such that |P | < 2n/3−1, there exists a restriction ρ such
that ρ ∈ R and f↾ρ ̸≡ f↾ρ′ for any ρ′ ∈ P .

In light of this, we can construct a large set P such that the map ρ ∈ P 7→ f↾ρ is injective
as follows: Starting from P := ∅, add a restriction ρ ∈ R such that f↾ρ ̸≡ f↾ρ′ for any ρ′ ∈ P ,
whose existence is guaranteed by Corollary 51 if |P | < 2n/3−1. In this way, we obtain a
set P such that |P | ≥ 2n/3−1 and each f↾ρ is distinct for any ρ ∈ P . We conclude that
c1(f) ≥ |P | ≥ 2n/3−1. This completes the proof of Theorem 48.

7 MCSP lower bounds against non-deterministic,
co-non-deterministic, and parity branching programs

In this section, we prove our MCSP lower bound against non-deterministic, co-non-deterministic,
and parity branching programs.

▶ Theorem 52 (Theorem 5, restated). The size of any non-deterministic, co-non-deterministic,
or parity branching program computing MCSP is at least N1.5−o(1).

We will prove Theorem 52 by first showing that a PRG by Impagliazzo, Meka, and
Zuckerman [25], henceforth IMZ PRG, fools non-deterministic, co-non-deterministic, and
parity branching programs. As shown by Cheraghchi, Kabanets, Lu, and Myrisiotis [12],
an IMZ PRG can be implemented as an almost local PRG. This makes it possible to apply
Lemma 18 and obtain Theorem 52.

7.1 The IMZ PRG fools non-deterministic, co-non-deterministic, and
parity branching programs

We first show that the IMZ PRG fools non-deterministic, co-non-deterministic, and parity
branching programs (apart from formulas and deterministic branching programs).

▶ Theorem 53 (Following Impagliazzo, Meka, and Zuckerman [25]). For any constant c >

0, there is an explicit PRG using a seed of s2/3+o(1) random bits that s−c+1 fools non-
deterministic, co-non-deterministic, or parity branching programs of size at most s.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 23

7.1.1 Proof of Theorem 53
We first recall the notion of shrinkage by random restrictions.

▶ Definition 54 ([25]). Let F be a class of functions with an associated size function
s : F → R>0 and let Dp be a p-regular distribution on {0, 1, ∗}n. We say that F has
ε-shrinkage exponent Γ with respect to D if there exists a constant c such that for all f ∈ F
it is the case that

Pr
ρ∼Dp

[
s
(
f↾ρ

)
> c ·

(
pΓ · s(f) + 1

)
· log(1/ε)

]
≤ ε.

We will make use of the template of Impagliazzo, Meka, and Zuckerman [25] that gives a
generic connection between shrinkage by pseudorandom restrictions and PRGs.

▶ Theorem 55 (Following Impagliazzo, Meka, and Zuckerman [25]). Fix ε > 0 and let F
be a class of functions with an associated size function s : F → N. Fix s > 0 and let
p := 1/s2/(2Γ+1). Let Dp be a p-regular distribution on {0, 1, ∗}n such that F has ε-shrinkage
exponent Γ with respect to Dp. Then, there exists an explicit PRG G : {0, 1}r → {0, 1}n that
δ-fools all functions of size at most s in F for δ = O(ε · r) and has seed length

r = O
(

(R(s) + log(s/ε)) · log(n/ε) · s2/(2Γ+1)
)

,

where R(s) denotes the number of bits needed to efficiently sample from Dp.

Proof sketch. The original version of Theorem 55, namely [25, Theorem 3.3], refers to
Boolean computational models F that have the following property: Size-s devices from F
may be described by O(s log s) bits. However, this is not known to be true for the model of
non-deterministic branching programs; for that matter, we adjusted Theorem 55 to account
for this case, whereby any size-s from F , where F is the model of non-deterministic branching
programs, may be described by O

(
s2 log s

)
bits (Lemma 13).

So, the proof of Theorem 55 follows closely the proof of [25, Theorem 3.3] and the only
difference lies, as illustrated above, at the description size of non-deterministic branching
programs. For that matter, the last math display of [25, page 9], where an expression about
the seed length r of the (instantiation of the) IMZ PRG that fools F is given, namely

r = O(R(s) + log(s0/ε)) · log(n/ε) /p + O(s0 log s0)

where s0 := cpΓs log(1/ε), for some c > 0, is the size of a size-s device P from F after P is
being hit by a pseudorandom restriction ρ (with high probability over the choice of ρ ∼ Dp),
in our case reads

r = O(R(s) + log(s0/ε)) · log(n/ε) /p + O
(
s2

0 log s0
)

;

that is, O(s0 log s0) is replaced by O
(
s2

0 log s0
)
. Then, the result follows by setting p :=

1/s2/(2Γ+1), similarly to [25, Theorem 3.3], to balance out 1/p and
(
pΓs

)2. ◀

The following result, whose proof is identical to that of [25, Lemma 5.3], establishes the
fact that non-deterministic, co-non-deterministic, and parity branching programs shrink in
size after being hit by a k-wise independent restrictions, with high probability over the choice
of the restriction. The reason that all these models behave the same after being hit by such
a pseudorandom restriction, is that they are structurally alike and, moreover, they share a
common notion of size (i.e., the number of labelled edges).

24 One-tape Turing machine and branching program lower bounds for MCSP

▶ Lemma 56 (Following Impagliazzo, Meka, and Zuckerman [25]). For any constant c and non-
deterministic, co-non-deterministic, or parity branching program f a

(
p := 1/s2/3)

-regular
(c log s)-wise independent random restriction ρ yields

Pr
[
s
(
f↾ρ

)
≥ 23

√
c log s · p · s

]
≤ 2s−c.

Lemma 56 yields the following corollary, about the shrinkage exponent of non-deterministic,
co-non-deterministic, or parity branching programs, by referring to Definition 54.

▶ Corollary 57. Let F be the class of non-deterministic, co-non-deterministic, or parity
branching programs with an associated size function s : F → N, c > 0, ε := 2s−c, p := 1/s2/3,
and Dp be a p-regular distribution on {0, 1, ∗}n. Then, F has ε-shrinkage exponent Γ := 1
with respect to Dp.

We now turn to the proof of Theorem 53. To this end, the following bound on the number
of random bits that suffice to sample from a k-wise independent distribution will be useful.

▶ Lemma 58 ([40]). Let 0 < p < 1 and Dp be a p-regular k-wise independent distribution
on {0, 1, ∗}n. Then, the number of bits needed to efficiently sample from Dp is at most
O(k · log n · log(1/p)).

Proof of Theorem 53. By Corollary 57, we get that non-deterministic, co-non-deterministic,
or parity branching programs have ε-shrinkage exponent Γ := 1 with respect to Dp, for
ε := 2s−c and p := 1/s2/3. Plugging Γ in the expression that gives r from Theorem 55, along
with ε, p, and the upper bound on R(s) from Lemma 58, we get r = s2/3+o(1). What is left,
is to calculate δ := O(ε · r) ≤ s−c+1; the proof is now complete. ◀

7.2 Proof of Theorem 52
First, observe that Lemma 18 also holds for the case where C is some class of non-deterministic,
co-non-deterministic, or parity branching programs. We may now prove Theorem 52.

Proof of Theorem 52. Let c > 0 and G : {0, 1}s2/3+o(1)
→ {0, 1}N be the instantiation of

the IMZ PRG that s−c+1-fools non-deterministic, co-non-deterministic, or parity branching
programs of size s on N variables, as it is implied to exist by Theorem 53. By Cheraghchi,
Kabanets, Lu, and Myrisiotis [12], for every z ∈ {0, 1}s2/3+o(1)

it is the case that CC(G(z)) ≤
Õ(|z|) · polylog(N). By the discussion at the top of page 17, this fact yields a local PRG that
fools non-deterministic, co-non-deterministic, or parity branching programs.

We will now apply Lemma 18. First, recall that a PRG is a notion stronger than that
of a HSG (Lemma 16). Therefore, there is a local HSG H : {0, 1}s2/3+o(1)

→ {0, 1}N that
is secure against non-deterministic, co-non-deterministic, or parity branching programs of
size s on N variables. Second, let s := N1.5−ε for an arbitrary small constant 0 < ε < 1
and observe that s2/3+o(1) = o(N/ log N). In the notation of Lemma 18, let C be the
class of non-deterministic, co-non-deterministic, or parity branching programs of size s on
N variables. Then, by Lemma 18, we get that MCSP

[
s2/3+o(1)] cannot be computed by

co-non-deterministic, co-co-non-deterministic, or co-parity branching programs of size s.
Two notes are in order. First, co-co-non-deterministic branching programs coincide with

non-deterministic branching programs. Second, the class of parity branching programs is
closed under taking complements (Corollary 12). Therefore, we get that MCSP

[
s2/3+o(1)]

cannot be computed by co-non-deterministic, non-deterministic, or parity branching programs
of size s. Moreover, MCSP

[
s2/3+o(1)], and for that matter MCSP as well, requires co-non-

deterministic, non-deterministic, or parity branching programs of size N1.5−o(1). ◀

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 25

References
1 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.

Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.
2 Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization

and related problems. In Proceedings of the 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 54:1–54:14, 2017.

3 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

4 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput.
Syst. Sci., 77(1):14–40, 2011.

5 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. In Proceedings of the 31st Annual Symposium on
Foundations of Computer Science (FOCS), pages 544–553, 1990.

6 Alexander E. Andreev, Juri L. Baskakov, Andrea E. F. Clementi, and José D. P. Rolim.
Small pseudo-random sets yield hard functions: New tight explicit lower bounds for branching
programs. In Proceedings of the 26th International Colloquium on Automata, Languages and
Programming (ICALP), pages 179–189, 1999.

7 Paul Beame, Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. Nondeterminism and
an abstract formulation of Nečiporuk’s lower bound method. ACM Trans. Comput. Theory,
9(1):5:1–5:34, 2016.

8 Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-
times branching programs. Computational Complexity, 3:1–18, 1993.

9 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Proceedings of the 31st Conference on Computa-
tional Complexity (CCC), pages 10:1–10:24, 2016.

10 Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, pages 70:1–70:48, 2020.

11 Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse NP languages.
In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1240–1255, 2019.

12 Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit
lower bounds for MCSP from local pseudorandom generators. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,
volume 132 of LIPIcs, pages 39:1–39:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

13 Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In
Patrick C. Fischer, H. Paul Zeiger, Jeffrey D. Ullman, and Arnold L. Rosenberg, editors,
Proceedings of the 4th Annual ACM Symposium on Theory of Computing, May 1-3, 1972,
Denver, Colorado, USA, pages 73–80. ACM, 1972.

14 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th IEEE Annual Symposium on Foundations
of Computer Science (FOCS), pages 946–955, 2018.

15 Sergey B. Gashkov and Igor S. Sergeev. Complexity of computation in finite fields. Journal of
Mathematical Sciences, 191(5):661–685, 2013.

16 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Koloko-
lova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem. In Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019,

26 One-tape Turing machine and branching program lower bounds for MCSP

Patras, Greece, volume 132 of LIPIcs, pages 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

17 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM J. Comput., 47(2):493–523, 2018.

18 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

19 F. C. Hennie. One-tape, off-line turing machine computations. Inf. Control., 8(6):553–578,
1965.

20 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Pro-
ceedings of the Symposium on Foundations of Computer Science (FOCS), pages 247–258,
2018.

21 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 20:1–20:47. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

22 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In Proceedings of the 32nd Computational Complexity Conference (CCC), pages
7:1–7:20, 2017.

23 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In
Proceedings of the 31st Conference on Computational Complexity (CCC), pages 18:1–18:20,
2016.

24 John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit size
problem. In Proceedings of the 35th IARCS Annual Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS), pages 236–245, 2015.

25 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from Shrinkage.
J. ACM, 66(2):11:1–11:16, 2019.

26 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012.

27 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.

28 Bala Kalyanasundaram and Georg Schnitger. Communication complexity and lower bounds
for sequential computation. In Informatik, Festschrift zum 60. Geburtstag von Günter Hotz,
pages 253–268. Teubner / Springer, 1992.

29 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Proceedings
of the 34th Computational Complexity Conference (CCC), pages 7:1–7:25, 2019.

30 Wolfgang Maass. Quadratic lower bounds for deterministic and nondeterministic one-tape
Turing machines (extended abstract). In Proceedings of the 16th Annual ACM Symposium on
Theory of Computing (STOC), pages 401–408, 1984.

31 Wolfgang Maass and Amir Schorr. Speed-up of Turing machines with one work tape and a
two-way input tape. SIAM J. Comput., 16(1):195–202, 1987.

32 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 1215–1225, 2019.

33 Cody D. Murray and Richard Ryan Williams. On the (non) NP-hardness of computing circuit
complexity. In Proceedings of the 30th Conference on Computational Complexity (CCC), pages
365–380, 2015.

34 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 213–223, 1990.

35 E.I. Nečiporuk. On a Boolean function. Doklady Akademii Nauk SSSR, 169(4):765–766, 1966.
English translation in Soviet Mathematics Doklady.

M. Cheraghchi, S. Hirahara, D. Myrisiotis, and Y. Yoshida 27

36 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-
of-the-art lower bounds. In Proceedings of the 34th Computational Complexity Conference
(CCC), pages 27:1–27:29, 2019.

37 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.
In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 65–76,
2018.

38 Alexander A. Razborov and Steven Rudich. Natural proofs. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing (STOC), pages 204–213, 1994.

39 Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical
Journal, 28:59–98, 1949.

40 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

41 Dieter van Melkebeek and Ran Raz. A time lower bound for satisfiability. In Josep Díaz,
Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata, Languages and
Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings, volume 3142 of Lecture Notes in Computer Science, pages 971–982. Springer,
2004.

42 Emanuele Viola. Pseudorandom bits and lower bounds for randomized Turing machines.
Electronic Colloquium on Computational Complexity (ECCC), 26:51, 2019.

43 Osamu Watanabe. The time-precision tradeoff problem on on-line probabilistic Turing
machines. Theor. Comput. Sci., 24:105–117, 1983.

A Hardness magnification for one-tape Turing machines

In this section, we obtain the following hardness magnification result for one-tape Turing
machines.

▶ Theorem 59 (A corollary of McKay, Murray, and Williams [32]; Theorem 1, restated). There
exists a constant µ > 0 such that, if MCSP[2µn] is not in DTIME1

[
N1.01]

, then P ̸= NP.

Proof. McKay, Murray, and Williams [32, Theorem 1.3] showed that if P = NP, then there
exists a polynomial p such that, for any time-constructible function s(n), there exists a
one-pass streaming algorithm with update time p(s(n)) that computes MCSP[s(n)]. By
Lemma 10, we obtain MCSP[s(n)] ∈ DTIME1[N · p(s(n))], where N = 2n. Depending on p,
we choose a small constant µ > 0 and set s(n) := 2µn so that N · p(s(n)) = N1+O(µ) ≤ N1.01.

To summarize, we have proved that if P = NP, then for some constant µ > 0, MCSP[2µn] ∈
DTIME1[N1.01]. This statement is logically equivalent to the following: There exists a constant
µ > 0 such that P = NP implies that MCSP[2µn] ̸∈ DTIME1[N1.01] (because the statement
that P = NP is independent of µ). Taking its contrapositive, we obtain the desired result. ◀

	1 Introduction
	1.1 Our results
	1.1.1 Lower bounds against one-tape Turing machines
	1.1.2 Lower bounds against branching programs

	1.2 Our techniques
	1.2.1 Local HSGs for MCSP lower bounds
	1.2.2 Nechiporuk's method for MKTP lower bounds

	1.3 Related work
	1.4 Organization

	2 Preliminaries
	2.1 Restrictions
	2.2 Circuit complexity
	2.3 Turing machines
	2.4 Streaming algorithms
	2.5 Branching programs
	2.6 Pseudorandom generators and hitting set generators
	2.7 MCSP lower bounds from local HSGs

	3 MCSP lower bounds against one-tape oracle RTMs
	3.1 Connections to hardness magnification
	3.1.1 Comparison with the locality barrier

	3.2 Proof of

	4 HSGs against non-deterministic ROBPs
	5 The Forbes-Kelley PRG is local
	5.1 Biased and almost k-wise independent distributions
	5.2 The Forbes-Kelley PRG
	5.3 Local PRG for combinatorial rectangles

	6 MKTP lower bounds against branching programs
	7 MCSP lower bounds against non-deterministic, co-non-deterministic, and parity branching programs
	7.1 The IMZ PRG fools non-deterministic, co-non-deterministic, and parity branching programs
	7.1.1 Proof of

	7.2 Proof of

	A Hardness magnification for one-tape Turing machines

