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Abstract

The concept of antidistinguishability of quantum states has been studied to investigate
foundational questions in quantum mechanics. It is also called quantum state elim-
ination, because the goal of such a protocol is to guess which state, among finitely
many chosen at random, the system is not prepared in (that is, it can be thought of
as the first step in a process of elimination). Antidistinguishability has been used to
investigate the reality of quantum states, ruling out ¥ -epistemic ontological models
of quantum mechanics (Pusey et al. in Nat Phys 8(6):475-478, 2012). Thus, due to
the established importance of antidistinguishability in quantum mechanics, explor-
ing it further is warranted. In this paper, we provide a comprehensive study of the
optimal error exponent—the rate at which the optimal error probability vanishes to
zero asymptotically—for classical and quantum antidistinguishability. We derive an
exact expression for the optimal error exponent in the classical case and show that it is
given by the multivariate classical Chernoff divergence. Our work thus provides this
divergence with a meaningful operational interpretation as the optimal error exponent
for antidistinguishing a set of probability measures. For the quantum case, we pro-
vide several bounds on the optimal error exponent: a lower bound given by the best
pairwise Chernoff divergence of the states, a single-letter semi-definite programming
upper bound, and lower and upper bounds in terms of minimal and maximal multivari-
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ate quantum Chernoff divergences. It remains an open problem to obtain an explicit
expression for the optimal error exponent for quantum antidistinguishability.
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1 Introduction

Quantum state discrimination is a fundamental component of quantum information
science, playing a key role in quantum computing [4], quantum communication [3, 20],
and quantum key distribution [8]. The state discrimination or distinguishability task is
to infer the actual state of a quantum system by applying a quantum measurement to
the system. More formally, consider a quantum system prepared in one of the quantum
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states py, ..., pr. A quantum measurement is specified by a positive operator-valued
measure {M1, ..., M, } with output i indicating p; as the true state of the system with
success probability Tr[M; p;], as given by the Born rule [10].

The task that we consider here is in a sense opposite to the aforementioned task
of distinguishability, and it is thus called antidistinguishability of quantum states
or quantum state elimination [5, 7, 12, 19, 31, 33, 46, 47]. In particular, for the
task of antidistinguishability, we are interested in designing a measurement whose
outcome corresponds to a state that is not the actual state of the quantum system. In
the classical version of the antidistinguishability problem, quantum states are replaced
by probability measures on a measurable space, and the task is to rule out one of the
probability measures upon observing i.i.d. (independent and identically distributed)
data that is not produced by the probability measure.

As an illustrative example in the classical case, suppose that one of three possible
dice is tossed, a red one with probability distribution pr, a green one with probability
distribution pg, or a blue one with probability distribution pp. The task is then, after
observing a sample, to output “not red” if the green or blue die is tossed, “not green” if
the red or blue die is tossed, and “not blue” if the red or green die is tossed. It is also of
interest to consider the antidistinguishability task when the same colored die is tossed
multiple times, leading to several samples that one can use to arrive at a conclusion.

To the best of our knowledge, an analysis of the asymptotics of the error probability
of antidistinguishability is missing in the literature for both cases, classical as well as
quantum, and it is this scenario that we consider in our paper.

1.1 Contributions

In this paper, we provide a comprehensive study of the optimal error exponent—
the rate at which the optimal error probability vanishes to zero asymptotically—for
classical and quantum antidistinguishability. Our contributions are as follows:

e We derive an exact expression for the optimal error exponent in the classical case
and show that it is given by the multivariate classical Chernoff divergence (The-
orem 6). Our work thus provides this multivariate divergence with a meaningful
operational interpretation as the optimal error exponent for antidistinguishing a
set of probability measures.

e We provide several bounds on the optimal error exponent in the quantum case:

o lower bound given by the best pairwise Chernoff divergence of the states
(Theorem 11),

o lower and upper bounds in terms of minimal and maximal multivariate quantum
Chernoff divergences (Theorem 17), and

o single-letter semi-definite programming upper bound (Theorem 19).

e We also provide an upper bound on the optimal error probability of antidistin-
guishing an ensemble of quantum states in terms of the pairwise optimal error
probabilities of the states, and consequently, we deduce that the given quantum
states are perfectly antidistinguishable if at least two of them are orthogonal to
each other (Theorem 8).
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e Asacontribution of independent interest and auxiliary to Theorem 19, we establish
several fundamental properties of the extended max-relative entropy, a quantity of
interest originally defined in [62].

It remains an intriguing open problem to determine an explicit expression for the
optimal error exponent in the quantum case.

1.2 Literature review

Let us briefly review some prior contributions to the topic of antidistinguishability.
We note here that quantum state discrimination is equivalent to finding a size-(r — 1)
subset of {p1, ..., p,} such that none of the states in the subset is the true state of the
system; thus, the task is equivalent to what is called quantum (r — 1)-state exclusion.
A generalization of this task is quantum m-state exclusion for 1 <m <r — 1, which
aims at detecting a size-m subset of {p1, ..., p,} such that none of the states in the
subset is the true state of the system [47]. Quantum 1-state exclusion is therefore the
same as antidistinguishability of quantum states.

The concept of antidistinguishability has been studied to investigate foundational
questions in quantum mechanics [5, 12, 33, 46]. For example, it was used in [46] to
investigate the reality of quantum states, ruling out ¥r-epistemic ontological models of
quantum mechanics. It was also used in studying quantum communication complex-
ity [19], in deriving noncontextuality inequalities [31], and has applications in quantum
cryptography [11]. Thus, due to the established importance of antidistinguishability
in quantum mechanics, exploring it further is warranted. There have been a number of
works that determine algebraic conditions on a set of quantum states such that perfect
antidistinguishability is possible. A sufficient condition for perfect antidistinguisha-
bility of pure states [22] is that if some positive linear combination of the pure states is
aprojection with a “special” kernel, then the states are antidistinguishable. In the same
paper, a necessary and sufficient condition for antidistinguishability of pure states was
given, which demands the existence of projections satisfying three non-trivial condi-
tions. Very recently, a necessary and sufficient condition for non-antidistinguishability
of general quantum states was given in [47], which also demands the existence of a
Hermitian matrix with positive trace satisfying a set of non-trivial inequalities. Even
though the conditions given in the aforementioned works are interesting and insight-
ful, verifying them is not straightforward. One of the consequences of our work is that
we provide a simple sufficient condition for perfect antidistinguishability of quantum
states (Theorem 8).

1.3 Paper organization

The organization of our paper is as follows: In Sect. 2, we state some definitions and
provide a brief mathematical background of relevant topics covered in our paper. We
start Sect. 3 by building a theory of classical antidistinguishability, where we introduce
the notions of optimal error probability and optimal error exponent. We then derive
an explicit expression for the optimal error exponent in the classical case, and we
show that it is given by the multivariate classical Chernoff divergence (Theorem 6).
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The following sections deal with the optimal error exponent in the quantum case.
We begin Sect.4 by providing an upper bound on the optimal error probability of
antidistinguishing an ensemble of quantum states in terms of the pairwise optimal
error probabilities of the states (Theorem 8), and we then use this result to derive a
lower bound on the optimal error exponent (Theorem 11). Next, we provide both lower
and upper bounds on the optimal error exponent in terms of minimal and maximal
multivariate quantum Chernoff divergences in Sect. 5 (Theorem 17). Lastly, in Sect. 6,
we derive a single-letter semi-definite programming upper bound on the optimal error
exponent (Theorem 19). Appendices A through I contain mathematical proofs of
various claims made throughout the paper.

2 Mathematical background
2.1 Antidistinguishability of probability measures

Let Py, ..., P, be probability measures on a measurable space (2, A), where A is a
o-algebra on the set Q2. Set [r] := {1, ...,r}. Let n, ..., n, be strictly positive real
numbers such that 3, (,; n; = 1. Throughout the paper, we call

S = {i, P) i € [r]} ey

an ensemble of probability measures on the measurable space (€2, A). Let u be the
dominating measure

we=y mibi, )

ielr]
and pi, ..., pr the induced densities

_ap

= a, i€ [r], (3)

Dbi -

which are given by the Radon—-Nikodym theorem [6].

The problem of distinguishability, i.e., identifying the correct probability density
pi based oni.i.d. (independent and identically distributed) data, has been well studied.
This problem is as follows: Suppose that i is sampled with probability 7;, and then,
n ii.d. samples are selected according to the product measure Pl.®". The task is to
identify the correct value of i based on the n i.i.d. samples observed. It is known that
the maximum likelihood method for the identification task is optimal, and the optimal
success probability, in the case that n = 1, is given by

/du (mp1Vv---Vuyp)= /du(w) max{n p1(®), ..., nrpr(@)}. 4
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Asymptotically, the optimal error probability vanishes to zero exponentially, and the
error exponent is known to be equal to the Chernoff divergence for the least favorable
pair (p;, pj), fori # j [35,50-52, 57].

For the antidistinguishability problem in the classical case, the task is to guess a
probability density that is not represented by the observed data. For this problem, no
literature is available to the best of our knowledge. A reasonable first idea for selecting
a density that is unlikely to be the true one is to choose the one such that »; p; (w) is
minimum if w is observed. This corresponds to a minimum likelihood principle. In
what follows, we discuss this idea more formally.

A deterministic decision rule for the antidistinguishability problem is a function

5:Q2 — {e :ie[rl}, ®))
where e; is the ith standard unit vector in R”, such that §(w) = e; means that we

indicate p; to be our guess for the density that is not the true one. More generally, we
can admit a randomized decision rule, along the following lines:

§:Q—>100.11. > s =1 (6)

ielr]

If p; is the true density, then the antidistinguishability error probability is given by:

/ du(w) 8 (@) pi (@), )

and the total error probability is:

Erra®: €)= 3 11 [dk@) 8 @pi@) = [du@) ¥ si@mnp@. ®

i€[r] i€lr]

To minimize the above expression, we can minimize the integrand for every w. Since
i (w) is a weight, we should place maximum weight on the smallest of n; p; (w). So, the
optimal decision for given w corresponds to the minimum likelihood rule: §* (w) = e;,
ifi € [r]isthe minimum index such that n; p; (w) = min{n; p1(®), ..., 0 pr(®)}. The
total error probability when using the decision rule §* is the optimal error probability,
given by

Erre1 (&) = Err(8*; &) = /dﬂ(w) min{n p1(®), ..., npr(w)}

=/du mpiA---Anepr). 9

In the asymptotic treatment of the problem, we consider the n-fold ensemble E; =
{(n;, Pl.®") : i € [r]} on the n-fold measurable space (2", A™), where Q" is the n-
fold Cartesian product of Q and A™ is the o-algebra on Q" generated by the n-fold
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Cartesian product of A. It then follows that the optimal antidistinguishability error
probability, in this case, is

Erro (&%) = /du®" (mpE* A~ A p2"). (10)

Set Nmin = min{ny, ..., n,} and nmax = max{ny, ..., n,}. It is easy to see that, for
all n € N, we have

Mmin fd#®n (p(lgn A A P?") = Errcl(ggl) = Mmax fdﬂ®n (p(lg)n Ao A p;®n) .
(11

This implies that

1 1
lim inf —— In Erre1 (E))) =liminf——ln/d,u®” (PE" Ao A P, (12)
n—00 n

n— 00 n

which is independent of ny, ..., 1.

Definition 1 The optimal error exponent for antidistinguishing the probability
measures of a given ensemble E; = {(n;, P;) : i € [r]} is defined by

1
Ec(P1, ..., Pr) = liminf —— InErre (E)). (13)

n— 00 n

Remark 1 We note that Definition 1 of the optimal error exponent is indepen-
dent of the choice of dominating measure w. This is because the development
in (4)—(12) is independent of the choice of the probability measure . dominat-
ing Pi, ..., P,. Indeed, if 1 is an arbitrary probability measure dominating
Py, ..., P, then u' also dominates u. Let v = g—l’j. We then have

dP, dP. du -
Pl = dul’ - d_//j il foralli € [r]. (14)

Consequently, the quantity in (4) is given by

fdu (Mmp1 V-V nepr) =/d// (Mmp1V -V np)v (15)
=/du’ (mpivVv---Vvanpv) (16)

=/du’ (mpyv---vaepy). (A7)
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Similarly, the remaining quantities in (4)—(12) can be shown to be independent
of the choice of w. See [54, p. 233]. We will see later, in Theorem 6, that the
limit inferior on the left-hand side of (13) is actually a limit.

2.2 Multivariate classical Chernoff divergence

The Hellinger transform, as it is known in the literature on probability and statistics,
plays an important role in our work. The quantity seems to have been defined first
in [38, page 189], and the term “Hellinger transform” was perhaps first used in [32],
followed by several works in the area of probability and statistics. See [16, 18, 27, 36,
56-59] and references therein. See also [30, Section 3.3] for a historical discussion.

We recall the definition of the Hellinger transform below. Let &1 = {(n;, P;) : i €
[r]} be an ensemble of probability measures on a measurable space (€2, A). Let i be
the dominating measure defined by (2), and let py, ..., p, be the induced probability
densities given by (3). Let S, denote the unit simplex in R”:

Sr::{se[O,l]r:s:(sl,...,sr),Zsizl}. (18)
ielr]
Definition 2 The Hellinger transform of the probability measures Py, ..., P;

is a function on the unit simplex, defined as
Hg(Py, ..., P) = /du py'---py, foralls:=(si,...,s) €S,.
(19)

Here we use the convention 00 = 0.

Remark2 Some authors use the convention 0° = 1 when defining the
Hellinger transform [56, Definition 5.10], while others define it only in the
interior of the unit simplex [36, Definition 1.87, p. 49]. Note that our def-
inition is in contrast to the former, and it is consistent with first defining
Hg(Py, ..., Pr) on the interior of the unit simplex S, (so that s; > 0 for all
i € [r]) and then on the boundary as follows:

HS(PI,-“,Pr)Zél‘i\r‘r(l)H(lfe)s+eu(Pl’~--,Pr)’ (20)

whereuw = (1/r,...,1/r) e R".
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Also, we emphasize that the Hellinger transform given in Definition 2, and
hence, our further analysis of the classical antidistinguishability error proba-
bility is independent of the choice of the dominating measure p. This easily
follows by similar arguments as in Remark 1. See [54, Chapter 3, Section 9,
Lemma 3] for a proof in the case of r = 2.

The Hellinger transform given in Definition 2 is continuous on S,. Indeed, we have
P, < ni_l,u, implying that p; < ni_l for all i € [r]. This gives ]_[ie[r](pi + 1) as an
integrable upper bound on ]_[ie[r] pfi for all (s1,...,s) € S,. Thus, for every s ==
(51,...,8) €S, and for every sequence (s"),cx in S, with s®) = (sf”), sy
and lim,,_, oo " = s, we have

tim [T (i) = [T i), forallo e 9. @

ielr] ielr]

Note that the existence of the limit in (21) is due to our convention 0° = 0. By the
Lebesgue-dominated convergence theorem, we then have lim,_, oo Hyw (P1, ..., Pr)
= Hg(Py, ..., Pr), thereby proving continuity of the Hellinger transform on S,.

In general, the Hellinger transform is a measure of closeness or affinity among
several probability distributions. It is easy to see that

0 <Hs(Pr,...,P) <1, (22)

which follows from Holder’s inequality [56, Lemma 53.3]. As the value of
Hg(Py, ..., Pr) gets close to zero, the distance among the measures increases in some
sense [16].

The following quantity plays an important role in our paper.

Definition 3 We define the multivariate Chernoff divergence of the probability
measures Py, ..., P, by

Eq(Py, ..., P,) = —Ininf Hy(Py, ..., P), (23)

SES,

where Hy is defined in (19).

The divergence can be viewed as a generalization of the classical Chernoff diver-
gence, the latter being a special case of the former for r = 2 [13]. One of the
main results of our paper is that the optimal error exponent for antidistinguishing an
ensemble of probability measures is equal to their multivariate Chernoff divergence
(Theorem 6).
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2.3 Quantum states, channels, and measurements

A quantum system is associated with a complex Hilbert space . We focus exclusively
on systems with finite-dimensional Hilbert spaces in this paper. Let dim(#) denote
the dimension of . We denote every element of H using the ket notation as |vyr), |¢),
etc., and every element of its dual using the bra notation as (|, (¢|, etc. The notations
go well with the natural action of a dual element (/| on a vector |¢) in terms of the
inner product of the two vectors: ({¥|(|¢)) = (V¥ |p).

A quantum state of a system is identified by a density operator p, which is a self-
adjoint, positive semi-definite operator of unit trace acting on H. A pure state is given
by a state vector |¢/) € H whose corresponding density operator is | )X1|. The set
of density operators forms a convex set with pure states as the extreme points. Let
D(H) denote the set of density operators, L(H) the space of linear operators acting
on H, and L (H) the set of positive semi-definite operators acting on H. We shall
use the notation D for the set of density operators whenever the underlying Hilbert
space is clear from the context. A quantum channel N, between two quantum systems
represented by Hilbert spaces H and %, is a completely positive, trace-preserving
linear map from L(H) to L(K). In particular, for all p € D(H), we have that
N(p) € D(K).

A quantum measurement is described by a positive operator-valued measure
(POVM) .4 = {M;, ..., M,}, which is a finite set of positive semi-definite oper-
ators whose sum is the identity operator, i.e.,

M; > Oforalli € [r], D> oM =1, (24)

ielr]

where I is the identity operator acting on H.

The projection onto the support of an operator A is denoted by supp(A), its absolute
value is denoted by |A| := v/ AT A, and its positive part by A, = %(A + |Al). For
two Hermitian operators A and B, we use the notation

1
ANB:=2(A+B—|A=B. 25)

in analogy with min(a, b) = %(a +b—|la—bl)=aAnbfora,beR.

2.4 Antidistinguishability of quantum states

Suppose that a quantum system is prepared in one of the quantum states p1, ..., or
with a priori probability distribution 71, ..., n, such that n; > O for all i € [r].
Throughout the paper, we call {(n;, p;) : i € [r]} an ensemble of quantum states over
a Hilbert space H and denote it by &. Antidistinguishability of the states, as realized
by a POVM .# = {My, ..., M,}, can be described as follows: “the measurement
outcome i occurring corresponds to a guess that the true state of the system is not p;.”
Thus, if p; is the true state of the system, then Tr[M; p;] is the error probability for
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making an incorrect guess. The average error probability of antidistinguishability, for
a fixed POVM .Z, is then given by:

Err( A4 &) = Z ni Te[M; pi ). (26)

ielr]

We are interested in determining the optimal antidistinguishability error probability,
which is optimized over all possible measurements:

Err(&) = inj/fErr(///; &), 27

where the infimum is taken over all POVMs of the form .# = {My, ..., M,} acting
onH.

The quantum states are said to be perfectly antidistinguishable if there exists a
quantum measurement whose outputs always correspond to a false state of the system;
i.e., there exists a POVM . such that Err(.Z; &) = 0. In general, an ensemble of
quantum states may not be antidistinguishable, which means, for such an ensemble &,
that Err(Z; &) > 0 for every POVM . . For instance, two non-orthogonal quantum
states are not perfectly antidistinguishable [33].

In the asymptotic treatment of the antidistinguishability problem for a given ensem-
ble & = {(n;, p;) : i € [r]}, we consider the n-fold ensemble & := {(n;, pl@”) S
[r]}. The optimal error probability of antidistinguishability for &" is by definition
given as

Er(@") = inf Y, Te[ M 02", (28)

i€lr]

where the infimum is taken over the set of POVMs . ™ = {M 1(") s, M r(") } actingon
the n-fold tensor product Hilbert space H®". Similar to what we discussed around (11),
we find for all n € N that

muin inf 37 T (" pP" | < Brr(") < s inf S0 T 157" | 29)

ielr] i€lr]

which implies that

1 1
liminf —— InErr(&") = liminf ——In inf > Te[M"p"],  (30)
n—o0 n n—o00 n E%(n) !
ielr]
the latter being independent of 1y, ..., ;.
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Definition 4 The optimal error exponent for antidistinguishing the states of a
quantum ensemble & = {(1;, p;) : i € [r]}is defined by

1
E(pi, ..., py) := liminf —— In Err(E"). 31)
n— 00 n

2.5 Quantum Chernoff divergence

Here we briefly recall known results for distinguishability of two or more states; a key
quantity for this purpose is as follows:

Definition 5 The quantum Chernoff divergence between two states p; and p;
is defined as:

,p2) = —1In inf Tr[p{pi~"]. 32
&(p1, p2) n inf t[p1py "] (32)

If p1 = |[¥ )| and p» = |p)¢@| are pure states, then

£(p1, p2) = —In |(¥|o) . (33)

The quantum Chernoff divergence between two states is known to be the optimal error
exponent in distinguishing them [1, 45], i.e.,

1

11— L = 1208"1,]) = o1 0. (34)

1 1
lim ——In (Tr[ni 2" A 1205"1) = lim —7ln(
n—00 n n—oo n
where we have used the well-known fact that the optimal error probability in distin-
guishing p®" from p$" is equal to

1

Telmpy" Amps" = 5 [1= o™ =nan3™ | ], (35)

with p" prepared with probability 71 and p$" with probability 1, [20, 24].
It is known more generally that the optimal error exponent in distinguishing the
ensemble {(;, p2") : i € [r]} is equal to the minimum pairwise Chernoff diver-

gence [34]. l

3 Optimal error exponent for classical antidistinguishability
In this section, we first show that the optimal error exponent for antidistinguishing an
ensemble of probability measures (13) is equal to the multivariate Chernoff divergence

of the probability measures. We then compare the multivariate Chernoff divergence
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with the pairwise Chernoff divergence, showing that the former can be strictly greater
than the latter for every pair of the probability measures.

3.1 Multivariate Chernoff divergence as the optimal error exponent

The following theorem is the main result of this section. Some aspects of the proof
presented below follow the development given in the appendix of [45].

Theorem 6 Consider an ensemble E = {(n;, P;) : i € [r]} of probability
measures on a measurable space (2, A), where n; > 0 for alli € [r]. The
optimal error exponent for antidistinguishing the probability measures is given
by their multivariate Chernoff divergence, i.e.,

. 1
Ba(Pi..... P) = lim ——InEra(@) = £a(Pi..... ). (36)

where recalling (18), (19), and (23), the multivariate classical Chernoff diver-
gence & is defined as

(P, ..., P):=—Ininf /d,u p‘i‘ i (37)

seS,

Remark 3 Note that we defined the optimal error exponent in terms of the limit
inferior in Definition 1. However, Theorem 6 demonstrates that the limit exists
and is equal to the multivariate Chernoff divergence.

Proof of Theorem 6 Let o be the dominating measure given by (2) and p1, ..., p,
the induced densities defined in (3). Let D be the intersection of the supports of the
densities py, ..., pr:

D ={weQ: piw)=>0,Vielr]} (38)
For all s := (s1, ..., s:) € S;, the following equality holds by employing the conven-
tion 0° = 0:
Hs(Py, ..., Pr) = /du p oy (39
D

We also have from (10) and the definition (38) that

Errai (&) =[ du®" (mpf" A AmepRt). (40)
Dll
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Throughout the proof, we only work with D defined in (38). The case u(D) = 0 is
trivial, since the antidistinguishability error probability is equal to zero in this case.
So, we assume henceforth that i (D) > 0.

From (40), we get

Brra@h) < [ au® (5" Ao ). 41)

Lets € S, be arbitrary. We can write the right-hand side of (41) as
[ e (o a2 = [ i A AT P A g (42)
< /D A" (PP (P (43)

The expression on the right-hand side of (43) has a product structure. Indeed, we have
that

/ du® (pF")*t - (pE)
DVl

:/ dp® (w1, ..., 00) PP (@1, ..., o))" - (P2 (@1, ..., W)™

S1 Sy

-/ I ancon | TT o | - IT prew (44)

keln] keln]
/ [T du@o T pi'@o) - pyr (@) (45)
ane keln]
-/ H (@) P @0 py @) (46)
ke
| f (@) () -+ P p) )
keln]
= ( / du py' p) (48)
D
=MHs(Py,..., P)". (49)

From (41), (43), and (49), we thus get
Errg(8Y) < Hg(Pr, ..., P)", foralls € S,. (50)

This implies, for all n € N, that

1
——InEra(&Y) = ~In inf Hy(Pr..... P) =&a(Pr..... Py). 51)
n SES,

@ Springer



On the optimal error exponents for classical... Page 150f54 76

Therefore, we get

n—o0

1
liminf —— InErr (&) > &a (P, ..., Pr). (52)
n

This proves the achievability part of the optimal error exponent.

To prove the optimality part, we apply multivariable calculus and the law of large
numbers. For this purpose, let us parameterize the unit simplex of R” by the corner of
the standard unit cube of R" !, defined as

T, == {te[O, 0 te=, ... t,_1), Z f < 1}. (53)

ie[r—1]

The unit simplex (18) can be expressed as:

S, = {(rl,...,zrl, 1— Z t,-) Sty t_) € 11‘,}. (54)

ielr—1]

Using the new parameterization, let us denote the elements of S, by s; =

t,...,t,—1,1 — Zie[,_l] t;) fort .= (#1,...,t—1) € T,. The Hellinger transform
of Py, ..., P, can then be expressed as the following function on T,:
H(t) == Hs, (P1, ..., P, forallt € T,. (55)
Thus, the multivariate Chernoff divergence of Py, ..., P, has the form
§a(Pr, ..., Pr) = sup —InH(t). (56)
teT,

In what follows, using the reparametrized Hellinger transform (55), we define an
exponential family of densities py with t € T, as given in (61), which enables us to
express each p®" in terms of p&" for all n € N as given in (82). This then allows
for the use of the law of large numbers to deduce a family of upper bounds on the
asymptotic error exponent, given by — minj <; <, ¥; (t) for the non-corner points in T},
as defined later on in (80). Lastly, we use multivariable calculus to prove that there
exists a non-corner point t* such that In H(t*) = min;<;<, i (t*). This implies that
the multivariate Chernoff divergence is the optimal bound for the asymptotic error
rate.

For every t € T,, let us express H(t) in an exponential-integral form as follows:

1= epr—nti
-

H(t) = /Ddu plpiTip (57)

- /DdM (p1/p)" - (pr=1/Pr)" " pr (58)
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= / du prexp| Y tiln(pi/pr) (59)
D ielr—1]

= / du prexp| > tigi | (60)
D ielr—1]

where g; := In(p;/p,). The assumption (D) > O implies that H(t) > 0 for all
t € T,. This allows us to define an exponential family of densities on D with respect
to u for t € T, given by

1
pi(w) = %pr (w) exp ie[rz_” tiqi(w) forall w € D. 61)

Define a function K : T, — R by

K(t) .= InH(t). (62)
Letey, ..., e,_; denote the standard unit vectors in R” 1, and let T? denote the interior
of T, which is given by
T :={(t1,...,tr1)e(0, Dt Yy <1}. (63)
ielr—1]

We note that the set Ty represents a parametrization of the interior S? of the unit
simplex S,. By Theorem 2.64 of [53], we know that H is a smooth function on Ty;
also its partial derivatives are given fort € T} and i € [r — 1] by

H(t + he;) — H(t)

OH() = lim : (64)
= /du giprexp| Y tjqj (65)

b jelr=1]
=H®)E¢ [g:], (66)

where [ is the expectation under the density p¢. We know that the Hellinger transform
is a continuous function taking only positive values on S,. This implies that K is a real-
valued continuous function on T,. Additionally, the smoothness of H on T} implies
the smoothness of K on T;. From (66), we have that

3 K(t) = %&H(t) =F¢lg]., forallie[r—1], teTS. (67)
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Also, K is a convex function on T}. Indeed, for s, s e Sy and all ¢ € (0, 1), we have
(1—t)s1+25) (1=t)s,+ts] A1—t (s \!
/Ddupl T S=/Ddﬂ (P} p) T (P} p) 69

1—t , At
: s .
5(/dup§1~~pi’> (/dupf--‘pi)
D D

(69)

due to Holder’s inequality. The convexity of K then follows by taking the logarithm
on both sides of (69). By continuity, K is convex on T,. Let T} denote the set

T ={t.....tr-.)eT,: Y t<ly. (70)

ie[r—1]

We call T! the set of non-corner points of T;. It is easy to see that T C T,. For all
teT! andi € [r — 1], the limit

7K () = Jim K+ h‘;’l') —kK® 1)

exists in R U {—oo} (Lemma 22). Observe that for t € T}, we have 9;K(t) = 81.+K(t)
for all i € [r — 1]. It is shown in Lemma 23 that for t € ']I‘} and i € [r — 1], the
expectation value [E¢[g;] exists in R U {—oo} and satisfies

3TK(t) = Eelgi]. (72)

Define a set
T} = |t e T 7K@ # —oc, Vi e [r - 1]} (73)

Note that T? C Tl’ Iz

Using the definition (61) of the density pg on D fort := (f1,...,t_1) € Trl,f and
i € [r], we have

2~ pi —In pg (74)
Pt
=Inpi— Y  tjgj—Inp, +InH() (75)
jelr=1]
—m 2 3 g+ K (76)
Pr jelr—1
=qi— Y tjqj+K®, (77)
jelr=1]
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where g, is the zero function on D. We write (77) in a more compact form as

ln—— > @i —tpgj + K@), forallie[r], teT),  (78)
Jjelr—1]

Here §;; is the Kronecker delta (taking the value 1 if i = j, and O otherwise). By
taking the expectation on both sides of (78) under the density p; and then using (72),
we get

yi(t) = Et[ln%] = Y (i —1)Edg;]1+ K(®) (79)
Jelr—1]

= > G- 1)ATK () + K (1) (80)
jelr—1]

foralli e [r]and t € T Ve We can write (80) in a more compact form as

+ _{Ty+ ; _
,-(t):{ai K(t) — T VYK(t) + K(t), ie[r— 1], frallteT! . G1)

—tTVTK () + K(t), i=r,
where VYK(t) := (3 K(t), ..., 9" 1K(t))T
Let " := (wy,...,w,) € D" and t € ’]I‘r, f be arbitrary. We have that
p' .
@) = | T 2] @) =exp(nG @) p @™, $82)
; Pt
Jj€ln]
where
G (") = Z In —(a),) foralli € [r]. (83)
JE['I]

Let Pt®" be the product measure corresponding to the density pt®" on D", and let EY
be the pertaining expectation. By the definition in (79), we then have that

B[] =n®,  forallielr] (84)

Since G( D is an i.id. average, the law of large numbers [6] implies that for arbitrary
5§ >0, there exists ns € N such that the probability of the event

Uns = (0" € D" :Vi € [r], G (") = yi(t) — 8} (85)
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satisfies
P®"(Uns5) > 1—8, foralln > ns. (86)

The development in (82)—(86) implies that, for all n > ng,

Erra@l) = [ au® (npf" A+ Ao (87)
Dn

> Nmin fD ”d,u®” (PP" A A PEY) (88)
— ®n &) (r) ®n
= Nmin /Dnd,u (exp(nGt’”) AEREWA exp(nGt’n)) )2 (89)
= nmin B [exp(nG{)) A -+ A exp(nG{) )] (90)
> Nmin Ef [lUn,a (exp(nGS,Z) A A exp(nGEf,i))] 91)
> Nmin P (Uns) exp (n min (y;(t) — 5)) 92)
> Nmin(1 — &) exp (n min_y;(t) — n8) - (93)

Here 1y, ; denotes the indicator function of the set U, s. Therefore, we have that

1
——InErr (&) < —
n n

1 in(1 =134
In(min1 = 0)) _ (min yi<t)—8>, foralln z ns.

1<i<r
94)

By taking the limit superior as n — oo on both sides of (94) and then the limit § — 0,
we thus get

1
lim sup —— In Err (&) < — 1m_in yi(t), forallt € ']I‘r1 Iz 95)
n <i<r ’

n—oo

Recall from (56) and the fact K(t) = In H(t), our goal is to show that

1
lim sup —— In Err (&) < sup — K(t). (96)
n

n—o00 teT,
In view of (95), it suffices to show that for some t* € ’JI‘l’ Iz the following holds

1m_in i (t%) = K(t9). o7
<i<r
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We now argue that such a t* exists. Since K is a continuous function on the compact
set T, there exists t* := (¢}, ..., ;) € T, that minimizes K over T,, i.e.,

K(t") = minK(®). (98)
€T,

Consider the following two cases.

Case A Suppose t* € T!. Choose arbitrary i € [r — 1]. If t7 = 0, then by convexity,
continuity of K, and the fact that t* is a minimizer, we have 8i+K(t*) > 0 (see
Lemma 22). Else we have 0 < # < 1 and the first-order necessary condition for
a minimizer implies al.JrK(t*) = (. Combining these, we get 8,.+K(t*) > 0 for all
i € [r — 1] and hence t* € Tl’f, and t*7 VYK (t*) = 0. From (81), we thus get
K + K(t%), iel[r—1],

K(t"), i=r. ©9)

vi(t") = {

This implies that the inequality (97) holds for the minimizer t*.

Case B SUppOSG t* e Tr\T}, ie., tik + -4 t:—l = 1. Forsomei € [r — 1], we have
t¥ > 0. According to the current parameterization of the unit simplex given in (54), t*

corresponds to the vector (tf‘, R tr*_l, 0) in S,. We reparameterize the unit simplex
S, as
su= (w0, 1= Y wjuiu |, weT,. (100)
jelr—1]

In the reparameterized problem, the corresponding minimizer u* of K satisfies sy+ =
@, ..., 15, 0), which implies

1= Y wi=1>0. (101)
jelr—11

This reduces the problem to Case A, which implies that (97) holds.

Combining the above two cases, we conclude that (97) holds for the minimizer t*
and this completes the proof. O

3.2 Multivariate Chernoff divergence versus pairwise Chernoff divergences

Identifying the true probability measure out of the given r probability measures is
the same as eliminating all the remaining » — 1 false probability measures. As such,
general intuition says that, upon observing i.i.d. data, it is easier to eliminate a false
probability measure than to identify the true probability measure. This also means that
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the optimal error exponent of classical antidistinguishability should be greater than
that of multiple classical hypothesis testing, the former being the multivariate classi-
cal Chernoff divergence and the latter being the minimum of the pairwise Chernoff
divergences of the probability measures [50] (see also [57, Theorem 4.2] and [35, 51,
52]). Indeed, for any two indices i, j € [r] define a subset of S, :

Sﬁi’j):{seSr:szz (51, ..., 8:), 8 +5; =1} (102)

By definition, we have

Ea(P,....P) > —In inf Hy(Py,...,P) (103)
seSi

= —1In inf [dp pfpit™® 104

nséﬁ),u/ K pip; (104)

=&u(P;, Pj), (105)

where & (P;, Pj) is the Chernoff divergence of the probability measures P; and P;.
This gives

Ea(Pr, ..., P) > I}ljlj?ﬁécl(Pi, Pj) > I}E})écl(Pis Pj). (106)

The following example illustrates an instance for which the first inequality in (106) is
strict.

Example 7 Consider a uniform ensemble & = {(1/3, Py), (1/3, P»), (1/3,
P3)} of probability measures on a discrete space 2 = {x, y, z} whose densities
with respect to the counting measure p are given by

1 1 1
p1 = El{x,y}v p2 = El{x,z}» p3 = 519- (107)
We have for 0" € Q",
1 .
TR if " = (x,...,x),
(PP AP A P (") = T (108)
0, otherwise.

By the minimum likelihood principle, we thus get

1
Erra (&) = 3 / du®" (pP" A pS" A pS") (109)
1 1
— ®
=3 M "({(x,.-..,x)})~§ (110)
n times
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This gives the optimal error exponent

1
Ea(Pi, P>, P3) = liminf —— InErr(EY) = In 3.
n— 00 n

(111)
(112)

(113)

(114)

We now compute the pairwise Chernoff divergences of the probability mea-

sures as follows.

P, Py)=—In inf [du pjp) ™
(P, P) nse%’”/ W P1P;
1 1
= —In inf /du——
sel0.1] Jipy 29 20-9)
o 1
mn —
s€[0,1] 28 2(1=$)

()

=In2.

=—In

Also,

Pi,Py)=—In inf [du pip§ ™
§a(P1, P3) se[o,l]/ W Pip;

1 1
= —In inf dy ————~
nsel{(l)’]]\/{x’y} H 28 3(1—S)

1 3\
=—In [u({x, - 3 'sei%fu (5> }

5
=—In|2---1
3

=1In(3/2).
By similar arguments, we get &.1(P>, P3) = In(3/2). This implies

max{é. (P, P2), & (P1, P3), (P2, P3)} =1n2.
min{&. (P, P2), £ (P1, P3), (P2, P3)} = In(3/2).
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From (114), (125), and (126), we have

Ea(P1, P2, P3) > max{&.(P1, P2), & (P1, P3), &1 (P2, P3)} (127)
> min{&c (P, P2), & (P1, P3), 6 (P, P3)}. (128)

4 Achievable error exponent for quantum antidistinguishability
4.1 One-shot case

Observe that the “antidistinguishability problem” between any two states p; and p; is
the same as the state discrimination problem. Indeed, if we say that “p; is not the true
state,” then we are saying “pj is the true state.” Using this observation, we obtain an
upper bound on the optimal error probability of antidistinguishing the states of a given
quantum ensemble by considering “special” POVMs that focus on pairs of states, as
expounded upon in the proof of the following theorem:

Theorem 8 Consider a quantum ensemble & = {(n;, p;) : i € [r]}. An upper
bound on the optimal error probability of antidistinguishing the states of the
ensemble is given by:

Err(€) < min  Trnipi Anjpjl (129)
l<i<j<r
. 1
= min_ = (i +n; = |miei =mjpi],)- (130)
In particular, if at least two states in py, . .., pr are mutually orthogonal, then
Err(&) = 0.

Proof Given two fixed indices i, j € [r], let Eﬁi’j ) denote the set of POVMs .# =
{My, ..., M,}suchthat My = 0ifk ¢ {i, j}. For such POVMs, we have M; + M; =1
and

Err(#; &) = n; Te[M; pi] + n; Te[(L— M;)pj ] (131)
= i TelM; pi] + nj —n; Te[Mip;] (132)
=n; = Te[Mi (njp; — nipi)]- (133)

By taking the infimum over Eﬁi’j ) on both sides of (133), we get

inf  Err(#;8 =n;— sup Te[M; (nj0; —nipi)], (134)
MeE"D 0<M;<I
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where the supremum on the right-hand side of (134) is taken over every positive
semi-definite operator M; such that 0 < M; < I. The supremum is attained by the
Helstrom—Holevo measurement [20, 24] given by M; = supp(n;p; — 1;pi)+ (note
the order of i and j). We thus get

it B &) = Te[ (njs — mini)., | (135)
=Te[njp;] —Te[(njp; — nipi +Injp; —nipil) /2] (136)
=Tr[(nipi +njp; — mipi —njpjl) /2] (137)
= Tr[nlpl A 77]:01] (138)
1
=5 (i +nj = nipi =njejll,)- (139)

It is clear that the optimal antidistinguishability error probability satisfies

Err(E) < inf Emr(A;8) = Tr[m,oi A nj,oj], foralll <i<j<r.
M el
(140)

By combining (138)—(140), we thus get the upper bound on the optimal antidistin-
guishability error probability stated in the theorem. O

The expression on the right-hand side of (129) can be further simplified for

pure states. This is a consequence of the following identity (see Proposition 24 in
Appendix B):

leXel — 1EX¢IIT = (ple) + (€1E)* — 41192, (141)

which holds for vectors |¢) and |¢), as well as Theorem 1 of [1] which states that for
all positive semi-definite operators A, B and all 0 < s < 1, we have

Tr[A A B] < Tr ASB'~%. (142)

Corollary 9  If the quantum states in Theorem 8 are pure, i.e., given by p; =
| Xil, then we have

. , 4nin; . V2
En@ < min T (1 _ [y Amnilwilv)) 1)
Isi<j=r 2 (i + n;)?
1 .
< 5, nin (Wil )P (144)
l<i<j<r
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Proof Applying (130) and (141), we find that forall 1 <i < j <r,

1

Err(@&) < 5 (m +nj = [kl = njlv)vl] ) (145)
1
=3 (m +nj — \/(m +1j)? - 4n,~n,,~|<w,~|w,,>|2) (146)
_mitni ([, Al iy ) (147)
2 (i +nj)? '

This proves the inequality (143). By (142), we get that forall 1 <i < j < r and
0<s<l,

Te[ni WXl A gl X 1] < i = Tl v )i 1] = nin S 1l ) 1
(148)

Since (148) holds for all s € [0, 1], we get

il )P (149)

N =

Te[ni WXl A il X 1] < (i APl )P <

The desired inequality (144) thus follows by using the inequality (149) in (129). O

The sufficient condition for perfect antidistinguishability given in Theorem 8 is not
a necessary condition, even in the simple case of commuting states. This is illustrated
in the following example.

Example 10 Consider states p1, p2, and p3 diagonalizable in a common eigen-
basis {|IX1], [2)2], |3)3]}, given by

1

pr =5 (X1 +12)2D . (150)
1

p2 =7 (IIXI1+13)3D) . (151)
1

p3 =7 (12621 + 3)3D) - (152)

Consider a POVM .Z = {M;, M,, M3} given by

My = |3)3], (153)
My = |2)(2], (154)
M; = [1)1]. (155)

The POVM . antidistinguishes the states perfectly because Tr[M;p;] = 0
for i € [3]. However, no pair of states are mutually orthogonal to each other.
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4.2 Asymptotic case
As a consequence of Theorem 8, we arrive at a lower bound on the optimal error

exponent, as stated in the following theorem.

Theorem 11 Consider a quantum ensemble & = {(n;, p;) : i € [r]}. A lower
bound on the optimal error exponent for antidistinguishing the states of the
ensemble is given by the maximum of the pairwise Chernoff divergence of the
states; i.e., we have

E(o1, ..., 0/) = 1<r}1<31;(<r§(/)i,/)j)~ (156)

Proof By Theorem 8, we have

Err(E") < min  Tr[n;ip®" Anjpe"]. (157)
I<i<j=r J
By combining (157) with (34), we get the desired inequality in (156). m]

Let us recall from Example 7 that the inequality in (156) can be strict in some cases.

Corollary 12 If the quantum states in Theorem 11 are pure, given by p; =
[i Xil, then we have

E([yi)Wil, ..o ¥ X ) = | Jnax —In (i |y;) . (158)

Proof It follows directly from (144). |

5 Bounds on the optimal error exponent for quantum
antidistinguishability from multivariate quantum Chernoff
divergences

In this section, we begin by introducing the general concept of multivariate quantum
Chernoff divergences, and after that, we employ this concept in order to obtain bounds
on the optimal error exponent for quantum antidistinguishability. The reasoning used
here is inspired by similar reasoning used for distinguishability problems between two
states [23, 26, 3941, 44].
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5.1 Multivariate quantum Chernoff divergences

Definition 13 Let r > 2 be an integer. We call a function & : D" — [0, co] a
multivariate quantum Chernoff divergence if it satisfies the following proper-

ties:
1. Data processing: for states p1, ..., p, and a channel N,
(o1, - o) ZEN(P1), -, N(pr)), (159)
2. Reduction to the multivariate classical Chernoff divergence for commuting
states: if the states pp, ..., o, commute, then
g(p19‘~-’pr)=§CI(P13‘~-5PV)9 (160)
where & is defined in (23), P, ..., P- are probability measures on
[dim(H)],
Pe(X) = ZMJ, for X C [dim(H)], (161)
ieX

given by a spectral decomposition of the states in a common eigenbasis

pe= Y elifil, fortelr]. (162)
ie[dim(H)]

As stated above, all multivariate quantum Chernoff divergences agree on com-
muting states and are equal to the multivariate classical Chernoff divergence of the
corresponding probability measures induced by the states in their common eigenbasis.
If p1, ..., pr are commuting states, then we denote their divergence by & (p1, . . ., pr).
In this case, it is easy to verify that

gapr, oo =—Ininf 0 | [T a5 (163)
]

"ieldim(H)] \Lelr

As a first starting point, let us explicitly note that the optimal error exponent in (31)
is itself a multivariate quantum Chernoff divergence.

Proposition 14 The optimal error exponent E : D" — [0, oo] defined by (31)
is a multivariate quantum Chernoff divergence.

Proof See Appendix C. O
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Let us note that other multivariate quantum Chernoff divergences can be constructed
from the multivariate log-Euclidean divergence, as discussed in Remark 4, as well as
by means of the multivariate quantum Rényi divergences proposed in [17, 42]. In
what follows, we discuss some other constructions of multivariate quantum Chernoff
divergences.

We say that a multivariate quantum Chernoff divergence &y, is minimal if it is a
lower bound on any other multivariate quantum Chernoff divergence; i.e., for every
multivariate quantum Chernoff divergence &, we have

gmin(plv"'7pr)58(1017"'710")’ forall(pl7"'7pr)62)r' (164)

A minimal multivariate quantum Chernoff divergence is unique by definition, and it can
be obtained as an optimization over quantum-to-classical or measurement channels
as presented in Proposition 15.

Let K be a complex Hilbert space of dimension ¢ with an orthonormal basis
{I1), ..., |r)}. Associated with a POVM {My, ..., M,} acting on the Hilbert space
H is a channel M, known as a measurement channel, which has the following action
on an input state p € D(H):

M(p) = Y~ TilMupllw)wl. (165)
we(t]
The action of the measurement channel on any given states pp,..., 0 pro-
duces the commuting states M(py), ..., M(p;). This induces probability measures
PlM, - P,M on the discrete space 2 = [¢], defined by
PM(X) = ZTr[Mxpi], for X C Q. (166)
xeX

It can be easily verified that the optimal error probability of antidistinguishing the
commuting states M(p1), ..., M(p,) is equal to that of antidistinguishing the corre-
sponding probability measures PIM, R P,M. See (C7)—(C14) in Appendix C.

Proposition 15 The minimal multivariate quantum Chernoff divergence is
given by

Emin(01, - - -, pr) = supEa(PM, ..., PM), (167)
M

where the supremum is taken over all measurement channels M with a t-
dimensional classical output space for all t € N and each probability measure
PM is defined in (166).

Proof See Appendix D. O
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Similar to the definition of minimal multivariate quantum Chernoff divergence,
we can define the maximal multivariate quantum Chernoff divergence. We say that a
multivariate quantum Chernoff divergence &n,x is maximal if it is an upper bound on
any other multivariate quantum Chernoff divergence, i.e., for any multivariate quantum
Chernoff divergence &, we have

gmax(:ol’-u»pr)zg(l)lw--api’)’ for(pl7--~»pr)61)r~ (168)

A maximal multivariate quantum Chernoff divergence is unique by definition, and it
can be obtained as an optimization over classical-to-quantum or preparation channels
as given in Proposition 16.

We can view any probability measure P on the discrete space 2 = [¢] as a quantum

state in K with the fixed eigenbasis {|1)X1], ..., [t)t]}, i.e.,
P =" P({w)lo)ol. (169)
weR

A quantum channel P : L(K) — L(H) is said to prepare a state p € D(H) from
a probability measure P if it satisfies P(P) = p and is called a preparation channel
or classical-to—quantum channel (see [61, Section 4.6.5] for a review of classical-to—
quantum channels).

Proposition 16 The maximal multivariate quantum Chernoff divergence is
given by:

Emax (01, -, o) = » in}f ){Scl(Pl, coos Pr) i P(P) = pi foralli €[r]},

APitier

(170)
where the infimum involves preparation channels P with a t-dimensional clas-
sical input system, for allt € N, as well as probability measures { Py, . .., P}
of the form in (169).

Proof See Appendix E. O

5.2 Bounds on the optimal error exponent for quantum antidistinguishability
The optimal error exponent for quantum antidistinguishability can be bounded from

above and below by the minimal and the maximal multivariate quantum Chernoff
divergences, respectively, as stated in the following theorem.
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Theorem 17 Let E = {(n;, p;) : i € [r]} be a quantum ensemble. We have

Smin()olv '~-9pr) S E(p19 -'~’pr) E %-max(ph --~’pr)7 (171)

where &min and Emax are given by (167) and (170), respectively. Additionally,
the bounds in (171) can be strengthened through regularization as

1 1
sup Zémm(p{@e, e P2Y < E(p1, .o pr) < nf —Emax (0P .., ).
2eN teN £
(172)

Proof We know from Proposition 14 that the optimal error exponent is a multivari-
ate quantum Chernoff divergence, which, along with (164) and (168), justifies the
inequalities in (171).

We know from Lemma 25 in Appendix F that

1
E(p1, ..., pr) = ZE(p;@’f, ...p8  forall £ eN. (173)

Substituting the above equality into (171) gives

1 1
Z%‘mm(pf"e, o pEYH <Epr, .., p) < Zémax(p{@e, . p®Y  forall € €N,
(174)

which implies the inequalities (172). O

We note that in the upper bound in (172), the infimum over £ € N can be replaced
with the limit £ — oo:

o] ¢ ¢ 1 ¢ ¢
ég};{ Z";:max()of9 s P? ) = £]l>no]o Z%_max(lol® s e P? ). (175)

See Appendix G. It is open to determine whether the supremum over £ € N in the
lower bound in (172) can be replaced with the limit £ — oo, if the limit exists.

It is known from [44, Corollary II1.8] and [26, Corollary 4] (see also [40, Sec-
tion 9.3]) that when r = 2, the following equality holds

1 ~ ~
sup Zsmmw;@f,pg@‘) =&(p1, p2) = sup [—InQs(p1, p)]. (176)
LeN s€(0,1)
where
. [ (o8 pl Y] senyzn
Os(p1, p2) = (177

1—s .
Tr[(pi/z“‘”pzpf/z“‘”) } L5 € (0.1/2)
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Since the optimal error exponent is known in this case to be £(p1, p2), which is defined
in (32), and it is also known from [14, Lemma 3] that

£(p1, p2) = E(p1, ), (178)

where the inequality is strict if p; and p, are invertible and do not commute (see [21,
Theorem 2.1]), it follows that the lower bound in (172) cannot be optimal in general.
It is also known from [39, 41] that when r = 2, we have

| —~ -
inf —Emax(pPF, p¥°) > E(p1, p2) = sup —In Qs(p1, p2), (179)
teN £ 5€(0,1)

where s
Os(or. p2) ="Te| o2 (03 2oy ). (180)

Here p; is the absolutely continuous part of p; with respect to p [2], and the negative
power of ps is taken in on its support (see also [29, Proposition 66]). Since the optimal
error exponent is known in this case to be £(p1, p2) given in (32), and it is also known
from [39, 41] that

(o1, p2) < E(p1, p2), (181)

where the inequality is strict if p; and p; are invertible and do not commute (see [23,
Theorem 4.3]), it follows that the upper bound in (172) cannot be the tightest possible
upper bound in general.

6 Single-letter semi-definite programming upper bound on the
optimal error exponent for antidistinguishability

In this section, we derive a single-letter semi-definite programming upper bound on the
optimal error exponent. Let us begin by recalling that the minimum error probability
of antidistinguishability of an ensemble & := {(5;, p;) : i € [r]} can also be expressed
in terms of the following primal and dual semi-definite programs [7, Section II] (see
also [63, Eq. (IIT.15)]):

Err(E) = inf Z”i Te[M;pi] : M; >0 foralli € [r], ZMZ- =1} (182)

Milier ielr] ielr]

= sup {Tr[Y]:Y <n;p; foralli € [r]}, (183)

Y eHerm

where Herm denotes the set of Hermitian operators. The equality holds as a conse-
quence of Slater’s condition; indeed, we see this by noting that M; = I/r is strictly
feasible for the primal and Y = 0 is feasible for the dual. Defining i, == min; ¢ n;,
then it follows that

Err(8&) = sup {Te[Y]:Y <n;ip; Vi €[r]} (184)

YeHerm
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> sup {Tr[Y]:Y < nminpi Vi € [rl} (185)
Y eHerm
= Ssup {Tr[Mmin Y] : minY < Ominpi Vi € [r]} (186)
Y eHerm
= Nmin - sup {Tr[Y]:Y < p; Vi €[r]} (187)
Y eHerm
> Nmink (015 -+ » Or)s (188)
where
k(p1,--spor) = sup {Tr[Y]:—p; <Y < p; Viel[r]}. (189)
YeHerm

The first inequality follows because

Y < Nminpi Vi € [r] = Y

IA

nipi Vi €lr]. (190)

The second equality follows because optimizing over all Hermitian Y is equiva-
lent to optimizing over nmipnY since Nmin > 0. The third equality follows because
MminY < MminPi < Y < p; and by factoring nmin out of the optimization. The final
inequality follows because the optimization in the definition of «(p1, ..., pr) adds
extra constraints.

The main advantage of the x quantity over the antidistinguishability error proba-
bility itself is that it is supermultiplicative, as stated below. For this reason, we can use
it to bound the error exponent.

Lemma 18 For the tuples of states, (p1, ..., pr) and (o1, ..., or), the fol-
lowing supermultiplicativity inequality holds

k(1 ®01, ..., 0r ®0r) = k(p1,...,p07)  k(O1,...,0). (191)

Proof LetY,, Y, € Herm satisfy —p; <Y, < p; and —0; < Y; < o; foralli e [r].
Now invoking Lemma 12.35 of [28], we conclude that, for all i € [r],

—pi®0i <Y, ®Y; < p; ®o;. (192)
It then follows that
Tr(Y,] - Tr[Yo] = Tr[Y, ® Y5 (193)
< sup {Tr[Y]:—pi®0i <Y <p;®o0; Yielr]} (194)
Y eHerm
=k(p1®01,...,0r Q0p). (195)

Since the inequality holds for all Y, and Y, satisfying the aforementioned constraints,
we conclude (191). O
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By applying the supermultiplicativity result inductively, combined with the devel-
opment in (184)—(188), we conclude the following:

Theorem 19  For states py, . .., py, the following upper bound holds for the
asymptotic error exponent of quantum antidistinguishability:

E(p1, ..., 0r) < —lnk(p1, ..., pr). (196)
Proof Consider that
.. 1
E(p1,...,p0r) = hrglollf ——InErr (&Y (197)
n n
1
< liminf — In (gmink (05", ..., P2™)) (198)
n— 00 n
1
< liminf ——1In (/c(,ol, ...,p,)”) (199)
n— 00 n
=—Ink(p1,..., pr). (200)

The first inequality follows from (184)—(188). The second inequality follows from
lim inf —rll In npin = 0 and Lemma 18 applied inductively. O

The upper bound in (196) can be bounded from above by a quantity expressed in
terms of the extended max-relative entropy, defined for a Hermitian operator X and a
positive semi-definite operator o as [62, Eqgs. (14)—(16)]:

Dpnax(X||lo) =1n /{n{) {A:=do <X <Ao}. (201)
>

If the support of X is not contained in the support of ¢, then there is no finite A > 0
such that the constraints above can be satisfied, and so Dy (X||lo) = +00 in this
case. Also, whenever the support of X is contained in the support of o, we have
Dax (X ]|o) < 400 and in this case,

1

Daax (X[l0) = In Ha—%Xo—f , (202)

o0

where the inverse is understood to be taken on the support of o. In Appendix H, we
derive several fundamental properties of the extended max-relative entropy, including
monotonicity, data processing, joint quasi-convexity, lower semi-continuity, non-
negativity and faithfulness, and additivity, which we think are of independent interest.
We also show that

Dinax (X [0) = sup Dmax (X [0 + &1). (203)

e>0
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Theorem 20 For quantum states py, ..., py, the quantity k(p1, ..., pr) is
bounded from below in terms of the extended max-relative entropy, as follows:

k(p1,..., pr) > €xp (— inf max Dmax(w”,ol)) , (204)
wedD i€lr]

where D' = {a) fw =o', Trlw] = 1} is the set of all Hermitian operators
with trace one. Consequently, we have

E(o1,..., 0r) < lgf),me[lx Dax (w]| p7) (205)
= max inf Zs, Drnax (@[ 01). (206)

{si }ze elrl

where {s;}; [, is a probability distribution.

Proof By the definition (189) and the fact that ¥ = 0 is always feasible for
k(p1, ..., pr), we conclude that

k(p1s...,pr) = sup {Tr[Y]:—p; <Y <p; Vie[r]} (207)

YeHerm

= sup  (TilY]:—p; <Y < p; Vielr]) (208)
Y eHerm:Tr[Y]>0

= sup (Tr[Aw]:—p;i < Ao <p;, Vielr]} (209)
1r>0,0eD

= sup {A:—p <Aw=p;, Vielr]} (210)
1>0,weD

> sup {A:—p <Aw=<p;, Vielrl) (211)
1>0,0eD’

1 1 .

= sup {A ——pi<w=<-—p;, Vie [r]} (212)

1>0,0eD’ A A
1

= sup {—/ c—MNpi <w<MNpi, Vie [r]} (213)
V>0,weD A
- -1

= inf {M:—AMp<w<Npj, Vie [r]}] (214)
LA >0,0eD’
- -1

= | inf exp <max Dinax (w||,o,)>:| (215)
| weD’ [r]
- -1

= | exp < inf max Dmax(w||p,)>i| (216)
L weD i

= exp (— inf max Dmax(a)Hp,)) . 217)

weD i€r]
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The equality (207) follows because ¥ = 0 is feasible in (189). The equality (209)
follows because for every Hermitian operator Y with positive trace, we can choose
A=Tr[Y]land w = Y/ Tr[Y] € D sothat Y = Aw; and if ¥ = O then we can choose
A =0and w = I/dim(H) € D' sothat Y = Aw. The equality (213) follows from the
substitution A = %

The desired inequality (205) is a direct consequence of (196) and (204). Also, we
have

inf max Dnax(@llpi) = inf max > s Donax (@]0i) (218)
weD' i€[r] {Sl}ze[ ielr]

= max inf 219

Sax inf Zsl Dinax (@] pi).- (219)

€lr]

The first equality follows because the maximum over a finite set can be replaced
with a maximum of the expected value of the elements of the set, with the maximum
taken over all possible distributions. The second equality follows from an applica-
tion of Sion’s minimax theorem [55]. Indeed, if NM;¢[] supp(p;) # @, then the infima
in (218) and (219) can be restricted to a smaller set D" = {w € D' : supp(w) C
Nielr) Supp(pi)} so that Y ;1 Si Dmax (wl| ;) is finite for all w € D" and every proba-
bility distribution {s;};¢[,1. Also, the objective function Zie[r] §; Dimax (w|| p;) s linear
and continuous in the probability distribution {s;}; <[}, and it is lower semi-continuous
and quasi-convex in w € D" (Appendix H). Sion’s minimax theorem thus applies and
gives the equality (219). In the case when N;¢[] supp(p;) = ¥, both the sides of (219)
are infinity and the equality holds trivially. O

Remark 4 By replacing the set 9’ with D (the set of density operators) in
Theorem 20, we get an interesting (although weaker) upper bound on the
optimal error exponent:

E(p1,....pr) < max inf Zs, Dinax (@] 01). (220)

{Vl}ze[rj weD

This upper bound has a resemblance to the following divergence:

max inf siD(wl||p;i) = max | —InTr| exp Zsi In p; ,

{si}ielr) we Py sitier P

where the equality follows whenever each p; is positive definite. Indeed, the
only difference between (220) and (221) is the substitution Dp,x(p]lo) —
D(pllo) = Tr[p(In p —In o)], where the latter denotes the standard quantum
relative entropy [60]. The equality in (221) was established in Eq. (V.121)
and Example V.25 of [42]. See Appendix I for a review of the proof of (221).
Finally, note that (221) reduces to the multivariate classical Chernoff diver-
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gence when the states in the set { p; }; ¢[»] commute (have acommon eigenbasis).
As such, this quantity is a multivariate quantum Chernoff divergence according
to Definition 13.

We end the section by deriving another alternative form for the « quantity.

Proposition 21 The quantity k (p1, . . ., pr) can alternatively be written as:

k(P1s - pr) = zl,i,nzlf_,-zo Z Trl[(Z1i + Zo,i) pi] s T = Z Zyi—Zyi
Vie[f] i€lr] iglr]

(222)

Proof We prove this by showing that the expression on the right-hand side of (222)
is the dual SDP of «(py, ..., pr) and that the strong duality holds. We derive it as
follows:

sup (Tr[Y]:—pi <Y <p; Vielr]}
Y eHerm

= sup {Tr[Y]JrZ inf [Z(Tr[zu (¥ + pi)l + Tel Za,i (m—Y)])“ (223)

Y eHerm 1,i»Z22,i>0 P
= sup inf AT(YI4+ ) (TrlZ1i (Y + pi)] + Tr[Zai (pi — V)) (224)
YeHerm Z1,i-22,i=0 il

= sup  inf {Tr |:Y (]1+ > (21 - zz,,-))} + > Tel(Z1i + Za) p,-]} (225)

Z14.22:=0
YeHerm 1> £2.i= ielr] ielr]

< inf sup {Tr |:Y (]I+ Z (z1, - Zz,,-)):| + Z Trl(Z1,i + Z2.i) ,Oi]} (226)

T Z1,i,22,>0
1,i:£2,i 20y eHerm ielr] i€lr]

= inf {Z Trl(Z1i + Z2i) pil : I = Z Zri — Zl.i} . (227)

Z1.i,22,i>0
ME2i=E el ielr]

Strong duality holds here by picking Z> ; = 2I/r and Z;; = I/r foralli € [r] in the
dual and by picking ¥ = 0 for the primal. O
7 Conclusion

Summary We have solved the classical antidistinguishability problem of finding the

optimal error exponent, which we proved to be equal to the multivariate classical
Chernoff divergence of the given probability measures. To the best of our knowledge,
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this result constitutes the first operational interpretation of the divergence involving
three or more states. We have also given various upper and lower bounds on the optimal
error exponent in the quantum case, while it still remains an open problem to compute
its exact expression. In analogy with the classical case, we believe that the quantity that
gives the exact error exponent in the quantum case should be called the multivariate
quantum Chernoff divergence.

Future directions Recall from [7] that quantum m-state exclusion can be thought
of as antidistinguishability of a set of states related to the original set. We leave it as
an intriguing open question to determine the optimal asymptotic error exponent for
quantum m-state exclusion.

Analogous to the task of antidistinguishing quantum states, one may consider the
problem of antidistinguishing an ensemble of quantum channels. In this problem, a
quantum channel is chosen randomly from a finite set of quantum channels, with known
a priori probability distribution. The antidistinguisher is allowed to pass one share of
a bipartite quantum state through the channel, after which both the reference system
and the channel output system are measured. Based on the measurement outcome, the
antidistinguisher’s goal is to rule out a quantum channel other than the selected one.
It would be an interesting future work to study the asymptotics of the error rates for
antidistinguishing an ensemble of quantum channels.

Appendix A: Expectation values at non-corner points

We begin by stating a known property of convex functions in the lemma below. We
include a proof of the statement for the sake of completeness.

Lemma22 Let a > 0 be arbitrary. Let f : [0,a] — R be a convex and continuous
function on [0, al, and suppose f is differentiable on (0, a). Then, the one-sided
derivative

L D= fO
f 0 = lim = (A1)

exists and fulfills
fi O = lim £ (A2)

Here f. (0) is either finite or takes the value —oo; if f takes its minimum value at 0,
then f (0) is finite and f (0) > 0.

Proof The map ¢t — (f(t) — f(0))/t defined on (0, a) is non-decreasing. See [9, Sec-
tion 2.1, Exercise 7]). Also, the limitin (A1) exists in RU{—o0} [9, Proposition 3.1.2].
By the Lagrange mean-value theorem, for any ¢ € (0, a) there exists u; € (0, t) such
that

f@) — f0)

; = f'(up). (A3)
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We know that f being convex, its derivative is a non-decreasing function on (0, a).
We thus get from (A3) that

[10) = }{% '@, (A4)

with a possible value —oo. If f is minimized at 0, then we have f(¢) — f(0) > O for
all 7 € (0, a). It then directly follows from the definition (A1) that f7 (0) > 0. O

Lemma 23 Fort € ']T} andi € [r—1], the expectation value E¢|q; ] exists in RU{—o0}
and satisfies

ATK(t) = Eelgi]. (AS)

Proof Recall that T} is the set of non-corner points of T, given by (70). Let t € ']I‘rl.
Define a set

By={ie[r—1]:t > 0}, (A6)

and let B := [r — 1]\ By. Let B denote the cardinality of the set By. We emphasize
that if By # ) so that 8 > 1, t corresponds to an interior point of Tg 1, which is the
B-vector obtained by discarding the zero entries of t. This allows us to use properties
of the exponential family of densities given in (61). So, ifi € B¢ so that By # ¥ then by
similar arguments as given for (67), it follows that the expectation value E¢[g;] exists,
and it satisfies 9;K(t) = E¢[g;]. It remains to show for i € By that E¢[q; ] exists, and it
is equal to 8i+ K(t). Let us fix an arbitrary index i € Bf. Choose a small number & > 0
such thatt + he; € T} forall 4 € [0, €]. The function & +— K(t + he;) is continuous,
convex on [0, €], and it is differentiable on (0, €). Lemma 22 thus implies that

0K = Jim K (t+ hei) = Jim B 0:] (A7)

Here we used the relation 9;K(t + he;) = E¢1e; [gi] proved earlier. We now claim
that [E¢[g;] exists and satisfies

}lli{% Et+he; [9i] = Etlgi] (A8)

with a possible value of —oo. Indeed, we have

1
Eiipelgi] = ——— | du g tig; + hqg; | . A9
t+he; i ] H(t+hei)/p I qi pr €Xp je[;]] iqj + hqi (A9)
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By continuity of H, we have H (t + he;) — H (t) as & N\ 0. Thus, for (A8) to hold,
it suffices to prove that

%irr(l) du gi prexp Z 1jqj + hq; =/duqipre><p Z 1jq;
~OJp jelr=11 b jelr—11

(A10)
Letg; = qi+ —q; ,where qi+ and g; are non-negative functions with mutually disjoint
supports. This gives

/Ddu 4i pr exp( Y tg +h%’) = fDdM a; pr eXp( > tigj +hq,»+) —/Ddl/«

Jelr=1] Jelr—1]

qipreXP( > l‘jqﬂj—hqi). (Al1)

Jelr—1]

Both integral terms in the right-hand side of (A11) are finite, because for & € (0, ¢),
the left-hand side is finite. Indeed then t 4 he; corresponds to an interior point of
T,_p+1 so that the properties of an exponential family of densities apply. Consider
now the first integral term on the right-hand side of (A11). We have the pointwise
monotone convergence on D

gtprexp| Y tigi+hg | Nogtprexp| Y tigi | ash\0.
jer—11 jer—11
(A12)

By the monotone convergence theorem, we have

lim [ du g;" prexp E tigj +hgt | = /du q;" pr exp E tjqj | < oo
hN\O Jp . D ;
jelr—1] jelr—1]
(A13)

where the limit is finite because the integrand is nonnegative. We now consider the
second integral term on the right-hand side of (A11). We have the pointwise monotone
convergence on D

q; Prexp Z tiqj —hq; | /" q; prexp Z tiqj |, ash\0.
jelr—1] Jjelr=1]

(A14)
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By the monotone convergence theorem, we get

lim | diq; prexp > tigj —hq =/duq,-_pre><p > g,
b jelr—11 b jelr—11
(A15)

regardless of whether the right-hand integral in (A15) is finite or infinite. The latter

point is explicitly stressed in Theorem 16.2 of [6]. By taking the limit # \( 0 in (A11)
and then using (A7), (A13), and (A15), we get

0 K(t) = Eelg; ] — Eelg; 1 = Eelgil. (Al6)

Since Et[q;‘] is a real number, E¢[g; ] takes a value in RU {—o00}. If t is a minimizer of
K, then by Lemma 22 we have 8I.+K(t) > 0, and hence, [E¢[g;] is finite. We have thus
accomplished that if t € ']T} is a minimizer of K and i € [r — 1], then the expectation
value E¢[g;] exists, is finite, and satisfies 8i+ K() = E¢[gi]. m]

Appendix B: Proof of Equation (141)

Proposition 24 For arbitrary (not necessarily normalized) vectors @), |¢) € H, the
following equality holds:

leXel — 1EXCIIT = (ele) + (12N — 41l (B1)

Proof The equality (B1) trivially holds if one of the vectors is zero. So, we assume
that both |@) and |¢) are nonzero vectors. Define

, o) / 12)
= Er—— = —_—— B2
=T T o (B2
Then, the desired equality is equivalent to
lele"e'l = dIgNE 1|} = (e +d)? — 4ed [ (£l¢)| (B3)
where
c=lle)l*.  d=11>. (B4)

Defining |¢) to be the unit vector orthogonal to |¢’) in span {l¢"),1¢")}, we find that

1) = cos(0)]¢') + sin(@)|pL), (B5)

where
cos(9) = (¢'|¢'). (B6)
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Then, it follows that
clg)e'| = dI¢')E |
= cl')¢/| - d (cos@¢) +sin@)[0™)) (cos@) (/| +sin@) (1) BT
= [c = dcos®) ] 1¢/}¢'| - d sin(@) cos @)l )|

— dsin(8) cos(8)|¢") (9| — d sin®(@) g™ Xgt . (B8)

As a matrix with respect to the basis {|<p’), lot) }, the last line has the following form:

¢ —dcos*(@) —dsin(6) cos(6) (B9)
—dsin(0) cos(0)  —d sin%(9) ’
and this matrix has the following eigenvalues:
1 2
r = 3 c—d—l—\/(c—i-d) —4cdcosz(0)), (B10)
1 2
= 3 c—d—\/(c—i-d) —4cdc052(9)>. (B11)

Note that ¢ > 0 and d > 0. Without loss of generality, suppose that ¢ > d. Then

0 < 4cd sin®(0) (B12)

= 4ed (1 - cos2(9)> (B13)

=  —2cd < 2cd — 4cd cos*(0) (B14)

= > —2cd+d* <c?+2cd + d* — 4cd cos’ (9) (B15)
= (c—d)? < (c+d)? — 4cdcos*(0) (B16)

= c—d< \/(c+d)2—4cdcos2(9). (B17)

Then, it follows that the square of the trace norm of c|¢’X¢’| — d|¢’)¢’| is given by:

lele'se'l — dig"xe' 1|3

= (Al + 22D)? (B18)
2
= (% (c —d+ \/(c +d)? — 4ed 0052(9)) - % (c —d - \/(c +d)? — 4cd cos2(9)))
(B19)
= (c + d)* — 4cd cos?(0), (B20)
concluding the proof. O
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Appendix C: Proof of Proposition 14

To prove the data-processing inequality, let N be an arbitrary quantum channel. We
denote by N(E) the ensemble {(n;, N(p;)) : i € [r]}, which results from applying
the channel N to each state in €. The optimal antidistinguishability error probability
for the ensemble Err(E) is not more than that for the ensemble N (E). To see this, let
M = {M, ..., M,}be an arbitrary POVM. We have

Err(//; N&) = ) ni TilMiN(pi)] (C1)
ielr]

= wi TrINT (M) pi] (C2)
ielr]

> Err(E). (C3)

The inequality (C3) follows because {N'" (M), ..., NT(M,)}isaPOVM. Since (C3)
holds for every POVM ., we have

Err(8) < Err(N(E)). (C4

Therefore, for all n € N, we get
1 1
——InErr(&") > —— InErr(N(E)), (CS5)
n n
which implies

E(p1,....0r) Z EIN(p1), ..., N(pr))- (Co)

Now, suppose that the states in the given ensemble commute with each other. The
following arguments show that the optimal error of antidistinguishing the given states
is equal to that of the induced probability measures. Let Py, ..., P. be the probability
measures on the discrete space [dim ()] induced by the states in acommon eigenbasis
as defined in (161), and let & be the classical ensemble {(n;, P;) : i € [r]}. Suppose
p1, ..., pr are the corresponding densities of the probability measures with respect
to the counting measure w. This gives the following representation of each state:

pi = / du(o) pi(@)|fol, iclrl. (C7)
[dim(H)]
We have
Er(4:8) =) n; TelMipi] (C8)
i€lr]
=Zn,-Tr[Ml- ( [ du pf<w)|w><w|>} (©)
ielr] [dim(H)]
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= / du() Y (@|Milo)n; pi() (C10)
[dim(#0)] ‘e
= Err1(8; &), (C11)
where § is the decision rule given by §(w) = ((w|M1|w), ..., (®|M;|w)). We note

here that for any POVM .Z, there corresponds a decision rule § that satisfies (C8)—
(C11). Conversely, given any decision rule § for antidistinguishing the classical
ensemble & there corresponds a POVM .#Z = {My, ..., M,}, given by

M; = / du(w) b (w)|w)wl, (C12)
[dim ()]

that satisfies (C8)—(C11). This then implies

iil/}‘ Err(A; E) = ir;f Err(8; Ecr), (C13)

where the infima are taken over all POVMs .# and decision rules § corresponding to
the given quantum and classical ensembles, respectively. We have thus proved that

Err(&) = Errc1(Ect), (C14)
which directly implies

E(p1.....pr) =Ea(P1, ..., P). (C15)

Appendix D: Proof of Proposition 15
Define amap §' : D" — [0, oo] by

Epr, ... p) = s;pscl(PlM, o MY (D1)

as given on the right-hand side of (167). We first show that &’ is a lower bound on any
multivariate Chernoff divergence. Let & : " — [0, co] be any multivariate quantum
Chernoff divergence and p1, . . ., p, be arbitrary quantum states. For any measurement
channel M, we have

EDL, -y pr) = EM(P1), ..., M(py)) = Ea(PM, ..., PMY). (D2)

Here we used the assumptions that £ satisfies the data-processing inequality and
reduces to the multivariate classical Chernoff divergence for commuting states. Since
the inequality (D2) holds for an arbitrary measurement channel M, taking the supre-
mum over M gives

EP1, -y 0r) = E (P14 pr). (D3)
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We now show that £’ is a multivariate quantum Chernoff divergence, i.e., it satis-
fies the data-processing inequality and reduces to the multivariate classical Chernoff
divergence for commuting states. Consider a quantum channel N and any measure-
ment channel M corresponding to a POVM {My, ..., M;} on the output Hilbert
space of the channel N. Let My be the measurement channel corresponding to
the POVM {NT(M)), ..., NT(Mp)}. Let P .. P denote the probability
measures induced by My corresponding to the states py, .. ., p, as given in the devel-
opment (165)—(166). Similarly, let QM, R Qﬁ"( denote the probability measures
induced by M corresponding to the states N'(p1), ..., N(po,). Since Tr[M ;N (p;)] =

TriNT (M;)(pi)] forall i, j, it follows that QlM = PiMN for i € [r]. This implies

E'N1), .- N(py) = sup ga(M, ..., oM (D4)
= supéa (P, ..., M) (D)

M
<E'(p1,..., pr)s (D6)

which means that £’ satisfies the data-processing inequality. In the case when the states
P1, - - -, pr commute, Theorem 6 and Proposition 14 give the following classical data-
processing inequality

Ea(pts -, pr) = Ea(PM, . PMY. (D7)

Also, the inequality in (D7) is saturated for the measurement channel corresponding
to a common eigenbasis of the commuting states. Therefore, we get

E'(p1,...,pr) =Ea(pl, ..., pr). (D8)

We thus conclude that £’ is the minimal multivariate quantum Chernoff divergence.

Appendix E: Proof of Proposition 16

Define amap §” : D" — [0, oo] by

E"(p1, . spr) = (p{ipn}f >{§CI(P1: cos P) 2 P(P) = p; foralli € [r]}, (El)
Wi sielr]

as given on the right-hand side of (170). We first show that £” is an upper bound
on any multivariate Chernoff divergence. Let £ : 9 — [0, oo] be any multivariate

quantum Chernoff divergence, and let py, ..., p, be arbitrary quantum states. Given
a preparation channel # and probability measures Py, ..., P, satisfying
P(P;) = pi, forielr], (E2)
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we have

E(o1s .oy pr) =EP(PY, ..., P(P)) <&a(Pr, ..., P). (E3)

In (E3), we used the assumptions that & satisfies the data-processing inequality and
reduces to the multivariate classical Chernoff divergence for commuting states. By
taking the infimum in (E3) over preparation channels and probability measures satis-
fying (E2), we thus get

1, o) <E"(P1, .., o). (E4)

We now show that £” is a multivariate quantum Chernoff divergence, i.e., it satis-
fies the data-processing inequality and reduces to the multivariate classical Chernoff
divergence for commuting states. Let AV be any quantum channel. We have

"N, ....N(p) = inf  Eq(P1,..., Py) (ES)
P APitierr)
P(Pi)=N(pi)
< inf  &u(Pr1,..., P) (E6)
P Pitierr)
P(P)=pi

zé//(ph“'spr)v (E7)
where the inequality follows because for every preparation channel ¥ satisfying
P(P;) = p;, its concatenation with N gives another preparation channel N o P that
satisfies (N oP)(P;) = N(P(P;)) = N(p;). Ifthe states p1, . . ., p, commute, then by

the classical data-processing inequality, for any preparation channel # and probability
measures P, ..., P, satisfying (E2), we get

Ea(pts - pr) =5a(P(P1), ..., P(P)) < Ea(Pr, ..., Pr). (E8)

Also, the last inequality is equality for probability distributions prepared from a spectral
decomposition of the commuting states in a common orthonormal basis. Therefore,
we get

§"(p1, ..o o) =Ea(p1, ... pr). (E9)

We thus conclude that £” is the maximal multivariate quantum Chernoff divergence.

Appendix F: Additivity of the optimal error exponent

Lemma25 Let & = {(n;, pi) : i € [r]} be an ensemble of states. The following
equality holds

1
B o) = SEGP . pPY)  forall L N, (F1)
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where E(p1, ..., pr) is the optimal error exponent defined in (31).

Proof First, we have that
1
E(p1,...,pr) < ZE(pf“, .., p®Y  forallf e N, (F2)

because {—ﬁ In Err(S”Z)}neN is a subsequence of {—% In Err(8”)}n€N. We now
prove the inequality converse to (F2). Let {Mj ((1), ..., My ¢(r)} be aPOVM attaining
Err(Ske) for all k, £ € N. Then for all n € N such that n > ¢, we have

Er@E) < Y Tr[pl?@" (ML%M(i) ® ]I®("*L%J))] (F3)
ielr] '
®L7le .
= > T M )] (F4)
ielr]
= Err(8l71Y). (F5)
This implies
. 1
E(p1, ..., p;) = liminf —— In Err(E") (Fe)
n—oo n
> lim inf ———— In Err(8L71%) (F7)
n—00 L7
D iminf — L InE (&Y (F8)
= — liminl —-— In BIr
{ k—oo k
1
= Z B 0P, (F9)
This completes the proof. O

Appenix G: Limit of the regularized maximal multivariate quantum
Chernoff divergence

Here we provide a proof of equation (175). We first observe that the multivariate
classical Chernoff divergence is subadditive, i.e.,

E1(PL®Q1,.... PR Q) =ba(Pr,..., P)+Ea(Q1,.... Or) (G1)

for all sets of probability densities { Py, ..., P} and {Q1, ..., O} on a measureable
space (€2, A). This follows easily from the definitions of the Hellinger transform (19)
and multivariate Chernoff divergence (23). So, from the definition (170), we have for
£, m € N that

®+m)

Emax (0] e, p2ETM)
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. o
inf Ea(PIT™ L, pEEm) (G2)
(¢(Z+m) ’{Pi( m)}ie[r])
P(ltm) (P.(Ker)):p@l@p@m

< inf (PO @ P™, ... PO PM) (G3)
@OeP™ (PR et
POP=p2 P (PI)=pP"

. {4
< inf (EaP?, o POY (P, . PI™)) (G4
@PORPM (POQPMYc)

{4
P(l) (Pi( )):/)?k ,P(m) (P’_(m)):pi@)m

. l .
- inf (Ecl(Pl( L P}”)) +  inf (gcl(Pf’"), o Pr(’”)))
PO AP icr) P (P Yicrr))

P(Z) (Pi(e))zp?[ P(m) (Pl-(m))=,0[®m
(G5)
= Enax (P, - PP + Emax (0" -, pE™). (G6)
We have thus proved that the sequence (émax(,ofz’[, R p?z))z N is subadditive. It
€

then follows from Fekete’s subadditive lemma [15] that the limit limy—, oo Emax (,01®£,
.., %) /L exists and is given by

" 1
Jim s (07, PP = inf ZEmax (07, - P (G7)

Appendix H: Properties of the extended max-relative entropy in Equa-
tion (201)

Recall the definition of extended max-relative entropy from (201) for a Hermitian
operator X and a positive semidefinite operator o':

Dpnax(X||o) =1n /{n{) {A:=do <X <Ao}. (HD)
>

We illustrate some special cases of extended max-relative entropy as follows. If X = 0,
then, for all positive semi-definite o, the choice A = 0 satisfies —Ac < X < Ac. This
implies that Dpax(X|lo0) = —oo in this case. In the case when X is nonzero and
o is zero, the support of X is not contained in the support of o. This implies that
Dpax (X ||o) = 400 in this case.

We now present several properties of the extended max-relative entropy.

Proposition 26 (Monotonicity). Let X be a Hermitian operator, and let o', o be pos-
itive semi-definite operators such that o' < o. Then

Dmax(X|lo) < Dmax(X”a/)- (H2)
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Proof Given an arbitrary A > 0 that satisfies —Ac’ < X < Ao/, this A also satisfies
—Ao < X < Ao. Consequently,

Dnax (X |lo) = ln)i\n%{)x :—Xo < X < Ao} (H3)
=
<Ininf{l: —io’ < X < A0’} (H4)
2>0
= Dmax(X|lo"), (HS)
concluding the proof. O

Proposition 27 (Supremum representation). For a Hermitian operator X and a posi-
tive semi-definite operator o, the following equality holds:

Dmax(X||0) = sup Dmax (X |lo + &l) = ;1\1‘1(1) Dpax (X |lo + €1). (H6)

e>0

Proof We conclude the second equality in (H6) because o + ¢I < o + ¢'I holds for
0 < ¢ < ¢, and applying Proposition 26 allows us to conclude that, for fixed X and
o, the function € > Dnax (X ||o + €I) is monotone non-increasing.

Forall e > 0, the operator inequality o < o +¢1 holds. By applying Proposition 26,
we conclude that Dpax (X ||0) = Dmax(X|lo + €I). So it remains to prove that this is
actually an equality. To see that equality holds, we consider two separate cases. First
suppose that the support of X is contained in the support of o. Then, the following
equality holds as a consequence of (202):

Duac(X|lo + 1) = In ” (o +el)" X (o +el) H . (H7)
o

The equality Dyax (X ||o) = limg\ g Dmax (X ||o +¢&1) follows as a consequence of the
continuity of the operator norm. Now suppose that the support of X is not contained
in the support of o. Let |v) € supp(X) \ supp(o) be a unit vector. Consider that

In|@+en™ X +eDT| = |l +eDT X @+ )
- 1n<|(v|X|v)|8_1>. (HS)

Thus, by taking the ¢ “\ 0 limit, we see that limg\ 0 Dmax (X |0 + €I) = +o00 in this
case, consistent with the definition in (201). O

Proposition 28 (Data-processing inequality). Let X be a Hermitian operator and o a
positive semi-definite operator. Let N be a positive map (a special case of which is a
quantum channel, i.e., a completely positive and trace-preserving map). Then

Dinax (X [0) = Dinax (N(X)IN(0)). (H9)

Proof A special case of this inequality follows from [62, Lemma 2] by taking the limit
o — oo. Here we prove it for all positive maps, for X an arbitrary Hermitian operator,

@ Springer



On the optimal error exponents for classical... Page49 of 54 76

and o an arbitrary positive semi-definite operator. Suppose that A > 0 is such that
—Ao < X < )\o. Then, the following inequality holds —AN (o) < N(X) < AN (o),
from the assumption that N is a positive map. Consequently, we get

Dnax (X|lo) = lnig%{k 1 —Xo < X <)o} (H10)
> 1nir;%{)» 1 =AN(0) < N(X) < AN(0)} (H11)
= Dinax(N(X)|IN(0)), (H12)

concluding the proof. O

Proposition 29 (Joint quasi-convexity). Let Z~ be a finite alphabet and p a probability
distribution on 2. Let X* and o* be Hermitian and positive semi-definite operators,
respectively, for all x € Z". Then

> pe . (H13)

max Dinax (X*[|0%) > Dinax | Y p(x)X*
xeZ e

xeZ

Proof If A > O satisfies —Ac* < X* < Ac” for all x € 2, then we also have
A e PXOT <D 0 pP(XO)XT <L) . 9 p(x)o*. This gives

Diax Z px)X*

Z p(x)o* | = ln)ig% {A —A Z p(x)o*

xeZ xeZ xeZ
<> p@X =y p(x)a)‘} (H14)
xeZ xeZ
gln/{ng{k i —Aot < XY < Aot Vx e 27}
- (H15)
= max In inf {1 : —20* < X* < Ao}
xeZ A=0
(H16)
= max Dpax (X" [lo"), (H17)
xeZ
concluding the proof. O

Proposition 30 (Non-negativity and faithfulness). Let X be a Hermitian operator of
unit trace, and let o be a quantum state. Then Dpax (X ||o) > 0. Also, under the same
conditions, Dmax (X|lo) =0 ifand only if X = 0.

Proof For every A > 0 satisfying —Ao < X < Ao, we have that A = Tr[Ac] >
Tr X = 1, implying that In A > 0. By definition, we then get Dpyax (X ||o) > 0.

If X = o, then it trivially follows by definition that D, (X ||o) = 0. Conversely,
suppose that Diax (X ||o) = 0. This implies —o < X < o, and hence ¢ — X > 0. By
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the Helstrom-Holevo Theorem [28, Eq. (5.1.17)], and the fact that Tr[oc — X] = O,
we get

lllU—XHl: sup {Tr[M(c — X)]: M <1} (H18)
2 M=0
< Inf(Tr[Y]: ¥ = 0 - X), (H19)

where the last inequality follows by the weak duality of the SDP given in (H18). A
feasible point in (H19) is given by Y = 0 — X, and we have Tr[Y] = Tr[oc — X] = 0.
It thus follows from (H19) that ||c — X||; < 0, which implies ||c — X||; = 0. We
have thus shown that 0 = X. O

Proposition 31 (Lower semi-continuity). The function (X, 0) + Dpax(X||0), with
domain Herm(H) x L (H) and range R U {—o00, 400}, is lower semi-continuous.

Proof Here we follow arguments similar to those given in [43] (see also [48,
Lemma 18], whose short proof we follow verbatim). Recall the supremum repre-
sentation in Proposition 27. For all ¢ > 0, the functions defined by (X, o) +—
Dpax (X |lo + 1) are continuous because the second argument has full support. Since
the pointwise supremum of continuous functions is lower semi-continuous, it follows
that the function (X, ) — Dpax (X ||o) is lower semi-continuous. O

If A, B are Hermitian operators on a Hilbert space H, then it is easy to prove that
the kernel of their tensor product is given by ker(A ® B) = ker(A) @ H +H Qker(B).
We use this observation in the proof of the next property.

Proposition 32 (Additivity). Let X1, X» be nonzero Hermitian operators, and let
o1, 02 be nonzero positive semi-definite operators. Then,

Dpax (X1 ® X3]lo1 ® 02) = Diax(X1lo1) + Diax(X2]|02). (H20)

Proof First, suppose that supp(X;) ¢ supp(oy). This implies that supp(X| ® X»)
supp(o1 ®07). Indeed, let |x1) € supp(X1)\ supp(oq). Also, X» # 0 implies that there
exists a nonzero vector |xz) € supp(X2). We thus have (X1 ® X2)(|x1) ®[x2)) # 0and
(01 ® 02)(]x1) ® |x2)) = 0, implying that supp(X| ® X2) € supp(o ® 02). Also, the
assumption that X» and o are nonzero implies that Dpax (X2|/02) > —oo. Therefore,
in this case, both Dy (X1 ® X2|lo1 ® 02) and Dyax (X1]|o1) + Dmax (X2 ||o2) are
equal to co. We also get by similar arguments for the case supp(X») ¢ supp(o») that
both Diax (X1 @ X2llo1 ® 02) and Diax (X1]|01) + Dmax(X2|02) are equal to oo.

To complete the proof, we now consider the case when supp(X1) € supp(o;) and
supp(X2) € supp(o?). In this case, we have supp(X| ® X») C supp(o1 ® 02). This
is because we have ker(oq) C ker(X1) and ker(o2) C ker(X7), which gives

ker(o) ® 02) = ker(o1) ® H + H @ ker(02) (H21)
C ker(X1) @ H + H ® ker(X>7) (H22)
=ker(X| ® X»). (H23)
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We thus have

2 2
Dinax (X1 ® Xallon ® 02) = In [ (o * @ 05 %) (X1 @ X2) oy P @0, D)
(H24)
=n|o; X107 @0y P X00y 2| (H25)
=tn(|o " Xlal_l/ZH .Hc72 X0, '] ) a26)
oo o

=1In Hal_l/zXlal_l/zH +1In HG2—1/2X262—1/2H
00 00
(H27)
= Dpax(X1ll01) + Dmax(X21l02), (H28)

concluding the proof. O

Appendix I: Proof of Equation (221)

Let w € D be arbitrary and (s, ..., s,) € R” be any probability vector. Since the

quantum states p1, ..., pr have full support, we have
> siD(@lp)
ielr]
=Y siTrlo(nw —Inp;)] (I1)
ielr]
=Trlwho] - Tr|w | Y silnp (12)
iglr]
=Trlwlhw] — Tr| wlnexp Z s;i In p; I3)
L ielr]
ex a8 In o;
=Trlwlhw] — Tr| wln P (iernsiln i) -Tr| exp Z si In p;
Trexp (X iep si Inpi) ] el

4)

i ex - 8 In p;

= Trlwlnw] — Tr wln( P (Liernsiln i) ) —InTr| exp Zs,-lnp,-
i Trexp (Xepq si Inpi) ] bl

=D <a)

as)

€xp (Zie[r] si In p,') )

—InTr| ex s;i In p; 16)
Tr[exp(zie[r]silnpi)] P Z ! !

ielr]

@ Springer



76 Page 52 of 54 H. K. Mishra et al.

> —InTr| exp Z silnp; | |, an

i€lr]

where the inequality follows from the non-negativity of quantum relative entropy for
eXp(Zie[r] siIn Pi)
Tr[exp(Xiers) si i)’

quantum states. The lower bound is achieved by picking w =
that

inf " s;D(w]pi
inf 3 si:D(@lpi)

ielr]
ex : s; In p;
= inf D|w P (Z'Em ! pl) —InTr| exp Z s; In p; (I8)
weD Tr[exp (Zie[r] silnp;)] fors
= —InTr| exp Z si In p; . (19)

i€r]

This directly gives (221).
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