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In load carrying structures and devices, there is a growing need for shape memory polymer (SMP) 
metamaterials that are lightweight and have superior strength, remarkable !exibility, and substantial 
speci"c recovery force (SFR). One of the challenges is to "nd optimum lightweight structures with 
high SFR. To address this challenge, we propose a novel inverse design framework to design plate- 
lattice structures (PLSs) with user-de"ned optimum speci"c maximum compression strength. Consisting 
of three sub-frameworks, the performance of the inverse design framework was validated before it 
was utilized to optimize PLSs. The optimum PLSs developed are fabricated with 3D printing using a 
novel SMP. In addition, we have printed a solid cylinder and Cubic + Octet (control) PLSs to compare 
their structural capacity with the predicted structures. The optimized PLSs display 30 ∼ 170 % greater 
SFR compared to the control PLS and solid cylinder. These "ndings suggest a promising strategy 
for enhancing the effectiveness of actuators based on SMP mechanical metamaterials. The inverse 
design framework has the potential to be utilized for generating structures with user-de"ned optimum 
mechanical properties. 
1 Introduction 
In recent years, 4D printing has emerged as a revolutionary 
technology in the realm of manufacturing [ 1 , 2 ]. Unlike traditional 
3D printing, which focuses on creating parts with permanent 
shapes, 4D printing adds an extra dimension of time, enabling 
printed structures to transform and adapt to their environment 
with time. This transformative capability is achieved through the 
integration of shape memory polymers (SMPs) as inks. While 
other stimuli-responsive polymers respond to stimuli like light 
[ 3 ], electricity [ 4 ], or magnetic !elds [ 5 ], SMPs are distinguished 
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by their reversible shape transformations primarily induced by 
temperature shifts, typically the glass-transition temperature [ 6 , 7 ]. 

The shape memory effect in polymers opens up a myriad 
of possibilities for applications in self-healing [ 8 ], biomedical 
devices [ 9 ], aerospace engineering [ 10 ], soft robotics [ 11 ], tissue 
regeneration [ 12 ], arti!cial muscles [ 13 ], sealant [ 14 ], and loss 
circulation materials [ 15 ]. However, achieving ef!cient and 
reliable shape recovery remains a critical challenge. Enhancing 
shape recovery in polymers is a key area of research to fully 
harness the potential of shape memory materials. In addition 
to the remarkable shape recovery capabilities of 4D printed 
SMP structures, the importance of force recovery is becoming 
more evident for certain applications. One notable area is the 
development of adaptive structures, where SMPs with high 
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force recovery are employed to enhance structural integrity and 
responsiveness [ 16 ]. Moreover, SMPs with high force recovery 
have been utilized in !elds such as aerospace, robotics, medical 
devices, and wearable technology [ 17–19 ]. Recovery force in a 
speci!c SMP is solely determined by the programmed strain, since 
factors like rubbery modulus, shape recovery ratio, and shape 
!xity ratio are usually considered to be speci!c to the SMP itself. In 
simpler terms, greater displacement during programming results 
in increased strain, which in turn leads to higher energy storage 
and improved recovery force. 

Common knowledge suggests that when a material is shaped 
into different structures such as I-beams, lattices, honeycombs, or 
auxetic structures instead of a solid cube or beam, its ability to 
carry loads can be substantially improved [ 20 ]. Likewise, there is 
an expectation that employing 3D printing for the fabrication of 
metamaterials from shape memory polymers (SMPs) could lead 
to an enhancement in the speci!c recovery force (SFR) when 
compared to solid SMP structures. One of the famous classes of 
arti!cial structures is the truss lattice structure. Previously, we 
designed biomimetic lattice structures with enhanced resistance 
to buckling [ 21 ]. The octet-truss structure is widely regarded 
as the most superior lattice in terms of mechanical properties 
among various truss lattices [ 22 ]. However, it is still not 
considered the optimal choice. Even though lattice structures 
have been the primary choice in mechanical metamaterials for 
the last twenty years, their performance is restricted due to poor 
structural ef!ciency. Another type of lattice structure is known as 
"Shellular," which combines the terms "shell" and "cellular". In 
this particular structure, the cells are made up of seamless and 
smoothly curved shells [ 23 ]. While shellular structures possess 
notable mathematical signi!cance, they often fail to meet the 
performance requirements expected for load-bearing structures. 

Plate-lattice structures (PLS), a type of mechanical metamaterial 
inspired by the closed-cell structures found in nature, have been 
increasingly garnering attention within the !eld of mechanical 
engineering. These materials are composed of plates that utilize 
material constraints in two directions [ 24 ]. During investigations 
into pure stiffness optimization, Sigmund et al. [ 25 ] made a 
noteworthy observation that optimal structures such as truss- 
like structures tend to be close-walled rather than open-walled. 
This study indicates that a closed box with a microstructure 
consisting of thin walls displayed a signi!cantly higher stiffness, 
around 2-3 times greater, compared to an open cell structure 
featuring 12 trusses positioned along the edges of a cube with 
a low volume fraction. Furthermore, Liu et al. [ 26 ] used an 
analytical method to show that the stiffness of a cubic plate 
is two times higher than the stiffness of a cubic truss of 
the same mass. In any given loading direction, plate-lattices 
exhibit superior structural ef!ciency, meaning they distribute 
strain energy more evenly among their components and have 
a greater proportion of members aligned favorably with the 
loading direction, in contrast to a corresponding beam-lattice 
[ 27 ]. Therefore, the !ndings suggest that further investigation 
is warranted for the PLS. Nevertheless, these bene!ts are offset 
by a substantial rise in fabrication complexity. The closed-cell 
structures of three-dimensional plate lattices render traditional 
fabrication methods, such as assembly techniques unfeasible, 

leaving additive manufacturing as the sole viable approach. 
However, extracting raw materials contained within the closed 
cells remains a dif!cult task [ 24 ]. Furthermore, while PLS exhibits 
high stiffness, it does not ensure high recovery force if the material 
used is an SMP. As discussed above, a high recovery force is 
required for some applications. Hence, these structures should be 
studied further to address this problem. 

Various methods have been employed in the literature to 
optimize metamaterials due to the wide range of parameters 
that can affect their properties [ 28–30 ]. A combination of 
homogenization schemes and genetic algorithms has been 
utilized in inverse engineering of metamaterials to identify 
architectures beyond orthotropy [ 31 ]. Also, the topology 
optimization method has been used to investigate acoustic 
metamaterials [ 32 ]. This technique discovered a subwavelength 
bandgap that inhibits the propagation of low-frequency 
sounds. In multiple investigations, !nite element method 
(FEM) has been employed as a common technique to generate 
data for the optimization of lattice structures, composites, 
and metamaterials [ 33–35 ]. As a case in point, FEM analysis 
has been applied to study two-dimensional auxetic lattice 
structures. This investigation leveraged the shape memory effect 
inherent in the constituent material to predict both the in-plane 
modulus and Poisson’s ratio of the structure [ 36 ]. Optimization 
techniques commonly employed in engineering design are often 
characterized by their time-consuming nature, sensitivity to 
initial and boundary conditions, and constraints imposed by 
limited design parameters. However, the integration of machine 
learning (ML) methods and conditional generative adversarial 
networks (CGANs) provides a promising avenue to expedite the 
design process and facilitate the discovery of structures with 
user-de!ned and optimum properties. 

ML is a !eld of arti!cial intelligence where algorithms 
enable computers to learn from data and make predictions or 
perform tasks without explicit programming. In optimization, 
ML algorithms can ef!ciently search through a vast design 
space, predict performance metrics, and guide the exploration 
of promising solutions, leading to improved ef!ciency and 
effectiveness in solving optimization problems. One common 
approach is to use machine learning algorithms, such as neural 
networks, to establish a mapping between the design parameters 
and the desired properties or performance metrics of various 
structures [ 37-40 ]. A machine learning-based model has been 
developed to !nd the optimum parameters affecting stiffness 
and forward/backward snapping force of curved beams [ 41 ]. A 
new 3D-printed unit cell has been devised with maximum elastic 
modulus and minimum wave speed inside the structure, using 
convolutional neural networks [ 42 ]. In a recent study in our 
group, a unique framework consisting of a Generative Adversarial 
Network (GAN) and a machine learning regression model has 
been developed to discover thin-walled structures with high-stress 
recovery [ 43 ]. Growth-based cellular metamaterials have been 
optimized based on their star-shaped distances using an inverse 
machine learning framework [ 44 ]. The proposed framework for 
inverse design encompasses a wide range of achievable anisotropic 
stiffness properties. In earlier !ndings, we documented the 
discovery of several innovative lightweight metamaterials that 
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Fig. 1 
Schematic of the work!ow of the Python script used to simulate PLSs. 
exhibit enhanced impact energy absorption capabilities, increased 
natural frequencies, and exceptional compression strengths, 
buckling loads [ 39 , 45 , 46 ]. However, few structures have been 
studied regarding shape recovery properties in mechanical 
metamaterials in the literature. 

This paper introduces a novel inverse design framework 
containing a deep neural network (DNN) model and CGANs, 
which aims to identify orthotropic PLSs with user-de!ned and 
optimum mechanical properties for the !rst time. Two samples 
with user-de!ned properties are generated to validate the accuracy 
of the framework. Note that the recovery force depends on both 
the structural design and the SMP itself. While many efforts have 
been made to enhance the recovery force of SMPs, such as using 
enthalpy increase during programming as a mechanism of energy 
storage [ 47 ], this study focuses on structural design. Speci!cally, 
all the designed PLSs are made of the same SMP. Furthermore, 
FEM has been used to simulate the mechanical behavior of 
PLSs and generate data for training the framework. Optimum 
PLSs have been additively manufactured by a DLP (Digital Light 
Processing) printer to validate numerical simulations and to study 
force recovery properties. Several signi!cant fabrication hurdles 
have been successfully addressed, including the elimination of 
surplus raw material pockets. The inverse design framework has 
the capacity to be employed in optimizing a broad spectrum of 
designs and uses in the realm of structural engineering. 
2 Materials and methods 
2.1 Automated simulations 
FEM using Abaqus has been utilized in this investigation to 
simulate PLSs. The aim of this numerical analysis is to prepare a 
training dataset for machine learning, obtaining parameters such 
as geometrical parameters, !ngerprints, the speci!c maximum 
compression force (SMCF), and the mass of the model. The 
novel method for !ngerprinting each PLS will be explained in 
detail in Section 2.2 . The amount of data plays a crucial role in 
machine learning as it directly impacts the model’s performance 
and generalization ability. As the quantity of independent 
variables affecting outcomes grows, the required data size for 
ef!ciently training a model also expands in correlation with the 
escalation of independent variables. In this study, 2000 randomly 
generated !ngerprints using the Mersenne Twister Algorithm [ 48 ] 
have been obtained as an input !le to a novel Python script 
to generate, submit, and post-process each PLS to print the 

calculated maximum compressive force and mass in an output 
!le. Afterward, The SMCF of each structure is calculated using the 
obtained data. The script for all !nite element models is generated 
using Python version 3.10.0 and then processed using Abaqus 
version 2022 for computation. The schematic of this script is 
indicated in Fig. 1 . 

The overall ability of a structure to recover its original shape 
depends on two main factors: the shape recovery ratio of the 
SMP used, and the structural con!guration. For given SMPs, 
their recovery force is in"uenced by the amount of strain 
they experienced during the programming phase. The term 
"programming phase" refers to the process in which the shape 
memory polymer (SMP) undergoes thermomechanical cycles to 
establish its temporary shape, which can later recover upon 
exposure to speci!c stimuli such as heat. In this study, the 
programming phase includes heating up the SMP structure above 
the glass transition temperature, applying pre-strain, cooling 
to below the glass transition temperature while holding the 
pre-strain constant, and unloading accompanied by a small 
springback. 

Moreover, the design of the structure can indeed be a key 
parameter in determining the recovery force of a shape memory 
polymer. When the SMP is restrained to recover its original shape, 
the stored strain energy enables it to exert a stronger recovery 
force. While the recovery force is in"uenced by the amount of 
strain the SMP experienced during the programming phase, the 
structure into which the SMP is formed can affect how that 
strain is distributed and the ef!ciency of the shape recovery. 
The geometry of the structure can in"uence the distribution of 
strain and the overall recovery force. More complex structures may 
experience different stress and strain patterns during deformation 
and recovery. Since the programming phase of the structures 
in the experimental section is in the elastic range, in this 
investigation, PLSs undergo a !xed strain of 5 % to discover the 
PLS designs that have higher compressive force in this range of 
deformation. Consequently, during the simulations, the SMCF of 
the PLSs has been recorded. 

To ensure reliable and consistent results, a mesh convergence 
analysis has been performed and the mesh size is con!gured to be 
1.2mm. The numerical analysis concentrates exclusively on the 
elastic properties of the shape memory polymer (SMP) material. 
This approach is adopted to streamline the process and save time, 
avoiding the complexities that would arise from incorporating 
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Fig. 2 
The initial con"guration before the simulation process, highlighting the 
geometric details of the structural model. 
viscoelastic properties into the analysis. This is a reasonable 
assumption because if the PLS is programmed and recovered at 
rubbery state, the SMP can be treated as an elastic material. By 
excluding the viscoelastic aspects, the analysis becomes more 
ef!cient and less time-consuming, while still providing valuable 
insights into the behavior of the material under study. However, 
we must admit that polymers, including 3D printable polymers, 
are viscoelastic. Therefore, a more in-depth study should consider 
the nonlinear viscoelastic or even plastic behavior of the SMPs 
[ 49–52 ]. 

To calculate the elastic modulus of the polymer for simulations, 
experimental tests have been conducted based on the ASTM D695 
standard test [ 53 ]. All the models are provided with an elastic 
material characterized by Young’s modulus of 375 MPa and a 
Poisson’s ratio of 0.4. Simulations are done through dynamic 
implicit analysis and PLSs are modeled using 4-node linear 
tetrahedron (C3D4) elements. Additionally, the load is applied 
by providing a 5 % strain in the vertical direction (Y-direction) 
to the loading head. A single support and one loading head 
are characterized as perfectly rigid cubic bodies measuring 30 
by 30 by 2mm in size as presented in Fig. 2 . Normal contact 
behavior is implemented between the PLS and the load cells 
using a rigid contact formulation. This choice ensures that no 
penetration occurs between the contacting surfaces, mimicking 
a rigid interaction. For tangential behavior, a penalty friction 
formulation with a friction coef!cient of 0.3 is speci!ed. This 
coef!cient value represents the frictional resistance between the 
load cell and PLS surfaces in contact. By specifying this value, we 
aimed to simulate the frictional effects present in the experimental 
setup accurately. Additionally, due to the complexity of the 

model and the presence of several walls in the structure, the 
general contact feature has been implemented in the model. The 
model’s dimensions match those of the experimental tests. The 
workstation boasts an i7 processor with 32 GB of RAM. It requires 
approximately 84 man-hours to complete the computational tasks 
for the training dataset, which encompass tasks such as generating 
models in Abaqus, submitting jobs, and post-processing. 
2.2 Dataset generation and !ngerprinting for PLSs 
DNN is a powerful technique in predicting the output, based on 
given input parameters. Based on the number of independent 
variables affecting the output, the number of required training 
data changes. DNNs need a larger training dataset as the 
number of independent variables increases. To effectively train 
a DNN, a training dataset should be supplied, comprising 
both the inputs (structures) and the corresponding outputs 
(intended mechanical characteristics of each PLS). In order for 
the DNN to understand the PLSs, the structures need to undergo 
!ngerprinting. Fingerprinting involves the conversion of each PLS 
into a digital sequence or pattern of numbers that can be read by 
a machine. In this section, we delineate the approach utilized to 
create our dataset aimed at predicting the mechanical properties 
of PLSs. 

In the proposed structure, there are 20 types of walls with 
different orientations. Each of these walls has a speci!c position 
in the !ngerprint array. In this research, every structure is 
initially identi!ed by using the amalgamation of all the walls 
that constitute one-eighth of a representative volume element 
(RVE). A !ngerprint comprises a sequence of 20 binary digits 
(e.g., "11100011000100010010") that denote the presence of 
walls within a PLS. Since the position of the walls in the RVE 
remains !xed, every PLS can possess a distinct and unique 
!ngerprint. In Fig. 3 (a), a number has been assigned to 
each corner of the RVE to facilitate the !ngerprinting process. 
Furthermore, Table 1 indicates the code of the walls and their 
corresponding positions in the !ngerprint. Walls identi!ed by 
four-digit codes represent quadrilateral structures, while three- 
digit codes correspond to triangular walls. For example, with 
the !ngerprint "10100000000100010000", we can locate the 
corresponding unit cell depicted in Fig. 3 (b). As depicted in 
Fig. 3 (b), walls with codes 1526, 8473, 5643, and 163 are 
present in one-eighth of this PLS. These codes dictate the 
establishment of a wall between designated corners, with the 
associated binary digits in the !ngerprint set to ’1,’ while the 
remaining digits should remain ’0′ . The process of converting 
any structure into a !ngerprint, and vice versa , can be readily 
followed. 

Table 1 
Coding scheme for walls and their positions in the !ngerprint. 

Wall Position Wall Position Wall Position Wall Position Wall Position 
1526 1 5867 2 8473 3 1423 4 2367 5 
1548 6 1537 7 1467 8 5823 9 4826 10 
1287 11 5643 12 527 13 427 14 836 15 
163 16 183 17 186 18 542 19 547 20 
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Fig. 3 
The process of creating a PLS, based on a unique "ngerprint. a) indicates the code corresponding to one-eighth of an RVE. b) Represents the process of mirroring 
a unit cell ("10100000000100010000") to create a full RVE. 

After one-eighth of the RVE is ready, it must be mirrored 
with respect to various directions of the 3D coordinate system. 
The mirroring process and the !nal RVE with the !ngerprint 
"10100000000100010000" can be seen in Fig. 3 (b). Using this 
method, about one million PLSs can be generated (See Fig. S1 
for sample structures and their respective !ngerprints). Using 
the Mersenne Twister Algorithm in Python, 2000 !ngerprints 
were generated randomly considering the boundary conditions. 
While some combination of walls results in structures that are 
not interconnected, speci!c boundary conditions have been 
considered in the generation of !ngerprints. Consequently, the 
generated !ngerprints were given to the Python script as a text !le 
to generate the PLS models in Abaqus. The closed-cell structures 
found in PLSs render traditional fabrication methods, such as 
assembly techniques, unfeasible, necessitating AM as the sole 
viable approach. However, the extraction of raw materials from 
within these enclosed cells poses a persistent challenge. To address 
this issue, small holes with a 1 mm diameter are incorporated 
on the surfaces of the plates, which enables the elimination of 
the unpolymerized resin after the printing process, even in the 
presence of a closed-cell topology. The position of these holes is 
!xed on each plate, so they are not included in the !ngerprinting 
process. 
2.3 DNN prediction 
To improve the recovery force of PLSs, structures should have 
high stiffness in the rubbery state. One of the goals of this 
study is to !nd optimum PLSs with high SFR. Due to the 
substantial size of the dataset involved in this investigation, 
experimental and numerical analysis of each structure is an 

expensive and time-consuming project. The experimental process 
includes creating the structure, setting up the experiments, and 
conducting thermomechanical tests. This can be very time- 
consuming, especially when dealing with multiple samples. On 
the other hand, numerical analysis can be quite intricate due to 
the involvement of thermomechanical features, and non-linear 
material properties. Consequently, a DNN has been developed to 
predict the SMCF of each PLS. The schematic of the DNN has been 
presented in Fig. 4 . Fingerprints are given as the input parameters 
to the network and their corresponding SMCF is the output of 
the network. The details for the DNN model’s speci!cations are 
outlined in Table S1 . 

The DNN architecture was constructed using the Keras library 
[ 54 ], with sequential layers consisting of dense units. Several 
activation functions were examined to train the model and 
!nally, the ReLu function was selected due to the enhanced level 
of accuracy. The input features were processed and normalized 
using the MinMaxScaler from the sci-kit-learn library to ensure 
consistent scaling across the dataset. The dataset was then divided 
into training (85 %) and testing (15 %) sets for model evaluation. 

To facilitate the learning process, the DNN model utilized 
the mean absolute error (MAE) loss function and the Adam 
optimizer with a learning rate of 0.0001. The model was 
trained over 800 epochs with a batch size of 64, enabling it 
to capture complex relationships within the data and optimize 
the prediction accuracy. The performance of the DNN is assessed 
using the testing set throughout the entire training process, which 
consists of 800 epochs of updating the network weights. Fig. 5 (a) 
indicates that the MAE is decreased from 48.045 % and 50.96 % to 
0.29 % and 1.41 % in training and testing sets, respectively. After 
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Fig. 4 
The schematic of the DNN used for predicting the SMCF of each structure. 

Fig. 5 
(a) MAE ( %) evolution over 800 epochs of training, assessed on training and testing sets. (b) R-squared plot for SMCF showcasing the correlation between mechanical 
properties of the PLSs using the DNN. 
approximately 400 epochs, as depicted in Fig. 5 a , the error plot 
reaches a plateau, indicating convergence of the model’s training 
process. Despite this stabilization, we continued training up to 
800 epochs to ensure the convergence is stable. This extended 
training duration allowed for thorough exploration of the model’s 
performance beyond convergence with minimal time investment. 

The model was evaluated using an R-squared score. Fig. 5 (b) 
displays the regression plot for SMCF, showcasing a R-squared 
value of 0.96 . The SMCF regression plot shows the relationship 
between predicted and actual values, with a well-!tted model 
displaying a tight cluster of points along a diagonal line. This 
DNN model offers a promising approach for predicting the SMCF 
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Fig. 6 
The schematic of the inverse design framework for generating PLSs with user-de"ned and superior SMCF. 
of PLSs, providing valuable insights for engineering applications 
and decision-making processes. 
2.4 Inverse design using CGANs 
The goal of this framework is to !nd structures with user- 
de!ned mechanical properties and, the structures with superior 
SMCF. Inverse design presents an innovative approach aimed 
at achieving a fundamental goal: crafting structures tailored to 
speci!c mechanical properties designated by the user. Since the 
number of structures in this study is very high, which makes the 
optimization process complicated for conventional methods such 
as genetic algorithms, topology optimization, etc., a novel inverse 
design framework has been developed to simplify the process 
of reaching the user-de!ned properties. Previously, Challapalli 
et al. [ 43 ] designed a framework to optimize thin-walled structures 
using GANs. They improved the speci!c recovery stress of a thin- 
walled structure by 50 % as compared with a honeycomb unit cell. 
Furthermore, CGANS has been used to predict the geometrical 
pattern of auxetic metamaterials with user-de!ned mechanical 
properties [ 35 ]. Uniaxial compression test and FEM have been 
used to validate their inverse design framework. 

CGANs are a class of deep learning models that combine 
the power of generative models with the ability to control 
their output. They introduce a conditional component, 

allowing users to specify desired attributes or characteristics 
for the generated samples. The framework consists of a PLS 
generation network (PGN), a condition forecast network (CFN), 
and a SMCF optimization network (SON) ( Fig. 6 ). In PGN, 
the generator aims to produce authentic !ngerprints that 
match the speci!ed conditions (user de!ned SMCF), while 
the discriminator learns to distinguish between real and fake 
!ngerprints and the condition of each !ngerprint. In this study, 
the term “real !ngerprint” means a !ngerprint that not only 
consists of 20 binary digits like the input !ngerprints but also 
has a SMCF close to the user-de!ned input. The generator is 
trained iteratively alongside the discriminator in an adversarial 
manner. During each training epoch, the discriminator is !rst 
trained using a batch of real structural !ngerprints paired 
with their corresponding mechanical properties, including 
normalized SMCF. Simultaneously, the generator produces 
synthetic structural !ngerprints based on random noise inputs 
and randomly generated mechanical property conditions falling 
within prede!ned ranges. The generator’s objective is to deceive 
the discriminator by producing synthetic !ngerprints that 
are indistinguishable from real ones, effectively matching 
the desired mechanical properties speci!ed by the user. To 
achieve this, the generator adjusts its parameters based on the 
feedback from the discriminator, striving to generate increasingly 
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accurate !ngerprints corresponding to the desired mechanical 
properties. 

Afterward, the CFN uses the trained DNN in the previous 
section to predict the SMCF of the generated !ngerprints in PGN 
to estimate error and update weights. Moreover, the SON screens 
out the PLSs with superior SMCF using the trained DNN. 
2.5 Performance of the inverse design framework 
Evaluating the accuracy of the framework poses a formidable 
challenge due to its inherent complexity. Traditional evaluation 
metrics like accuracy, often used for classi!ers, are ill-suited for 
CGANs. Metrics such as Inception Score and Frechet Inception 
Distance attempt to capture the quality and diversity of generated 
samples but are not without limitations [ 55 ]. In this study, 
we employed several methodologies to assess the ef!cacy of 
the inverse design framework. Firstly, the MAE calculation was 
employed as a pivotal metric. Throughout the training epochs, 
synthetic structural !ngerprints were generated by the CGAN, 
accompanied by randomly assigned input conditions. The DNN 
predicts the corresponding normalized SMCF for each !ngerprint, 
and the MAE was computed as the absolute difference between 
the output of the DNN and the predetermined input target. This 
approach facilitated a relative assessment of deviation, providing 
insights into the model’s performance in generating structural 
designs aligned with speci!ed mechanical property targets. Fig. 7 
(a) indicates the Binary Cross Entropy Loss of the generator 
and discriminator along with MAE between the output of the 
SMCF estimator and the input target. MAE stabilized around 7 
% after around 300 epochs. The generator and discriminator’s 
speci!cations are presented in Table S2 (Model 4). 

Moreover, to assess the performance of the framework at 
various input conditions, 120 normalized values between 0 and 
1 were selected uniformly and used to generate 500 !ngerprints 
for each value. The average of the MAE between the target 
values and the SMCF of the generated !ngerprints is illustrated 
in Fig. 7 (b) . At lower SMCFs within the design space, MAE 
"uctuates considerably between about 9 % and 4.5 %, but in input 
conditions above 1200 N 

g/cm3 the MAE stabilizes around 6.5%. The 
"uctuation in MAE at lower input conditions could be attributed 
to the unequal distribution or disparity within the training 
dataset. Nonetheless, across all input conditions, the average MAE 
remains stable at 6.72 ±0.23%, showcasing the technical viability 
of generating a collection of ef!cient PLSs for exploring further 
mechanical properties. 

Additionally, 1000 labels were selected from the available input 
condition space and compared with their corresponding output 
labels generated by the DNN model. Illustrated in Fig. 7 (c) , the 
input values are represented on the horizontal axis while the 
output values are on the vertical axis. The proximity of points to 
the reference line X = Y indicates the degree to which the output 
labels align with our input labels. 

Two samples were selected for FEM validation of the inverse 
design framework ( Fig. 8 ). The framework was provided with 
the desired SMCF, yielding a !ngerprint with properties that 
closely match the user-de!ned value. The !ngerprint is then used 
to generate and simulate the corresponding PLS based on the 
explained process in Table 1 and Fig.1. The minimal discrepancies 

(3.05 % in sample 1 and 0.1 % in sample 2) observed between 
the target SMCF and the simulated output values demonstrate 
the remarkable precision of the inverse design framework in 
generating PLSs with user-de!ned properties. 
2.6 PLS optimization process 
For the optimization process, the CGAN converted to a GAN to 
develop a generator which is able to generate PLSs with superior 
SMCF. The GAN only needs random noise for the training process 
and the input conditions are eliminated. Firstly, we conducted 
an analysis involving the generation of 2000 unique !ngerprints, 
serving as a benchmark to evaluate the diversity and uniqueness of 
the data synthesized by the GANs. This is a crucial aspect to ensure 
that the model is not only producing accurate samples but also a 
wide variety of them. To enhance the uniqueness of the generated 
!ngerprints, we systematically varied the number of neurons and 
the activation function of each layer in both the generator and 
discriminator components of the GAN architecture. Through an 
iterative process, we aimed to identify the optimal con!guration 
that maximizes the production of distinct !ngerprints. Fig. 9 (a) 
elucidates the number of unique !ngerprints generated by !ve 
models. The details for each model’s speci!cations are outlined in 
Table S2 . Taking into account the epoch count, the time duration 
for each training epoch, and the quantity of distinct !ngerprints, 
Model-4 is chosen to proceed with the ongoing process. After 
approximately 500 epochs, Model-4 can produce !ngerprints with 
a uniqueness of about 87.5 %. 

The optimization is done in an iterative process. In the !rst 
iteration, the GAN is given 10000 unique !ngerprints to be trained 
and generate new !ngerprints. Then, the SMCF of each new 
!ngerprint is predicted using the estimator. Fingerprints are sorted 
in terms of the SMCF and for the next iteration top !ngerprints 
with higher MCF are given to the framework. In every iteration, 
the average normalized SMCF of the generated !ngerprints is 
calculated and illustrated in Fig. 9 (b). 

This plot indicates that the average normalized SMCF of 
!ngerprints increases gradually through 25 iterations and reaches 
a plateau. After 25 iterations the average normalized SMCF of the 
PLSs increased by 61.8 %. This number in the !nal iterations is 
nearly approaching "1", suggesting that some of the generated 
structures outperform the PLSs present in the input data. The top 
10 % of !ngerprints in each iteration were saved and compared 
with the other iterations. The top !ngerprints in the last !ve 
iterations were approximately the same which indicates that 
the optimization algorithm has converged. Furthermore. The 
top !ngerprints of the last iteration are selected for further 
investigations. 

The design criterion in this optimization is to !nd orthotropic 
structures with superior SMCF within the vast design space. 
Following the abovementioned steps, !nally, PLSs with the 
following !ngerprints are selected as the top three superior 
structures, respectively: 11110000001100100100 (Best-1), 
11110000001100010101 (Best-2), 11010000001100110000 
(Best-Iso). From this point in the article onwards, these 
structures are mentioned using their summarized name as 
Best-1, Best-2, and Best-Iso. Best-1 and Best-2 are the best 
orthotropic structures regarding SMCF and Best-Iso is the best 
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Fig. 7 
(a) Training progression of the CGAN, showcasing discriminator and generator losses alongside MAE ( %) evolution over 400 epochs. (b) Variation of MAE ( %) of the 
CGAN across di#erent input conditions, indicating model performance for predicting SMCF. (c) Comparison between output and desired SMCF values generated 
by the framework. 
isotropic structure. To demonstrate the performance of the 
PLSs, they have been compared to the Cubic + Octet structure 
(11001000000000111100), recognized as a superior PLS in 
literature [ 24 ]. Henceforth, the Cubic + Octet PLS will be denoted 
as the Control structure. 

2.7 Experimental validation of cellular PLSs through 3D printing 
With the aim of designing PLSs with enhanced recovery force, 
the optimal structures identi!ed in the preceding section are 3D- 
printed using an open material DLP Addit. Manuf. system (Bison 
1000). The printing process operates at a temperature of 40 °C, 
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Fig. 8 
Numerical validation of the inverse design framework. (a) Sample 1 validation with the "ngerprint (01000001101101100110). (b) Sample 2 validation with the 
"ngerprint (00100000001111010110). 
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Fig. 9 
(a) The number of unique "ngerprints generated by the various models used in the otimization process (b) The average normalized SMCF of the PLSs in each 
iteration. 
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and the layer thickness is set at 25 µm. At !rst, the structures 
were designed in Abaqus and saved with the STEP format. Then 
each STL !le was imported to Solidworks 2022 and saved as an 
STL (Stereo Lithography) !le. The dimensions of the PLSs were 
20 ×20 ×20 mm and the thickness of the plates were 0.25, 0.35, 
0.45, and 0.55 mm. In order to conduct a performance comparison 
between the PLSs and the bulk polymer, solid cylinders were 
fabricated (12.5mm in diameter and 25mm in height) using the 
3D printer. The SMP utilized in this investigation is created by 
blending 60 % Tris[2-(acryloyloxy) ethyl] isocyanurate with 40 
% EPON 826 resin. A comprehensive examination, including the 
synthesis process, thorough characterization, and the outcomes of 
various tests, will be documented and presented in a forthcoming 
research paper. After the 3D printing process using the Bison 
1000 DLP Addit. Manuf. system, the printed structures, including 
the PLSs and solid cylinders, underwent a crucial postprocessing 
phase to enhance their mechanical properties. The postprocessing 
involved a thorough washing of the 3D-printed objects to remove 
any residual uncured resin and support material. Subsequently, 
the samples were subjected to a post-curing process to ensure 
optimal cross-linking and mechanical strength. This post-curing 
step typically involves exposing the printed objects to ultraviolet 
(UV) light for 3min. Both the postprocessing steps have been done 
in the Anycubic Wash & Cure Plus Machine. 

To perform the shape memory programming and force 
recovery tests, an MTS machine manufactured by ADMET 
(Model: 1210FHH-2K-B, USA) equipped with a heating chamber 
is employed. The heating chamber is preheated to approximately 
70 °C (with the bulk polymer’s glass transition temperature being 
around 65 °C) for one hour before the training process. This 
precaution is implemented to avoid any misleading readings 
induced by thermal expansions in the !xtures. After the chamber 
reaches the desired temperature and is prepared, the samples are 
left to equilibrate inside for 30 minutes to achieve the rubbery 
state. Afterward, the samples undergo compression programming, 
reaching a 7.5 % strain at a displacement rate of 0.2 mm/min. 
Once the speci!ed strain percentage is attained, the specimens 
are stabilized in their compressed form by rapidly lowering the 
temperature to room temperature while keeping the strain at a 
constant level. Upon returning to room temperature, the load 
is released to stabilize a temporary shape. It is noteworthy that 
the shape !xity ratio, as de!ned in Eq. (1) , is nearly 100 % for 
all structures. Subsequently, the recovery force for each sample 
is measured using the MTS machine. This involves reheating the 
samples back to 70 °C while maintaining the recovery strain at 
zero. 

F = ε f 
εl × 100% (1) 

here, ε f represents the strain that remains !xed after the load is 
removed, while εl denotes the strain measured before the load is 
removed. 
3 Results 
Decision tree analysis was used to quantify the importance 
of individual walls in a PLS performance, employing binary 
!ngerprints as features. The methodology elucidates critical walls 
impacting SMCF, providing insights for structural optimization 

and design decisions. Moreover, the optimum PLSs, which were 
suggested using the inverse design approach in the preceding 
sections, were simulated, and additively manufactured for the 
purpose of numerical and experimental veri!cation. Additionally, 
shape recovery tests were performed on the optimum structures 
to compare their performance. 

Firstly, we assessed the contribution of each wall and its 
ability to withstand compressive loads using a Decision Tree 
Regressor model. Each wall is represented by a binary !ngerprint 
encoding its structural position. The model is trained on a 
dataset comprising 2000 !ngerprints and corresponding SMCF. 
The feature importance is computed for each wall from the trained 
model ( Fig. 10 ), revealing the relative contribution of each wall to 
the overall structural performance. 

The resulting feature importance depicts the signi!cance of 
each wall in a PLS, with higher values indicating greater in"uence. 
Speci!cally, walls 11, 12, 4, and 3 emerge as the most critical 
components in terms of load tolerance within a PLS. In addition, 
this result validates the optimization process as the mentioned 
walls are present in the selected structures. While the Best-1 and 
Best-2 structures have eight and nine walls in their structures, 
respectively, all four of the most in"uential walls are present in 
both structures. 

Fig. 11 illustrates numerical comparisons carried out using 
the Abaqus simulation tool, in conjunction with experimental 
validations, for PLSs. In Fig. 11 , it is important to highlight that 
the comparisons were speci!cally based on the wall thickness 
of the PLSs. The suggested PLSs can be observed to demonstrate 
superior relative compression force characteristics when compared 
to the conventional Control structure. Moreover, the small 
error between the numerical and experimental results of each 
PLS indicates the accuracy of the presented FEM model. The 
incongruence between simulation outcomes and experimental 
!ndings can be ascribed to the inherent abstractions in the 
simulation model, which may oversimplify intricate real-world 
dynamics. Discrepancies might also arise from variations in 
boundary conditions, material properties, and the inherent 
uncertainty in measurement precision during experimental 
procedures. Results indicate that among the optimum PLSs, the 
Best-1 structure has the highest SMCF by an average of 79.66 
% over all plate thicknesses compared to the Control structure. 
After that Best-2 and Best-Iso, by an average of 70.55 % and 
22.72 %, respectively, have higher SMCF compared to the Control 
structure. 

We would like to further explain the difference between the 
experimental results and FEM results. In this study, PLS is a very 
complex structure with many sharp corners and edges, which 
are the locations for stress and strain concentrations. As a result, 
although the overall strain applied during the test is within the 
linear elastic region of the material, local strain concentration 
cannot be avoided, leading to !nite strain in local regions, which 
may exceed the linear elastic limit and become nonlinear elastic 
or even plastic. As a result, during the experiment, the material 
may experience nonlinear behavior, while our FEM only used 
linear elastic constitutive model, leading to deviation between the 
experiment and FEM results. As for the reason why the PLS with 
wall thickness of 0.35 mm has a higher normalized compressive 
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Fig. 10 
Relative importance of each wall in speci"c compressive load tolerance, depicted using a Decision Tree Regressor model. 

Fig. 11 
Comparative analysis between experimental results (indicated by solid lines) and numerical results (represented by dashed lines) for PLSs. 
force than the one with 0.45 wall thickness in the FEM, it is likely 
due to the local stress and strain concentrations in the PLS, leading 
to complex correlation between the normalized compressive force 
and the wall thickness. However, as discussed above, our FEM 
based on linear elasticity cannot capture this nonlinear behavior. 
This is a very interesting point, which will be a topic for our future 
studies. 

Fig. 12 illustrates the comparisons of the SRF between the 
optimal PLSs, the Control PLS and the solid cylinder. As depicted 
in Fig. 12 , the optimal PLSs exhibit approximately 30 ∼ 170 
% greater SRF (recovery force/density) when compared to the 

Control PLS with equivalent lattice member thickness. Moreover, 
while the solid cylinder is performing better than Best-2, Best- 
Iso, and Control in all wall thicknesses, the Best-1 structure has 
higher SRF compared to the solid cylinder in 0.45 and 0.55 
wall thicknesses by about 12–14 %. Furthermore, this result 
indicates that for a given volume and mass, the optimum design 
can produce higher recovery force compared to Control, solid 
cylinder, and other designs. 

Additionally, it is essential to recognize that the optimization 
process is dependent solely on the structural behavior of the 
PLSs. It is crucial to acknowledge that utilizing different SMPs can 
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Fig. 12 
Experimental comparisons for normalized speci"c recovery force of PLSs. 
in"uence both structural performance and the manifestation of 
the shape memory effect. In this study, the selected SMP displays 
brittleness at room temperature, which could potentially impose 
constraints on overall displacements before reaching fracture. The 
utilization of a more ductile SMP has the potential to enhance 
the extent of displacements during the training or programming 
of the structures. The observed correlation between higher wall 
thickness and increased SRF in PLSs is attributed to the greater 
structural stiffness and enhanced resistance to deformation in 
structures with thicker walls. The increased thickness contributes 
to higher energy storage capacity and, consequently, results in a 
more substantial recovery force during the shape memory effect. 
4 Conclusion 
The design possibilities in mechanical metamaterials like PLSs are 
vast. With the advancements in innovative simulation methods, 
machine learning models, and manufacturing techniques, the 
transition of these structures into practical applications is 
becoming signi!cantly more feasible. Despite signi!cant efforts in 
studying various PLSs and their behaviors, a considerable portion 
of the design space still awaits exploration. 

An Inverse design framework developed to generate PLSs with 
user-de!ned SMCF. Several methods implemented to validate the 
accuracy of the model. Across all input conditions, the average 
MAE remains stable at 6.72 ±0.23 % between the target values and 
the SMCF of the generated !ngerprints. Additionally, two samples 
were generated as case studies for the numerical validation of the 
framework. Error between the input condition and the SMCF of 

the generated PLSs were 3.05 % in sample 1 and 0.1 % in sample 
2. 

Furthermore, this work investigates lightweight PLSs with 
enhanced shape memory characteristics. A unique approach to 
design is introduced, utilizing a combination of DNN and GAN 
models to optimize the recovery force in these metamaterials. 
Incorporating small 1 mm diameter holes on the surfaces of 
the plates facilitated the elimination of unpolymerized resin 
after the printing process, even in the presence of a closed-cell 
topology. The accuracy of the predicted unit cells is con!rmed 
through both numerical simulations and experimental testing, 
demonstrating a performance improvement ranging from 22.7 % 
to 79.6 % compared to the Control PLS when subjected to uniaxial 
compression. We also studied the recovery force of the optimized 
structures and compared them with those of the Control PLS 
and a solid cylinder. The !ndings suggest that the optimal PLSs 
display an SFR (recovery force/density) approximately 30 ∼ 170 % 
higher than that of the Control PLS with the same lattice member 
thickness. Furthermore, while the solid cylinder outperforms 
Best-2, Best-Iso, and Control across all wall thicknesses, the 
Best-1 structure exhibits a higher recovery force than the solid 
cylinder by approximately 12-14 % at wall thicknesses of 0.45 
and 0.55. An aspect of the inverse machine learning framework 
is its capability to continually optimize PLSs. This is achieved 
through iterative processes, wherein the newly generated PLSs are 
employed as a training dataset for predicting the next generation 
of designs. The application of this framework extends beyond 
optimizing PLSs and can be employed for enhancing other 
forms of structural design. It enables the generation of novel 
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structures tailored to speci!c mechanical property ranges. Given 
the outstanding performance of the optimized plate-lattice unit 
cells and the reliable prediction accuracy of the DNNs and inverse 
design framework, it is evident that this technique is versatile 
enough to be utilized in the design and optimization of various 
metamaterials, including those geared towards impact absorption, 
increased deformation or buckling strengths, and shape recovery. 
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