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Abstract

The multiperiod blend scheduling problem (MBSP) has a wide variety of engineer-

ing applications, and is typically formulated as a nonconvex mixed-integer nonlinear

program (MINLP). Such an MINLP is challenging to solve due to a large number of bi-

linear terms and binary variables. One prevalent solution method is branch-and-bound,

whose e�ciency heavily relies on the tightness of the convex relaxation of the MINLP.

In this article, we propose new constraints that can be used for tightening such convex

relaxation. These constraints are derived from the physical information lost due to

relaxation, and require solving linear programs (LPs) during preprocessing. Extensive

numerical tests are executed to examine the e�ectiveness of the proposed methods. The

results show that even though hundreds of LPs may be solved during preprocessing, our

new methods can signi�cantly reduce the overall computational time, including both

the preprocessing and MINLP solver solution time. Further implications are discussed.
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1 Introduction

The multiperiod blend scheduling problem (MBSP)1,2 is a scheduling extension of the (gen-

eralized) pooling problem,3 and considers blending raw materials with di�erent qualities to

produce products, meeting property speci�cations, over a given scheduling horizon. The

objective of the MBSP is to �nd the least cost blending plan (or maximize pro�t), sub-

ject to various constraints such as raw material availability, operational rules, and product

demand requirements. The MBSP has a wide variety of engineering applications such as

crude or re�ned oil scheduling,4�6 mine planning,7,8 wastewater treatment,9,10 copper con-

centrate blending,11,12 and specialty chemicals manufacturing.13 While an optimal solution

of the MBSP can bring signi�cant economic bene�ts,14�16 state-of-the-art methods can only

solve instances of modest size. Thus, improved techniques are sought to solve the MBSP of

practical interest.

The MBSP is typically formulated as a nonconvex mixed-integer nonlinear program

(MINLP), or more speci�cally, a mixed-integer quadratically constrained program (MIQCP).

In such an MINLP, binary variables are employed to model decisions on material transfers,

and bilinear terms are employed to model the composition consistency between blenders'

inventories and out�ows. In terms of time representation, MINLPs for the MBSP are cat-

egorized into discrete- and continuous-time formulations; see Fragkogios and Saharidis 4 for

a review. In discrete-time formulations, the scheduling horizon is divided into prede�ned

time periods, and all material transfer operations can only start or end at the boundaries

of these time periods. On the other hand, continuous-time formulations can yield solutions

where an operation can start at any time. As discussed in Floudas and Lin 17 , Discrete-time

formulations are straightforward to implement and the solutions are easier to be executed in

practice, but the problem size increases drastically as the number of time periods increases.

On the contrary, continuous-time formulations typically have smaller size, but have weaker

LP relaxations (as will be discussed later) and the solutions may not be fully executable in

practice. Hybrid models6,18 have been proposed to combine the strength of both formulations
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for the MBSP. This article will focus on discrete-time formulations, and our new methods

may be extended to address continuous-time formulations.

Branch-and-bound-based19 deterministic global optimization methods for MINLP require

computing upper and lower bounds of the globally optimal objective value. These bounds

are progressively re�ned, until convergence. For a minimization MBSP, the upper bounds

can be computed from any feasible solution of the original MINLP, and the lower bounds are

typically computed by constructing and solving auxiliary linear programming (LP) relaxation

problems. In such LP relaxation problems, the binary variables are relaxed to be continuous

variables, and the bilinear terms are replaced by various (piecewise-)linear underestimators

and overestimators as will be summarized below. Tightness of the feasible region of such

LP can greatly a�ect the computational performance of branch-and-bound algorithms. A

tighter formulation typically yields tighter bounds for the globally optimal objective value,

and thus reduces the number of nodes required to be explored to prove global optimality.

Even if a tighter feasible region does not lead to tighter objective function, such smaller

feasible region may reduce the computational time for solving a single LP relaxation problem.

This is bene�cial since the relaxation problems are solved multiple times in a branch-and-

bound procedure. There have been abundant studies focusing on developing tight relaxation

formulations, which will be summarized next.

Since the McCormick envelopes20 were applied to relax bilinear terms in global optimiza-

tion, researches have been done to further tighten bilinear term relaxations. Since McCormick

envelopes are tighter when tighter variable bounds are available, many studies focused on

computing tight variable bounds. In particular, Chen and Maravelias21 proposed an e�ective

closed-form bound tightening method that is specialized for the MBSP. In addition to variable

bound tightening, one class of approaches22�25 constructs tight piecewise mixed-integer linear

programming (MILP) relaxations using piecewise McCormick envelopes. These approaches

divide the domain of one variable in each bilinear term into multiple smaller subintervals in

various di�erent ways, and then McCormick envelopes are constructed on each subinterval
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and auxiliary binary variables are introduced to model the disjunction among all subinter-

vals. Another class of approaches2,26�28 for constructing piecewise MILP relaxations is based

on multiparametric disaggregation. These approaches �rstly discretize one variable in each

bilinear term following a prede�ned accuracy level, and then rigorously bound the trunca-

tion error to obtain valid relaxations. Castro et al.27,29 compared the McCormick-based and

multiparametric disaggregation approaches. When bilinear terms have nontrivial upper or

(and) lower bounds, several relaxations30�32 were proposed and shown to be tighter than

trivially combining McCormick envelopes and the bounds. For pooling problems, nontrivial

upper bounds for bilinear terms can be derived from pipleline capacity between blenders

and products.32 Second order cone programming relaxations and polyhedral relaxations33,34

for general quadratically constrained programs were adapted to solve pooling problems and

MBSPs. Luedtke et al.35 proposed strong relaxations for a nonconvex set involving bilinear

terms in a modi�ed formulation of pooling problems. Lotero et al.36 formulated the MBSP

via generalized disjunctive programming, which has fewer bilinear terms than traditional

MINLP formulations when binary variables are �xed.

Another direction for tightening relaxations of nonconvex MINLP is to generate convex

tightening constraints that are redundant in the original MINLP, but can cut o� feasible

region of the relaxed problems. One prevalent approach is the reformulation-linearization

technique (RLT).37,38 RLT �rstly generates valid redundant nonlinear contraints involving

nonconvex terms, and then these nonlinear constraints are linearized by introducing new

variables, one for each nonconvex term. Several RLT constraints21,36,39 have been proposed

to handle bilinear terms and are used for enhancing the MBSP formulations. Besides RLT,

tightening constraints may also be generated from speci�c problem structure and physical in-

tuition. For blending problems, Papageorgiou et al.40 studied an MILP formulation of �xed-

charge transportation problem with product blending, and proposed tightening constraints

by exploiting products' property speci�cation. D'Ambrosio et al.41 proposed tightening con-

straints for the generalized pooling problem based on the problem's MILP relaxation. It
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was shown that these constraints dominate some constraints proposed for MILP of a certain

form.42 Chen and Maravelias1 proposed valid bounds and tightening constraints that are

specialized for the MBSP. These constraints involve the so-called dedicated �ow variables,

which represent the amounts of raw materials dedicated to each product over the scheduling

horizon.

In this article, we propose several classes of new constraints for tightening the relaxations

of MINLP formulations of the MBSP. These constraints are derived from the physical in-

formation lost due to relaxing integer variables and bilinear terms. For example, due to the

relaxation of integer variables, certain semicontinuous �ow variables become continuous, and

a widely-used operational rule for blenders, that a blender cannot be charged and discharged

simultaneously, no longer holds. Due to the relaxation of bilinear terms, a blender's out-

�ows may have inconsistent composition with the blender's inventory. Constructing these

constraints typically requires solving LP problems, leading to an LP-based preprocessing

algorithm. Notably, the new constraints are guaranteed to dominate some previously pro-

posed constraints.1 While our new tightening constraints are intended to facilitate solving

MINLP via branch-and-bound algorithms, they are also useful in tightening bounding in

certain decomposition-based global optimization approaches.28,36,43,44

We apply our new tightening constraints to two previously-proposed and widely-used

discrete-time MINLP formulations for the MBSP, namely, the proportion-based formula-

tion21,38 and the split-fraction-based formulation.21,36 We test the e�ectiveness of our new

proposal by solving numerical instances using state-of-the-art general global optimization

solver BARON45 and MIQCP solver GUROBI.46 The results show that our LP-based prepro-

cessing algorithm typically requires a few seconds to be executed, but the derived constraints

signi�cantly reduce the overall computational time (including preprocessing and solver solu-

tion time) for solving both the proportion- and split-fraction-based formulations using both

solvers.

The remainder of this article is organized as follows. Section 2.1 presents the structure and
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feature of the MBSP considered in this article. Section 2.2 presents the proportion- and split-

fraction-based formulations for the considered MBSP, and our new tightening constraints

will be used to enhance these formulations. Section 3 discusses the intuition behind the new

constraints through a motivating example. Section 4 formalizes our new constraints, and

Section 5 presents numerical tests to examine the new constraints' e�ectiveness. Section 6

discusses how to extend the new constraints to other types of MBSPs studied in literature.

Throughout this article, we use uppercase letters for nonnegative variables, lowercase letters

for indices, boldface uppercase letters for sets, and lowercase Greek letters for parameters.

2 Background

2.1 Problem statement

We consider di�erent raw materials, termed streams, with certain properties and availability

over a given scheduling horizon. These streams are mixed in blenders (with possible initial

inventory) assuming a linear mixing rule to produce products, meeting properties speci�ca-

tions and demand requirements. The products have upper and lower bounds for property

values, have minimum accumulated demands that gradually increase along the scheduling

horizon, and have maximum demands over the whole scheduling horizon. The blenders can-

not be charged by stream sources and delivering products simultaneously. Upper bounds of

charging rate, and both lower and upper bounds of withdrawing rate for blenders are given.

We assume full connections from stream sources to blenders and from blenders to product

sinks. Material transfer between blenders is not allowed. The entire scheduling horizon is

divided into a number of time periods with equal length, and all material transfer operations

can only start or end at the boundaries of each time period. The objective is to �nd the

optimal schedule for transferring and blending materials, to maximize pro�t, which is de�ned

as the di�erence between revenue for selling products and various costs such as expense for

buying streams and cost for material transfer operations between units. A topology net-
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work of the considered MBSP is given in Figure 1. The MBSP employs the following sets,

parameters, and variables:

Sets

s ∈ S Streams or stream sources

q ∈ Q Properties

b ∈ B Blenders

p ∈ P Products or product sinks

t ∈ T Time periods (ordered set): {1, 2, ..., |T|}. The end of a time period t will be referred

as the time point t. With slight abuse of notation, de�ne time point 0 as the

beginning of the �rst time period.

Parameters

δmax
p Maximum demand for product p throughout the scheduling horizon

δmin
p,t Minimum accumulated demand for product p by time point t

ξs Available amount of stream s throughout the scheduling horizon

πs,q Quantity of property q of stream s

πmax
q := max{πs,q : ∀s ∈ S}

πU
p,q Quantity upper bound of property q of product p

πL
p,q Quantity lower bound of property q of product p

αs Unit cost of stream s

βp Unit revenue of product p
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ωb Capacity of blender b

ζUb,p Flowrate upper bound from blender b to product sink p

ζLb,p Flowrate lower bound from blender b to product sink p

ζ̃Us,b Flowrate upper bound from stream source s to blender b

γb,p Fixed cost for transferring material from blender b to product sink p

γ̃s,b Fixed cost for transferring material from stream source s to blender b

ηs,b Initial inventory of stream s in blender b

Nonnegative continuous variables

ISs,b,t Inventory of stream s in blender b at time point t

Ib,t Total inventory of blender b at time point t

F̃s,b,t Flowrate from stream source s to blender b during time period t

F S
s,b,p,t Flowrate of stream s from blender b to product sink p during time period t

Fb,p,t Total �owrate from blender b to product sink p during time period t

Binary variables

X̃s,b,t 1 if stream source s is charging blender b during time period t

Xb,p,t 1 if blender b is delivering product p during time period t
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Figure 1: Network of the MBSP

2.2 Base formulations

This subsection presents two widely-used discrete-time MINLP formulations for the MBSP,

namely, the proportion-based (P-)formulation21,38 and the split-fraction-based (S-)formulation.21,36

These two formulations mainly di�er in how the composition consistency between blenders'

inventories and out�ows is enforced. The P-formulation employs auxiliary variables to rep-

resent the proportion of each stream in blenders' inventories, and the out�ows are enforced

to have the same proportion. Instead, the S-formulation de�nes the fraction of mixture that

is withdrawn from blenders, and all streams are enforced to be withdrawn with the same

fraction.

Note that both P- and S-formulations have counterparts which track each property �ow

instead of each stream. Compared to their property-tracking counterparts, the P- and S-

formulations with certain established tightening constraints have at least as tight relaxations,

and are in general superior in practice.36,38,47 However, there is no known theoretical result

comparing the relaxations of P- and S-formulations, and no formulation is clearly faster

than another. For pooling problems, Cheng and Li48 established conditions under which

the S-formulation's relaxation is not tighter than the P-formulation's relaxation. Whether

their conclusions can be extended to the MBSP requires further investigation. The goal of
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this article is to propose new constraints that can tighten relaxations of both the P- and

S-forumulations for the MBSP.

2.2.1 Proportion-based formulation

Besides all variables presented in Section 2.1, the P-formulation introduces variables Cs,b,t to

denote the proportion of stream s in blender b at time point t. The P-formulation has the

following constraints and objective function.

Stream availability constraints:

∑
b∈B

∑
t∈T

F̃s,b,t ≤ ξs, ∀s ∈ S. (1)

Relating Fb,p,t to Xb,p,t:

Fb,p,t ≤ ζUb,pXb,p,t, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T, (2)

Fb,p,t ≥ ζLb,pXb,p,t, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (3)

Relating F̃s,b,t to X̃s,b,t:

F̃s,b,t ≤ ζ̃Us,bX̃s,b,t, ∀s ∈ S, ∀b ∈ B, ∀t ∈ T. (4)

Product demand constraints:

∑
b∈B

∑
t∈T

Fb,p,t ≤ δmax
p , ∀p ∈ P, (5)

∑
b∈B

∑
t′≤t

Fb,p,t′ ≥ δmin
p,t , ∀p ∈ P, ∀t ∈ T. (6)

Note that δmin
p,t is non-decreasing with respect to t.
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The operational rule for blenders is enforced by the following constraints:

X̃s,b,t ≤ 1−Xb,p,t, ∀s ∈ S, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (7)

Constraints (7) ensure that during any time period, a blender may have muliple inlet �ows

or multiple outlet �ows, but not both. We note that such operational rule is widely used

for MBSPs.21,28,36,49 However, for speci�c applications such as crude-oil scheduling,4 more

restrictive operational rule may be applied, e.g., in one time period, a blender can have at

most one inlet �ow or one outlet �ow, but not both.

Mass balance of each stream in blenders:

ISs,b,t = ISs,b,t−1 + F̃s,b,t −
∑
p∈P

F S
s,b,p,t, ∀s ∈ S, ∀b ∈ B, ∀t ∈ T. (8)

Upper bounds for Ib,t:

Ib,t ≤ ωb, ∀b ∈ B, ∀t ∈ T. (9)

Relating ISs,b,t to Ib,t: ∑
s∈S

ISs,b,t = Ib,t, ∀b ∈ B, ∀t ∈ T. (10)

Relating F S
s,b,p,t to Fb,p,t:

∑
s∈S

F S
s,b,p,t = Fb,p,t, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (11)

Modeling the proportions of streams in blenders:

ISs,b,t = Ib,tCs,b,t, ∀s ∈ S, ∀b ∈ B, ∀t ∈ T. (12)

Modeling stream proportions in blenders' out�ows:

F S
s,b,p,t = Fb,p,tCs,b,t−1, ∀s ∈ S, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (13)
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Proportion variables sum up to one, modeled as:

∑
s∈S

Cs,b,t = 1, ∀b ∈ B, ∀t ∈ T. (14)

Note that given (10), (11), (12), and (13), the constraints above are redundant. However,

(14) can tighten the relaxation of the P-formulation, where (12) and (13) are relaxed.

Auxiliary constraints that can tighten the relaxation of the P-formulation:

ISs,b,t ≤ Cs,b,tωb, ∀s ∈ S, ∀b ∈ B, ∀t ∈ T, (15)

F S
s,b,p,t ≤ ζUb,pCs,b,t−1, ∀s ∈ S, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (16)

Property requirements of �ows from blenders to products:

∑
s∈S

πs,qF
S
s,b,p,t ≤ πU

p,qFb,p,t, ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T, (17)

∑
s∈S

πs,qF
S
s,b,p,t ≥ πL

p,qFb,p,t, ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T. (18)

The following Big-M constraints are �rstly used in Chen and Maravelias 21 , and are re-

dundant in the P-formulation but can tighten its relaxation. Big-M constraints for properties

involving proportion variables:

∑
s∈S

Cs,b,t−1πs,q ≤ πU
p,q + (πmax

q − πU
p,q)(1−Xb,p,t), ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T, (19)

∑
s∈S

Cs,b,t−1πs,q ≥ πL
p,qXb,p,t, ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T, (20)

where πmax
q := max{πs,q : ∀s ∈ S}. Big-M constraints for properties involving inventories of
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blenders:

∑
s∈S

πs,qI
S
s,b,t−1 ≤ πU

p,qIb,t−1 + ωbπ
max
q (1−Xb,p,t), ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T, (21)

∑
s∈S

πs,qI
S
s,b,t−1 ≥ πL

p,qIb,t−1 − ωbπ
L
p,q(1−Xb,p,t), ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T. (22)

The object is to maximize pro�t, modeled as:

max
∑
b∈B

∑
p∈P

∑
t∈T

(
βpFb,p,t − γb,pXb,p,t

)
−

∑
s∈S

∑
b∈B

∑
t∈T

(
αsF̃s,b,t + γ̃s,bX̃s,b,t

)
. (23)

Other costs such as storage cost of blenders can also be easily added into the objective

function above.

The P-formulation, denoted as MP, consists of Equations (1)�(23).

2.2.2 Split-fraction-based formulation

Instead of using the proportion variables Cs,b,t, the S-formulation introduces variables Rb,p,t

to represent the split fraction for inventories in blender b to product sink p during time

period t.

All outlet streams of blenders should follow the same split fraction, modeled as:

F S
s,b,p,t = ISs,b,t−1Rb,p,t, ∀s ∈ S, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (24)

Split fraction should be less or equal than one, modeled as:

∑
p∈P

Rb,p,t ≤ 1, ∀b ∈ B, ∀t ∈ T. (25)
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Relating Rb,p,t to Xb,p,t:

Rb,p,t ≤ Xb,p,t, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T, (26)

Rb,p,t ≥
ζLb,p
ωb

Xb,p,t, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (27)

Tightening constraints involving split fractions:

Fb,p,t ≤ ωbRb,p,t, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (28)

The S-formulation, denoted as MS, consists of Equations (1)�(11), (17), (18), (21)�(28).

Note that in both MP and MS, de�ning the inventory variables Ib,t and �ow variables

Fb,p,t is unnecessary, i.e., one may substitute all Ib,t and Fb,p,t respectively by
∑

s∈S I
S
s,b,t and∑

s∈S F
S
s,b,p,t, and eliminate Constraints (10) and (11). However, from the authors' experience,

this change does not have a signi�cant impact on the solution time of these formulations.

3 Intuition for tightening

We use RMP(S) to denote an LP relaxation of the P-(S-)formulation. In RMP(S), the binary

variables X̃s,b,t and Xb,p,t are relaxed to be continuous variables and the blinear terms in

(12), (13), and (24) are relaxed using (piecewise-)linear under- and over-estimators. Since

we consider a pro�t maximization MBSP, the optimal objective function value of RMP(S) is

an upper bound of the globally optimal objective function value of MP(S). We propose new

auxiliary constraints to tighten RMP(S). These constraints are derived by partially recovering

the physical information lost due to relaxation, as discussed next.

Firstly, since all binary variables are relaxed to be continuous, the operational rule that

the blenders cannot be charged and discharged simultaneously is not enforced, i.e., for some

(s, b, p, t) ∈ S×B×P×T, F̃s,b,t and Fb,p,t can both be nonzero (see Constraints (2), (4), and

(7)). Secondly, observe from Constraints (2) and (3) that, due to the binary variable Xb,p,t
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and the �ow bounds [ζLb,p, ζ
U
b,p], the range of the �owrate

∑
t∈T Fb,p,t is a union of �nitely

many intervals, and can be disjoint. However, when Xb,p,t can take fractional values, the

range for
∑

t∈T Fb,p,t is no longer disjoint. Thirdly, consider two products p, p′ ∈ P that

have very di�erent property speci�cations so that no mixture can be quali�ed as p and

p′ simultaneously. As a result, no blenders can deliver p and p′ during one time period.

However, in RMP(S), since the nonlinear constraints are relaxed, there is no composition

consistency between the inventory and out�ows of each blender. Therefore, it is possible for

a blender b and some time period t that, Fb,p′,t and Fb,p,t are both non-zero, despite the fact

that the blender's inventory cannot satisfy both products' property speci�cations. Moreover,

if a blender b is about to deliver products during time period t, then the inventory variables

ISs,b,t−1 and proportion variables Cs,b,t−1 may have nontrivial lower and upper bounds, because

the mixture in b at time point t− 1 must satisfy the products' speci�cations. On the other

hand, in RMP(S), such bounds for ISs,b,t−1 and Cs,b,t−1 are not implicitly accounted for. Note

that the established tightening constraints (19)�(22) already utilize property speci�cations

to bound ISs,b,t and Cs,b,t. The following motivating example shows that constraints developed

from the above mentioned physical understanding can indeed help tighten RMP(S).

Example 1 Consider an MBSP with two streams, one blender, two products, one property,

and three time periods. All parameter values are shown in Table 1.

Table 1: Parameters for the MBSP considered in Example 1

Parameters Values Parameters Values Parameters Values

(ξs1 , ξs2) (10, 10) (πL
p1,q1

, πL
p2,q1

) (0.3, 0.5) (δmin
p1,1

, δmin
p1,2

, δmin
p1,3

) (0, 0, 3)

(ξ̃Us1,b1 , ξ̃
U
s2,b1

) (10, 10) (πU
p1,q1

, πU
p2,q1

) (0.4, 0.6) (δmin
p2,1

, δmin
p2,2

, δmin
p2,3

) (0, 0, 0)

(πs1,q1,, πs2,q1) (0.2, 0.7) (ζLb1,p1 , ζ
L
b1,p2

) (4, 0)

(αs1 , αs2) (300, 200) (ζUb1,p1 , ζ
U
b1,p2

) (6, 3)

(βp1 , βp2) (800, 2000) (γb1,p1 , γb1,p2) (50, 50)

(ηs1,b1 , ηs2,b1) (0, 0) (γ̃s1,b1 , γ̃s2,b1) (50, 50)

ωb1 20 (δmax
p1

, δmax
p2

) (10, 10)

We construct and solve MP for this problem, and the globally optimal objective function
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value is 5200.00. Then, we construct RMP by relaxing all binary variables to be continu-

ous, and replacing the nonlinear constraints (12) and (13) by the well-known McCormick

envelopes20 with the following variable bounds for each (s, p, t) ∈ S×P×T:

0 ≤ Cs,b1,t ≤ 1,

0 ≤ Ib1,t ≤ min{
∑
s∈S

ξs, ωb1},

0 ≤ Fb1,p,t ≤ min{
∑
s∈S

ξs, ωb1 , δ
max
p , ζUb1,p}.

We obtain that the optimal objective value of RMP is 14457.30. Thus, the gap between

the globally optimal objective function values of MP and RMP is 14457.30− 5200.00 =

9257.30. Now, we propose several tightening constraints for use in RMP to reduce this

gap. We use subscripts to indicate additional tightening constraints that are added to RMP.

For example, the notation RMP
(30),(32) below represents a model combining RMP and Con-

straints (30) and (32).

We observe that in the optimal solution (provided by the solver) of RMP, we have:

Xb1,p1,t2 +Xb1,p2,t2 = 0.7249 + 0.9417 > 1,

Xb1,p1,t3 +Xb1,p2,t3 = 0.6989 + 0.9677 > 1.

(29)

However, it is evident from the parameters [πL
p,q, π

U
p,q] in Table 1 that a mixture in the

blender cannot satisfy the property speci�cations for both p1 and p2 simultaneously. Thus,

the blender can at most deliver one product during one time period. This leads to the

following tightening constraints:

Xb1,p1,t +Xb1,p2,t ≤ 1, ∀t ∈ T, (30)

which cut o� the optimal solution of RMP as in (29). The optimal objective value of RMP
(30)

is found to be 9492.50, which is a signi�cant improvement compared to the previous upper
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bound 14457.30.

Next, in the optimal solution of RMP
(30), we have:

Xb1,p1,t2 = Xb1,p2,t2 = 0.5,

X̃s1,b1,t1 = 0, and X̃s2,b1,t1 = 0.48.

(31)

We observe the following from the streams' and products' property speci�cations: for product

p1, πs1,q1 satis�es the upper property bound πU
p1,q1

but violates the lower bound πL
p1,q1

, while

πs2,q1 satis�es π
L
p1,q1

but violates πU
p1,q1

, and the same holds for p2. Thus, both s1 and s2 are

needed to produce either p1 or p2. Moreover, since the blender has no initial inventory, there

must be both s1 and s2 transferred into the blender before it can deliver any product. This

leads to the following tightening constraints:

Xb1,p,t ≤
∑
t′<t

X̃s,b1,t′ , ∀s ∈ S, ∀p ∈ P, ∀t ∈ T. (32)

which cut o� the optimal solution of RMP
(30) as in (31). The strict inequality under the

summation sign above is due to the fact that the blender cannot be charged and discharged

simultaneously. Solving RMP
(30),(32) yields a further tightened upper bound 9455.00.

We can also develop tightening constraints based on bounding the proportion variables

Cs,b,t. For this example, it is easily veri�ed that if the blender is delivering p1 during time

period t, then it must hold that:

0.6 ≤ Cs1,b1,t−1 ≤ 0.8 and 0.2 ≤ Cs2,b1,t−1 ≤ 0.4,

and similarly, if the blender is delivering p2, we have:

0.2 ≤ Cs1,b1,t−1 ≤ 0.4 and 0.6 ≤ Cs2,b1,t−1 ≤ 0.8.
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Utilizing these bounds, we have the following valid constraints:

υLs,pXb1,p,t ≤ Cs,b1,t−1 ≤ υUs,pXb1,p,t + (1−Xb1,p,t), ∀s ∈ S, ∀p ∈ P, ∀t ∈ T, (33)

where

(υLs1,p1 , υ
L
s2,p1

, υUs1,p1 , υ
U
s2,p1

) = (0.6, 0.2, 0.8, 0.4),

(υLs1,p2 , υ
L
s2,p2

, υUs1,p2 , υ
U
s2,p2

) = (0.2, 0.6, 0.4, 0.8).

These constraints state that, during any time period t, if the blender b1 is delivering a prod-

uct p (i.e. Xb1,p,t = 1), then the proportion Cs,b1,t−1 for any stream s must be within the

bounds [νLs,p, ν
U
s,p]. Otherwise, such bounds are relaxed. Solving RMP

(30),(32),(33) yields the

same optimal objective value and solution as RMP
(30),(32). Thus, compared to RMP

(30),(32),

Constraints (33) do not directly tighten the upper bound. However, these constraints indeed

reduce the feasible region of RMP
(30),(32), which is also bene�cial as discussed in Section 1.

To illustrate the reduced feasible region, we �x Cs1,b1,t1 = 1 and Xb1,p2,t2 = 0.1 and re-

solve RMP
(30),(32), and then we obtain a solution. However, such setting would be obviously

infeasible for RMP
(30),(32),(33), since (33) is violated.

New tightening constraints can also be developed based on the semicontinuity of the �ow

variables. In the optimal solution of RMP
(30),(32),(33), we have:

∑
t∈T

Fb1,p1,t = 3.0000,

which agrees with the lower product demand δmin
p1,|T|. Intuitively, since the revenue from pro-

ducing p2 is signi�cantly greater than the revenue from producing p1, a pro�t maximization

problem would tend to produce p2 as much as possible and �push� p1 to the demand lower

bound. However, since ζLb1,p1 = 4, we must have Fb1,p1,t ≥ 4 if it is not zero. Thus, we have
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the following tightening constraint. If δmin
p1,|T| > 0, then:

∑
t∈T

Fb1,p1,t ≥ ζLb1,p1 . (34)

Solving RMP
(30),(32),(33),(34) yields a further tightened upper bound 9113.33.

The optimal objective values of all proposed upper bounding models are summarized in

Table 2. By employing the new tightening Constraints (30) and (32)�(34), we have reduced

the original gap between the globally optimal objective function values of MP and RMP by

58%.

Table 2: Globally optimal objective values of all models considered in Section 3

Models Glob. optim. obj. Notes

MP 5200.00

RMP 14457.30 gap = 9257.30

RMP
(30) 9492.50

RMP
(30),(32) 9455.00

RMP
(30),(32),(33) 9455.00 smaller feasible region than RMP

(30),(32)

RMP
(30),(32),(33),(34) 9113.33 smaller gap = 3913.33

The new Constraints (30) and (32)�(34) are formalized and generalized in the next sec-

tion. Besides these constraints, we also propose other constraints that can be e�ective in

instances that are more complex than Example 1. For instance, we can bound the inventory

variables ISs,b,t, similarly to bounding Cs,b,t in (33). Based on [ζLb,p, ζ
U
b,p] and [δmin

p,t , δ
max
p ], new

constraints are derived to bound the number of material transfers from blenders to product

sinks. A similar method can also be applied to bound the number of transfers from stream

sources to blenders. The new constraints typically require solving LPs to obtain necessary

parameters for tightening, which leads to an LP-based preprocessing algorithm. Numerical

tests show that even hundreds of LPs may be solved during preprocessing, but the bene�ts

for having tighter relaxations overweight the computational time for solving these LPs.
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4 New tightening constraints

4.1 Group 1

This subsection presents new tightening Constraints (36) based on identifying products that

cannot be delivered simultaneously by a blender. We use boldface calligraphic uppercase

letters to denote collection of index subsets.

For each p, p′ ∈ P, de�ne a set Yp,p′ such that

Yp,p′ :=



(Îs1 , Îs2 , ..., Îs|S|) :Îs ≤ min{ξs +max{ηs,b : b ∈ B},max{ωb : b ∈ B}}, ∀s ∈ S,

min{ζLb,p : b ∈ B}+min{ζLb,p′ : b ∈ B} ≤
∑
s∈S

Îs,

max{πL
p,q, π

L
p′,q}

∑
s∈S

Îs ≤
∑
s∈S

πs,q Îs ≤ min{πU
p,q, π

U
p′,q}

∑
s∈S

Îs, ∀q ∈ Q


(35)

The constraints for de�ning Yp,p′ above describe necessary conditions under which a mixture

can be delivered to meet demand for both products p and p′ simultaneously. The �rst

constraint enforces upper bounds on the amount of each stream in any blender. The second

constraint enforces a lower bound on the amount of the mixture that can be delivered as

p and p′ simultaneously. The third constraint ensures that the mixture satis�es property

speci�cations of both products p and p′. Thus, if Yp,p′ is empty, then no blender can deliver

p and p′ simultaneously.

For each p, p′ ∈ P, we examine the emptiness of Yp,p′ using the following method. We

loop through every property q ∈ Q. If there exists a property q̂ such that πU
p,q̂ < πL

p′,q̂,

then Yp,p′ must be empty. If this does not happen, we solve an LP with a feasible space

de�ned by (35) and with an arbitrary objective function. If this LP is infeasible, then Yp,p′

is empty. Thus, in the worst case, 0.5|P|(|P| − 1) LPs need to be solved for establishing if

Yp,p′ , ∀p, p′ ∈ P is empty.

Now, de�neP as a collection of certain subsets of products. Each of these subsets satis�es
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that, for arbitrary two products p and p′ within the subset, the set Yp,p′ is empty. Then,

we de�ne another collection Pmax, which contains all maximal subsets in P . A subset Pmax

is maximal if Pmax is not a subset of any other subsets in P . Consider an example of four

products (p1, p2, p3, p4), and suppose that Yp1,p2 , Yp2,p3 , Yp1,p3 , Yp1,p4 , and Yp2,p4 are all

empty, and Yp3,p4 is nonempty. Then, we have:

P := {{p1, p2}, {p1, p3}, {p1, p4}, {p2, p3}, {p2, p4}, {p1, p2, p3}, {p1, p2, p4}} ,

Pmax := {{p1, p2, p3}, {p1, p2, p4}} .

We construct Pmax using a systematic method. To give an example, consider we have

{p1, p2}, {p2, p3}, and {p1, p3} in P . Then, we can conclude that the union {p1, p2, p3} is

also in P ; that is the subsets {p1, p2}, {p2, p3}, and {p1, p3} are not maximal.

Given collection Pmax, we propose the following new tightening constraints:

∑
p∈Pmax

Xb,p,t ≤ 1, ∀b ∈ B, ∀Pmax ∈ Pmax, ∀t ∈ T, (36)

which states that during one time period, a blender can deliver at most one product in each

maximal subset Pmax.

4.2 Group 2

This subsection proposes new tightening Constraints (38) and (39) based on bounding the

inventory variables ISs,b,t if a blender is about to deliver products.

Due to the composition consistency between blenders' inventories and out�ows, if a

blender b is delivering a product p during some time period t, then for each stream s ∈ S,

valid (s, p)-dependent lower bounds θLs,p and upper bounds θUs,p for I
S
s,b,t−1 can be computed
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by solving the following LPs. For each (s, p) ∈ S×P:

θL(U)
s,p := min(max) Īs,p

s.t. Īs′,p ≤ ξs′ +max{ηs,b : b ∈ B}, ∀s′ ∈ S, (37a)

min{ζLb,p : b ∈ B} ≤
∑
s′∈S

Īs′,p ≤ max{ωb : b ∈ B}, (37b)

πL
p,q

∑
s′∈S

Īs′,p ≤
∑
s′∈S

πs′,q Īs′,p ≤ πU
p,q

∑
s′∈S

Īs′,p, ∀q ∈ Q, (37c)

where the auxiliary variable Īs′,p represents the possible amount of stream s′ used for pro-

ducing product p within the range [min{ζLb,p : b ∈ B},max{ωb : b ∈ B}]. Constraints (37a)

include an upper bound of the amount of each stream in any blender. Constraints (37b)

are based on lower and upper bounds of the mixture's amount in any blender if the mixture

can be delivered as product p. Constraints (37c) ensure that the mixture satis�es the prop-

erty speci�cation of product p. Once θLs,p and θ
U
s,p have been calculated, we use them in the

following new tightening constraints:

Xb,p,tθ
L
s,p ≤ ISs,b,t−1 ≤ Xb,p,tθ

U
s,p+min{ξs+ηs,b, ωb}(1−Xb,p,t), ∀s ∈ S, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T.

(38)

If Xb,p,t = 1, then Constraints (38) above bound ISs,b,t−1 by θLs,p and θUs,p; otherwise, such

bounds are relaxed. A total of 2|S||P| LPs (37) need to be solved to construct the new

constraints.

Now, consider the lower bounds θLs,p obtained by solving the LPs (37). If Xb,p,t = 1 and

θLs,p − ηs,b > 0, then there must be material transfer from stream source s to blender b prior

to time period t. This leads to the following new tightening constraints:

Xb,p,t ≤
∑
t′<t

X̃s,b,t′ , ∀t ∈ T, ∀(s, b, p) ∈ S×B×P : θLs,p − ηs,b > 0. (39)

Similar tightening constraints were proposed by Chen and Maravelias.1 For each (p, q) ∈
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P×Q, they de�ne sets of good streams in terms of πL
p,q and π

U
p,q as follows:

SL,g
p,q := {s ∈ S : πL

p,q ≤ πs,q},

SU,g
p,q := {s ∈ S : πs,q ≤ πU

p,q},

and similarly, sets of bad streams are de�ned as:

SL,b
p,q := {s ∈ S : πL

p,q > πs,q},

SU,b
p,q := {s ∈ S : πs,q > πU

p,q}.

Based on the fact that good streams are required for each product and assuming no initial

inventory in blenders, they proposed the following valid constraints:

Xb,p,t ≤
∑

s∈SU,g
p,q

∑
t′≤t

X̃s,b,t′ , ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T,

Xb,p,t ≤
∑

s∈SL,g
p,q

∑
t′≤t

X̃s,b,t′ , ∀b ∈ B, ∀p ∈ P, ∀q ∈ Q, ∀t ∈ T.

(40)

Note that constructing (40) is more e�cient since it does not require solving any LPs.

However, our new Constraints (39) o�er the following bene�ts. Firstly, (39) applies to

nonzero initial inventory of blenders while (40) does not. Secondly, in the case of no initial

inventory of blenders, the new constraints are guaranteed to be at least as tight as (40). For

each (p, q) ∈ P × Q, there must be at least one s ∈ SU,g
p,q such that θLs,p > 0 and at least

one s ∈ SL,g
p,q such that θLs,p > 0. This makes (39) no less tight than (40). Moreover, (39) is

tighter than (40) in certain situations. For example, even if a stream s is a bad stream for

all q ∈ Q for a product p, θLs,p may still be nonzero due to the demand requirements of p. In

this situation, (39) is tighter than (40) because it does not consider bad streams. Besides,

for a product p, if more than one good streams s have θLs,p > 0, then (39) is also tighter than

(40). Furthermore, note that (39) employs strict inequality t < t′ in the summation sign, in

contrast to t ≤ t′ in (40). The addend for the summation in (39) is due to the fact that a
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blender cannot be charged and discharged simultaneously, which makes our new constraints

potentially tighter as well.

4.3 Group 3

The tightening constraints proposed in the previous two subsections are applicable to both

the P- and S-formulations. In this subsection, we propose new tightening constraints (42)

involving the proportion variables Cs,b,t that are present in the P-formulation. Analogously

to the bounds θLs,p and θUs,p, we de�ne υLs,p and υUs,p which are (s, p)-dependent bounds for

Cs,b,t−1 if Xb,p,t = 1. These bounds are computed by solving the following LPs. For each

(s, p) ∈ S×P:

υL(U)
s,p := min(max) C̄s,p

s.t.
∑
s′∈S

C̄s′,p = 1, (41a)

πL
p,q ≤

∑
s′∈S

πs′,qC̄s′,p ≤ πU
p,q, ∀q ∈ Q. (41b)

where the auxiliary variable C̄s′,p represents the possible proportion of stream s′ in product

p. Constraint (41a) ensures that the proportions of all streams summing up to one, and

Constraints (41b) ensure that the product p's property speci�cation is satis�ed. Then, we

have the following new tightening constraints:

Xb,p,tυ
L
s,p ≤ Cs,b,t−1 ≤ Xb,p,tυ

U
s,p + (1−Xb,p,t), ∀s ∈ S, ∀b ∈ B, ∀p ∈ P, ∀t ∈ T. (42)

A total of 2|S||P| LPs need to be solved to construct (42).

4.4 Group 4

This subsection proposes new tightening Constraints (44), (47)�(49), and (52)�(54) derived

from the logistic constraints between blenders and product sinks. The new constraints do
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not require solving any LP and are inspired from Velez and Maravelias,50 who proposed

similar tightening constraints for general chemical scheduling problems.

As discussed in Section 3, for each (p, t) ∈ P×T, the range of
∑

b∈B
∑

t′≤t Fb,p,t′ can be

disjoint. Based on this fact, we can tighten the right-hand side of Constraints (5) and (6)

as follows. Consider arbitrary (p, t) ∈ P×T, and for each b ∈ B, let ϵb,p,t be a non-negative

integer, which denotes the number of material transfers from blender b to product sink p

before time point t. De�ne a set Kp,t (see the Supporting Information for an illustration) as:

Kp,t :=


(ϵb1,p,t, ϵb2,p,t, ..., ϵb|B|,p,t) : δ

min
p,t ≤

∑
b∈B

ζUb,pϵb,p,t, δ
max
p ≥

∑
b∈B

ζLb,pϵb,p,t,

and ϵb,p,t ≤ ord(t), ∀b ∈ B

 , (43)

where ord(t) denotes the order of time point t. Observe that for each (ϵb1,p,t, ϵb2,p,t, ..., ϵb|B|,p,t) ∈

Kp,t, a continuous subrange of
∑

b∈B
∑

t′≤t Fb,p,t′ is the interval from
∑

b∈B ζ
L
b,pϵb,p,t to

∑
b∈B ζ

U
b,pϵb,p,t,

denoted as [
∑

b∈B ζ
L
b,pϵb,p,t,

∑
b∈B ζ

U
b,pϵb,p,t]. Then, the potentially disjoint range of

∑
b∈B

∑
t′≤t Fb,p,t′

is given by: ⋃
(ϵb1,p,t,ϵb2,p,t,...,ϵb|B|,p,t)∈Kp,t

[∑
b∈B

ζLb,pϵb,p,t,
∑
b∈B

ζUb,pϵb,p,t

]

Thus, a lower bound of the range above can be described as:

δ̂min
p,t := min

{∑
b∈B

ζLb,pϵb,p,t : (ϵb1,p,t, ϵb2,p,t, ..., ϵb|B|,p,t) ∈ Kp,t

}
.

If we have δ̂min
p,t > δmin

p,t , then the following new constraints are tighter than (6):

∑
b∈B

∑
t′≤t

Fb,p,t′ ≥ δ̂min
p,t , ∀p ∈ P, ∀t ∈ T. (44)
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Note that to compute δ̂min
p,t , we may not need to examine every element of Kp,t. For each

b ∈ B, let ϵ̂b,p,t := ⌈ δmin
p,t

ζUb,p
⌉. It is easily veri�ed that:

δ̂min
p,t ≡ min

{∑
b∈B

ζLb,pϵb,p,t : (ϵb1,p,t, ϵb2,p,t, ..., ϵb|B|,p,t) ∈ Kp,t and ϵb,p,t ≤ ϵ̂b,p,t, ∀b ∈ B

}
. (45)

Similarly to Constraints (44), we can also tighten the right-hand side of Constraints (5).

For each p ∈ P, let

δ̌max
p := max

{∑
b

ζUb,pϵb,p,|T| : (ϵb1,p,|T|, ϵb2,p,|T|, ..., ϵb|B|,p,|T|) ∈ Kp,|T|

}
, (46)

which is the upper bound of the disjoint range of
∑

b∈B
∑

t∈T Fb,p,t. If δ̌
max
p < δmax

p , then the

following new constraints are tighter than (5):

∑
b∈B

∑
t∈T

Fb,p,t ≤ δ̌max
p , ∀p ∈ P. (47)

The following new constraints bound the total number of material transfer decisions

from all blenders to each product sink based on the tightened products' demand bounds

(δ̂min
p,t , δ̌

max
p ) and the extremal �owrates (ζLb,p, ζ

U
b,p):

∑
b∈B

∑
t′≤t

Xb,p,t ≥

⌈
δ̂min
p,t

max{ζUb,p : b ∈ B}

⌉
, ∀p ∈ P, ∀t ∈ T, (48)

∑
b∈B

∑
t∈T

Xb,p,t ≤

⌊
δ̌max
p

min{ζLb,p : b ∈ B}

⌋
, ∀p ∈ P. (49)

Moreover, new Constraints (52) and (53) below also bound the number of material transfers

from all blenders to each product sink, but in a di�erent way. For each (p, t) ∈ P × T, we

de�ne the minimum upper bound of all continuous subranges of
∑

b∈B
∑

t′≤t Fb,p,t as:

ϕp,t := min

{∑
b

ζUb,pϵb,p,t : (ϵb1,p,t, ϵb2,p,t, ..., ϵb|B|,p,t) ∈ Kp,t

}
, (50)
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and the maximum lower bound of all continuous subranges of
∑

b∈B
∑

t∈T Fb,p,t as:

λp := max

{∑
b

ζLb,pϵb,p,|T| : (ϵb1,p,|T|, ϵb2,p,|T|, ..., ϵb|B|,p,|T|) ∈ Kp,|T|

}
. (51)

Then, the following new tightening constraints are valid:

∑
b∈B

∑
t′≤t

Xb,p,tζ
U
b,p ≥ ϕp,t, ∀p ∈ P, ∀t ∈ T, (52)

∑
b∈B

∑
t∈T

Xb,p,tζ
L
b,p ≤ λp, ∀p ∈ P. (53)

Finally, the following new constraints �x Xb,p,1 to be zero, if blender b cannot deliver

product p during the �rst time period:

Xb,p,1 = 0, ∀(b, p) ∈ B×P :
∑
s∈S

ηs,b < ζLb,p,

or
∑
s∈S

πs,qηs,b > πU
p,q

∑
s∈S

ηs,b, for some q ∈ Q,

or
∑
s∈S

πs,qηs,b < πL
p,q

∑
s∈S

ηs,b, for some q ∈ Q.

(54)

All parameters for bound tightening, e.g. δ̂min
p,t de�ned in (45), δ̌max

p de�ned in (46), ϕp,t

de�ned in (50), and λp de�ned in (51) are computed using an iterative routine adapted from

Velez et al. 50 .

4.5 Group 5

Similarly to the new constraints in the previous subsection, this subsection presents new Con-

straints (56)�(58) derived from the logistic constraints between stream sources and blenders.

For each t ∈ T and s ∈ S, we �rst compute χs,t by solving LPs, where conceptually, χs,t

is the least amount of stream s that needs to be used prior to time point t. For each t ∈ T
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and each s ∈ S:

χs,t := min
∑
p∈P

F̄s,p,t (55a)

s.t.
∑
p∈P

F̄s′,p,t ≤ min{ξs′ , (ord(t)− 1)
∑
b∈B

ξ̃Us′,b}+
∑
b∈B

ηs′,b, ∀s′ ∈ S, (55b)

δmin
p,t ≤

∑
s′∈S

F̄s′,p,t ≤ δmax
p , ∀p ∈ P, (55c)

πL
p,q

∑
s′∈S

F̄s′,p,t ≤
∑
s′∈S

πs′,qF̄s′,p,t ≤ πU
p,q

∑
s′∈S

F̄s′,p,t, ∀q ∈ Q, ∀p ∈ P, (55d)

where the auxiliary variable F̄s′,p,t represents the amount of stream s′ used for producing

product p by time point t. Constraints (55b) describe an upper bound of each stream's

amount that is available for producing products by time point t. Since all blenders cannot

be charged and discharged simultaneously, streams entering the blenders during time period t

cannot be used for delivering products by time point t. Thus, the term (ord(t)−1)
∑

b∈B ξ̃
U
s′,b

in (55b) is a valid upper bound for stream s′ from outside of blenders that can be used for

delivering products by time point t. Constraints (55c) and (55d) ensure that the products'

property requirement and demand requirement by time point t are satis�ed. Then, a lower

bound τs,t of stream s entering all blenders prior to time point t is given by:

τs,t := max{0, χs,t −
∑
b∈B

ηs,b}, ∀s ∈ S, ∀t ∈ T.

Next, our new tightening constraints for bounding the number of material transfer operations

from each stream source to all blenders are similar to Constraints (48) and (52) as follows:

∑
b∈B

∑
t′<t

X̃s,b,t ≥

⌈
τs,t

max{ξ̃Us,b : b ∈ B}

⌉
, ∀s ∈ S, ∀t ∈ T, (56)

∑
b∈B

∑
t′<t

X̃s,b,tξ̃
U
s,b ≥ ψs,t, ∀s ∈ S, ∀t ∈ T, (57)
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where ψs,t is the minimum upper bound of all continuous subranges of
∑

b∈B
∑

t′<t F̃s,b,t.

The method for calculating ψs,t is similar to the method for calculating ϕp,t in the previous

subsection, and is adapted from Velez et al. 50 . Note that (56) and (57) employ a strict

inequality t′ < t instead of a weak inequality t′ ≤ t. This is for the same reason as we

use (ord(t) − 1)
∑

b∈B ξ̃
U
s′,b instead of ord(t)

∑
b∈B ξ̃

U
s′,b in (55b) as explained above. In the

worst case, constructing Constraints (56) and (57) requires solving |T||S| LPs (55a)�(55d) to

compute χs,t; with the exception that arises when the LPs at some t and t− 1 are identical.

Finally, in a globally optimal solution of the original MINLP, streams will not enter

blenders during the �nal time period, since such amounts cannot be delivered as products.

This leads to the following new constraints:

X̃s,b,|T| = 0, ∀s ∈ S, ∀b ∈ B. (58)

5 Numerical testing

We test our new preprocessing algorithm and tightening constraints using 86 numerical

instances of the MBSP as de�ned in Section 2.1. For reference, Table 3 summarizes the new

tightening constraints proposed in Section 4 and the number of LPs that need to be solved

during preprocessing. The numerical instances have roughly 4�8 time periods, 4�10 streams,

2�6 blenders, 4�8 products, and 6�10 properties. These instances and the generation method

are available in the Supporting Information. All models are implemented in GAMS v42.1.0.51

We use CPLEX v22.1.1.052 to solve LPs during preprocessing and use BARON v23.1.545

and GUROBI v10.0.046 to solve the MINLP models. For both BARON and GUROBI, the

CPU time limit reslim is set to 7,200 seconds, the relative optimality gap optcr is set to

1%, and all other default settings are used. All numerical tests are conducted on Princeton

University's Della cluster (https://researchcomputing.princeton.edu/systems/ della). Each

job is submitted to the processor Intel Cascade Lake with 2.8 GHz with a request of 4GB
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of memory. Such amount of memory is veri�ed to be su�cient for all jobs. Our numerical

tests have three goals, for both BARON and GUROBI:

� compare computational performance of the P- and S-formulations,

� examine the e�ectiveness of each group of new constraints for enhancing the P- and

S-formulations, and

� �nd further improved formulations employing combinations of the new constraints.

Table 3: New constraint groups and the number of LPs need to be solved during preprocessing

Group No. New constraints # LPs need to be solved

1 (36) 0.5|P|(|P| − 1) at most

2 (38),(39) 2|S||P|
3 (42) 2|S||P|
4 (44), (47)�(49), (52)�(54) None

5 (56)�(58) |T||S| at most

We employ the following notation to represent di�erent MINLP models solved by di�erent

solvers. We use �b� and �g� to respectively indicate the solvers BARON and GUROBI, �P�

and �S� to respectively indicate the P- and S-formulations, and digits consistent with Table 3

to indicate the employed groups of new constraints. For example, bMP
1,2 represents a run,

using BARON, to solve an MINLP model of the P-formulation with the new constraint

Groups 1 and 2.

We use performance graphs53 to perform the comparisons, where the CPU times include

both the preprocessing time and MINLP solver solution time. Since the goal of this study is

to explore the e�ectiveness of the proposed constraints, we make comparisons across variants

of the same formulation (P- or S-) using the same solver (GUROBI or BARON). For a set

of runs that correspond to the same combination of formulation and solver, we generate a

performance graph using the data of instances that are not trivial (i.e., solved by all models

in less than 15 seconds) nor intractable (i.e., no model solved the instance to optimality
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within 7,200 seconds). Please note that, for example, an instance that is intractable for

models corresponding to one formulation-solver combination can be solvable for another

combination. Thus, each performance graph is generated using a di�erent set of instances.

The numbers of trivial, intractable, and instances used to generate each performance graph

are summarized in Table 4.

Table 4: Number of instances used to generate each performance graph

Instance types

Trivial Intractable Used in the �gure

Figure 2 0 24 62
Figure 3A 0 34 52
Figure 3B 1 34 51
Figure 3C 3 21 62
Figure 3D 4 22 60
Figure 4A 0 35 51
Figure 4B 3 33 50
Figure 4C 2 18 66
Figure 4D 5 20 61

Note that the longest preprocessing time in our numerical tests occurs when applying all

new tightening constraints on the largest numerical instance. In this situation, hundreds of

LPs are solved during preprocessing. However, these LPs, as described in Section 4, are easy

to solve; the longest preprocessing time in our numerical tests is less than ten seconds. The

data used for generating all performance graphs is given in the Supporting Information.

Firstly, we compare the performance of the base P- and S-formulations. As discussed

earlier, it is not currently clear which formulation is in general faster. Figure 2 depicts

the performance graph comparing gMP, gMS, bMP, and bMS. It is shown that when us-

ing BARON, the S-formulation is signi�cantly more e�cient than the P-formulation, and

whereas when using GUROBI, the S-formulation is still better but the performance gap be-

tween the two formulations becomes closer. However, we do not draw a general conclusion

here that the S-formulation is superior to the P-formulation for the MBSP, since a more rig-

orous comparison between these two formulations is needed. Moreover, Figure 2 shows that
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GUROBI is more e�cient than BARON for solving the MBSP. This observation coincides

with the results in Cheng and Li 28 which also studies MBSP, and in Karia et al. 54 which

studies general MIQCP. This may because GUROBI is tailored for MIQCP, while BARON

is a general global optimization solver.
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Figure 2: Performance graph comparing the base formulations solved using BARON or
GUROBI

Next, we examine the e�ectiveness of each individual group of new constraints. All new

constraints are applicable to the P-formulation, and all except Group 3 are applicable to the

S-formulation. As shown in Figure 3, each of the new constraint Groups 1, 2, and 3 can

lead to improvement for solving both formulations using both MINLP solvers. Compared to

Groups 1, 2, and 3, Groups 4 and 5 tend to have smaller improvement. Notably, Group 4

has a negative impact when applying it to solve the S-formulation using BARON. We note

that adding new constraints can tighten the relaxation of a model, but it simultaneously

increases the relaxation's size.

Next, we are interested in whether using multiple groups of new constraints can further

improve computational performance. For example, Groups 1, 2, 4, and 5 can all be applied

on the S-formulation, which leads to a total of ten possible combinations. However, using
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Figure 3: Performance graphs examining the e�ectiveness of each group of new constraints,
using BARON or GUROBI
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more tightening constraints does no necessarily lead to better performance, so we test all

combinations of new constraints that are applicable to the two formulations. For brevity, in

Figure 4, we compare the base formulation, the best formulation when using only one group

of new constraints, and the best formulation when using multiple groups of new constraints.

It is shown that for all formulations and solvers, using multiple groups of new constraints

can improve the performance signi�cantly. When using GUROBI, all new constraints (if

applicable) are recommended to be added simultaneously. When using BARON, the best

performance is obtained when using all new constraints except Group 4.

6 Extension to other types of MBSP

This section discusses how our new tightening constraints can be applied to other variants

of the MBSP studied in literature.

First, in MBSPs with a cost minimization objective, there are typically no product

maximum demand requirements δmax
p . Instead, the goal is to �nd the least cost produc-

tion schedule to ful�ll minimum product demand. Since there are no δmax
p , our new Con-

straints (47), (49), and (53) are not applicable while all other tightening constraints remain

valid. Second, if �owrate lower bounds from stream sources to blenders are available, then

with τs,t in the role of δmin
p,t , Constraints (44) can be adapted to bound material transfer

decisions between streams and blenders.

A third variant arises when instead of having δmin
p,t and δmax

p , product demand bounds are

imposed for each time period. Moreover, for each product, a tank is employed to temporarily

store the product received from the blenders, and to deliver the product when necessary. Let

σmin
p,t and σmax

p,t denote the minimum and maximum demand for product p during time period

t, respectively. For this type of problem, even though δmin
p,t and δmax

p de�ned in this article
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Figure 4: Performance graphs including formulations with multiple groups of new constraints
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are not directly given, they can be easily derived from σmin
p,t and σmax

p,t as follows:

δmin
p,t :=

∑
t′≤t

σmin
p,t , ∀p ∈ P, ∀t ∈ T,

δmax
p :=

∑
t∈T

σmax
p,t , ∀p ∈ P.

Fourth, we may also have streams deliveries. In this case, the overall availability ξs used

in the new constraints can be set to be the summation of all arrivals of streams throughout

the scheduling horizon. Moreover, the authors expect that such time-dependent availability

can be utilized to derive further tightened bounds or constraints, which constitutes a future

work.

Fifth, another variant arises when an operational rule for blenders that is more restrictive

than (7) is applicable, namely, that a blender cannot be charged and discharged simultane-

ously and can feed at most one product tank at any time, which can be modeled as:

X̃s,b,t ≤ 1−
∑
p∈P

Xb,p,t, ∀s ∈ S, ∀b ∈ B, ∀t ∈ T.

In this case, new constraint Group 1 cannot tighten relaxations of MINLP models, while all

other new constraints remain applicable.

Finally, the proposed constraints can be modi�ed to account for special network con-

nectivity (e.g. some (s, b) and (b, p) arcs may be forbidden, arcs between blenders may be

allowed, and certain blenders may only charge other blenders but cannot deliver products).

In such general case, all new tightening constraints are applicable to existing (s, b) and (b, p)

arcs.
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7 Conclusions

This article has proposed new constraints for tightening mixed-integer nonlinear program-

ming (MINLP) models used to solve the multiperiod blend scheduling problem (MBSP).

These new constraints are derived from the physical information lost due to relaxation,

and typically require solving auxiliary linear programs (LPs) during preprocessing. We

have tested the e�ectiveness of the new tightening constraints for enhancing the widely-

used proportion-based (P-)formulation and split-fraction-based (S-)formulation of the MBSP.

Even though hundreds of LPs may be solved during preprocessing, the preprocessing takes

no more than ten seconds for all instances. It is shown that for both P- and S-formulations,

our new tightening constraints signi�cantly reduce the overall computational time, which

includes both preprocessing and MINLP solver time. Finally, we discuss how to apply the

new tightening constraints to various other settings of the MBSP.
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Nomenclature

We use uppercase letters for nonnegative variables, lowercase letters for indices, boldface

uppercase letters for sets, and lowercase Greek letters for parameters. We use calligraphic

uppercase letters to denote collection of index subsets.

Sets

s ∈ S Streams or stream sources

q ∈ Q Properties

b ∈ B Blenders

p ∈ P Products or product sinks

t ∈ T Time periods (ordered set): {1, 2, ..., |T|}. The end of a time period t will be

referred as the time point t. With slight abuse of notation, de�ne time point

0 as the beginning of the �rst time period.
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Pmax ∈ Pmax A collection of certain product subsets, for use in the new tightening Con-

straints (36)

Parameters in problem statement

δmax
p Maximum demand for product p throughout the scheduling horizon

δmin
p,t Minimum accumulated demand for product p by time point t

ξs Available amount of stream s throughout the scheduling horizon

πs,q Quantity of property q of stream s

πmax
q := max{πs,q : ∀s ∈ S}

πU
p,q Quantity upper bound of property q of product p

πL
p,q Quantity lower bound of property q of product p

αs Unit cost of stream s

βp Unit revenue of product p

ωb Capacity of blender b

ζUb,p Flowrate upper bound from blender b to product sink p

ζLb,p Flowrate lower bound from blender b to product sink p

ζ̃Us,b Flowrate upper bound from stream source s to blender b

γb,p Fixed cost for transferring material from blender b to product sink p

γ̃s,b Fixed cost for transferring material from stream source s to blender b

ηs,b Initial inventory of stream s in blender b
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Parameters for bound tightening

θLs,p Lower bound for Is,b,t−1 if Xb,p,t = 1

θUs,p Upper bound for Is,b,t−1 if Xb,p,t = 1

υLs,p Lower bound for Cs,b,t−1 if Xb,p,t = 1

υUs,p Upper bound for Cs,b,t−1 if Xb,p,t = 1

δ̂min
p,t Tightened product minimum demand that satis�es δ̂min

p,t ≥ δmin
p,t

δ̌max
p Tightened product maximum demand that satis�es δ̌max

p ≤ δmax
p

ϕp,t Minimum upper bound of all continuous subranges of
∑

b∈B
∑

t′≤t Fb,p,t′

λp Maximum lower bound of all continuous subranges of
∑

b∈B
∑

t∈T Fb,p,t

τs,t Lower bound of stream s entering all blenders prior to time point t

ψs,t Minimum upper bound of all continuous subranges of
∑

b∈B
∑

t′<t F̃s,b,t′

Nonnegative continuous variables

ISs,b,t Inventory of stream s in blender b at time point t

Ib,t Total inventory of blender b at time point t

F̃s,b,t Flowrate from stream source s to blender b during time period t

F S
s,b,p,t Flowrate of stream s from blender b to product sink p during time period t

Fb,p,t Total �owrate from blender b to product sink p during time period t

Cs,b,t Proportion of stream s in blender b at time point t

Rb,p,t Split fraction from blender b to product p during time period t
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Binary variables

X̃s,b,t 1 if stream source s is charging blender b during time period t

Xb,p,t 1 if blender b is delivering product p during time period t

Auxiliary variables for computing the tightening parameters

Īs,p Amount of stream s used for producing product p within the range [min{ζLb,p : b ∈

B},max{ωb : b ∈ B}], used for computing θLs,p and θ
U
s,p

C̄s,p Proportion of stream s in product p, used for computing υLs,p and υ
U
s,p

F̄s,p,t Amount of stream s used for producing product p by time point t, used for computing

χs,t

Models

MP(S) The proportion-based (P-)formulation or the split-fraction-based (S-)formulation

RMP(S) The convex relaxation of the P- or S-formulation

RMP
x A model consisting of RMP and a tightening constraint x

b(g)MP(S) Solving the P- or S- formulation using the solver BARON (b) or GUROBI (g)

b(g)M
P(S)
x A model consisting of b(g)MP(S) and a tightening constraint x
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