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Abstract

The multiperiod blend scheduling problem (MBSP) has a wide variety of engineer-
ing applications, and is typically formulated as a nonconvex mixed-integer nonlinear
program (MINLP). Such an MINLP is challenging to solve due to a large number of bi-
linear terms and binary variables. One prevalent solution method is branch-and-bound,
whose efficiency heavily relies on the tightness of the convex relaxation of the MINLP.
In this article, we propose new constraints that can be used for tightening such convex
relaxation. These constraints are derived from the physical information lost due to
relaxation, and require solving linear programs (LPs) during preprocessing. Extensive
numerical tests are executed to examine the effectiveness of the proposed methods. The
results show that even though hundreds of LPs may be solved during preprocessing, our
new methods can significantly reduce the overall computational time, including both

the preprocessing and MINLP solver solution time. Further implications are discussed.



1 Introduction

The multiperiod blend scheduling problem (MBSP)!? is a scheduling extension of the (gen-
eralized) pooling problem,? and considers blending raw materials with different, qualities to
produce products, meeting property specifications, over a given scheduling horizon. The
objective of the MBSP is to find the least cost blending plan (or maximize profit), sub-
ject to various constraints such as raw material availability, operational rules, and product
demand requirements. The MBSP has a wide variety of engineering applications such as
crude or refined oil scheduling,*® mine planning,”® wastewater treatment,®!? copper con-
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centrate blending, and specialty chemicals manufacturing.'® While an optimal solution

of the MBSP can bring significant economic benefits, 4716

state-of-the-art methods can only
solve instances of modest size. Thus, improved techniques are sought to solve the MBSP of
practical interest.

The MBSP is typically formulated as a nonconvex mixed-integer nonlinear program
(MINLP), or more specifically, a mixed-integer quadratically constrained program (MIQCP).
In such an MINLP, binary variables are employed to model decisions on material transfers,
and bilinear terms are employed to model the composition consistency between blenders’
inventories and outflows. In terms of time representation, MINLPs for the MBSP are cat-
egorized into discrete- and continuous-time formulations; see Fragkogios and Saharidis? for
a review. In discrete-time formulations, the scheduling horizon is divided into predefined
time periods, and all material transfer operations can only start or end at the boundaries
of these time periods. On the other hand, continuous-time formulations can yield solutions
where an operation can start at any time. As discussed in Floudas and Lin'", Discrete-time
formulations are straightforward to implement and the solutions are easier to be executed in
practice, but the problem size increases drastically as the number of time periods increases.
On the contrary, continuous-time formulations typically have smaller size, but have weaker

LP relaxations (as will be discussed later) and the solutions may not be fully executable in

practice. Hybrid models%!® have been proposed to combine the strength of both formulations



for the MBSP. This article will focus on discrete-time formulations, and our new methods
may be extended to address continuous-time formulations.

Branch-and-bound-based ¥ deterministic global optimization methods for MINLP require
computing upper and lower bounds of the globally optimal objective value. These bounds
are progressively refined, until convergence. For a minimization MBSP, the upper bounds
can be computed from any feasible solution of the original MINLP, and the lower bounds are
typically computed by constructing and solving auxiliary linear programming (LP) relaxation
problems. In such LP relaxation problems, the binary variables are relaxed to be continuous
variables, and the bilinear terms are replaced by various (piecewise-)linear underestimators
and overestimators as will be summarized below. Tightness of the feasible region of such
LP can greatly affect the computational performance of branch-and-bound algorithms. A
tighter formulation typically yields tighter bounds for the globally optimal objective value,
and thus reduces the number of nodes required to be explored to prove global optimality.
Even if a tighter feasible region does not lead to tighter objective function, such smaller
feasible region may reduce the computational time for solving a single L.P relaxation problem.
This is beneficial since the relaxation problems are solved multiple times in a branch-and-
bound procedure. There have been abundant studies focusing on developing tight relaxation
formulations, which will be summarized next.

Since the McCormick envelopes?® were applied to relax bilinear terms in global optimiza-
tion, researches have been done to further tighten bilinear term relaxations. Since McCormick
envelopes are tighter when tighter variable bounds are available, many studies focused on
computing tight variable bounds. In particular, Chen and Maravelias?' proposed an effective
closed-form bound tightening method that is specialized for the MBSP. In addition to variable

bound tightening, one class of approaches??25

constructs tight piecewise mixed-integer linear
programming (MILP) relaxations using piecewise McCormick envelopes. These approaches
divide the domain of one variable in each bilinear term into multiple smaller subintervals in

various different ways, and then McCormick envelopes are constructed on each subinterval



and auxiliary binary variables are introduced to model the disjunction among all subinter-
vals. Another class of approaches®2528 for constructing piecewise MILP relaxations is based
on multiparametric disaggregation. These approaches firstly discretize one variable in each
bilinear term following a predefined accuracy level, and then rigorously bound the trunca-
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tion error to obtain valid relaxations. Castro et al. compared the McCormick-based and

multiparametric disaggregation approaches. When bilinear terms have nontrivial upper or

30732 were proposed and shown to be tighter than

(and) lower bounds, several relaxations
trivially combining McCormick envelopes and the bounds. For pooling problems, nontrivial
upper bounds for bilinear terms can be derived from pipleline capacity between blenders
and products.3? Second order cone programming relaxations and polyhedral relaxations?334
for general quadratically constrained programs were adapted to solve pooling problems and
MBSPs. Luedtke et al.?> proposed strong relaxations for a nonconvex set involving bilinear
terms in a modified formulation of pooling problems. Lotero et al.?¢ formulated the MBSP
via generalized disjunctive programming, which has fewer bilinear terms than traditional
MINLP formulations when binary variables are fixed.

Another direction for tightening relaxations of nonconvex MINLP is to generate convex
tightening constraints that are redundant in the original MINLP, but can cut off feasible
region of the relaxed problems. One prevalent approach is the reformulation-linearization
technique (RLT).3"38 RLT firstly generates valid redundant nonlinear contraints involving
nonconvex terms, and then these nonlinear constraints are linearized by introducing new
variables, one for each nonconvex term. Several RLT constraints?!:3%3% have been proposed
to handle bilinear terms and are used for enhancing the MBSP formulations. Besides RLT,
tightening constraints may also be generated from specific problem structure and physical in-
tuition. For blending problems, Papageorgiou et al.*? studied an MILP formulation of fixed-
charge transportation problem with product blending, and proposed tightening constraints
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by exploiting products’ property specification. D’Ambrosio et al.** proposed tightening con-

straints for the generalized pooling problem based on the problem’s MILP relaxation. It



was shown that these constraints dominate some constraints proposed for MILP of a certain
form.*? Chen and Maravelias! proposed valid bounds and tightening constraints that are
specialized for the MBSP. These constraints involve the so-called dedicated flow variables,
which represent the amounts of raw materials dedicated to each product over the scheduling
horizon.

In this article, we propose several classes of new constraints for tightening the relaxations
of MINLP formulations of the MBSP. These constraints are derived from the physical in-
formation lost due to relaxing integer variables and bilinear terms. For example, due to the
relaxation of integer variables, certain semicontinuous flow variables become continuous, and
a widely-used operational rule for blenders, that a blender cannot be charged and discharged
simultaneously, no longer holds. Due to the relaxation of bilinear terms, a blender’s out-
flows may have inconsistent composition with the blender’s inventory. Constructing these
constraints typically requires solving LLP problems, leading to an LP-based preprocessing
algorithm. Notably, the new constraints are guaranteed to dominate some previously pro-
posed constraints.® While our new tightening constraints are intended to facilitate solving
MINLP via branch-and-bound algorithms, they are also useful in tightening bounding in
certain decomposition-based global optimization approaches.28:36-4344

We apply our new tightening constraints to two previously-proposed and widely-used
discrete-time MINLP formulations for the MBSP, namely, the proportion-based formula-

tiOIl21’38

and the split-fraction-based formulation.?3¢ We test the effectiveness of our new
proposal by solving numerical instances using state-of-the-art general global optimization
solver BARON*® and MIQCP solver GUROBI.#® The results show that our LP-based prepro-
cessing algorithm typically requires a few seconds to be executed, but the derived constraints
significantly reduce the overall computational time (including preprocessing and solver solu-
tion time) for solving both the proportion- and split-fraction-based formulations using both

solvers.

The remainder of this article is organized as follows. Section 2.1 presents the structure and



feature of the MBSP considered in this article. Section 2.2 presents the proportion- and split-
fraction-based formulations for the considered MBSP, and our new tightening constraints
will be used to enhance these formulations. Section 3 discusses the intuition behind the new
constraints through a motivating example. Section 4 formalizes our new constraints, and
Section 5 presents numerical tests to examine the new constraints’ effectiveness. Section 6
discusses how to extend the new constraints to other types of MBSPs studied in literature.
Throughout this article, we use uppercase letters for nonnegative variables, lowercase letters

for indices, boldface uppercase letters for sets, and lowercase Greek letters for parameters.

2 Background

2.1 Problem statement

We consider different raw materials, termed streams, with certain properties and availability
over a given scheduling horizon. These streams are mixed in blenders (with possible initial
inventory) assuming a linear mixing rule to produce products, meeting properties specifica-
tions and demand requirements. The products have upper and lower bounds for property
values, have minimum accumulated demands that gradually increase along the scheduling
horizon, and have maximum demands over the whole scheduling horizon. The blenders can-
not be charged by stream sources and delivering products simultaneously. Upper bounds of
charging rate, and both lower and upper bounds of withdrawing rate for blenders are given.
We assume full connections from stream sources to blenders and from blenders to product
sinks. Material transfer between blenders is not allowed. The entire scheduling horizon is
divided into a number of time periods with equal length, and all material transfer operations
can only start or end at the boundaries of each time period. The objective is to find the
optimal schedule for transferring and blending materials, to maximize profit, which is defined
as the difference between revenue for selling products and various costs such as expense for

buying streams and cost for material transfer operations between units. A topology net-



work of the considered MBSP is given in Figure 1. The MBSP employs the following sets,

parameters, and variables:

Sets

s € S Streams or stream sources

q € Q Properties

b € B Blenders

p € P Products or product sinks

t € T Time periods (ordered set): {1,2,...,|T|}. The end of a time period ¢ will be referred
as the time point t. With slight abuse of notation, define time point 0 as the
beginning of the first time period.

Parameters

0, Maximum demand for product p throughout the scheduling horizon

5;?;“ Minimum accumulated demand for product p by time point ¢

&s Available amount of stream s throughout the scheduling horizon

Tsq Quantity of property ¢ of stream s

T = max{m,, : Vs € S}

W;{q Quantity upper bound of property ¢ of product p

WZI: g Quantity lower bound of property ¢ of product p

Qg Unit cost of stream s

Bp Unit revenue of product p



Wy

o
G
Eb
Vo,p
Vs,b

Ns,b

Capacity of blender b

Flowrate upper bound from blender b to product sink p

Flowrate lower bound from blender b to product sink p

Flowrate upper bound from stream source s to blender b

Fixed cost for transferring material from blender b to product sink p
Fixed cost for transferring material from stream source s to blender b

Initial inventory of stream s in blender b

Nonnegative continuous variables

S
Is,b,t

Iy,

)

Fs,b,t
FS

s,b,p,t

Fb,p,t

Inventory of stream s in blender b at time point ¢

Total inventory of blender b at time point ¢

Flowrate from stream source s to blender b during time period ¢

Flowrate of stream s from blender b to product sink p during time period ¢

Total flowrate from blender b to product sink p during time period ¢

Binary variables

Xs,b,t

Xb,pﬂf

1 if stream source s is charging blender b during time period ¢

1 if blender b is delivering product p during time period ¢



Stream sources Blenders Product sinks

Figure 1: Network of the MBSP

2.2 Base formulations

This subsection presents two widely-used discrete-time MINLP formulations for the MBSP,

21,38 21,36

namely, the proportion-based (P-)formulation and the split-fraction-based (S-)formulation.
These two formulations mainly differ in how the composition consistency between blenders’
inventories and outflows is enforced. The P-formulation employs auxiliary variables to rep-
resent the proportion of each stream in blenders’ inventories, and the outflows are enforced
to have the same proportion. Instead, the S-formulation defines the fraction of mixture that
is withdrawn from blenders, and all streams are enforced to be withdrawn with the same
fraction.

Note that both P- and S-formulations have counterparts which track each property flow
instead of each stream. Compared to their property-tracking counterparts, the P- and S-
formulations with certain established tightening constraints have at least as tight relaxations,
and are in general superior in practice.?$*47 However, there is no known theoretical result
comparing the relaxations of P- and S-formulations, and no formulation is clearly faster
than another. For pooling problems, Cheng and Li*® established conditions under which

the S-formulation’s relaxation is not tighter than the P-formulation’s relaxation. Whether

their conclusions can be extended to the MBSP requires further investigation. The goal of



this article is to propose new constraints that can tighten relaxations of both the P- and

S-forumulations for the MBSP.

2.2.1 Proportion-based formulation

Besides all variables presented in Section 2.1, the P-formulation introduces variables C; ;; to

denote the proportion of stream s in blender b at time point . The P-formulation has the

following constraints and objective function.

Stream availability constraints:

ZZFS,M <&, VseS.

beB teT

Relating F}, 1 to Xy,

Fopt < GopXpps, YbEBVpePVLET,

Fopt = Gy Xppe, YbEBVpePVEeT.
Relating Fs,b,t to X&b,t:
Fopy < (% Xopss Vs €S, VbeB,VteT.

Product demand constraints:

S°S B <07, WpeP,

beB teT

SN Ry, VpePvteT.

beB t/'<t

Note that 5;’}2“ is non-decreasing with respect to ¢.

10



The operational rule for blenders is enforced by the following constraints:

Xept <1—Xppy, VseSVbeB,VpeP,VteT. (7)

Constraints (7) ensure that during any time period, a blender may have muliple inlet flows
or multiple outlet flows, but not both. We note that such operational rule is widely used
for MBSPs.21:28:36:49 However, for specific applications such as crude-oil scheduling,* more
restrictive operational rule may be applied, e.g., in one time period, a blender can have at
most one inlet flow or one outlet flow, but not both.

Mass balance of each stream in blenders:

By =181+ Fape— Y Fdy, VseSWbeBVIET. (8)

peP

Upper bounds for [ ;:

Ib,t < wy, Vb e B,Vt eT. (9)
Relating ]E’b’t to Ipy:
> I3, =1 VbeBVteT, (10)
s€S
Relating FSSJ)M to Fppi
> Fypi=Fops, VWEBVpEPVLET. (11)

seS

Modeling the proportions of streams in blenders:
5y, =10:Cspy, Vs €S, VbeB,VteT. (12)

Modeling stream proportions in blenders’ outflows:

S

Foyoi=FypiCspi1, Vs€SVbeB,VpePVteT. (13)

11



Proportion variables sum up to one, modeled as:
» Cipe=1, WeBVLeT, (14)
s€S

Note that given (10), (11), (12), and (13), the constraints above are redundant. However,
(14) can tighten the relaxation of the P-formulation, where (12) and (13) are relaxed.

Auxiliary constraints that can tighten the relaxation of the P-formulation:

Iss,b,t < Cspun, Vse€S,Vbe B,VteT, (15)

Foyot <CpCopi-1, Vs€S,VbeB,VpeP,VteT. (16)

Property requirements of flows from blenders to products:

> TeaFp ST Fops, VDEBVpEP VgeQVEeT, (17)
sES
> TeaFl s = oy, VDEBVPEP Ve QVteT. (18)
sES

The following Big-M constraints are firstly used in Chen and Maravelias?!, and are re-
dundant in the P-formulation but can tighten its relaxation. Big-M constraints for properties
involving proportion variables:

D Copamamag S mpy + (T =l J(1— Xypy), VWEBVpEPVgeQVteT, (19)

q
sES

D Copiamog > 7y Xope, VWEBVpEPVgeQVieT, (20)

seS

where m*** 1= max{m,, : Vs € S}. Big-M constraints for properties involving inventories of

12



blenders:

S Tealopi s S gl + w1 = Xy 0), VDEBVpEPVgeQVteT, (21)

seS

S ealopia =l —wymh (1= X)), VDEBVpEP VgeQVteT.  (22)

sES

The object is to maximize profit, modeled as:

max Z Z Z (5pr7P:t - fo,pr,p,t) - Z Z Z (Oést,b,t + fs/s,bXs,b,t) . (23)

beB peP teT s€S beB teT

Other costs such as storage cost of blenders can also be easily added into the objective
function above.

The P-formulation, denoted as MP, consists of Equations (1)-(23).

2.2.2 Split-fraction-based formulation

Instead of using the proportion variables Cj ;, the S-formulation introduces variables Ry,
to represent the split fraction for inventories in blender b to product sink p during time
period t.
All outlet streams of blenders should follow the same split fraction, modeled as:
Foy =150 1Rops, Vs€S,VbeB,VpeP,vteT. (24)

WDyt

Split fraction should be less or equal than one, modeled as:

> Ry <1, VbeBVteT. (25)

peP

13



Relating Ry, + to Xpp

Rypt < Xppi, Y0eB,VpeP,VteT, (26)
L

Ryt > %Xbm, Vbe B,VpeP,VteT. (27)
Wh

Tightening constraints involving split fractions:
Fypit <wpRppi, VoeB,VpeP,VieT. (28)

The S-formulation, denoted as M5, consists of Equations (1)-(11), (17), (18), (21)-(28).
Note that in both MP and M3, defining the inventory variables I,; and flow variables
Fy p is unnecessary, i.e., one may substitute all I,, and Fy,, respectively by > ¢ I3, , and
> ses oy 40 and eliminate Constraints (10) and (11). However, from the authors’ experience,

this change does not have a significant impact on the solution time of these formulations.

3 Intuition for tightening

We use RMP®) to denote an LP relaxation of the P-(S-)formulation. In RMP®)| the binary
variables X,;, and X;,, are relaxed to be continuous variables and the blinear terms in
(12), (13), and (24) are relaxed using (piecewise-)linear under- and over-estimators. Since
we consider a profit maximization MBSP, the optimal objective function value of RMP®) is
an upper bound of the globally optimal objective function value of MF®). We propose new
auxiliary constraints to tighten RMY®). These constraints are derived by partially recovering
the physical information lost due to relaxation, as discussed next.

Firstly, since all binary variables are relaxed to be continuous, the operational rule that
the blenders cannot be charged and discharged simultaneously is not enforced, i.e., for some
(5,b,p,t) € SxBxP x T, F,;, and F,,, can both be nonzero (see Constraints (2), (4), and

(7)). Secondly, observe from Constraints (2) and (3) that, due to the binary variable X ,;

14



and the flow bounds [(j,, ()], the range of the flowrate Y, .1 Fy ¢ is a union of finitely
many intervals, and can be disjoint. However, when X, ,, can take fractional values, the
range for ), . F},. is no longer disjoint. Thirdly, consider two products p,p’ € P that
have very different property specifications so that no mixture can be qualified as p and
p’ simultaneously. As a result, no blenders can deliver p and p’ during one time period.
However, in RMP®)| since the nonlinear constraints are relaxed, there is no composition
consistency between the inventory and outflows of each blender. Therefore, it is possible for
a blender b and some time period ¢ that, [,/ + and Fy, ¢ are both non-zero, despite the fact
that the blender’s inventory cannot satisfy both products’ property specifications. Moreover,
if a blender b is about to deliver products during time period ¢, then the inventory variables
ISSMF1 and proportion variables C ; ;1 may have nontrivial lower and upper bounds, because
the mixture in b at time point ¢ — 1 must satisfy the products’ specifications. On the other
hand, in RMP®)| such bounds for IS opt1 and Csp1—1 are not implicitly accounted for. Note
that the established tightening constraints (19)—(22) already utilize property specifications
to bound ISSM and C;p¢. The following motivating example shows that constraints developed

from the above mentioned physical understanding can indeed help tighten RMP®)

Example 1 Consider an MBSP with two streams, one blender, two products, one property,
and three time periods. All parameter values are shown in Table 1.

Table 1: Parameters for the MBSP considered in Example 1

Parameters Values Parameters Values Parameters Values
(&s1rEs) (10, 10) (Trars Tpgn)  (0.3,0.5) (553, 65715, 0523) (0,0, 3)
(69 4,,€55,)  (10,10) (Tpars o) (04,0.6) (o521, 0505, 650%) - (0,0,0)
(Tora10 Tszar)  (0.2,0.7) (G s Gipy) (450

(s, Qs (300,200) (Gl s Gor ) (6,3)

(ﬁplﬂﬁ ) (800 2000) (7 ;lefybl,pZ) (507 50)

(7]91 b1s Msa, b1) ( ) ( Vs1,b15 ’ng 61) (507 50)

W, 20 (5“"”‘, 5]‘)“2“) (10, 10)

We construct and solve MY for this problem, and the globally optimal objective function

15



value is 5200.00. Then, we construct RMY by relaxing all binary variables to be continu-
ous, and replacing the nonlinear constraints (12) and (13) by the well-known McCormick

envelopes? with the following variable bounds for each (s,p,t) € S x P x T:

0 S Cs,bl,t S 17

0< ]b1,t < mln{z gsawln}?

seS

0 S Fbl,p,t S min{zgsywbu 5;;11&)(7 Clg’p}‘

sES

We obtain that the optimal objective value of RMY is 14457.30. Thus, the gap between
the globally optimal objective function values of MP and RM" is 14457.30 — 5200.00 =
9257.30. Now, we propose several tightening constraints for use in RMY to reduce this
gap. We use subscripts to indicate additional tightening constraints that are added to RMP.
For example, the notation RM%O)7(32) below represents a model combining RMY and Con-

straints (30) and (32).

We observe that in the optimal solution (provided by the solver) of RMP, we have:

Xoyprita + Xoyports = 0.7249 +0.9417 > 1,

(29)
Xy prts T Xbypots = 0.6989 + 0.9677 > 1.
However, it is evident from the parameters [71'11; q,ﬂgq] in Table 1 that a mixture in the

blender cannot satisfy the property specifications for both p; and ps simultaneously. Thus,
the blender can at most deliver one product during one time period. This leads to the

following tightening constraints:

Xoyprt ¥ Xpypor <1, VteT, (30)

which cut off the optimal solution of RM" as in (29). The optimal objective value of RMP(go)

is found to be 9492.50, which is a significant improvement compared to the previous upper

16



bound 14457.30.

Next, in the optimal solution of RMP(gg), we have:

Xb17p17t2 - Xb17p2,t2 = 0.5, (31)

XSl,b17t1 =0, and X527b1,t1 = (.48.

We observe the following from the streams’ and products’ property specifications: for product

D1, Ts, 4, Satisfies the upper property bound ¥ but violates the lower bound 7 while

P1,91 P1,91°

Tayq Satisfies m)  but violates ) ., and the same holds for p,. Thus, both s; and s, are

p1,91’
needed to produce either p; or p;. Moreover, since the blender has no initial inventory, there
must be both s; and s, transferred into the blender before it can deliver any product. This

leads to the following tightening constraints:

Xb1,p,t < ZXSJHJ” VseS,VpeP,VieT. (32)

<t

which cut off the optimal solution of RM" 30) as in (31). The strict inequality under the
summation sign above is due to the fact that the blender cannot be charged and discharged
simultaneously. Solving RMP(30)’(32) yields a further tightened upper bound 9455.00.

We can also develop tightening constraints based on bounding the proportion variables
Cspt- For this example, it is easily verified that if the blender is delivering p; during time

period ¢, then it must hold that:
0.6 <Cs -1 <08 and 0.2<Cy,p,0-1 <04,
and similarly, if the blender is delivering p,, we have:

02 < Copi1 <04 and 0.6 < Cuypyyog < 0.8,

17



Utilizing these bounds, we have the following valid constraints:
Vs X pt < Copramr S U X pe +(1— Xy p0), Vse€SVpeP VEeT, (33

where
(b ok ol WY ) =1(0.6,0.2,0.8,0.4),

S1,p17 U82,p17 TS1,p17 52,1
(VY s Vs Vs s Usop) = (0.2,0.6,0.4,0.8).

These constraints state that, during any time period ¢, if the blender b; is delivering a prod-
uct p (i.e. X, ,+ = 1), then the proportion Cyp, ;1 for any stream s must be within the
bounds [V;p,ygp]. Otherwise, such bounds are relaxed. Solving RMP(30)’(32)7(33) yields the
same optimal objective value and solution as RMP(30)7(32). Thus, compared to RMP(30)7(32),
Constraints (33) do not directly tighten the upper bound. However, these constraints indeed
reduce the feasible region of RMP(go)’(gm, which is also beneficial as discussed in Section 1.
To illustrate the reduced feasible region, we fix Cs 5, = 1 and Xj, p,+, = 0.1 and re-
solve RMF30)7(32), and then we obtain a solution. However, such setting would be obviously
infeasible for RMP(go)y(gg)’(gi),), since (33) is violated.

New tightening constraints can also be developed based on the semicontinuity of the flow

variables. In the optimal solution of RMP(30),(32),(33), we have:

> Fyy pra = 3.0000,

teT

which agrees with the lower product demand 5;‘11?11'. Intuitively, since the revenue from pro-
ducing p, is significantly greater than the revenue from producing p;, a profit maximization
problem would tend to produce py as much as possible and “push” p; to the demand lower

bound. However, since Cg“l o = 4, we must have Fj, , , > 4 if it is not zero. Thus, we have

18



the following tightening constraint. If 5;riiIIITI > (), then:

Z Fb1,p17t > Cli,pl' (34)

teT

Solving RMP(30),(32)7(33)7(34) yields a further tightened upper bound 9113.33.

The optimal objective values of all proposed upper bounding models are summarized in
Table 2. By employing the new tightening Constraints (30) and (32)—(34), we have reduced
the original gap between the globally optimal objective function values of MY and RMF by

58%.

Table 2: Globally optimal objective values of all models considered in Section 3

Models Glob. optim. obj. Notes

MP 5200.00

RMP 14457.30 gap = 9257.30

RM” (30 9492.50

RM (30) (32 9455.00

RMP(go)’(32)7(33) 9455.00 smaller feasible region than RMP(go),(gg)
RMP(30)’(32)7(33)’(34) 9113.33 smaller gap = 3913.33

The new Constraints (30) and (32)—(34) are formalized and generalized in the next sec-
tion. Besides these constraints, we also propose other constraints that can be effective in
instances that are more complex than Example 1. For instance, we can bound the inventory
variables I%, ,, similarly to bounding Cyp; in (33). Based on [, (5] and [054", 6%, new
constraints are derived to bound the number of material transfers from blenders to product
sinks. A similar method can also be applied to bound the number of transfers from stream
sources to blenders. The new constraints typically require solving LPs to obtain necessary
parameters for tightening, which leads to an LP-based preprocessing algorithm. Numerical

tests show that even hundreds of LPs may be solved during preprocessing, but the benefits

for having tighter relaxations overweight the computational time for solving these LPs.
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4 New tightening constraints

4.1 Group 1

This subsection presents new tightening Constraints (36) based on identifying products that
cannot be delivered simultaneously by a blender. We use boldface calligraphic uppercase
letters to denote collection of index subsets.

For each p,p’ € P, define a set Y,/ such that

(

A

([ASU[SQu IS‘S|> [ < mln{lfs + maX{nsb b € B} maX{Wb b c B}} Vs € S,
_ min{¢, : b € B} + min{¢},, : b€ B} < Zfs,
Ypyp’ = ’ ’ e
max{ Tpq0 pq}Z[ <Z7qu[ <m1n{ Mg pq}Z[S7 VQGQ
\ sES seS seS

(35)
The constraints for defining Y, ,» above describe necessary conditions under which a mixture
can be delivered to meet demand for both products p and p’ simultaneously. The first
constraint enforces upper bounds on the amount of each stream in any blender. The second
constraint enforces a lower bound on the amount of the mixture that can be delivered as
p and p’ simultaneously. The third constraint ensures that the mixture satisfies property
specifications of both products p and p’. Thus, if Y, is empty, then no blender can deliver
p and p’ simultaneously.

For each p,p" € P, we examine the emptiness of Y, ,, using the following method. We
loop through every property ¢ € Q. If there exists a property ¢ such that =), < 7 .,
then Y, ,, must be empty. If this does not happen, we solve an LP with a feasible space
defined by (35) and with an arbitrary objective function. If this LP is infeasible, then Y,
is empty. Thus, in the worst case, 0.5/P|(|P| — 1) LPs need to be solved for establishing if
Y,,,Vp,p € P is empty.

Now, define P as a collection of certain subsets of products. Each of these subsets satisfies
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that, for arbitrary two products p and p’ within the subset, the set Y, is empty. Then,
we define another collection P™**, which contains all mazimal subsets in P. A subset P™a*
is maximal if P™* is not a subset of any other subsets in P. Consider an example of four
products (p1,p2, s, pa), and suppose that Y, .., Yoo pes Ypipss Yo and Y, . are all

empty, and Y, ,, is nonempty. Then, we have:

P = {{p17p2}7 {p17p3}7 {p17p4}7 {p27p3}7 {p27p4}7 {p17p27p3}7 {pl;p2;p4}} )

P = {{p1, 2. p3}, {p1. P2, Pa}} -

We construct P™** using a systematic method. To give an example, consider we have
{p1,p2}, {p2,ps}, and {p1,p3} in P. Then, we can conclude that the union {p;,p2,ps} is
also in P; that is the subsets {p1,p2}, {p2, ps}, and {p1, ps} are not maximal.

Given collection P™**, we propose the following new tightening constraints:

Z Xppt <1, Vbe B,VP™ ¢ PVt e T, (36)

peplna,x

which states that during one time period, a blender can deliver at most one product in each

maximal subset P™ax,

4.2 Group 2

This subsection proposes new tightening Constraints (38) and (39) based on bounding the
inventory variables ISSM if a blender is about to deliver products.

Due to the composition consistency between blenders’ inventories and outflows, if a
blender b is delivering a product p during some time period ¢, then for each stream s € S,

valid (s, p)-dependent lower bounds 67, and upper bounds ¢, for [§b7t_1 can be computed
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by solving the following LPs. For each (s,p) € S x P:

L(U) . s
057; )= min(max) I,

),

st Iy, <& +max{n,,:be B}, VseS, (37a)
min{¢},, : b € B} < Z]_s’,p < max{w, : b € B}, (37b)
s'eS
W;q Z js’,p S Z 7T's’,qjs’,p S W;{q Z js’,pa vq € Q7 (37C)
s'eS s'eS s'eS

where the auxiliary variable fs/yp represents the possible amount of stream s’ used for pro-
ducing product p within the range [min{¢;,, : b € B}, max{w, : b € B}]. Constraints (37a)
include an upper bound of the amount of each stream in any blender. Constraints (37b)
are based on lower and upper bounds of the mixture’s amount in any blender if the mixture
can be delivered as product p. Constraints (37¢) ensure that the mixture satisfies the prop-
erty specification of product p. Once HEP and Qgp have been calculated, we use them in the

following new tightening constraints:

XypilE, < I3, 1 < Xy 00 Amin{&+ney, w0} (1- X, 0), Vs €S,V € B,Vp e PVt € T.

(38)

If X;,, = 1, then Constraints (38) above bound IJ,, ; by 6, and 67 ; otherwise, such

bounds are relaxed. A total of 2|S||P| LPs (37) need to be solved to construct the new
constraints.

Now, consider the lower bounds 6}, obtained by solving the LPs (37). If X, ,,; = 1 and

Q;p —nsp > 0, then there must be material transfer from stream source s to blender b prior

to time period ¢t. This leads to the following new tightening constraints:

Xppt <Y Xopw, VEET,V(s,b,p) €S xBxXP: 6, — 1y >0. (39)

t'<t

Similar tightening constraints were proposed by Chen and Maravelias.! For each (p,q) €
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P x Q, they define sets of good streams in terms of 7 and 7, as follows:

Lg._ L
Syt =As€S m;, <Ml

Ug . . U
S,fi={s€8S My <7}
and similarly, sets of bad streams are defined as:

Lb .__ . L
Sp,q = {S €S: Trp,q > 7Ts,q}a

Ub ._ , U
S, =1{s€S:myy>m, .}

Based on the fact that good streams are required for each product and assuming no initial

inventory in blenders, they proposed the following valid constraints:

Xpps < D> Y Xopw, WEBVpePVgeQVLeT,
seSy s 1<t

40

Xpps < > Xy, VEBVpeP VgeQVteT. o

sesyg st

Note that constructing (40) is more efficient since it does not require solving any LPs.
However, our new Constraints (39) offer the following benefits. Firstly, (39) applies to
nonzero initial inventory of blenders while (40) does not. Secondly, in the case of no initial
inventory of blenders, the new constraints are guaranteed to be at least as tight as (40). For
each (p,q) € P x Q, there must be at least one s € S},{;lg such that Hijp > 0 and at least
one s € S8 such that 07, > 0. This makes (39) no less tight than (40). Moreover, (39) is
tighter than (40) in certain situations. For example, even if a stream s is a bad stream for
all ¢ € Q for a product p, 9;12 may still be nonzero due to the demand requirements of p. In
this situation, (39) is tighter than (40) because it does not consider bad streams. Besides,
for a product p, if more than one good streams s have Gf;p > 0, then (39) is also tighter than
(40). Furthermore, note that (39) employs strict inequality ¢ < ¢’ in the summation sign, in

contrast to ¢ < ¢ in (40). The addend for the summation in (39) is due to the fact that a
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blender cannot be charged and discharged simultaneously, which makes our new constraints

potentially tighter as well.

4.3 Group 3

The tightening constraints proposed in the previous two subsections are applicable to both
the P- and S-formulations. In this subsection, we propose new tightening constraints (42)
involving the proportion variables Cy;; that are present in the P-formulation. Analogously

to the bounds Hijp and 0Y

sp» We define 'Ulj and vY_ which are (s, p)-dependent bounds for

p 5P
Cspt—1 if Xppr = 1. These bounds are computed by solving the following LPs. For each
(s,p) €S x P:

L(U)

US 7p

;= min(max) Cj,

s.t. Z Cop=1, (41a)

s'eS

7T1157q < ZWSCqC_’SCP < 7T][2j,q? Vg € Q. (41b)

s'eS

where the auxiliary variable Cy , represents the possible proportion of stream s’ in product
p. Constraint (41a) ensures that the proportions of all streams summing up to one, and
Constraints (41b) ensure that the product p’s property specification is satisfied. Then, we

have the following new tightening constraints:
XopiUsy < Cspir < Xppavey + (1= Xppy), Vs€S,VoEB,VpePVLET.  (42)
A total of 2|S||P| LPs need to be solved to construct (42).

4.4 Group 4

This subsection proposes new tightening Constraints (44), (47)-(49), and (52)—(54) derived

from the logistic constraints between blenders and product sinks. The new constraints do

24



not require solving any LP and are inspired from Velez and Maravelias,*® who proposed
similar tightening constraints for general chemical scheduling problems.

As discussed in Section 3, for each (p,t) € P x T, the range of }, .5 > ., Fypr can be
disjoint. Based on this fact, we can tighten the right-hand side of Constraints (5) and (6)
as follows. Consider arbitrary (p,t) € P x T, and for each b € B, let ¢,,,; be a non-negative
integer, which denotes the number of material transfers from blender b to product sink p

before time point ¢. Define a set K, ; (see the Supporting Information for an illustration) as:

. Smin U max L
(Ebhp,tv €by,p,ts -+ Eb\Bpp,t) : 5p,t < E Cb,peb,nh 5p > E Cb,peb,p,tv
K, ;= beB beB , (43)

and €,,, < ord(t),vb € B

where ord(?) denotes the order of time point ¢. Observe that for each (€p, p,t, €5 p,ts -5 €byypit) €
. . . L U
K, 1, a continuous subrange of 3, g >~ Fy ¢ is the interval from D, g G/ p€bp.t 10 D ycp Gyp€opits

denoted as [Y,cp Cpp€omts D open Copfopt)- Then, the potentially disjoint range of 3, . >va Fopu

is given by:

L U
U [Z Cb7p€byp7t? Z Cb,pebypﬂf]

(Ebl»:ﬂ,t76b2yp,t7"'7€b‘B|,:D,t)EKP,t beB beB

Thus, a lower bound of the range above can be described as:

Smin . L .
5p,t = mm{ E Cb,peb,p,t L (€bapits €bapits s €b|B\,p,t) € Kp,t} ‘

beB

If we have 52}2“ > oM, then the following new constraints are tighter than (6):

Z Z Fopr > 52:‘2“, Vpe P, VteT. (44)

beB t'<t
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~
6min

Note that to compute 03",

we may not need to examine every element of K, ;. For each

beB,let &, := [%} It is easily verified that:
P

Smin _ ___- § L . ~
6p,t = mln{ Cb’pebm’t . (Ebl,p,t7 €bypity ey 6b|B|,p,t) € Kp7t and €bpt S Eb,p,ta\V/b € B} . (45)

beB

Similarly to Constraints (44), we can also tighten the right-hand side of Constraints (5).

For each p € P, let

Smax ,__ E U .
5]) ‘= max { gb,p€b7l7u|T| - (Ebl,pv‘T" €b2:pa|T|7 ot Eb|B\ap7‘T‘> E Kpa|T|} ) (46)
b

which is the upper bound of the disjoint range of >, .5 >, cp Fops. If 5;1” < 0y, then the

following new constraints are tighter than (5):

YN R, <™, VpeP. (47)

beB teT

The following new constraints bound the total number of material transfer decisions
from all blenders to each product sink based on the tightened products’ demand bounds

(6min_ §max) and the extremal flowrates (Chpr Colp):

Dt 7P
B 5min
Xpps > bt , YpeP,VteT, (48)
; ;g:t P max{(lfp :be B}
Smax
YD Xipt < | = . VpeP. (49)
— = _mln{vap : b€ B}

Moreover, new Constraints (52) and (53) below also bound the number of material transfers
from all blenders to each product sink, but in a different way. For each (p,t) € P x T, we

define the minimum upper bound of all continuous subranges of >, .z >, , Fy ¢ as:

~ U
Ppt = min {Z Cop€omt  (Ebrpts Ebapits - eb\B\,p,t) € Kp,t} , (50)

b
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and the maximum lower bound of all continuous subranges of Y, .5 >, cq Fip as:

- L .
Ap = maX{ D Giiponl ¢ (€b1pT)s Eoaip )5 s €1y 7)) € Kp,T} : (51)
b

Then, the following new tightening constraints are valid:

DY Xpilih > by VPEPVEET, (52)
beB t'<t
DY XupiGry <Ay VpEP. (53)
beB teT

Finally, the following new constraints fix X;,, to be zero, if blender b cannot deliver

product p during the first time period:

Xb,p,l = 07 V(b7p) €EBXxP: Zﬁs,b < CbI:p7

seS

or Zwsyqn&b > W;{q Znsyb, for some ¢ € Q, (54)

sES sES
L
or 5 Tsqlsh < Tpq E Nsp, for some q € Q.
sES sES

All parameters for bound tightening, e.g. 52}2“ defined in (45), 5;“3" defined in (46), ¢,
defined in (50), and A, defined in (51) are computed using an iterative routine adapted from

Velez et al.?°.

4.5 Group 5

Similarly to the new constraints in the previous subsection, this subsection presents new Con-
straints (56)—(58) derived from the logistic constraints between stream sources and blenders.
For each t € T and s € S, we first compute x,, by solving LPs, where conceptually, x;

is the least amount of stream s that needs to be used prior to time point t. For each t € T
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and each s € S:

Xst := min Z Fopi (55a)
peP
s.t. ZFS pt <min{&y, (ord(t) — 1) ngb} + 2778/ b, Vs €S, (55b)
peP beB beB
grin < N7 Fyyy < 0™ Ype P, (55¢)
s'eS
ﬂ-zl;,q Z Fs’,p,t < Z 7Ts’,qf_;’s’,p,t < W;[,j’q Z Fs’,p,ta VQ € Q7vp € Pa (55d)
s’'eS s'eS s'eS

where the auxiliary variable FS/J,J represents the amount of stream s’ used for producing
product p by time point ¢. Constraints (55b) describe an upper bound of each stream’s
amount that is available for producing products by time point ¢. Since all blenders cannot
be charged and discharged simultaneously, streams entering the blenders during time period ¢
cannot be used for delivering products by time point ¢. Thus, the term (ord(t) —1) Y, égb
in (55b) is a valid upper bound for stream s from outside of blenders that can be used for
delivering products by time point ¢. Constraints (55¢) and (55d) ensure that the products’
property requirement and demand requirement by time point ¢ are satisfied. Then, a lower

bound 7, of stream s entering all blenders prior to time point ¢ is given by:

Tst = maX{O, X57t - Zns,b}y Vs < S,Vt € T.

beB

Next, our new tightening constraints for bounding the number of material transfer operations

from each stream source to all blenders are similar to Constraints (48) and (52) as follows:

SN Xope > { L w , VseSVteT, (56)
beB /<t max{{;, : b € B}
Z ZXs’b’tégb Z w&t, VS - S,Vt - T7 (57)
beB t/<t
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where 9, is the minimum upper bound of all continuous subranges of >, p> ., Fip:.
The method for calculating 15, is similar to the method for calculating ¢, in the previous
subsection, and is adapted from Velez et al.?®. Note that (56) and (57) employ a strict
inequality ¢ < t instead of a weak inequality ¢ < ¢. This is for the same reason as we
use (ord(t) — 1)) ,cp é’gb instead of ord(t) Y, g é’gb in (55b) as explained above. In the
worst case, constructing Constraints (56) and (57) requires solving | T||S| LPs (55a)—(55d) to
compute X,; with the exception that arises when the LPs at some ¢ and ¢ — 1 are identical.

Finally, in a globally optimal solution of the original MINLP, streams will not enter
blenders during the final time period, since such amounts cannot be delivered as products.

This leads to the following new constraints:

Xs,b,|T| =0, Vs € S,Vb € B. (58)

5 Numerical testing

We test our new preprocessing algorithm and tightening constraints using 86 numerical
instances of the MBSP as defined in Section 2.1. For reference, Table 3 summarizes the new
tightening constraints proposed in Section 4 and the number of LPs that need to be solved
during preprocessing. The numerical instances have roughly 4-8 time periods, 4-10 streams,
2-6 blenders, 4-8 products, and 6-10 properties. These instances and the generation method
are available in the Supporting Information. All models are implemented in GAMS v42.1.0.5*
We use CPLEX v22.1.1.05% to solve LPs during preprocessing and use BARON v23.1.5%
and GUROBI v10.0.0% to solve the MINLP models. For both BARON and GUROBI, the
CPU time limit reslim is set to 7,200 seconds, the relative optimality gap optcr is set to
1%, and all other default settings are used. All numerical tests are conducted on Princeton
University’s Della cluster (https://researchcomputing.princeton.edu/systems/ della). Each

job is submitted to the processor Intel Cascade Lake with 2.8 GHz with a request of 4GB
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of memory. Such amount of memory is verified to be sufficient for all jobs. Our numerical

tests have three goals, for both BARON and GUROBI:
e compare computational performance of the P- and S-formulations,

e cxamine the effectiveness of each group of new constraints for enhancing the P- and

S-formulations, and
e find further improved formulations employing combinations of the new constraints.

Table 3: New constraint groups and the number of LPs need to be solved during preprocessing

Group No. New constraints # LPs need to be solved
1 (36) 0.5|P|(|P| — 1) at most
2 (38),(39) 2|S||P]

3 (42) 2|S||P|

4 (44), (47)—(49), (52)—(54) None

5 (56)—(58) |'T||S| at most

We employ the following notation to represent different MINLP models solved by different
solvers. We use “b” and “g” to respectively indicate the solvers BARON and GUROBI, “P”
and “S” to respectively indicate the P- and S-formulations, and digits consistent with Table 3
to indicate the employed groups of new constraints. For example, bM};2 represents a run,
using BARON, to solve an MINLP model of the P-formulation with the new constraint
Groups 1 and 2.

We use performance graphs® to perform the comparisons, where the CPU times include
both the preprocessing time and MINLP solver solution time. Since the goal of this study is
to explore the effectiveness of the proposed constraints, we make comparisons across variants
of the same formulation (P- or S-) using the same solver (GUROBI or BARON). For a set
of runs that correspond to the same combination of formulation and solver, we generate a
performance graph using the data of instances that are not trivial (i.e., solved by all models

in less than 15 seconds) nor intractable (i.e., no model solved the instance to optimality
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within 7,200 seconds). Please note that, for example, an instance that is intractable for
models corresponding to one formulation-solver combination can be solvable for another
combination. Thus, each performance graph is generated using a different set of instances.
The numbers of trivial, intractable, and instances used to generate each performance graph
are summarized in Table 4.

Table 4: Number of instances used to generate each performance graph

Instance types

Trivial Intractable Used in the figure

Figure 2 0 24 62
Figure 3A 0 34 52
Figure 3B 1 34 51
Figure 3C 3 21 62
Figure 3D 4 22 60
Figure 4A 0 35 ol
Figure 4B 3 33 20
Figure 4C 2 18 66
Figure 4D 5t 20 61

Note that the longest preprocessing time in our numerical tests occurs when applying all
new tightening constraints on the largest numerical instance. In this situation, hundreds of
LPs are solved during preprocessing. However, these LPs, as described in Section 4, are easy
to solve; the longest preprocessing time in our numerical tests is less than ten seconds. The
data used for generating all performance graphs is given in the Supporting Information.

Firstly, we compare the performance of the base P- and S-formulations. As discussed
earlier, it is not currently clear which formulation is in general faster. Figure 2 depicts
the performance graph comparing gMY, ¢M®S, bMP, and bM®. It is shown that when us-
ing BARON, the S-formulation is significantly more efficient than the P-formulation, and
whereas when using GUROBI, the S-formulation is still better but the performance gap be-
tween the two formulations becomes closer. However, we do not draw a general conclusion
here that the S-formulation is superior to the P-formulation for the MBSP, since a more rig-

orous comparison between these two formulations is needed. Moreover, Figure 2 shows that
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GUROBI is more efficient than BARON for solving the MBSP. This observation coincides
with the results in Cheng and Li?® which also studies MBSP, and in Karia et al.?® which
studies general MIQCP. This may because GUROBI is tailored for MIQCP, while BARON

is a general global optimization solver.

——gm"
_e_gMS
P
01} bM™ 1]
_E_bMS

1 10 20 30 40 50 60
T

Figure 2: Performance graph comparing the base formulations solved using BARON or
GUROBI

Next, we examine the effectiveness of each individual group of new constraints. All new
constraints are applicable to the P-formulation, and all except Group 3 are applicable to the
S-formulation. As shown in Figure 3, each of the new constraint Groups 1, 2, and 3 can
lead to improvement for solving both formulations using both MINLP solvers. Compared to
Groups 1, 2, and 3, Groups 4 and 5 tend to have smaller improvement. Notably, Group 4
has a negative impact when applying it to solve the S-formulation using BARON. We note
that adding new constraints can tighten the relaxation of a model, but it simultaneously
increases the relaxation’s size.

Next, we are interested in whether using multiple groups of new constraints can further
improve computational performance. For example, Groups 1, 2, 4, and 5 can all be applied

on the S-formulation, which leads to a total of ten possible combinations. However, using
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Figure 3: Performance graphs examining the effectiveness of each group of new constraints,
using BARON or GUROBI

33



more tightening constraints does no necessarily lead to better performance, so we test all
combinations of new constraints that are applicable to the two formulations. For brevity, in
Figure 4, we compare the base formulation, the best formulation when using only one group
of new constraints, and the best formulation when using multiple groups of new constraints.
It is shown that for all formulations and solvers, using multiple groups of new constraints
can improve the performance significantly. When using GUROBI, all new constraints (if
applicable) are recommended to be added simultaneously. When using BARON, the best

performance is obtained when using all new constraints except Group 4.

6 Extension to other types of MBSP

This section discusses how our new tightening constraints can be applied to other variants
of the MBSP studied in literature.

First, in MBSPs with a cost minimization objective, there are typically no product
maximum demand requirements 0,"**. Instead, the goal is to find the least cost produc-
tion schedule to fulfill minimum product demand. Since there are no 6;'**, our new Con-
straints (47), (49), and (53) are not applicable while all other tightening constraints remain
valid. Second, if flowrate lower bounds from stream sources to blenders are available, then
with 7, in the role of 67", Constraints (44) can be adapted to bound material transfer
decisions between streams and blenders.

A third variant arises when instead of having 5;?2“ and 0", product demand bounds are
imposed for each time period. Moreover, for each product, a tank is employed to temporarily
store the product received from the blenders, and to deliver the product when necessary. Let

min
g,

oi and o)

ot denote the minimum and maximum demand for product p during time period

t, respectively. For this type of problem, even though 5;‘};“ and 0, defined in this article
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Figure 4: Performance graphs including formulations with multiple groups of new constraints
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and gmex

ot as follows:

are not directly given, they can be easily derived from agjg“

o = Zaﬁ“, VpeP,VteT,
<t

0, = Z o VpeP.

Pt
teT

Fourth, we may also have streams deliveries. In this case, the overall availability &, used
in the new constraints can be set to be the summation of all arrivals of streams throughout
the scheduling horizon. Moreover, the authors expect that such time-dependent availability
can be utilized to derive further tightened bounds or constraints, which constitutes a future
work.

Fifth, another variant arises when an operational rule for blenders that is more restrictive
than (7) is applicable, namely, that a blender cannot be charged and discharged simultane-

ously and can feed at most one product tank at any time, which can be modeled as:

Xepa S1=) Xpps, Vs€SVbeBVteT.

peP

In this case, new constraint Group 1 cannot tighten relaxations of MINLP models, while all
other new constraints remain applicable.

Finally, the proposed constraints can be modified to account for special network con-
nectivity (e.g. some (s,b) and (b, p) arcs may be forbidden, arcs between blenders may be
allowed, and certain blenders may only charge other blenders but cannot deliver products).
In such general case, all new tightening constraints are applicable to existing (s,b) and (b, p)

arcs.
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7 Conclusions

This article has proposed new constraints for tightening mixed-integer nonlinear program-
ming (MINLP) models used to solve the multiperiod blend scheduling problem (MBSP).
These new constraints are derived from the physical information lost due to relaxation,
and typically require solving auxiliary linear programs (LPs) during preprocessing. We
have tested the effectiveness of the new tightening constraints for enhancing the widely-
used proportion-based (P-)formulation and split-fraction-based (S-)formulation of the MBSP.
Even though hundreds of LPs may be solved during preprocessing, the preprocessing takes
no more than ten seconds for all instances. It is shown that for both P- and S-formulations,
our new tightening constraints significantly reduce the overall computational time, which
includes both preprocessing and MINLP solver time. Finally, we discuss how to apply the

new tightening constraints to various other settings of the MBSP.
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This information is available free of charge via the Internet at https://nam12.safelinks.
protection.outlook.com/?url=http/%3A%2F/2Fpubs.acs.orgl2F&data=05%7C01%7Cmaravelias,
40princeton.edu%7C3£906d4610824d139d1b08dbce28aca8’,7C2f£601167431425db5af077d7791bda4’,
7C0%7C0%7C638330446386189367%7CUnknown%7CTWFpbGZsb3d8eyJWI joiMC4wL jAWMDAILCIQIjoiV21uMzI
3D%7C3000%7C%7C%7C&sdata=N1PAAOSIfpAmhY2Fw09iRz9Hvt IYbq3DEDAfGANN jTZM8Y,3D&reserved=

0.

Nomenclature

We use uppercase letters for nonnegative variables, lowercase letters for indices, boldface
uppercase letters for sets, and lowercase Greek letters for parameters. We use calligraphic

uppercase letters to denote collection of index subsets.

Sets

s€S Streams or stream sources

q€Q Properties

beB Blenders

peP Products or product sinks

teT Time periods (ordered set): {1,2,...,|T|}. The end of a time period ¢ will be

referred as the time point ¢. With slight abuse of notation, define time point

0 as the beginning of the first time period.
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prmax ¢ pmax A collection of certain product subsets, for use in the new tightening Con-

straints (36)

Parameters in problem statement

max
617

min
5p7t

€s

By
Wh
Gip

L
Corp

U
s,b

Vo,p
rs/s,b

Ns,b

Maximum demand for product p throughout the scheduling horizon
Minimum accumulated demand for product p by time point ¢
Available amount of stream s throughout the scheduling horizon
Quantity of property ¢ of stream s

= max{m,, : Vs € S}

Quantity upper bound of property ¢ of product p

Quantity lower bound of property ¢ of product p

Unit cost of stream s

Unit revenue of product p

Capacity of blender b

Flowrate upper bound from blender b to product sink p

Flowrate lower bound from blender b to product sink p

Flowrate upper bound from stream source s to blender b

Fixed cost for transferring material from blender b to product sink p
Fixed cost for transferring material from stream source s to blender b

Initial inventory of stream s in blender b
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Parameters for bound tightening
0%, Lower bound for I, 1 if Xj,, =1

Qgp Upper bound for I 4, if X3, =1

Uap Lower bound for Cy ;1 if X3, =1
vy, Upper bound for Cyp; 1 if Xp, =1

omin Tightened product minimum demand that satisfies o™i" > §min

5;“6"‘ Tightened product maximum demand that satisfies 5313" < 6;}”"

Opt Minimum upper bound of all continuous subranges of >, 5>, <t Fopr
Ap Maximum lower bound of all continuous subranges of >, .5 > o Fyp s
Tot Lower bound of stream s entering all blenders prior to time point ¢

(" Minimum upper bound of all continuous subranges of >, .5 >, _, Fopy

Nonnegative continuous variables

Iss,b,t Inventory of stream s in blender b at time point ¢

Iy, Total inventory of blender b at time point ¢

Fsp:  Flowrate from stream source s to blender b during time period ¢

Fjbm’t Flowrate of stream s from blender b to product sink p during time period ¢
F,p:  Total flowrate from blender b to product sink p during time period ¢

Cspr  Proportion of stream s in blender b at time point ¢

Ry, Split fraction from blender b to product p during time period ¢
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Binary variables
Xs,b,t 1 if stream source s is charging blender b during time period ¢

Xppe 1if blender b is delivering product p during time period ¢

Auxiliary variables for computing the tightening parameters

Iy, Amount of stream s used for producing product p within the range [min{CbLm b e

B}, max{w, : b € B}], used for computing 6, and 6,
Csp Proportion of stream s in product p, used for computing Uljp and vgp

Fs,: Amount of stream s used for producing product p by time point ¢, used for computing

Xs,t

Models

MF®) The proportion-based (P-)formulation or the split-fraction-based (S-)formulation
RMFP®) The convex relaxation of the P- or S-formulation

RMY A model consisting of RM" and a tightening constraint x

b(g)MP®) Solving the P- or S- formulation using the solver BARON (b) or GUROBI (g)

b(g)ME(S) A model consisting of b(g)M"®) and a tightening constraint x
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