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In load carrying structures and devices, there is a growing need for shape memory polymer (SMP)
metamaterials that are lightweight and have superior strength, remarkable flexibility, and substantial
specific recovery force (SFR). One of the challenges is to find optimum lightweight structures with
high SFR. To address this challenge, we propose a novel inverse design framework to design plate-
lattice structures (PLSs) with user-defined optimum specific maximum compression strength. Consisting
of three sub-frameworks, the performance of the inverse design framework was validated before it
was utilized to optimize PLSs. The optimum PLSs developed are fabricated with 3D printing using a
novel SMP. In addition, we have printed a solid cylinder and Cubic+Octet (control) PLSs to compare
their structural capacity with the predicted structures. The optimized PLSs display 30 ~ 170 % greater
SFR compared to the control PLS and solid cylinder. These findings suggest a promising strategy
for enhancing the effectiveness of actuators based on SMP mechanical metamaterials. The inverse
design framework has the potential to be utilized for generating structures with user-defined optimum
mechanical properties.

1 Introduction

In recent years, 4D printing has emerged as a revolutionary
technology in the realm of manufacturing [1,2]. Unlike traditional
3D printing, which focuses on creating parts with permanent
shapes, 4D printing adds an extra dimension of time, enabling
printed structures to transform and adapt to their environment
with time. This transformative capability is achieved through the
integration of shape memory polymers (SMPs) as inks. While
other stimuli-responsive polymers respond to stimuli like light
[3], electricity [4], or magnetic fields [5], SMPs are distinguished
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by their reversible shape transformations primarily induced by
temperature shifts, typically the glass-transition temperature [6,7].

The shape memory effect in polymers opens up a myriad
of possibilities for applications in self-healing [8], biomedical
devices [9], aerospace engineering [10], soft robotics [11], tissue
regeneration [12], artificial muscles [13], sealant [14], and loss
circulation materials [15]. However, achieving efficient and
reliable shape recovery remains a critical challenge. Enhancing
shape recovery in polymers is a key area of research to fully
harness the potential of shape memory materials. In addition
to the remarkable shape recovery capabilities of 4D printed
SMP structures, the importance of force recovery is becoming
more evident for certain applications. One notable area is the
development of adaptive structures, where SMPs with high
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force recovery are employed to enhance structural integrity and
responsiveness [16]. Moreover, SMPs with high force recovery
have been utilized in fields such as aerospace, robotics, medical
devices, and wearable technology [17-19]. Recovery force in a
specific SMP is solely determined by the programmed strain, since
factors like rubbery modulus, shape recovery ratio, and shape
fixity ratio are usually considered to be specific to the SMP itself. In
simpler terms, greater displacement during programming results
in increased strain, which in turn leads to higher energy storage
and improved recovery force.

Common knowledge suggests that when a material is shaped
into different structures such as I-beams, lattices, honeycombs, or
auxetic structures instead of a solid cube or beam, its ability to
carry loads can be substantially improved [20]. Likewise, there is
an expectation that employing 3D printing for the fabrication of
metamaterials from shape memory polymers (SMPs) could lead
to an enhancement in the specific recovery force (SFR) when
compared to solid SMP structures. One of the famous classes of
artificial structures is the truss lattice structure. Previously, we
designed biomimetic lattice structures with enhanced resistance
to buckling [21]. The octet-truss structure is widely regarded
as the most superior lattice in terms of mechanical properties
among various truss lattices [22]. However, it is still not
considered the optimal choice. Even though lattice structures
have been the primary choice in mechanical metamaterials for
the last twenty years, their performance is restricted due to poor
structural efficiency. Another type of lattice structure is known as
"Shellular," which combines the terms "shell" and "cellular". In
this particular structure, the cells are made up of seamless and
smoothly curved shells [23]. While shellular structures possess
notable mathematical significance, they often fail to meet the
performance requirements expected for load-bearing structures.

Plate-lattice structures (PLS), a type of mechanical metamaterial
inspired by the closed-cell structures found in nature, have been
increasingly garnering attention within the field of mechanical
engineering. These materials are composed of plates that utilize
material constraints in two directions [24]. During investigations
into pure stiffness optimization, Sigmund et al. [25] made a
noteworthy observation that optimal structures such as truss-
like structures tend to be close-walled rather than open-walled.
This study indicates that a closed box with a microstructure
consisting of thin walls displayed a significantly higher stiffness,
around 2-3 times greater, compared to an open cell structure
featuring 12 trusses positioned along the edges of a cube with
a low volume fraction. Furthermore, Liu et al. [26] used an
analytical method to show that the stiffness of a cubic plate
is two times higher than the stiffness of a cubic truss of
the same mass. In any given loading direction, plate-lattices
exhibit superior structural efficiency, meaning they distribute
strain energy more evenly among their components and have
a greater proportion of members aligned favorably with the
loading direction, in contrast to a corresponding beam-lattice
[27]. Therefore, the findings suggest that further investigation
is warranted for the PLS. Nevertheless, these benefits are offset
by a substantial rise in fabrication complexity. The closed-cell
structures of three-dimensional plate lattices render traditional
fabrication methods, such as assembly techniques unfeasible,

leaving additive manufacturing as the sole viable approach.
However, extracting raw materials contained within the closed
cells remains a difficult task [24]. Furthermore, while PLS exhibits
high stiffness, it does not ensure high recovery force if the material
used is an SMP. As discussed above, a high recovery force is
required for some applications. Hence, these structures should be
studied further to address this problem.

Various methods have been employed in the literature to
optimize metamaterials due to the wide range of parameters
that can affect their properties [28-30]. A combination of
homogenization schemes and genetic algorithms has been
utilized in inverse engineering of metamaterials to identify
architectures beyond orthotropy [31]. Also, the topology
optimization method has been used to investigate acoustic
metamaterials [32]. This technique discovered a subwavelength
bandgap that inhibits the propagation of low-frequency
sounds. In multiple investigations, finite element method
(FEM) has been employed as a common technique to generate
data for the optimization of lattice structures, composites,
and metamaterials [33-35]. As a case in point, FEM analysis
has been applied to study two-dimensional auxetic lattice
structures. This investigation leveraged the shape memory effect
inherent in the constituent material to predict both the in-plane
modulus and Poisson’s ratio of the structure [36]. Optimization
techniques commonly employed in engineering design are often
characterized by their time-consuming nature, sensitivity to
initial and boundary conditions, and constraints imposed by
limited design parameters. However, the integration of machine
learning (ML) methods and conditional generative adversarial
networks (CGANs) provides a promising avenue to expedite the
design process and facilitate the discovery of structures with
user-defined and optimum properties.

ML is a field of artificial intelligence where algorithms
enable computers to learn from data and make predictions or
perform tasks without explicit programming. In optimization,
ML algorithms can efficiently search through a vast design
space, predict performance metrics, and guide the exploration
of promising solutions, leading to improved efficiency and
effectiveness in solving optimization problems. One common
approach is to use machine learning algorithms, such as neural
networks, to establish a mapping between the design parameters
and the desired properties or performance metrics of various
structures [37-40]. A machine learning-based model has been
developed to find the optimum parameters affecting stiffness
and forward/backward snapping force of curved beams [41]. A
new 3D-printed unit cell has been devised with maximum elastic
modulus and minimum wave speed inside the structure, using
convolutional neural networks [42]. In a recent study in our
group, a unique framework consisting of a Generative Adversarial
Network (GAN) and a machine learning regression model has
been developed to discover thin-walled structures with high-stress
recovery [43]. Growth-based cellular metamaterials have been
optimized based on their star-shaped distances using an inverse
machine learning framework [44]. The proposed framework for
inverse design encompasses a wide range of achievable anisotropic
stiffness properties. In earlier findings, we documented the
discovery of several innovative lightweight metamaterials that
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Fig. 1

Schematic of the workflow of the Python script used to simulate PLSs.

exhibit enhanced impact energy absorption capabilities, increased
natural frequencies, and exceptional compression strengths,
buckling loads [39,45,46]. However, few structures have been
studied regarding shape recovery properties in mechanical
metamaterials in the literature.

This paper introduces a novel inverse design framework
containing a deep neural network (DNN) model and CGAN:s,
which aims to identify orthotropic PLSs with user-defined and
optimum mechanical properties for the first time. Two samples
with user-defined properties are generated to validate the accuracy
of the framework. Note that the recovery force depends on both
the structural design and the SMP itself. While many efforts have
been made to enhance the recovery force of SMPs, such as using
enthalpy increase during programming as a mechanism of energy
storage [47], this study focuses on structural design. Specifically,
all the designed PLSs are made of the same SMP. Furthermore,
FEM has been used to simulate the mechanical behavior of
PLSs and generate data for training the framework. Optimum
PLSs have been additively manufactured by a DLP (Digital Light
Processing) printer to validate numerical simulations and to study
force recovery properties. Several significant fabrication hurdles
have been successfully addressed, including the elimination of
surplus raw material pockets. The inverse design framework has
the capacity to be employed in optimizing a broad spectrum of
designs and uses in the realm of structural engineering.

2 Materials and methods

2.1 Automated simulations

FEM using Abaqus has been utilized in this investigation to
simulate PLSs. The aim of this numerical analysis is to prepare a
training dataset for machine learning, obtaining parameters such
as geometrical parameters, fingerprints, the specific maximum
compression force (SMCF), and the mass of the model. The
novel method for fingerprinting each PLS will be explained in
detail in Section 2.2. The amount of data plays a crucial role in
machine learning as it directly impacts the model’s performance
and generalization ability. As the quantity of independent
variables affecting outcomes grows, the required data size for
efficiently training a model also expands in correlation with the
escalation of independent variables. In this study, 2000 randomly
generated fingerprints using the Mersenne Twister Algorithm [48]
have been obtained as an input file to a novel Python script
to generate, submit, and post-process each PLS to print the

calculated maximum compressive force and mass in an output
file. Afterward, The SMCEF of each structure is calculated using the
obtained data. The script for all finite element models is generated
using Python version 3.10.0 and then processed using Abaqus
version 2022 for computation. The schematic of this script is
indicated in Fig. 1.

The overall ability of a structure to recover its original shape
depends on two main factors: the shape recovery ratio of the
SMP used, and the structural configuration. For given SMPs,
their recovery force is influenced by the amount of strain
they experienced during the programming phase. The term
"programming phase" refers to the process in which the shape
memory polymer (SMP) undergoes thermomechanical cycles to
establish its temporary shape, which can later recover upon
exposure to specific stimuli such as heat. In this study, the
programming phase includes heating up the SMP structure above
the glass transition temperature, applying pre-strain, cooling
to below the glass transition temperature while holding the
pre-strain constant, and unloading accompanied by a small
springback.

Moreover, the design of the structure can indeed be a key
parameter in determining the recovery force of a shape memory
polymer. When the SMP is restrained to recover its original shape,
the stored strain energy enables it to exert a stronger recovery
force. While the recovery force is influenced by the amount of
strain the SMP experienced during the programming phase, the
structure into which the SMP is formed can affect how that
strain is distributed and the efficiency of the shape recovery.
The geometry of the structure can influence the distribution of
strain and the overall recovery force. More complex structures may
experience different stress and strain patterns during deformation
and recovery. Since the programming phase of the structures
in the experimental section is in the elastic range, in this
investigation, PLSs undergo a fixed strain of 5 % to discover the
PLS designs that have higher compressive force in this range of
deformation. Consequently, during the simulations, the SMCF of
the PLSs has been recorded.

To ensure reliable and consistent results, a mesh convergence
analysis has been performed and the mesh size is configured to be
1.2mm. The numerical analysis concentrates exclusively on the
elastic properties of the shape memory polymer (SMP) material.
This approach is adopted to streamline the process and save time,
avoiding the complexities that would arise from incorporating
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Fig. 2

The initial configuration before the simulation process, highlighting the
geometric details of the structural model.

viscoelastic properties into the analysis. This is a reasonable
assumption because if the PLS is programmed and recovered at
rubbery state, the SMP can be treated as an elastic material. By
excluding the viscoelastic aspects, the analysis becomes more
efficient and less time-consuming, while still providing valuable
insights into the behavior of the material under study. However,
we must admit that polymers, including 3D printable polymers,
are viscoelastic. Therefore, a more in-depth study should consider
the nonlinear viscoelastic or even plastic behavior of the SMPs
[49-52].

To calculate the elastic modulus of the polymer for simulations,
experimental tests have been conducted based on the ASTM D695
standard test [53]. All the models are provided with an elastic
material characterized by Young’s modulus of 375 MPa and a
Poisson’s ratio of 0.4. Simulations are done through dynamic
implicit analysis and PLSs are modeled using 4-node linear
tetrahedron (C3D4) elements. Additionally, the load is applied
by providing a 5 % strain in the vertical direction (Y-direction)
to the loading head. A single support and one loading head
are characterized as perfectly rigid cubic bodies measuring 30
by 30 by 2mm in size as presented in Fig. 2. Normal contact
behavior is implemented between the PLS and the load cells
using a rigid contact formulation. This choice ensures that no
penetration occurs between the contacting surfaces, mimicking
a rigid interaction. For tangential behavior, a penalty friction
formulation with a friction coefficient of 0.3 is specified. This
coefficient value represents the frictional resistance between the
load cell and PLS surfaces in contact. By specifying this value, we
aimed to simulate the frictional effects present in the experimental
setup accurately. Additionally, due to the complexity of the

Table 1

model and the presence of several walls in the structure, the
general contact feature has been implemented in the model. The
model’s dimensions match those of the experimental tests. The
workstation boasts an i7 processor with 32 GB of RAM. It requires
approximately 84 man-hours to complete the computational tasks
for the training dataset, which encompass tasks such as generating
models in Abaqus, submitting jobs, and post-processing.

2.2 Dataset generation and fingerprinting for PLSs

DNN is a powerful technique in predicting the output, based on
given input parameters. Based on the number of independent
variables affecting the output, the number of required training
data changes. DNNs need a larger training dataset as the
number of independent variables increases. To effectively train
a DNN, a training dataset should be supplied, comprising
both the inputs (structures) and the corresponding outputs
(intended mechanical characteristics of each PLS). In order for
the DNN to understand the PLSs, the structures need to undergo
fingerprinting. Fingerprinting involves the conversion of each PLS
into a digital sequence or pattern of numbers that can be read by
a machine. In this section, we delineate the approach utilized to
create our dataset aimed at predicting the mechanical properties
of PLSs.

In the proposed structure, there are 20 types of walls with
different orientations. Each of these walls has a specific position
in the fingerprint array. In this research, every structure is
initially identified by using the amalgamation of all the walls
that constitute one-eighth of a representative volume element
(RVE). A fingerprint comprises a sequence of 20 binary digits
(e.g., "11100011000100010010") that denote the presence of
walls within a PLS. Since the position of the walls in the RVE
remains fixed, every PLS can possess a distinct and unique
fingerprint. In Fig. 3 (a), a number has been assigned to
each corner of the RVE to facilitate the fingerprinting process.
Furthermore, Table 1 indicates the code of the walls and their
corresponding positions in the fingerprint. Walls identified by
four-digit codes represent quadrilateral structures, while three-
digit codes correspond to triangular walls. For example, with
the fingerprint "10100000000100010000", we can locate the
corresponding unit cell depicted in Fig. 3(b). As depicted in
Fig. 3(b), walls with codes 1526, 8473, 5643, and 163 are
present in one-eighth of this PLS. These codes dictate the
establishment of a wall between designated corners, with the
associated binary digits in the fingerprint set to '1,” while the
remaining digits should remain '0’. The process of converting
any structure into a fingerprint, and vice versa, can be readily
followed.

Coding scheme for walls and their positions in the fingerprint.

Wall Position Wall Position Wwall Position wall Position Wall Position
1526 1 5867 2 8473 3 1423 4 2367 5

1548 6 1537 7 1467 8 5823 9 4826 10

1287 11 5643 12 527 13 427 14 836 15

163 16 183 17 186 18 542 19 547 20




Giant, 18, 2024, 100282

®
(2)

Fig. 3

—_—
Mirror with
respect to %

( i-Z) plan
z J
X

Mirror with
respect to
(Y-X) plane

Mirror with
respect to Y

(Z-X) plane 1
z
X

(b)

The process of creating a PLS, based on a unique fingerprint. a) indicates the code corresponding to one-eighth of an RVE. b) Represents the process of mirroring

a unit cell ("10100000000100010000") to create a full RVE.

After one-eighth of the RVE is ready, it must be mirrored
with respect to various directions of the 3D coordinate system.
The mirroring process and the final RVE with the fingerprint
"10100000000100010000" can be seen in Fig. 3(b). Using this
method, about one million PLSs can be generated (See Fig. S1
for sample structures and their respective fingerprints). Using
the Mersenne Twister Algorithm in Python, 2000 fingerprints
were generated randomly considering the boundary conditions.
While some combination of walls results in structures that are
not interconnected, specific boundary conditions have been
considered in the generation of fingerprints. Consequently, the
generated fingerprints were given to the Python script as a text file
to generate the PLS models in Abaqus. The closed-cell structures
found in PLSs render traditional fabrication methods, such as
assembly techniques, unfeasible, necessitating AM as the sole
viable approach. However, the extraction of raw materials from
within these enclosed cells poses a persistent challenge. To address
this issue, small holes with a 1 mm diameter are incorporated
on the surfaces of the plates, which enables the elimination of
the unpolymerized resin after the printing process, even in the
presence of a closed-cell topology. The position of these holes is
fixed on each plate, so they are not included in the fingerprinting
process.

2.3 DNN prediction

To improve the recovery force of PLSs, structures should have
high stiffness in the rubbery state. One of the goals of this
study is to find optimum PLSs with high SFR. Due to the
substantial size of the dataset involved in this investigation,
experimental and numerical analysis of each structure is an

expensive and time-consuming project. The experimental process
includes creating the structure, setting up the experiments, and
conducting thermomechanical tests. This can be very time-
consuming, especially when dealing with multiple samples. On
the other hand, numerical analysis can be quite intricate due to
the involvement of thermomechanical features, and non-linear
material properties. Consequently, a DNN has been developed to
predict the SMCF of each PLS. The schematic of the DNN has been
presented in Fig. 4. Fingerprints are given as the input parameters
to the network and their corresponding SMCEF is the output of
the network. The details for the DNN model’s specifications are
outlined in Table S1.

The DNN architecture was constructed using the Keras library
[54], with sequential layers consisting of dense units. Several
activation functions were examined to train the model and
finally, the ReLu function was selected due to the enhanced level
of accuracy. The input features were processed and normalized
using the MinMaxScaler from the sci-kit-learn library to ensure
consistent scaling across the dataset. The dataset was then divided
into training (85 %) and testing (15 %) sets for model evaluation.

To facilitate the learning process, the DNN model utilized
the mean absolute error (MAE) loss function and the Adam
optimizer with a learning rate of 0.0001. The model was
trained over 800 epochs with a batch size of 64, enabling it
to capture complex relationships within the data and optimize
the prediction accuracy. The performance of the DNN is assessed
using the testing set throughout the entire training process, which
consists of 800 epochs of updating the network weights. Fig. 5 (a)
indicates that the MAE is decreased from 48.045 % and 50.96 % to
0.29 % and 1.41 % in training and testing sets, respectively. After
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The schematic of the DNN used for predicting the SMCF of each structure.
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(a) MAE (%) evolution over 800 epochs of training, assessed on training and testing sets. (b) R-squared plot for SMCF showcasing the correlation between mechanical
properties of the PLSs using the DNN.

approximately 400 epochs, as depicted in Fig. 5a, the error plot The model was evaluated using an R-squared score. Fig. 5(b)
reaches a plateau, indicating convergence of the model’s training displays the regression plot for SMCF, showcasing a R-squared
process. Despite this stabilization, we continued training up to value of 0.96. The SMCF regression plot shows the relationship
800 epochs to ensure the convergence is stable. This extended between predicted and actual values, with a well-fitted model
training duration allowed for thorough exploration of the model’s displaying a tight cluster of points along a diagonal line. This
performance beyond convergence with minimal time investment. DNN model offers a promising approach for predicting the SMCF
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The schematic of the inverse design framework for generating PLSs with user-defined and superior SMCF.

of PLSs, providing valuable insights for engineering applications
and decision-making processes.

2.4 Inverse design using CGANs
The goal of this framework is to find structures with user-
defined mechanical properties and, the structures with superior
SMCE Inverse design presents an innovative approach aimed
at achieving a fundamental goal: crafting structures tailored to
specific mechanical properties designated by the user. Since the
number of structures in this study is very high, which makes the
optimization process complicated for conventional methods such
as genetic algorithms, topology optimization, etc., a novel inverse
design framework has been developed to simplify the process
of reaching the user-defined properties. Previously, Challapalli
et al. [43] designed a framework to optimize thin-walled structures
using GANs. They improved the specific recovery stress of a thin-
walled structure by 50 % as compared with a honeycomb unit cell.
Furthermore, CGANS has been used to predict the geometrical
pattern of auxetic metamaterials with user-defined mechanical
properties [35]. Uniaxial compression test and FEM have been
used to validate their inverse design framework.

CGANs are a class of deep learning models that combine
the power of generative models with the ability to control
their output. They introduce a conditional component,

allowing users to specify desired attributes or characteristics
for the generated samples. The framework consists of a PLS
generation network (PGN), a condition forecast network (CEN),
and a SMCF optimization network (SON) (Fig. 6). In PGN,
the generator aims to produce authentic fingerprints that
match the specified conditions (user defined SMCF), while
the discriminator learns to distinguish between real and fake
fingerprints and the condition of each fingerprint. In this study,
the term “real fingerprint” means a fingerprint that not only
consists of 20 binary digits like the input fingerprints but also
has a SMCF close to the user-defined input. The generator is
trained iteratively alongside the discriminator in an adversarial
manner. During each training epoch, the discriminator is first
trained using a batch of real structural fingerprints paired
with their corresponding mechanical properties, including
normalized SMCE Simultaneously, the generator produces
synthetic structural fingerprints based on random noise inputs
and randomly generated mechanical property conditions falling
within predefined ranges. The generator’s objective is to deceive
the discriminator by producing synthetic fingerprints that
are indistinguishable from real ones, effectively matching
the desired mechanical properties specified by the user. To
achieve this, the generator adjusts its parameters based on the
feedback from the discriminator, striving to generate increasingly
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accurate fingerprints corresponding to the desired mechanical
properties.

Afterward, the CFN uses the trained DNN in the previous
section to predict the SMCEF of the generated fingerprints in PGN
to estimate error and update weights. Moreover, the SON screens
out the PLSs with superior SMCF using the trained DNN.

2.5 Performance of the inverse design framework

Evaluating the accuracy of the framework poses a formidable
challenge due to its inherent complexity. Traditional evaluation
metrics like accuracy, often used for classifiers, are ill-suited for
CGANSs. Metrics such as Inception Score and Frechet Inception
Distance attempt to capture the quality and diversity of generated
samples but are not without limitations [55]. In this study,
we employed several methodologies to assess the efficacy of
the inverse design framework. Firstly, the MAE calculation was
employed as a pivotal metric. Throughout the training epochs,
synthetic structural fingerprints were generated by the CGAN,
accompanied by randomly assigned input conditions. The DNN
predicts the corresponding normalized SMCEF for each fingerprint,
and the MAE was computed as the absolute difference between
the output of the DNN and the predetermined input target. This
approach facilitated a relative assessment of deviation, providing
insights into the model’s performance in generating structural
designs aligned with specified mechanical property targets. Fig. 7
(a) indicates the Binary Cross Entropy Loss of the generator
and discriminator along with MAE between the output of the
SMCEF estimator and the input target. MAE stabilized around 7
% after around 300 epochs. The generator and discriminator’s
specifications are presented in Table $2 (Model 4).

Moreover, to assess the performance of the framework at
various input conditions, 120 normalized values between 0 and
1 were selected uniformly and used to generate 500 fingerprints
for each value. The average of the MAE between the target
values and the SMCF of the generated fingerprints is illustrated
in Fig. 7 (b). At lower SMCFs within the design space, MAE
fluctuates considerably between about 9 % and 4.5 %, but in input
conditions above 12003 /i‘,’nb, the MAE stabilizes around 6.5%. The
fluctuation in MAE at lower input conditions could be attributed
to the unequal distribution or disparity within the training
dataset. Nonetheless, across all input conditions, the average MAE
remains stable at 6.72+0.23%, showcasing the technical viability
of generating a collection of efficient PLSs for exploring further
mechanical properties.

Additionally, 1000 labels were selected from the available input
condition space and compared with their corresponding output
labels generated by the DNN model. Illustrated in Fig. 7 (c), the
input values are represented on the horizontal axis while the
output values are on the vertical axis. The proximity of points to
the reference line X=Y indicates the degree to which the output
labels align with our input labels.

Two samples were selected for FEM validation of the inverse
design framework (Fig. 8). The framework was provided with
the desired SMCEF, yielding a fingerprint with properties that
closely match the user-defined value. The fingerprint is then used
to generate and simulate the corresponding PLS based on the
explained process in Table 1 and Fig.1. The minimal discrepancies

(3.05 % in sample 1 and 0.1 % in sample 2) observed between
the target SMCF and the simulated output values demonstrate
the remarkable precision of the inverse design framework in
generating PLSs with user-defined properties.

2.6 PLS optimization process

For the optimization process, the CGAN converted to a GAN to
develop a generator which is able to generate PLSs with superior
SMCE. The GAN only needs random noise for the training process
and the input conditions are eliminated. Firstly, we conducted
an analysis involving the generation of 2000 unique fingerprints,
serving as a benchmark to evaluate the diversity and uniqueness of
the data synthesized by the GANs. This is a crucial aspect to ensure
that the model is not only producing accurate samples but also a
wide variety of them. To enhance the uniqueness of the generated
fingerprints, we systematically varied the number of neurons and
the activation function of each layer in both the generator and
discriminator components of the GAN architecture. Through an
iterative process, we aimed to identify the optimal configuration
that maximizes the production of distinct fingerprints. Fig. 9 (a)
elucidates the number of unique fingerprints generated by five
models. The details for each model’s specifications are outlined in
Table $2. Taking into account the epoch count, the time duration
for each training epoch, and the quantity of distinct fingerprints,
Model-4 is chosen to proceed with the ongoing process. After
approximately 500 epochs, Model-4 can produce fingerprints with
a uniqueness of about 87.5 %.

The optimization is done in an iterative process. In the first
iteration, the GAN is given 10000 unique fingerprints to be trained
and generate new fingerprints. Then, the SMCF of each new
fingerprint is predicted using the estimator. Fingerprints are sorted
in terms of the SMCF and for the next iteration top fingerprints
with higher MCF are given to the framework. In every iteration,
the average normalized SMCF of the generated fingerprints is
calculated and illustrated in Fig. 9 (b).

This plot indicates that the average normalized SMCF of
fingerprints increases gradually through 25 iterations and reaches
a plateau. After 25 iterations the average normalized SMCF of the
PLSs increased by 61.8 %. This number in the final iterations is
nearly approaching "1", suggesting that some of the generated
structures outperform the PLSs present in the input data. The top
10 % of fingerprints in each iteration were saved and compared
with the other iterations. The top fingerprints in the last five
iterations were approximately the same which indicates that
the optimization algorithm has converged. Furthermore. The
top fingerprints of the last iteration are selected for further
investigations.

The design criterion in this optimization is to find orthotropic
structures with superior SMCF within the vast design space.
Following the abovementioned steps, finally, PLSs with the
following fingerprints are selected as the top three superior
structures,  respectively:  11110000001100100100  (Best-1),
11110000001100010101  (Best-2), ~ 11010000001100110000
(Best-Iso). From this point in the article onwards, these
structures are mentioned using their summarized name as
Best-1, Best-2, and Best-Iso. Best-1 and Best-2 are the best
orthotropic structures regarding SMCF and Best-Iso is the best
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by the framework.

isotropic structure. To demonstrate the performance of the
PLSs, they have been compared to the Cubic+Octet structure
(11001000000000111100), recognized as a superior PLS in
literature [24]. Henceforth, the Cubic+Octet PLS will be denoted
as the Control structure.

2.7 Experimental validation of cellular PLSs through 3D printing

With the aim of designing PLSs with enhanced recovery force,
the optimal structures identified in the preceding section are 3D-
printed using an open material DLP Addit. Manuf. system (Bison
1000). The printing process operates at a temperature of 40°C,
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Fig. 8
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and the layer thickness is set at 25 pm. At first, the structures
were designed in Abaqus and saved with the STEP format. Then
each STL file was imported to Solidworks 2022 and saved as an
STL (Stereo Lithography) file. The dimensions of the PLSs were
20%x20x20 mm and the thickness of the plates were 0.25, 0.35,
0.45, and 0.55 mm. In order to conduct a performance comparison
between the PLSs and the bulk polymer, solid cylinders were
fabricated (12.5mm in diameter and 25mm in height) using the
3D printer. The SMP utilized in this investigation is created by
blending 60 % Tris[2-(acryloyloxy) ethyl] isocyanurate with 40
% EPON 826 resin. A comprehensive examination, including the
synthesis process, thorough characterization, and the outcomes of
various tests, will be documented and presented in a forthcoming
research paper. After the 3D printing process using the Bison
1000 DLP Addit. Manuf. system, the printed structures, including
the PLSs and solid cylinders, underwent a crucial postprocessing
phase to enhance their mechanical properties. The postprocessing
involved a thorough washing of the 3D-printed objects to remove
any residual uncured resin and support material. Subsequently,
the samples were subjected to a post-curing process to ensure
optimal cross-linking and mechanical strength. This post-curing
step typically involves exposing the printed objects to ultraviolet
(UV) light for 3min. Both the postprocessing steps have been done
in the Anycubic Wash & Cure Plus Machine.

To perform the shape memory programming and force
recovery tests, an MTS machine manufactured by ADMET
(Model: 1210FHH-2K-B, USA) equipped with a heating chamber
is employed. The heating chamber is preheated to approximately
70°C (with the bulk polymer’s glass transition temperature being
around 65°C) for one hour before the training process. This
precaution is implemented to avoid any misleading readings
induced by thermal expansions in the fixtures. After the chamber
reaches the desired temperature and is prepared, the samples are
left to equilibrate inside for 30 minutes to achieve the rubbery
state. Afterward, the samples undergo compression programming,
reaching a 7.5 % strain at a displacement rate of 0.2 mm/min.
Once the specified strain percentage is attained, the specimens
are stabilized in their compressed form by rapidly lowering the
temperature to room temperature while keeping the strain at a
constant level. Upon returning to room temperature, the load
is released to stabilize a temporary shape. It is noteworthy that
the shape fixity ratio, as defined in Eq. (1), is nearly 100 % for
all structures. Subsequently, the recovery force for each sample
is measured using the MTS machine. This involves reheating the
samples back to 70°C while maintaining the recovery strain at
zero.

F= Z—f « 100% 1)
I
here, ¢ represents the strain that remains fixed after the load is
removed, while ¢; denotes the strain measured before the load is
removed.

3 Results

Decision tree analysis was used to quantify the importance
of individual walls in a PLS performance, employing binary
fingerprints as features. The methodology elucidates critical walls
impacting SMCF, providing insights for structural optimization

and design decisions. Moreover, the optimum PLSs, which were
suggested using the inverse design approach in the preceding
sections, were simulated, and additively manufactured for the
purpose of numerical and experimental verification. Additionally,
shape recovery tests were performed on the optimum structures
to compare their performance.

Firstly, we assessed the contribution of each wall and its
ability to withstand compressive loads using a Decision Tree
Regressor model. Each wall is represented by a binary fingerprint
encoding its structural position. The model is trained on a
dataset comprising 2000 fingerprints and corresponding SMCE
The feature importance is computed for each wall from the trained
model (Fig. 10), revealing the relative contribution of each wall to
the overall structural performance.

The resulting feature importance depicts the significance of
each wall in a PLS, with higher values indicating greater influence.
Specifically, walls 11, 12, 4, and 3 emerge as the most critical
components in terms of load tolerance within a PLS. In addition,
this result validates the optimization process as the mentioned
walls are present in the selected structures. While the Best-1 and
Best-2 structures have eight and nine walls in their structures,
respectively, all four of the most influential walls are present in
both structures.

Fig. 11 illustrates numerical comparisons carried out using
the Abaqus simulation tool, in conjunction with experimental
validations, for PLSs. In Fig. 11, it is important to highlight that
the comparisons were specifically based on the wall thickness
of the PLSs. The suggested PLSs can be observed to demonstrate
superior relative compression force characteristics when compared
to the conventional Control structure. Moreover, the small
error between the numerical and experimental results of each
PLS indicates the accuracy of the presented FEM model. The
incongruence between simulation outcomes and experimental
findings can be ascribed to the inherent abstractions in the
simulation model, which may oversimplify intricate real-world
dynamics. Discrepancies might also arise from variations in
boundary conditions, material properties, and the inherent
uncertainty in measurement precision during experimental
procedures. Results indicate that among the optimum PLSs, the
Best-1 structure has the highest SMCF by an average of 79.66
% over all plate thicknesses compared to the Control structure.
After that Best-2 and Best-Iso, by an average of 70.55 % and
22.72 %, respectively, have higher SMCF compared to the Control
structure.

We would like to further explain the difference between the
experimental results and FEM results. In this study, PLS is a very
complex structure with many sharp corners and edges, which
are the locations for stress and strain concentrations. As a result,
although the overall strain applied during the test is within the
linear elastic region of the material, local strain concentration
cannot be avoided, leading to finite strain in local regions, which
may exceed the linear elastic limit and become nonlinear elastic
or even plastic. As a result, during the experiment, the material
may experience nonlinear behavior, while our FEM only used
linear elastic constitutive model, leading to deviation between the
experiment and FEM results. As for the reason why the PLS with
wall thickness of 0.35 mm has a higher normalized compressive
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Relative importance of each wall in specific compressive load tolerance, depicted using a Decision Tree Regressor model.
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Comparative analysis between experimental results (indicated by solid lines) and numerical results (represented by dashed lines) for PLSs.

force than the one with 0.45 wall thickness in the FEM, it is likely
due to the local stress and strain concentrations in the PLS, leading
to complex correlation between the normalized compressive force
and the wall thickness. However, as discussed above, our FEM
based on linear elasticity cannot capture this nonlinear behavior.
This is a very interesting point, which will be a topic for our future
studies.

Fig. 12 illustrates the comparisons of the SRF between the
optimal PLSs, the Control PLS and the solid cylinder. As depicted
in Fig. 12, the optimal PLSs exhibit approximately 30 ~ 170
% greater SRF (recovery force/density) when compared to the

Control PLS with equivalent lattice member thickness. Moreover,
while the solid cylinder is performing better than Best-2, Best-
Iso, and Control in all wall thicknesses, the Best-1 structure has
higher SRF compared to the solid cylinder in 0.45 and 0.55
wall thicknesses by about 12-14 %. Furthermore, this result
indicates that for a given volume and mass, the optimum design
can produce higher recovery force compared to Control, solid
cylinder, and other designs.

Additionally, it is essential to recognize that the optimization
process is dependent solely on the structural behavior of the
PLSs. It is crucial to acknowledge that utilizing different SMPs can
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Experimental comparisons for normalized specific recovery force of PLSs.

influence both structural performance and the manifestation of
the shape memory effect. In this study, the selected SMP displays
brittleness at room temperature, which could potentially impose
constraints on overall displacements before reaching fracture. The
utilization of a more ductile SMP has the potential to enhance
the extent of displacements during the training or programming
of the structures. The observed correlation between higher wall
thickness and increased SRF in PLSs is attributed to the greater
structural stiffness and enhanced resistance to deformation in
structures with thicker walls. The increased thickness contributes
to higher energy storage capacity and, consequently, results in a
more substantial recovery force during the shape memory effect.

4 Conclusion

The design possibilities in mechanical metamaterials like PLSs are
vast. With the advancements in innovative simulation methods,
machine learning models, and manufacturing techniques, the
transition of these structures into practical applications is
becoming significantly more feasible. Despite significant efforts in
studying various PLSs and their behaviors, a considerable portion
of the design space still awaits exploration.

An Inverse design framework developed to generate PLSs with
user-defined SMCE. Several methods implemented to validate the
accuracy of the model. Across all input conditions, the average
MAE remains stable at 6.72+0.23 % between the target values and
the SMCF of the generated fingerprints. Additionally, two samples
were generated as case studies for the numerical validation of the
framework. Error between the input condition and the SMCF of

the generated PLSs were 3.05 % in sample 1 and 0.1 % in sample
2.

Furthermore, this work investigates lightweight PLSs with
enhanced shape memory characteristics. A unique approach to
design is introduced, utilizing a combination of DNN and GAN
models to optimize the recovery force in these metamaterials.
Incorporating small 1 mm diameter holes on the surfaces of
the plates facilitated the elimination of unpolymerized resin
after the printing process, even in the presence of a closed-cell
topology. The accuracy of the predicted unit cells is confirmed
through both numerical simulations and experimental testing,
demonstrating a performance improvement ranging from 22.7 %
to 79.6 % compared to the Control PLS when subjected to uniaxial
compression. We also studied the recovery force of the optimized
structures and compared them with those of the Control PLS
and a solid cylinder. The findings suggest that the optimal PLSs
display an SFR (recovery force/density) approximately 30 ~ 170 %
higher than that of the Control PLS with the same lattice member
thickness. Furthermore, while the solid cylinder outperforms
Best-2, Best-Iso, and Control across all wall thicknesses, the
Best-1 structure exhibits a higher recovery force than the solid
cylinder by approximately 12-14 % at wall thicknesses of 0.45
and 0.55. An aspect of the inverse machine learning framework
is its capability to continually optimize PLSs. This is achieved
through iterative processes, wherein the newly generated PLSs are
employed as a training dataset for predicting the next generation
of designs. The application of this framework extends beyond
optimizing PLSs and can be employed for enhancing other
forms of structural design. It enables the generation of novel
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structures tailored to specific mechanical property ranges. Given
the outstanding performance of the optimized plate-lattice unit
cells and the reliable prediction accuracy of the DNNs and inverse
design framework, it is evident that this technique is versatile
enough to be utilized in the design and optimization of various
metamaterials, including those geared towards impact absorption,
increased deformation or buckling strengths, and shape recovery.
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