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Materials-realistic microscopic theoretical descriptions of copper-based superconductors are challenging
due to their complex crystal structures combined with strong electron interactions. Here, we demonstrate
how density functional theory can accurately describe key structural, electronic, and magnetic properties of
the normal state of the prototypical cuprate Bi2Sr2CaCu2O8þx (Bi-2212). We emphasize the importance of
accounting for energy-lowering structural distortions, which then allows us to (a) accurately describe
the insulating antiferromagnetic (AFM) ground state of the undoped parent compound (in contrast to the
metallic state predicted by previous ab initio studies); (b) identify numerous low-energy competing spin
and charge stripe orders in the hole-overdoped material nearly degenerate in energy with the AFM ordered
state, indicating strong spin fluctuations; (c) predict the lowest-energy hole-doped crystal structure
including its long-range structural distortions and oxygen dopant positions that match high-resolution
scanning transmission electron microscopy measurements; and (d) describe electronic bands near the Fermi
energy with flat antinodal dispersions and Fermi surfaces that are in agreement with angle-resolved
photoemission spectroscopy (ARPES) measurements and provide a clear explanation for the structural
origins of the so-called “shadow bands.” We also show how one must go beyond band theory and include
fully dynamic spin fluctuations via a many-body approach when aiming to make quantitative predictions to
measure the ARPES spectra in the overdoped material. Finally, regarding spatial inhomogeneity, we show
that the local structure at the CuO2 layer, rather than dopant electrostatic effects, modulates the local
charge-transfer gaps, local correlation strengths, and by extension the local superconducting gaps.
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I. INTRODUCTION

The cuprate superconductors continue to be a fascinating
and actively researched class of materials. In addition to
their superconducting phases, their normal state has
attracted broad research interest due to a wide range of
unusual properties. Understanding the physical origin of
the AFM insulating phase [1,2], the pseudogap [3–6], the
flat antinodal dispersion [7–10], the strange metallicity
[11–15], and the presence of quantum critical fluctuations
[16–19] in the normal state can provide important insights
into the underlying mechanisms that can give rise to the
superconductivity. Despite plenty of proposed possible
mechanisms, including competing orders [20–22] and

preformed pairs [23–26], the physical origin of this
complicated normal state is still unclear.
A comprehensive description of the normal state is

challenging due to the strong electronic interactions com-
bined with the structural complexity of typical doped
cuprates. While the effect of strong electronic interactions
has been extensively studied using accurate many-body
methods such as density matrix renormalization group
[27,28] or quantum Monte Carlo [29,30], these studies
are often based on an idealized effective model
Hamiltonian, where the hopping strengths are averaged
and symmetrized for simplicity [31–33]. However, realistic
structural distortions in cuprates can result in significant
changes to the materials such as additional symmetry
breaking [34,35]. In particular, the structural distortion
in cuprates can greatly modify the superconducting
gap [36,37] and local pairing interactions [38–45]. These
properties are missing in the symmetrized effective
Hamiltonians. The inclusions of complex lattice distortions
of the native material or as introduced by dopants and
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impurities necessitate a realistic and detailed understanding
of the materials from first principles.
Density functional theory [46,47] (DFT) offers a potent

foundational method for investigating the ground-state
properties of materials from first principles. For cuprates,
DFT has played a pivotal role in constructing effective
model Hamiltonians [48–60]. These works studied the
high-symmetry cuprate crystal structure using DFT and
extracted the low-energy effective model for further quan-
tum many-body studies. However, to ensure the accuracy
and realism of these models, it is essential that the DFT
calculations capture correctly both the structural properties
and the predominant electronic properties of the ground
state. Recent DFT studies on transition metal oxides have
highlighted the significance of allowing energy-lowering
structural distortions to achieve high-quality predictions of
materials properties, such as band gaps at eV scale [61–63].
Bismuth strontium calcium copper oxide Bi2Sr2×

CaCu2O8þx (BSCCO or Bi-2212) [64] is one of the most
intensively studied cuprates and is the focus of in this work.
However, prior DFT studies faced challenges due to its
intricate structural distortions and superlattice modulations
[65–68]. We demonstrate that, by employing modern DFT
exchange-correlation functionals and providing an accurate
description of the crystalline structure including energy-
lowering lattice distortions, we can directly describe the
antiferromagnetic insulating ground state of undoped
Bi-2212 (x ¼ 0), the experimentally observed crystal
structure of hole-doped Bi-2212 (x ≈ 0.25), and the pres-
ence of competing magnetic and charge stripe orders, as
well as crucial details of photoemission spectra such as
“shadow bands.” This means that, based on DFT calcu-
lations, we can correctly ascribe certain experimental
observations to specific structural motifs (e.g., shadow
bands) while simultaneously helping build microscopically
well-justified model Hamiltonians that allow us to study
the effects of strong electron correlations further. Our
many-body calculations based on such models predict
spatial modulations of charge-transfer gaps and correlation
strength, consistent with experimental observations
[36,37,69]. Interestingly, structural modulation of the
CuO2 plane is the dominant cause of this phenomenon,
far more important than the electrostatic effects from
dopant atoms that were assumed to be important in earlier
model calculations [38,39,41,42,45].

II. UNDOPED SYSTEM

The undoped Bi-2212 possesses a bilayer crystal struc-
ture as depicted in Figs. 1(a) and 1(b), where each bilayer
comprises two CuO layers separated by one Ca layer and
sandwiched between SrO and BiO layers. The smallest unit
cell contains 30 atoms and crystallizes in the tetragonal
I4=mmm space group, with only one Cu atom in each CuO
layer [70–72]. However, this small unit cell leads to a false
nonmagnetic ground state due to the artificial assumption

of translational invariance of the Cu local moments [73]. In
addition, the tetragonal space group of this small unit cell is
inconsistent with the orthorhombicity observed in experi-
ments [74]. Here, we start with a larger supercell (60 atoms
per cell) with two Cu atoms in each CuO layer, which
allows for structural orthorhombicity and the spontaneous
symmetry breaking of the magnetic local moments. We
ignore the superlattice modulation distortion for now and
focus on the distortions in BiO layers. As we show in the
following, the distortions in BiO layers are crucial to
raising the antibonding Bi-O band to higher energy.
For simplicity, we first compare different distortion

patterns in bulk calculations. After finding the most
energetically favorable distortions, we then perform slab
calculation to compare with available undoped Bi-2212
experiments such as STM and thin film transports. Because
the interbilayer van der Waals interactions in Bi-2212 are
weak, the slab calculations show very small differences
with the bulk results. This is also the reason why many
prior studies focused on only slab calculations [75–77].
First, we perform a relaxation starting with a crystal

structure drawn for available databases [71,72,78] to
identify the nearest local minimum with the same sym-
metry, referred to as the “high-symmetry” structure. We
find a G-AFM ordered ground state with local Cu magnetic

FIG. 1. Crystal and electronic structure of high-symmetry
undoped Bi-2212. (a) Side view of the crystal structure along
the b axis. Sr, Ca, Cu, Bi, and O atoms are marked by green, gray,
blue, purple, and red balls, respectively. The black square in the
crystal structure marks the G-AFM unit cell. (b) Top view of the
BiO layer from the c axis. (c) Projected band structures (left) and
density of states (DOS) (right) from DFT calculation, where the
Fermi energy is set to be the reference energy. The inset of
the band structures shows the first Brillouin zones (BZ) of the
60-atom supercell. The unit of DOS is the number of states per
unit cell (UC) per eV. Red circles and solid lines show Bi p
orbitals; blue squares and dashed lines show Cu d orbitals; the
black dash-dotted line shows O p orbitals in BiO layers.

ZHETING JIN and SOHRAB ISMAIL-BEIGI PHYS. REV. X 14, 041053 (2024)

041053-2



moments of �0.45μB, while the nonmagnetic state is about
0.25 eV=Cu higher in energy. These local moments agree
with the experimental measurements, typically falling
within the range of 0.4–0.6μB in cuprates without chlorine
[79]. Figure 1(c) shows the projected band structure and
density of states of this AFM ground state which is
metallic. The AFM order opens a gap of about 0.6 eV
for Cu d orbitals between M0 and X0. The Bi-O in-plane
coupling opens an about 1.0 eV bonding gap below the
Fermi level. As we discuss in the following, this high-
symmetry crystal is not the most energetically favorable
structure for undoped BSCCO.
To improve the theoretical description, allowing crystal

structural distortions in the BiO layers can further lower
the total energy of the calculation. Using the conjugate
gradient algorithm for structural relaxation, we optimize
the structures by initially lowering the symmetry in the
BiO layers manually. Figures 2(a) and 2(b) depict two
typical stable or metastable BiO layer patterns whose
ground states are both G-AFM ordered on the CuO2

planes. These two distortions have been studied sepa-
rately in prior studies [80–82]. Here, we compare the
effects of different distortion patterns on electronic
structures and demonstrate how the distortions help raise
the BiO antibonding band.
Figure 2(a) shows a zigzag pattern, where all the oxygen

atoms on BiO layers are moved along the diagonal
direction of the in-plane unit cell by the same amount.
With all BiO layers displaying this zigzag distortion
pattern, the AFM ground-state energy is about
0.29 eV=Cu lower than the one with the high-symmetry
structure in Fig. 1(b), and the local Cu magnetic moments
are �0.48μB, slightly larger than the high-symmetry case.
The BiO bonding gap increases to about 1.5 eV.
Figure 2(b) shows an orthorhombic pattern, character-

ized by the lowest symmetry among all three structures
presented in Figs. 1 and 2. This pattern further breaks the
mirror symmetry of the crystal, resulting in an orthorhom-
bic lattice consistent with observations in experiments [74].
This orthorhombic pattern exhibits the lowest AFM
ground-state energy, 0.5 eV=Cu lower than the high-
symmetry case. It also features the largest local Cu
magnetic moments of �0.53μB as well as the largest
BiO bonding gap size of about 1.9 eV among all three
Bi-O structural motifs mentioned above.
The electronic structures of the distorted crystals in

Figs. 2(a) and 2(b) are presented in Figs. 2(c) and 2(d),
respectively. Compared to the electronic structure of the
high-symmetry case in Fig. 1(c), most of the changes are
observed within the Bi bands due to the BiO distortion
patterns. Although the zigzag distortion pattern helps
reduce the size of the Bi electron pocket, it is only the
lowest-energy orthorhombic distortion pattern that elevates
the entire Bi bands above the Fermi level, resulting in an
insulating AFM ground state.

A straightforward microscopic picture helps elucidate
how the distortions contribute to elevating the Bi bands to
higher energy levels. The density of state (DOS) plots
reveal that the in-plane BiO system possesses filled low-
energy bonding states dominated by oxygen and antibond-
ing states dominated by bismuth, and the bonding-
antibonding gaps are centered at about an energy 1 eV
below the Fermi energy for all three structures. However,
the size of the bonding-antibonding gap varies with the
distortion pattern. The DOS shows that this gap is smallest
for the high-symmetry structure in Fig. 1(c) (approximately
1.0 eV) and largest for the orthorhombic structure in
Fig. 2(d) (approximately 1.9 eV). The gap size difference
arises from different Bi-O hybridization strengths among
the three structures. The coupling is strong enough only
in the orthorhombic structure to lift the antibonding
state above the Fermi level, while the couplings in

FIG. 2. Crystal and electronic structure of two stable low-
symmetry crystals of undoped Bi-2212. (a),(b) The top views of
the “zigzag” and “orthorhombic” distortion patterns of the BiO
layer, respectively, where the orthorhombic distortion pattern in
(b) is the most energetically favorable structure. Large purple and
small red balls represent Bi and O atoms, respectively. The black
squares in the crystal structure illustrate the G-AFM unit cells.
(c),(d) Projected band structures (left) and the density of states
(right) of the crystal structures in (a) and (b), separately.
Red circles and solid lines show Bi p orbitals; blue squares
and dashed lines show Cu d orbitals; the black dash-dotted line
shows O p orbitals in BiO layers.
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high-symmetry and zigzag structures are too weak, result-
ing in metallic states.
This microscopic picture is consistent with a structural

analysis. Generally, hopping strengths depend directly on
local structural properties such as bond lengths and angles.
We compare four different structures in Table I: (i) the
high-symmetry structure from Fig. 1; (ii) the zigzag
distorted structure from Fig. 2(a); (iii) the orthorhombic
distorted structure from Fig. 2(b); (iv) the orthorhombic
distorted structure with expanded in-plane lattice constant.
Structures (i)–(iii) are stable and metastable relaxed struc-
tures predicted by DFT, and structure (iv) is prepared to
have the same distortion pattern as structure (iii) but the
same bond length as the high-symmetry structure (i). To
extract the hopping strength, we compute the tight-binding
Kohn-Sham Hamiltonian on the maximally localized
Wannier basis [83] extracted from our DFT calculations
using WANNIER90 [84]. The projected Wannier orbitals
encompass the p orbitals of Bi and O, as well as the d
orbitals of Cu, which are sufficient to describe the bands
near the Fermi level [85]. Table I lists the Bi-O hopping
(tunneling) matrix element for nearest-neighbor in-plane
Bi-O pairs for different structures. Upon comparing these
four structures, we observe that the bond length has the
most significant impact on the hopping strength (shorter
bonds give larger hoppings, as expected). The bond angles
do influence the hopping strengths but only modestly
[compare structures (i) and (iv)]. Notably, the hopping
strength in structure (iii) (the lowest energy structure
predicted by DFT) is the only one large enough to open
a band gap by raising the Bi electron pockets (originating
from the antibonding BiO bands) above the Fermi level,
and this leads to the insulating ground state.
Our last set of calculations for undoped materials

describes thin films by using slab calculations. We start
with the most energetically favorable bulk structure
and insert 15 Å of vacuum between BiO layers to create
surfaces and slabs. Figure 3(a) illustrates the structural
model: The four atomic layers closest to the slab’s surface
are relaxed to allow for possible surface reconstructions.
Figures 3(b)–3(d) show the projected band structures of

bulk, a slab of one bilayer, and a slab of two bilayers,
respectively. They all have very similar band structures near
the Fermi level. There are some very modest surface effects
on the unoccupied Bi-derived bands about 1 eV above the
Fermi level, while the Cu-derived bands, both occupied and
empty, are not affected by the surfaces. None of this is
surprising: The Cu layers are a few atomic layers away
from the surface where the Bi layer resides. All three
calculations find insulating band structures.
We conclude this section by comparing our results

with experiments and prior theories. Experimentally, bulk
Bi-2212 crystals are conducting due to hole hoping from
inevitable excess oxygen (x > 0), so comparing our
undoped calculations to experiments on the bulk is not
fruitful. However, undoped thin films of Bi-2212 (x ¼ 0)
have been realized experimentally: STM [86–88] and
transport [89,90] experiments have found an AFM insulat-
ing ground state in undoped thin films Bi-2212. (About
x ≈ 6% hole doping is required to turn the insulating Bi-
2212 film into a superconductor [89,90].) Theoretically,

TABLE I. Bi-O hopping strengths, Bi-O bond lengths, and
O-Bi-O bond angles in the BiO plane bond for different distorted
structures: Structure (i) is the high-symmetry structure in
Fig. 1(b); (ii) is the zigzag distorted structure in Fig. 2(a); (iii) is
the orthorhombic distorted structure in Fig. 2(b); (iv) has the same
geometry as structure (iii) but with stretched in-plane lattice
constant to match the Bi-O bond length of structure (i).

Structure Hopping (eV) Bond length (Å) Bond angle (°)

(i) 1.0 2.65 90
(ii) 1.8 2.28 112
(iii) 2.3 2.17 93
(iv) 0.9 2.65 93

FIG. 3. (a) Illustration of the slab geometry where 15 Å
vacuum is added between periodic copies of the slabs along c.
Several surface atomic layers including BiO, SrO, CuO, and Ca
layers are relaxed to study the surface effect. The remaining
atoms are frozen in their bulk configurations. (b) The projected
band structure of bulk BSCCO calculation adapted from
Fig. 2(d). Red circles and blue squares represent Bi and Cu
projections, respectively. (c) The projected band structure of a
slab calculation comprised of only the upper bilayer in (a).
(d) The projected band structure of the full unit cell containing
two bilayers as shown in (a).
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some aspects of the undoped ground state have not been
described well by prior DFT work, which may have
hampered further theoretical studies of the effects of doping
and other perturbations on the system at a microscopic
level. For example, prior DFT works were unable to
simultaneously reproduce the AFM order and the insulating
behavior of undoped Bi-2212 whether modeling the bulk
[73,81,82], thin film or slabs [75–77], or when using larger
more realistic unit cells that include the observed crystal
modulation [68,91]. The prior work found undoped Bi-
2212 to be metallic and “self-doped” due to Bi electron
pockets at the Fermi surface (pockets that have not been
seen in experiments). Some prior works [76,77,81] resorted
to additional “manual” hole doping to eliminate the finite
Bi density of states: While this is a sensible workaround, it
would be preferable to have a calculation of the undoped
material reflect the insulating experimental system.
Our calculations provide a simple and correct description

of the undoped material as an AFM insulator, in agreement
with available experiments. The reason for success is
straightforward and combines two aspects of prior works
in a single calculation: More capable exchange-correlation
functions (such as GGAþU or SCANþU) must be
combined with thorough relaxation of the microscopic
structure to allow for energy-lowering structural distortions
to occur and open up the band gap.

III. OXYGEN-DOPED SYSTEM

Commencing with undoped Bi-2212, hole doping is
incorporated through interstitial oxygen dopants within
the material. These additional hole dopants give rise to a
diverse range of physical properties including supercon-
ductivity, the pseudogap phenomenon, and the presence of
a Fermi surface. The subsections below present our find-
ings on various aspects of the hole-doped system at 25%
(overdoped): the hole-doped crystal structure including the
long-range superlattice modulation and associated place-
ment of the oxygen dopants; the nature of the low-energy
magnetic states including spin and charge stripes; and a
detailed analysis of the angle-resolved photoemission
spectroscopy (ARPES) spectra at the Fermi level including
the effects of structural distortions in creating the shadow
bands as well as the effect of many-body effects and
fluctuating magnetic orders on these spectra.

A. Crystal structure

For the oxygen-doped Bi2Sr2CaCu2O8þx system with
x ¼ 0.25, we explicitly include the superlattice modulation
[34,65–68]. Experimentally, this modulation exists with a
period between 4 and 5 unit cells regardless of doping level
[66,92–94] and theoretically confirmed that the modulation
is an intrinsic behavior of BSCCO in that it occurs even
without doping [68]. Of course, in a computational model
using periodic boundary conditions, the superlattice

modulation must conform to the size of the computational
supercell, e.g., five unit cells in Ref. [68] and four unit cells
in our work below; either choice is reasonable given the
range of 4–5 unit cells found in experiments. We choose
four unit cells for purely pragmatic reasons: The ARPES
experiments [9] we compare to below (concerning the
shadow bands) are estimated to have a doping of 0.22 <
x < 0.24 (based on the superconducting temperature) or
x ¼ 0.26 (based on the Fermi surface volume). Our choice
of x ¼ 0.25 is suitable. Finally, unlike a calculation with
periodic boundary conditions, the positions of the oxygen
dopants may be disordered in the real material, which will
modify spectroscopic intensities. However, given the
above-described robustness of the superlattice modulation
with respect to doping, we believe that the superlattice
modulation (and spectroscopic features deriving from it
such as the shadow bands) should suffer only modest
broadening and generally remain intact with respect to
oxygen disorder.
For the chosen supercell which accommodates a period-

4 superlattice, we explore various possible positions for the
oxygen dopants. These structural properties are essential
for describing the BiO layers properly, and they also have a
significant impact on the superconducting gap [37,95].
Prior work using smaller unit cells has shown that the

lowest-energy oxygen dopant positions are between the Bi
and Sr layers [76,82]. Hence, we follow the prior work to
look for optimized oxygen dopant positions around the Bi
and Sr layers. We have tested multiple oxygen dopant
positions, and Fig. 4(a) shows our optimized lowest-energy
crystal structure for Bi2Sr2CaCu2O8.25, where four oxygen
dopants are added into a stoichiometric undoped Bi-2212
unit cell of 240 atoms which is a 4 × 1 × 1 enlargement of
the 60-atom unit cell in Sec. II. Several metastable crystals
are listed in Supplemental Material [85], showing an energy
cost of at least 900 meV per dopant to move oxygen
dopants between two BiO layers and at least 168 meV per
dopant to move dopants between BiO and SrO layers.
Regardless of the dopant positions, the relaxed superlattice
modulation remains in the same pattern, consistent with the
modulations found in prior experimental and theoretical
works [34,65–68].
We conclude that the most stable positions for the

oxygen dopants are located at the necking region between
BiO and SrO layers as highlighted in Fig. 4. This position
agrees with the in-plane dopant coordinates determined
by STM experiments [36], but STM is performed on the
surface and cannot describe the dopant positions along the
out-of-plane direction. Hence, we compare directly to
recent high-resolution scanning transmission electron
microscopy (STEM) measurements [92], which can pro-
vide orthogonal information on atomic positions: We see
excellent agreement with the STEM-observed structure as
shown in Fig. 4(b). Hence, we are confident in our
predicted ground-state structure for the doped crystal and

FIRST-PRINCIPLES PREDICTION OF STRUCTURAL … PHYS. REV. X 14, 041053 (2024)

041053-5



use it below to predict a variety of low-energy magnetic and
charge orderings.

B. Magnetic and charge ordering

With the lattice structure of our doped BSCCO con-
firmed, we turn our attention to the electronic spin and
charge distribution within this system. We show that many
spatially spin- and/or charge-ordered electronic states are
almost degenerate in energy with the G-type (checker-
board) AFM-ordered state. This indicates the presence of
strong spin and charge fluctuations and competing orders in
this overdoped normal state, and such fluctuations are
thought to be a possible physical origin of the pseudogap
phase in the cuprates [96].
We begin with short-period magnetic orderings of the

Cu magnetic moments, such as the nonmagnetic, ferro-
magnetic, G-AFM, and A-AFM states. Possible longer-
period magnetic orders with spatial inhomogeneity, such
as stripe-order states, are considered further below. Not
surprisingly, the most energetically favorable magnetic
order among the short-period orderings is the G-AFM
order with antiparallel nearest-neighbor spins on Cu atoms
as illustrated in Fig. 5(a). Other short-period metastable
magnetic orders exhibit aligned nearest-neighbor spins, in
either an intralayer (approximately 40 meV=Cu higher
in energy) or interlayer (approximately 2 meV=Cu higher

in energy) fashion, as discussed in Supplemental
Material [85]. Since the energy cost associated with
changing the interbilayer spin alignment from antiparallel
to parallel is negligible [85], we concentrate below on the
magnetic structure within a single bilayer.
As we delve into the complex low-energy longer-period

spin and charge orders, it is crucial to be able to quantify the
local Cu moment and electron count in a simple but precise
manner. Given the complexity of the large BSCCO super-
cell, we concentrate on the charge and spin of the electrons
near the Fermi energy, i.e., the low-energy electronic
behavior, so a low-energy Hamiltonian description sim-
plifies the analysis. As is well known for cuprates, the
electronic bands at or near the Fermi energy are made from
antibonding σ-type combinations of the Cu 3dx2−y2 and
O 2px=y orbitals. We find that other bands dominated by Bi,
O 2pz, or other Cu d orbitals are all at least 0.6 eV above

Atomic

Stripe upper layer
Stripe lower layer

FIG. 5. Competing G-AFM and stripe-order phases in a CuO
bilayer. (a),(b) Illustrations of G-AFM (a) and a typical stripe-
order phase (b) for the bilayer in the black dashed square in Fig. 4.
The black arrows represent the local moments on Cu atoms, with
exaggerated length and thickness highlighting their relative
magnitudes. Yellow dashed lines show the magnetic domain
walls in the stripe-order phase. (c) The magnitude of local
moments in μB on the Cu sites i along the a axis defined as
jmij≡ jni↑ − ni↓jμB, where niσ is the occupancy of the dx2−y2
Wannier orbital at site i with spin σ. (d) The dx2−y2 occupancy on
Cu atomic sites defined as jnij≡ jni↑ þ ni↓j. Red dashed lines
and blue solid lines represent the G-AFM and stripe-order states,
respectively. Circles and diamonds show the results of the upper
and lower layers, respectively.

FIG. 4. (a) DFT predicted crystal structure of Bi2Sr2 ×
CaCu2O8.25, where the hole doping level is x ¼ 0.25. Sr, Ca,
Cu, Bi, O, and dopant O atoms are marked by green, gray, blue,
purple, red, and black balls, respectively. Red arrows further
highlight the O dopants. The black solid square in the crystal
structure marks the 244-atom unit cell of the doped crystal. The
black dashed rectangle highlights the CuO layers in one of the
bilayers in the unit cell. (b) Measured crystal structure of BSCCO
with hole doping of x ≈ 22% using STEM adapted from Ref. [92].
The red arrows are from the original work, pointing out the
oxygen dopants. We show a column of colorful balls for easy
identification of the atomic species.
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or below the Fermi level (this is consistent with exper-
imental knowledge that Bi-derived or other Cu d-derived
bands do not appear in ARPES at the Fermi surface). The
minimal basis to describe the key bands is a “one-band
model” [97], where a single Wannier function is needed per
Cu site: It has mixed antibonding Cu dx2−y2=Opx=y char-
acter, and we construct it via the established maximal
localization approach. This means there is one Wannier
function per CuO2, and Appendix A shows a visualization
of this Wannier function. This one-band model is widely
used to study various aspects of high-Tc cuprates, e.g., spin
and charge density waves, the pseudogap phase, and strange
metal behaviors [98–101]. However, instead of an idealized
one-band model, Wannierization of the actual low-energy
structure and electronic bands automatically includes sym-
metry-breaking effects into the one-band model (e.g.,
variation of on-site energies due to local modifications of
bonding). Not surprisingly, this Wannierization reproduces
the DFT band structure about the Fermi energy to high
accuracy (see Supplemental Material [85]). It is worth noting
that another well-known effective model for the cuprates is
the “three-band model,” where one has Wannier functions
for the Cu dx2−y2 and both Opx=y so that one can describe the
bonding explicitly as well as the low-energy O 2p σ-bonding
bands that are farther away from the Fermi energy.
Appendix A describes our three-band model and shows
that it can also describe the low-energy bands accurately.
Given our focus on the band crossing the Fermi energy, we
prefer the more economical one-band description.
The one-band model has the advantage that the resulting

electron counts are easy to understand: e.g., an undoped d9

configuration for each Cu corresponds to one electron
occupancy at each site; 25% hole doping corresponds
exactly to an average of 0.75 electrons per site (assuming
only the bands described by the single-band model are hole
doped, which is easily verified by direct comparison of the
Wannierized band structure to the underlying DFT bands).
In essence, we have a localized basis that replicates the
ab initio band structure near the Fermi energy. We employ
this tight-binding representation to compute the band
structure, band occupancies, and local occupancies of
the Wannier orbitals. For a thermal Fermi-Dirac smearing
of 0.01 eV (approximately 100 K), Fig. 5(c) presents
the local moment magnitudes for the G-AFM state. The
moments are around 0.47μB with small modulations
of about �0.04μB due to the superlattice modulation. A
similar modulation of �0.03e also manifests in the dx2−y2
electron occupancies shown in Fig. 5(d).
We have discovered numerous longer-ranged stripe-

ordered states that exhibit nearly degenerate energies
with the G-AFM state. While DFT-based stripe-ordered
states were previously reported in La2−xSrxCuO4 [102,103]
and YBa2Cu3O7 (YBCO) [96], they have not been
observed in BSCCO up to now. For Bi-2212, we present
a typical low-energy bond-centered stripe-ordered state in

Fig. 5(b), where the nearest-neighbor spins crossing the
dashed domain walls align in parallel, in contrast to the
antiparallel alignment in the G-AFM state. Remarkably,
the total energy of this stripe-order state is only
1.9 meV=Cu higher than the G-AFM state. In Appendix B,
we tabulate eight distinct stripe-order patterns with energies
with 3 meV=Cu of the G-AFM state. These stripe-order
states differ by their types and alignments of the domain
walls, with only little energy differences. The existence of
all these energetically competing orders suggests the
presence of strong spin fluctuations in the normal state,
which can play an important role in superconducting
pairing [104–107]. Figures 5(c) and 5(d) show the local
moment and dx2−y2 occupancy of this stripe-order state. The
sites closer to the domain walls have lower occupancies and
smaller local moments than the other sites. These striped
spin and charge orders present a modulation of �0.2μB for
local moments and �0.15 for occupancies, significantly
larger than the modulation caused by structural super-
modulation captured in the G-AFM state. Consequently,
the formation of the stripe order has an electronic origin,
but the precise location of the domain boundaries can be
influenced by the superlattice modulation effect.
Notice that the modulations of local moments and the

electron occupancies are the same numerically. This is
because we have one Wannier orbital per site, and, within
band theory, forming a local moment requires an exchange
splitting resulting in an occupied low-energy spin-majority
orbital and empty high-energy minority-spin orbital: The
doped holes go into the spin-majority orbital and reduce
both local occupancy and magnetic moment simultane-
ously. Hence, the redistribution of doped holes strictly
follows the change of spin structures in an intuitive manner.
In addition to the Wannier basis described above, we

have also analyzed the electronic structure of the stripe
orders with the standard atomic projections output by the
Vienna ab initio simulation package (VASP) software
[108,109] in Supplemental Material [85]. The results are
difficult to interpret due to the nonorthogonality of the
standard VASP projections as explained in the supplement:
The Cu magnetic moments show spatial modulations
similar to those in Fig. 5, but the total occupancies hardly
vary from site to site; additionally, there is a large oxygen
contribution to the bands crossing the Fermi level. In short,
in contrast to our dx2−y2 Wannier basis and the intuitive
picture it provides, the standard VASP projections are unable
to explain the stripe order easily, and we do not discuss
them further. (The magnetic moments and electron counts
for a three-band model are found in Appendix A, which
shows qualitative agreement with our one-band model.)

C. ARPES spectra and shadow bands

The topology of the Fermi surface and the associated
low-energy electronic spectrum, usually measured by
ARPES [110], provides important insights into the
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electronic properties of solids. In particular, many mate-
rials exhibit a so-called “shadow band” (SB) Fermi
surface, resembling a weak-intensity copy of their main
band Fermi surface with certain shifted vectors in
momentum space. Depending on the system, these SB
Fermi surfaces can, in principle, originate from any
type of symmetry breaking such as electronic [111],
magnetic [112], or structural [35] origins. The physical
origin of the SB Fermi surface is crucial for under-
standing the physical properties of the material, but it is
difficult to distinguish between the different possible
origins from ARPES measurements alone.
The Fermi surface of Bi-2212, as revealed by intensive

ARPES studies, includes weaker-intensity SB in addition
to the main bands [see Fig. 6(f), adapted from an experi-
ment [9] ]. These SBs can be described by two types
of symmetry-breaking vectors. One of them always aligns
with the superstructural modulation direction, while
the other is along �ðπ;�πÞ, coincident with the AFM
ordering vectors. This has led to a continued debate
regarding the magnetic [113–115] versus the structural
origin [35,116–118] of the �ðπ;�πÞ folding vector. Direct
theoretical interpretation of these SB Fermi surfaces using
DFT has been lacking.
Below, we predict the ARPES Fermi surface using DFT

and many-body calculations to find the underlying physical
mechanisms behind the emergence of SB. We demonstrate
that the emergence of these two distinct types of SB is
attributed to two distinct structural symmetry-breaking

mechanisms while simultaneously clarifying how one
should compute the ARPES spectrum in a theoretically
consistent manner when building on DFT output.

1. Nonmagnetic calculations

Because of the strong spin fluctuations suggested by the
numerous competing stripe orders and the G-AFM states,
the normal state of the hole-doped system should not be
described by a single magnetically ordered configuration
(i.e., a single Slater determinant). In principle, an account
of quantum spin fluctuations is needed for a comprehensive
theoretical description including the magnetic susceptibil-
ity [119] and spin correlations [120] in cuprates. In
practice, however, there is an established recipe whereby
spectra computed using band theory for a nonmagnetic
electronic state of the cuprates are nicely comparable to the
ARPES Fermi surface [110,121].

In this subsection, we use this pragmatic approach and
consider the electronic band structure of the nonmagnetic
state to see what can be learned. The effect of spatial and
temporal spin correlations and fluctuations on the com-
puted ARPES spectra is discussed in the following sub-
sections. As an added benefit, removing the spin degree of
freedom allows us to focus exclusively on the effects
of symmetry breaking by structural perturbations. As
demonstrated below, the nonmagnetic state successfully
accounts for many normal state spectroscopic properties,
including the SB. To facilitate comparison to experimental

FIG. 6. Electronic structures of the 25% hole-doped Bi-2212 system with a nonmagnetic state. (a) The unfolded band structure of the
244-atom unit cell. The opacity represents the spectral weight. (b) Schematic Fermi surfaces are black curves. The black, yellow, blue,
and red rectangles represent the first BZ of the 1, 2, 4, and 8 Cu per layer unit cell, respectively. (c)–(e) Unfolded Fermi surfaces for the
symmetrized crystal, the orthorhombic distorted crystal in Fig. 2(b), and the hole-doped crystal in Fig. 4, respectively. The Fermi level in
(c) and (d) is shifted by 25% “virtual hole doping” to allow a fair comparison to the hole-doped Fermi surface in (e). Yellow dashed (q1)
and red solid (q2) arrows show two different coupling wave vectors. (f) Measured ARPES Fermi surface at T ¼ 104 K, adapted from
experiments with similar hole doping level approximately 23% [9]. Solid and dashed black curves highlight two distinct kinds of Fermi
surface curves.
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ARPES spectra of the Fermi surface, we employ a standard
“band-unfolding” method [122,123] to project the band
structure of a large supercell onto the primitive unit cell
Brillouin zone. This approach is known to reproduce
spectral intensities observed in various ARPES experi-
ments on many different materials qualitatively [124–127].
The band structures and unfoldings discussed below are
computed using the one-band Wannier basis described
above in Sec. III B.
Figure 6 displays the unfolded band structures.

Figure 6(a) shows the case of the 244-atom 25% hole-
doped system with a nonmagnetic phase. Around the
antinodal region near M=X0 in Fig. 6(a), we find two
branches of flat bands below the Fermi level, which are split
by the interlayer coupling in the bilayers, consistent with
ARPES experiments [9,128].
Figure 6(e) exhibits the unfolded Fermi surface of this

25% hole-doped system. The curves with the highest
intensity contain two easily visible curves corresponding
to the solid and dashed black curves in Fig. 6(f) from the
ARPES measurement. Aside from these main curves, the
ARPES Fermi surface exhibits a complicated set of shadow
bands with lower intensities which are also reproduced in
Fig. 6(e). Given the highly satisfactory theoretical results,
we conduct an analysis to demonstrate that the different sets
of shadow bands have two distinct physical origins.
We begin with a symmetrized model of the Wannier

tight-binding model of undoped BSCCO with orthorhom-
bic distortions: The spatially inhomogeneous on-site ener-
gies and hoppings introduced by structural distortion are
symmetrized to their respective mean values. As a result,
the nonmagnetic state of this model can be described in a
small primitive cell with one Cu atom in each CuO2 layer,
due to the full translational symmetry of this symmetrized
model. Consequently, the unfolded Fermi surface of this
model, shown in Fig. 6(c), contains only the main Fermi
curves without any shadow bands. (The Fermi levels of the
undoped crystals are lowered manually to achieve 25%
hole doping.) Starting from this clean Fermi surface,
we successively add complexity to the crystal to see the
emergence of the shadow bands.
Next, we turn to the effect of orthorhombic distortions on

the Wannier tight-binding model given by the crystal in
Fig. 2(b) without symmetrization. Similarly, 25% hole
doping is introduced by lowering the Fermi level manually.
This model exhibits an approximately circular-shape
shadow band as shown in Fig. 6(d). This circular-shape
shadow band arises from the symmetry breaking of in-
plane hoppings due to the orthorhombic distortions, as
depicted in Fig. 2(b). Previous experiments have observed
these shadow bands and suggested their likely structural
origin [35,116,117] without providing a specific micro-
scopic picture. We observe that the distortions in the Bi-O
layers enlarge the unit cell and introduce an interband
coupling at wave vectors q1 ¼ �ðπ;�πÞ. This coupling

leads to folding from the main bright curves to the
shadow bands as indicated by the yellow dashed arrows
in Figs. 6(d) and 6(e).
Finally, we study the Wannier model for the large

supercell shown in Fig. 4 that includes both the Bi-O layer
distortions and the superlattice modulation. Consequently,
on top of the circlelike shadow band, there is another
type of shadow band involving the wave vector q2 ¼
�ðπ=4;−π=4Þ shown in Fig. 6(e). This type of shadow
band, often referred to as a “superstructure” in previous
studies [129], has long been attributed to a postemission
modulation effect from Bi-O layer buckling [118]. Prior
experiments have also shown that this type of shadow band
fades away when the crystal modulation is gradually
reduced by Pb doping [129]. Our calculation presents a
consistent and simple microscopic picture: The oxygen
dopants and associated superlattice modulations further
enlarge the unit cell and introduce an additional coupling at
q2. This coupling creates a further folding (illustrated by
the red arrow) from the main bright curves to another set
of shadow bands. Note that, in both experiments and our
theory, this coupling occurs only in one crystalline direc-
tion due to the superlattice modulations being solely along
the a axis as shown in Fig. 4.
Concluding this subsection, results based on the non-

magnetic electronic state clearly show that lattice distor-
tions alone can give rise to the shadow bands observed on
the Fermi surface of BSCCO and that the matching of
theory and experiment is of very high quality. Many-body
effects and complex electronic fluctuations are not neces-
sary to describe the shadow bands. However, since many-
body effects and fluctuations exist in the actual material,
describing the material using a nonmagnetic state electronic
state is highly inconsistent from a theoretical viewpoint. As
a simple example of the inconsistency, the nonmagnetic
state is much higher in energy than any of the magnetically
ordered phases in our (and prior) DFT calculations: Why is
an ARPES spectrum computed using an unphysical high-
energy state so accurate?

2. Band theory treatment:
Static inhomogeneous local moments

DFT calculations (ours, as well as prior work [96]) show
that there are many competing low-energy states involving
charge and spin ordering. Thus, the simplest step going
beyond the nonmagnetic calculation is to stay with the DFT
framework (i.e., band theory) and assume that the actual
material has static local moments on each atomic site and is
spatially inhomogeneous microscopically: Different parts
of the material have different local charge and spin order-
ings. This state is often known as the spin glass state. If
experimental measurements average spatially over these
inhomogeneities, one can attempt to describe the fact that,
like other cuprate superconductors, x ¼ 0.25 hole-doped
BSCCO shows strong spin fluctuations [130–133] and is
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paramagnetic (PM) [134–136] in experiments. Hence, the
static spatial fluctuations of the charges and spins from
the band theory should average to give a globally uniform
and paramagnetic structure. The key point is that, because
band theory is based on a single Slater determinant which
precludes dynamic (temporal) electronic fluctuations, the
fluctuations in the actual material must necessarily be
described, within band theory, as static ones that are
distributed inhomogeneously in space. In this section, we
see that this approach leads to poor or problematic
predictions of ARPES spectra and that a method going
beyond band theory is needed for a consistent and
accurate description.
The simplest approach to dealing with inhomogeneity is

to take a large library of DFT-computed low-energy
structures and compute a thermally averaged ARPES
spectrum: For each spin- or charge-ordered state, one
computes the ARPES spectrum using band unfolding
and has it contribute to the average spectrum with a weight
given by its thermal Boltzmann probability based on the
energy of that state per unit cell. The physical picture is that
each unit cell of the material is effectively independent of
its neighboring cells so that the spatial inhomogeneity can
be replaced by a thermal average over a single unit cell’s
multiple possible states. In other words, one assumes
that the domain size of each phase is on the order of a
unit cell [137]. We have performed this calculation using
eight different low-energy stripe-order states as well as the
G-AFM state for the 244-atom unit cell using a thermal
energy of kBT ¼ 0.01 eV. The resulting ARPES spectrum
is shown in Fig. 7 and has little relation to the experimental
observations.
Given this problematic spectral prediction, the above

approach can be improved by relaxing the assumption of
the fixed domain sizes: One should make a more faithful
model that automatically chooses domain sizes and dis-
tributions based on total energy minimization in a large
supercell and then compute the associated ARPES

spectrum of this large supercell that contains representative
inhomogeneous charge and spin distributions [138]. It turns
out (below) that one needs beyond 2000 Cu sites in
the supercell to converge the resulting ARPES spectra
versus supercell size. Hence, this approach is not presently
feasible using DFT due to its computational expense, and a
surrogate model is needed. In the following, we use a
simple tight-binding approach based on Wannierization of
the DFT band structure to arrive at a computationally
tractable surrogate model.
Specifically, we consider a single-band Hubbard model

treated within Hartree-Fock (HF) theory for a single 2D
CuO2 plane in BSCCO (the same Wannier basis from
Sec. III B), so we have one dx2−y2 Wannier function for each
Cu site. The total HF energy is

EHF
tot ¼−

X

ijσ

tijhĉ†iσ ĉjσiþ
X

iσ

ϵihn̂iσiþU
X

i

hn̂i↑ihn̂i↓i; ð1Þ

where ĉiσ is the electron (fermion) annihilation operator
for site i with spin σ, the number counting operator is
n̂iσ ¼ ĉ†iσ ĉiσ , tij is the hopping parameter between sites i
and j, and ϵi are on-site energies. The operator expectations
are over a single Slater determinant wave function found
by minimization of the total energy or, equivalently, self-
consistent solution of the HF single-particle Hamiltonian,
which for spin channel σ is

ĤHF
σ ¼ −

X

ij

tijĉ
†
iσ ĉjσ þ

X

i

ϵin̂iσ þ U
X

i

hn̂i−σin̂iσ; ð2Þ

where −σ denotes the opposite spin from σ.
For BSCCO, we find that a high-precision reproduction

of the DFT band structure requires only three key types
of hopping parameters, which are t ¼ th100i, t0 ¼ th110i,
and t00 ¼ th200i, where h100i is a nearest-neighbor hopping
(along the Cu-O-Cu direction), etc. The Wannierization of
the full 244-atom unit cell including the crystal modulation
distortion yields us the hopping parameters tij as well as the
site-dependent ϵi; the hopping parameters, when averaged
over all appropriate pairs in the unit cell, have the values
t ¼ −0.473, t0 ¼ 0.088, and t00 ¼ −0.091 eV. (To simulate
a high-symmetry structure, we symmetrize our model by
setting all ϵi ¼ 0 and all hoppings to these averaged
values.) These hopping parameters are qualitatively con-
sistent with the effective Hamiltonians in prior DFT studies
on high-symmetry unrelaxed crystals [54,55,59,60]. In
addition, due to the structural distortions and superlattice
modulation, these hoppings are modulated spatially by
about �0.015 eV, and the on-site energies are modulated
by about �0.032 eV. The interaction parameter U is
chosen so that the HF total energy difference between
the nonmagnetic and G-AFM phases at x ¼ 0.25 repro-
duces the total DFT energy difference between those
phases. The resulting value is U ¼ 3.1 eV or U=t ≈ 7,

FIG. 7. Thermally averaged unfolded Fermi surface of eight
representative low-energy stripe-order states and the G-AFM
state from the DFT calculations. Labels of high-symmetry k
points are the same as Fig. 6.
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which is consistent with the effective Hamiltonian from
prior works [54–56,59,60] and is very reasonable compared
to prior studies of cuprate systems using one-band Hubbard
models [100,139,140].
We solve for HF solutions using a simple self-consistent

field (SCF) method: We diagonalize the HF one-particle
Hamiltonian of Eq. (2) using k-point sampling of a large
periodic supercell, compute the resulting electron densities
hn̂iσi using small thermal smearing of 0.01 eV (for
numerical stability of the SCF calculation), and iterate to
convergence. We begin with a variety of different initial
seed densities (e.g., ferromagnetic, AFM, stripes, or ran-
dom) to arrive at solutions of different symmetries. For
each solution, we compute the ARPES spectrum by
computing a dense sampling of wave vectors of the
supercell, finding the states at the Fermi energy, and
projecting their wave functions onto plane waves. To
converge the ARPES spectra with the above thermal
smearing, our 2D lattices must be of minimum size
32 × 32 (i.e., 1024 Cu sites in one CuO2 layer). In addition
to sampling a large supercell, we thermally average the
ARPES spectra over approximately 200 different low-
energy HF solutions to simulate averaging over a large
inhomogeneous materials system.
Table II (left side) shows total HF energies per electron

and local magnetic moments for several low-energy sol-
utions for undoped x ¼ 0 and hole-doped x ¼ 0.25 sys-
tems. Not surprisingly, the undoped x ¼ 0 system has a
checkerboard AFM ground state with a large stabilization
energy. For the hole-doped case, the lowest energy states
(represented by the “random” row) have a complex,
inhomogeneous spatial distribution of spin and charge:
We obtain a large number of nearly degenerate solutions
that are qualitatively similar in that they show mixed
domains of AFM and FM with meandering boundaries.
Figure 8 shows an example of the magnetic moment and
electron count distribution of a low-energy HF solution (the
“random” entry in Table II). We note a few facts from the
figure: The lattice has a mixture of FM and AFM domains,
each domain is a few unit cells wide (typically five or less),
and lattice sites with high electron count n have a larger
magnetic moment jmj (and vice versa). In other words,
within HF, the doped holes choose to distribute themselves
inhomogeneously in space to lower the total energy, and the
sites to which they segregate haveweak magnetic moments.
Unfortunately, when we compute the unfolded band

structure at the Fermi level for such low-energy HF solution
associated with Fig. 8, we find results shown in Fig. 9.
Overall, the spectrum is qualitatively similar to the non-
magnetic theoretical as well as experimental spectra from
Fig. 6, as it has visible Fermi arcs. This makes sense, because
a large simulation cell with an electron distribution like that
in Fig. 8 is nonmagnetic upon spatial averaging, and the
wave functions used to compute the spectrum in Fig. 9 are
plane waves of constant amplitude that sample the entire

simulation cell. However, this HF-derived spectral weight is
far too broad in wave vector (momentum) space to make
a meaningful comparison to the experiment or to even
visualize the shadow bands. In retrospect, the reason is
straightforward: The static and inhomogeneous electronic
distribution shown in Fig. 8 contains domains whose size is a
few primitive unit cells, so we would expect upon Fourier
transformation to find broad structures in wave vector space.
Thus, increasing the size of the simulation cell when

averaging spectra derived from static spatial inhomogeneity
does improve the comparison to the experiment (compare
Fig. 7 to Fig. 8), but there is still quite a distance to go
before claiming to understand the electronic structure that
underlies the experimental ARPES spectra. Since the band
theory approach assumes an electronic state that is
described by a static spatial pattern, we have to abandon
this underlying assumption to make progress.

3. Many-body treatment: Dynamic fluctuations

To go beyond band theory, we need a theoretical
framework that allows us to include the basic physics of

TABLE II. Key ground-state properties for the undoped x ¼ 0
and hole-doped x ¼ 0.25 2D single-band Hubbard model based
on Hartree-Fock (HF) and the single-site slave-boson (SSSB)
methods with U ¼ 3.1 eV and using hopping parameters ex-
tracted from Wannierization of DFT band structures. Results are
based on calculations on a 32 × 32 lattice with periodic boundary
conditions and thermal energy of kBT ¼ 0.01 eV. The phases
describe the static spatial distributions of charge and spin:
spatially uniform nonmagnetic (NM), spatially uniform ferro-
magnetic (FM), checkerboard (G-type) antiferromagnetic (AFM),
period-4 stripe phase of alternating FM and AFM lines (stripe),
and a representative low-energy state started from a random seed
(random). The columns are the total energy per electron E in
meV, the magnitude of the local magnetic moment jmj (where
mi ¼ ni↑ − ni↓ for each site i), and the local electron count n
(ni ¼ ni↑ þ ni↓). For spatially nonuniform phases, the minimum
and maximum of jmij and ni are provided as a range. For each
doping level, the NM phase is chosen as the reference zero
energy.

Method

HF SSSB

Phase E jmj n E jmj n

x ¼ 0
NM 0 0 1 0 0 1
FM −27 0.8 1 −0.2 0.04 1
AFM −236 0.9 1 −56 0.8 1

x ¼ 0.25
NM 0 0 0.75 0 0 0.75
FM −74 0.6 0.75 −0.2 0.06 0.75
AFM −95 0.5 0.75 −3 0.3 0.75
Stripe −106 0.4–0.7 0.66–0.84 −2 0.1–0.2 0.74–0.75
Random −117 0.0–0.8 0.49–0.94 −3 0.0–0.4 0.74–0.77
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dynamic electronic fluctuations in a computationally effi-
cient manner. As noted above, the fact that the 25% hole-
doped BSCCO is paramagnetic (PM) [134–136] argues that
each local spin moment fluctuates dynamically (i.e., in
time) [130–133,141]. Prior research has also suggested
a close relation between spin fluctuations and high-
temperature superconductivity [132,142]. In this section,
we perform a many-body study of the system and arrive at
two findings: (a) a many-body treatment removes the
energetic drive toward a static, inhomogeneous electronic
distribution and instead produces a spatially almost uniform
static (i.e., time-averaged) spin and charge distribution
where the residual spatial inhomogeneity is introduced
only by structural distortions; and (b) while many-body
effects narrow the electronic bandwidths when compared to

the NM DFT calculations, they have little effect on the
Fermi surface including the shadow bands.
There are a number of different many-body solid-state

methods when one wishes to go beyond mean-field theory.
Considering the sizes of the simulation cells we are dealing
with even for the simple 2D single-band Hubbard model,
we use computationally efficient slave-boson methods that
we have developed recently as both single-site methods
[143–145] and an accurate cluster-based method [146]. In
these approaches, the electron annihilation operator ĉiσ is
replaced by the product f̂iσÔiσ, where we have a chargeless
fermion represented by the fermionic annihilation operator
(called a spinon) f̂iσ and a charged auxiliary or slave boson
represented by its lowering operator Ôiσ. The two sub-
systems are separated by approximating the ground-state
density matrix ρ̂ of the combined spinonþ boson system
by the product form ρ̂f × ρ̂s, where each subsystem has its
own density matrix (ρ̂f for spinons and ρ̂s for the slave
bosons). The ground state is found by minimizing the
total energy

ESB
tot ¼ −

X

ijσ

tijhf̂†iσf̂jσifhÔ†
iσÔjσis

þ
X

iσ

ϵihn̂iσif þU
X

i

hn̂i↑n̂i↓is;

where the f or s subscripts mean an average using the
associated density matrix ρ̂f or ρ̂s, respectively. We note
that the interaction term is treated correctly within the
slave-boson description [i.e., the product of densities
is not factorized as in HF in Eq. (1)]. Total energy
minimization for this approach means one must solve two
coupled problems: a set of noninteracting spinons (fer-
mions) moving on a lattice, whose hoppings are modu-
lated by the slave particles, and a set of interacting slave

FIG. 8. Self-consistent local electron density and magnetic moments from a HF treatment of the 2D one-band Hubbard model for a
32 × 32 periodic 2D lattice with U ¼ 3.1 eV, a thermal smearing of kBT ¼ 0.01 eV, and hole doping x ¼ 0.25. This particular solution
was started from a random initial guess and has a lower HF total energy than any ordered phase (see Table II). Left: local electron density
n ¼ ni↑ þ ni↓ for each site i ¼ ðx; yÞ. Middle and right: magnitude and signed value of the local magnetic momentmi ¼ ni↑ − ni↓. Note
the complex mixture of AFM and FM arrangements domains and how sites with large magnetic moments jmij also have high electron
density ni.

FIG. 9. Band-unfolded Fermi surface for the low-energy,
spatially inhomogeneous HF solution corresponding to Fig. 8.
The rough outlines of an NM-like spectrum similar to the
experimental and theoretical findings in Fig. 6 are visible, but
the spectral weight around the Fermi level is too broad for a
faithful comparison or for visualizing any shadow bands.
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modes that are moving on a lattice. In practice, the slave
problem is approximated by solving small clusters: The
slave Hamiltonian of a single site or a small cluster of
interacting sites is solved exactly and is coupled to an
effective bath self-consistently determined from the
averaged properties of the site or cluster.
To compute electronic spectra at the Fermi energy, one

considers the spinon Hamiltonian given by

Ĥf ¼ −
X

ijσ

tijhÔ†
iσÔjσisf̂†iσf̂jσ þ

X

iσ

ðϵi þ BiσÞn̂iσ; ð3Þ

where the auxiliary “magnetic” fields Biσ permit static
symmetry-breaking solutions of the electronic ground
state [144,146]: Part of the minimization process is to find
the Biσ values that minimize the total energy. The spinon
Hamiltonian Ĥf describes a set of noninteracting electrons
moving on a lattice whose tight-binding hoppings are
renormalized by expectations values from the slave sector.
The spectral properties of the interacting spinonþ slave
system at the Fermi energy are found by computing them at
the Fermi energy of the spinon problem (e.g., by diago-
nalization of Ĥf) [147]. Note that this approach can
reproduce the Hartree-Fock predictions if total energy
minimization results in hÔ†

iσÔjσis¼1 and Biσ ¼Uhn̂i−σi,
but it has a wider set of solutions with hÔ†

iσÔjσis ≠ 1 with
dynamical spin and charge fluctuations that may have
lower energy.
We begin with the simplest slave-boson method where

the interacting problems being solved involve each site
separately. We perform a large number of calculations
on 32 × 32 lattices for the above Hubbard model
(with periodic boundary conditions), minimizing the total
energy of each system when starting with various initial
electronic seed states (NM, FM, AFM, stripe, and random).
Table II provides total energies and basic observables
for the undoped and hole-doped 2D Hubbard lattices.
Superficially, like HF, static electronic symmetry breaking
for slave bosons also lowers the energy.
However, the main message of the table is the vastly

different energy scale for stabilization of static electronic
symmetry breaking: The energy lowering in the slave-
boson calculations is 1–2 orders of magnitude smaller than
in HF, especially for the hole-doped case; the magnitude of
the magnetic moments and amplitude of spatial variations
in electron density are also much weaker in the slave-boson
case. A band theory method such as HF lowers total energy
primarily by reducing the repulsive interaction energy via
symmetry breaking (e.g., by forming static local magnetic
moments with hni↑i ≠ hni↓i); the strength of this tendency
is controlled directly by the interaction parameter U. In the
single-site slave-boson approach, the many-body solution
for each site explicitly describes the empty, singly, and
doubly occupied configurations, so the interaction energy

can be lowered by reducing the contribution of the doubly
occupied states without any symmetry breaking. Hence, the
weak residual static symmetry breaking is driven by the
system trying to take advantage of weaker intersite inter-
actions (e.g., superexchange).
If one enlarges the size of the interacting cluster being

treated, the driving force for static symmetry breaking will
further weaken, and this is what we find. When we enlarge
our interacting problem to involve two neighboring sites
and use our cluster slave-boson approach [146], we find
that energy minimization of the ground states leads to a
solution with no static symmetry breaking. Here, we take
the DFT-calculated 244-atom x ¼ 0.25 unit cell electronic
structure and perform Wannierization to build the Hubbard
model. Therefore, each interacting slave cluster is solved in
its own unique local supermodulation crystalline environ-
ment as dictated by the extracted ϵi on-site energies and
hoppings tij. Figures 10(a) and 10(c) show that the total
ground-state energy increases when either a static AFM
or stripe pattern of magnetic moments is imposed: The
lowest-energy solution shows no static symmetry breaking
(B ¼ 0). However, as shown in Fig. 10(b), there are strong
AFM correlations between neighboring sites as one expects
from the physics of superexchange. In brief, energetically
favored spin-spin correlations are fully dynamic at this
doping level. We refer to this solution as a paramagnetic
state (PM).
The spatial homogeneity of the minimum energy many-

body solution means that, when computing the Fermi
surface, the appropriate spinon Hamiltonian Ĥf [Eq. (3)]
has Biσ ¼ 0 and renormalization factors hÔ†

iσÔjσis that are
essentially constant throughout the unit cell (they vary by
less than 10% among the various slave clusters ij due to the
crystal distortions). Therefore, the PM Fermi surface
ends up looking very similar to the NM DFT Fermi surface
from Sec. II: Figure 11(a) compares the two band structures
showing that the modest but quantitative renormalization
(narrowing) of the spinon bands. In addition, the inter-
actions have little effect near the Fermi surface, and this is
verified explicitly in Figs. 11(b)–11(d), which can be
compared to the DFT NM results in Fig. 6. In particular,
Fig. 11(b) shows the Fermi surface of the symmetrized
crystal in the PM state. While the dynamical spin fluctua-
tions and correlations are properly described in this study,
the many-body effect does not directly cause any shadow
bands. However, the shadow bands appear in Figs. 11(c)
and 11(d), where additional crystal distortions are intro-
duced. Therefore, like the NM DFT results, the shadow
bands originate from the crystal structure of the materials
and do not originate in electronic or magnetic interactions.
In summary, the reason the DFT NM Fermi surfaces

do so well at reproducing the experimental Fermi surfaces
lies in the fact that the actual material system at x ¼ 0.25
has a PM ground state without static local moment
[107,134,135]: The DFT NM is the best band theory
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solution mimicking this fact despite being a high-energy
solution within the DFT framework. Of course, the elec-
trons do have significant spin-spin correlations that lower
the total energy, but, in this case, the correlations are purely
dynamic and are not reflected in static spatial symmetry
breaking. Hence, while the band structure calculations
systematically and sensibly predict low-energy states
with spatially inhomogeneous static patterns of charge
and spin, the actual system dynamically and quantum
mechanically fluctuates among these “snapshots” during
the experimental photoemission process, leading to an
effectively NM-looking final Fermi surface (and this is

not the same as averaging over spectra from a large number
of static snapshots). Hence, we can now explain the success
of the recipe of using NM DFT calculations to describe
band structures of cuprate phases that do not display long-
range spin or charge order in experiments.

IV. MODULATION OF CORRELATION
STRENGTH

Because of the atomically flat and clean BiO-terminated
surfaces that form on BSCCO upon cleaving of crystals,
surface tunneling microscopy and spectroscopy can pro-
vide a wealth of spatially resolved electronic information.
A striking experimental discovery [36,37] was a significant
modulation of the superconducting gap with local structural
motifs such as (inferred) dopant positions or supermodu-
lation. This experimental information is of significant

FIG. 10. Cluster slave-boson results for hole-doped 2D Hub-
bard model derived from Wannierization of the 244-atom unit
cell. (a) The total energy as a function of the auxiliary field
strength B applied in staggered static AFM pattern. The local
interaction U of the Hubbard model is varied from 0 to 4 eV.
(b) Nearest-neighbor spin correlations of the PM ground state for
U ¼ 3.1 eV: AFM correlation is defined as hN̂i↑N̂j↓þ N̂i↓N̂j↑is,
while FM correlation is defined as hN̂i↑N̂j↑ þ N̂i↓N̂j↓is (both are
averaged over all nearest-neighbor pairs of sites ij). (c) The total
energies of static AFM and stripe phases as a function of the
magnitude of the auxiliary B field for U ¼ 3.1 eV. The static
AFM state is induced by applying a staggered B for all sites.
The stripe state is induced by applying B to the strong local
moment sites along their corresponding spin directions as shown
in Fig. 5(b) (marked by large black arrows); the auxiliary fields at
the weak local moment sites are optimized to minimize the total
energy at each data point.

FIG. 11. Electronic structures of 25% hole-doped Bi-2212
system with PM ground state. (a) The unfolded band structure
of the 244-atom unit cell. Red and blue curves represent
DFT NM bands and spinon bands for the PM state, respec-
tively. (b)–(d) The PM state unfolded Fermi surface of the
symmetrized crystal, the orthorhombic distorted crystal in
Fig. 2(b), and the hole-doped crystal in Fig. 4, respectively.
Similarly, the Fermi level in (b) and (c) is shifted by 25% virtual
hole doping to allow a fair comparison to the hole-doped Fermi
surface in (d). These Fermi surfaces are very similar to the NM
states in Figs. 6(c)–6(e).
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theoretical interest, because any microscopic model for
superconductivity will have a dependence on the local
doping level as well as the local structural details: For
example, a leading theory for the microscopic pairing
mechanism is through AFM spin correlations and fluctua-
tions [148,149], and local doping levels and intersite
hopping parameters (which depend on local bond lengths
and angles) help determine the magnetic properties.
However, it is very difficult to directly interpret the

experimental data without theoretical models. To date, a
large number of theoretical works have attempted to
describe the situation [38–45] using model Hamiltonians
and perturbative expansions, but there is a lack of con-
sensus on the dominant expansions terms, and a number
of key parameters must be fit to experiment. Separately, a
number of these works assume that the electrostatic
potential of the dopant plays the main physical role, an
assumption whose validity is hard to assess without
independent and parameter-free theoretical results.
In this section, we use our DFTþmany-body calcu-

lations to shed light on some key questions (the method-
ology is the same as Sec. III C 3 and uses the same PM state
below). We begin with Fig. 12(a) that illustrates a top view
of the CuO2 layer we focus on and marks the position of
the (in-plane projection) of the oxygen dopants (which are
at the necking region of the superlattice modulation).
Figure 12(b) shows the many-body results for the modu-
lation of AFM correlation along the superlattice modulation
direction (a axis) for the relaxed x ¼ 0.25 system. The
correlation strength is larger closer to the dopant oxygen,
which is consistent with experimental observations [36,37].
For reference, a flat red line marks the AFM correlation
from solving a symmetrized Hubbard model with all
hopping strengths and on-site energies set to their average
value over the unit cell.
Next, we investigate the relation between the AFM

correlation and the local on-site energy difference ϵdp
between the Cu-dx2−y2 and O-pσ Wannier orbitals (which,
as explained above, are found byWannierization of the NM
DFTþ U state within a three-band model). Figure 12(c)
shows the local dp splitting ϵpd, and we see a clear
modulation and direct connection to the AFM correlation
strength. The connection is easy to understand: Larger ϵdp
leads to a lower effective hopping between nearest-
neighbor Cu sites and reduces Cu-Cu magnetic couplings
(see, e.g., Ref. [38]). We expect ϵpd to be directly connected
to the more experimentally relevant “charge-transfer
gap” Δpd (between the top of the O-p-type hole states
and Cu-d-type electron states in experiment): For a fixed
Cu U and near half filling, one expects Δpd ≈ ϵpd þ U=2.
In this way, we expect the modulation of ϵpd should reflect
that of the charge-transfer gap: Figure 12(c) predicts an
approximately �0.1 eV modulation of the charge-transfer
gap which is consistent with STM measurements [69].
In addition, since our results show that smaller ϵpd leads to

stronger AFM correlation, within the spin fluctuation
paring model we would expect this leads to stronger
superconducting pairing which is consistent with exper-
imental observations [86,88].
We now exploit the power of first-principle calculations,

namely, that they can deliver parameter-free results along
with full control of the microscopic structure, to clearly
separate the role of doping from that of structural

FIG. 12. (a) Top view of CuO2 layer: Blue balls are Cu, and red
balls are O. The black ball shows the projected position of the
nearest O dopant between the Bi and Sr layers, while the black
dashed line marks the a-axis position of this dopant. (b) The
AFM correlation hN̂i↑N̂j↓ þ N̂i↓N̂j↑is between nearest-neighbor
Cu from the cluster slave-boson calculations (a Cu pair is
identified by the position of their linking planar O atom);
the O positions along the a axis are in fractions of a. Any
inhomogeneity along the b axis is averaged. Blue circles show the
results from the relaxed x ¼ 0.25 hole-doped structure which has
superlattice modulation (SM). Red diamonds show data for the
symmetrized Wannier model which is spatially uniform. (c) The
local on-site energy difference ϵpd for the DFT NM state. Each
data point shows the averaged dp splitting between an oxygen
atom and its two copper neighbors. Green triangles are for the
frozen structure obtained by removing oxygen dopants from the
x ¼ 0.25 structure, and purple stars are for the relaxed (modu-
lated) undoped x ¼ 0 structure. (d) The local CuO bond length
between an O atom and its two Cu neighbors averaged over the
two bonds.

FIRST-PRINCIPLES PREDICTION OF STRUCTURAL … PHYS. REV. X 14, 041053 (2024)

041053-15



distortions. We first take the fully relaxed x ¼ 0.25 struc-
ture which has dopants and supermodulation and simply
remove the oxygen dopants without allowing any atoms to
move (i.e., frozen structure). We then recalculate the
electronic structure and show the resulting ϵpd in green
in Fig. 12(c): The main physical effect is that the ϵpd curve
shifts up uniformly in energy upon removal of the dopants
without much change of the amplitude of spatial modula-
tion. Hence, the electrostatic effect and doping profile from
the oxygen dopants are, in fact, quite uniform (i.e., non-
local) and do not in themselves create any strong spatial
modulation of electronic parameters. Obviously, this argues
against a key assumption of many prior model Hamiltonian
works and helps us focus on other relevant sources for
the modulation (i.e., structural properties). The uniform
upward shift of ϵpd with the removal of hole dopants is easy
to understand: The Cu now becomes more negatively
charged, and, thus, their on-site energies get raised up in
energy. For reference, we also relax the new x ¼ 0 structure
which retains the superlattice modulation but with weaker
amplitude: Its resulting ϵpd in Fig. 12(c) is consistently
higher than the x ¼ 0.25 case but is much flatter than the
unrelaxed x ¼ 0 structure.
While there are many potential structural parameters or

descriptors one could investigate, we focus on the simplest
and most important one for ϵpd: the Cu-O bond length.
Figure 12(d) shows the local Cu-O bond length in the CuO2

plane for all the four systems described above. In the
necking regions of the supermodulation, which is also
where the dopants are located, the local Cu-O bonds are
longest, which translates into small local ϵpd. The con-
nection between Cu-O bond length and ϵpd is easy to
understand, e.g., from classical electrostatics: For larger
Cu-O separation, the Madelung electrostatic on-site
potential energies are lowered at Cu and raised at O,
which reduces ϵpd. The inverse relation of the two is
easy to see when comparing comparable curves in
Figs. 12(c) and 12(d).
In short, we have shown quite clearly that local structural

modulations are the dominant controllers of the local dp
energy splitting and, thus, the local AFM correlation
strength. In turn, this structural effect helps us understand
the cause of variations in the charge-transfer gap and
the superconducting gap observed in experiments.
Furthermore, it highlights the point that controlling and
engineering the local structure of the superconducting
layers is the most straightforward path to engineering
the superconductivity of the cuprates.

V. OUTLOOK

In conclusion, we have provided a microscopic under-
standing of the AFM insulating phase of the undoped
Bi-2212 system. Additionally, we have uncovered com-
peting stripe orders in the hole-overdoped system, which

offers a paradigmatic approach (specifically for BSCCO)
to describe stripe orders using DFT without performing
complex many-body calculations. Spectroscopically, our
nonmagnetic DFT band structure calculations remarkably
reproduce the observed normal state spectral properties.
Furthermore, we have elucidated the structural origin of
the ARPES� ðπ;�πÞ and�ðπ=4;−π=4Þ shadow bands in
the hole-overdoped system. Finally, we show how the
dopant oxygens and structural modulations vary the
charge-transfer gap and spin correlations over real space:
In particular, we show that the local structure around the
CuO2 plane is of paramount importance in controlling the
local AFM correlation strength and charge-transfer gap,
while the effect of the electrostatic doping effect itself is
quite minimal. Our work underscores the importance of
considering the crystal degrees of freedom, including
structural distortions, modulations, and realistic oxygen
dopant positions, together with state-of-the-art exchange-
correlation functional, for an accurate description of
various material properties. A telegraphic summary is
“structure is king.”
We believe that our study establishes a robust theoretical

foundation for more “surgical” structural engineering of
cuprates, particularly with regard to manipulating broken
translational and rotational symmetries. Moreover, as our
DFT ground state captures the dominant low-energy
properties in the normal state of Bi-2212, the Wannierized
Hamiltonians extracted from our DFT calculations can
provide appropriate parameters for model Hamiltonians in
future studies of low-energy phenomena in cuprates. As an
example, we show in our work that the DFT-derived band
structure is in excellent agreement with experiments when
computed for using nonmagnetic phases. Using many-body
calculations, we show that the reason for this agreement is
due to the fact that the overdoped material is in a para-
magnetic phase with strong dynamical spin fluctuations
(which are known to affect superconductivity and the
pseudogap [132,142]) but without any static spatial sym-
metry breaking of the local moments or charge. These
observations also provide guidance to future researchers
regarding which DFT predictions can be compared directly
to experimental observables and which other predictions
require further refinement using many-body correlated
electron approaches.

VI. COMPUTATIONAL DETAILS

We use VASP with the projector-augmented wave
method [150]. A relatively high plane-wave cutoff energy
of 500 eV is used. The generalized-gradient-approximation
(GGA) with the semilocal Perdew-Burke-Ernzerhof (PBE)
functional [151,152] is used in all of our calculations.
All calculations are done with collinear spins. The recent
finding of noncollinear spin texture in cuprates [153] is also
an interesting topic to study but is beyond the scope of this
work. To avoid the known failure of the local-spin-density
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approximation and the GGA in reproducing the copper
magnetic moment in cuprates [68,77,81,91,92,154,155]
due to self-interaction errors in the approximate exchange-
correlation functionals [156], we add U ¼ 4 eV for the Cu
3d manifold in all our PBEþU calculations following
previous theoretical works [73,157,158]. In Supplemental
Material [85], we describe further tests that vary U from
0 to 4 eV. At U ¼ 0 eV, we reproduce the nonmagnetic
metallic ground states from prior works [77,81,91,92]. Once
U > 2 eV, changing the U value shifts only the energy of
the unoccupied high-energy Cu-derived bands [85], which
does not affect our main findings around the Fermi energy.
More advanced and superior exchange-correlation func-

tionals such as the strongly-constrained-and-appropriately-
normed (SCAN) meta-GGA functional [159] can be
employed, and they usually require a smaller U value
(as they inherently better remove self-interaction errors).
We have performed SCANþ U calculations as well (see
Supplemental Material [85]) usingU values for prior works
for cuprates [160]. For both undoped and doped Bi-2122,
we find that the SCANþ U method [160,161] provides
very similar results to the PBEþ U results [85]. Details on
optimized lattice structures as well as typical metastable
structures can also be found in Supplemental Material [85].
Given the similarity of the PBEþU and SCANþ U
results and considering the increased computational cost
of using SCANþU, most of the results in our paper use
the PBEþ U approach.
To accelerate the structural relaxation of the large

244-atom oxygen-doped unit cell, we use the Spanish
Initiative for Electronic Simulations with Thousands of
Atoms (SIESTA) package [162] to approximately relax the
structure before doing the final relaxations using VASP. A
double-zeta plus polarization basis, with the EnergyShift
parameter set to 100 meVand the SplitNorm parameter set
to 0.25, is used in all our SIESTA calculations.
We substantiate this picture quantitatively by computing

the tight-binding Kohn-Sham Hamiltonian on the maxi-
mally localized Wannier basis [83] extracted from our DFT
calculations using WANNIER90 [84].
Our slave-boson calculations use the Wannierized tight-

binding model from our DFT calculations to construct the
Hubbard model. We perform the single-site slave-boson
calculations using the Boson Subsidiary-Solver (BOSS)
software [163]. The cluster slave-boson calculations follow
early work [146].
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APPENDIX A: THREE-BAND VERSUS
ONE-BAND MODEL

Conventionally, the low-energy effective model can also
be constructed from the Cu dx2−y2 orbitals and the O pσ

(px=y orbitals pointing toward Cu atoms). This model is
often known as the “three-band model” or Emery model
[164]. In this section, we compare the three-band model
with the one-band model in the main text. It turns out that
they provide equivalent descriptions for the bands around
the Fermi level. Hence, the choice of different effective
models does not affect the results in the main text.
Here, we construct a Wannier basis with Wannier

functions centered at Cu and O atoms on the CuO2 layers
via the maximally localized Wannier function method. The
Cu-centered Wannier functions are constructed to have the
same symmetry as dx2−y2 orbitals, while the O-centered
Wannier functions have the pσ symmetry. Figure 13 shows
the isosurface of the Wannier functions in real space, where
both types of Wannier functions are well localized.
Consequently, our effective model contains three Wannier
orbitals for each CuO2. Different from the idealized three-
band model in prior studies, our model contains important
symmetry-breaking information from structural distortions.
For example, the on-site energies and hopping strengths
vary among different atoms and bonds.
As a comparison, the one-band model in the main text is

physically a low-energy simplification of the three-band
model by focusing on the antibonding band of CuO2.
Figure 14 shows the maximally localized Wannier function
of the one-band model. It is centered at the Cu atom and
comes from the antibonding hybridization of the three-band
model Wannier functions in Fig. 13.
We further compare the electronic structures of the one-

band model and the three-band model. Figure 15(a) shows
the unfolded band structures of the 25% hole-doped

FIG. 13. Top view of the maximally localized Wannier func-
tions’ isosurface in real space for the three-band model. (a) Cu-
centered Wannier functions with dx2−y2 symmetry. (b) O-centered
Wannier functions with px symmetry. The isosurface level is
0.6e=Å3, about 2% of the maximum value. Blue large balls are
copper atoms, and red small balls are oxygen atoms. Yellow and
blue isosurfaces represent positive and negative wave functions,
respectively.
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BSCCO in the NM state. These two models give quanti-
tative similar results for the antibonding CuO2 bands
crossing the Fermi level, i.e., all the bands between −2
and 2 eV around the Fermi level. They almost exactly
overlap with each other. The three-band model shows
additional fully occupied bands below −2 eV from the
Fermi level. These fully occupied bands are beyond our
interest, because they have little effect on the Fermi surface.

Figures 15(b) and 15(c) show the Fermi surfaces from the
one-band and three-band models, separately. As expected,
there is no visual difference between the Fermi surfaces,
including the shadow band intensities.
Finally, we study the local moments and the electron

occupancies in the three-band model as a comparison to the
one-band model results in Fig. 5. Here, we focus on the
same stripe order shown in Fig. 5(b) and Wannierize it to
the three-band model. Figure 16(a) shows the local
moments of different Cu dx2−y2 and O pσ Wannier orbitals
in the unit cell. The dominant local moments are on Cu,
showing a consistent wavy pattern as the one-band model
results in Fig. 5(c). Figure 16(b) shows the electron
occupancies of different Wannier orbitals, where both Cu
and O Wannier orbitals show a consistent wavy pattern as
the one-band model results in Fig. 5(d). This analysis
provides a consistent picture in a prior work on YBCO [96].

APPENDIX B: STRIPE-ORDER STATES AND
THEIR ENERGIES IN HOLE-DOPED SYSTEM

As discussed in the main text, we have successfully
identified many stripe-ordered states that are almost degen-
erate with the G-AFM state in our DFT calculations. We
conclude that there are likely strong spin fluctuations in this
overdoped system. Such spin fluctuations in cuprates are
also detected by experiments [130–133,141]. In this sec-
tion, we provide more details about these competing
ordered states.

FIG. 14. Top view of the maximally localized Wannier func-
tions’ isosurface in real space for the one-band model.
The isosurface level is 0.6e=Å3. Blue large balls are copper
atoms, and red small balls are oxygen atoms. Yellow and blue
isosurfaces represent positive and negative wave functions,
respectively.

FIG. 15. (a) Comparison of electronic structures from one-band
and three-band models in the hole-overdoped BSCCO. The red
curves represent results from the one-band model, and the yellow
curves represent the three-band model. (b),(c) The corresponding
Fermi surfaces from one-band and three-band models, separately.

FIG. 16. (a) Local moments magnitude and (b) Electron
occupancy at different sites along the a axis for the three-band
model describing the stripe-order state shown in Fig. 5(b). The
magnitude of local moments in μB on sites i along the a axis
defined as jmij≡ jni↑ − ni↓jμB, where niσ is the occupancy of the
Wannier orbital site. Red circles and blue squares represent the
Wannier orbitals centered at the Cu and O atoms, separately.
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TABLE III. The local magnetic moments and total energies of the stripe-order states. The total energy of the
G-AFM state is set to be the reference energy. Here, we classify the local moments as the “big black arrows,” “small
black arrows,” and “red arrows” according to the illustrations in Fig. 17.

Local moment amplitudes (μB=Cu)

Spin structure Big black arrows Small black arrows Red arrows Energy (meV/Cu)

G-AFM 0.42–0.46 � � � � � � 0
Bond-center 1 0.41–0.49 0.34–0.36 � � � 1.9
Bond-center 2 0.42–0.52 0.32–0.33 0.23–0.25 −0.3
Bond-center 3 0.42–0.51 0.30–0.38 � � � 1.5
Bond-center 4 0.43–0.51 0.33–0.37 � � � 2.1
Bond-center 5 0.43–0.52 0.30–0.32 0.16–0.18 1.4
Hybrid 1 0.42–0.52 0.37–0.39 <0.03 0.5
Hybrid 2 0.42–0.52 0.34–0.39 0–0.19 −0.1
Hybrid 3 0.40–0.51 0.28–0.29 <0.04 2.7

FIG. 17. Spin densities of the G-AFM state and stripe-order states. The yellow isosurfaces show spin-up polarization densities, while
the blue isosurfaces show spin-down densities. The arrows illustrate the spin directions for clarity. The local moments on the Cu atoms
are classified into three types: The big black arrows represent the local moments larger than 0.4μB, the red arrows or dashed double
arrows represent those smaller than 0.25μB, and all other local moments are marked by small black arrows. The orange dashed lines
show the domain walls on Cu-Cu bond, while the red dashed double arrows show the domain walls on Cu sites. (a) The G-AFM order
state. (b)–(f) Five typical bond-center stripe orders. (g)–(i) Three typical hybrid stripe orders containing domain walls on bonds and sites
at the same time.
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Table III shows the local moments of eight distinct stripe-
order states and their total energies compared to the G-AFM
state. We identify several bond-centered stripe orders, where
all the domain walls are located at the O atomic sites
mediating the Cu-Cu bonds. Figures 17(b)–17(f) show the
spin structures of these bond-centered stripe orders, where
the domain walls marked by the dashed lines can appear at
each Cu-Cu bond along the a axis. While the domain walls
are separated by four Cu atoms in Figs. 17(b)–17(e), it is also
possible to have three or five Cu atoms between domain
walls as shown in Fig. 17(f).
In addition to the bond-centered stripe orders, a previous

DFT study on YBCO has also identified site-centered stripe
orders [96], where all domain walls are at Cu atomic sites.
However, such site-centered stripe orders are unstable in
Bi-2212 according to our calculations. Instead, we find
several “hybrid” stripe orders, where domain walls appear
at both the Cu-Cu bonds and the Cu atomic sites as
illustrated in Figs. 17(g)–17(i). The red dashed double
arrows show the domain walls on Cu atomic sites, where
the local moments are almost zero. Interestingly, we find
several Cu sites with very small local moments marked by
the red arrows, which are very common in the stripe
patterns such as those in Figs. 17(c), 17(f), and 17(h).
The physical origin of this phenomenon is likely due to the
superlattice modulation distortion which modulates the
local environments of the Cu atoms.
In principle, there are many more possible configurations

of bond-centered stripe orders, because one can take
combinations of the existing stripe patterns for the upper
and lower CuO2 layers. We have tested nine additional
bond-centered patterns by taking these combinations and
found energies of 1.65–3.40 meV=Cu above the G-AFM
state. These stripe-order states, constructed by such combi-
nations, generally show higher total energies than the
existing stripe-order states (but all of them are very close
in energy). All these calculations indicate the energetic
tendency for the existence of strong spin fluctuations in this
system: As we show in the main text, one has to go beyond
DFT to take account of the spin fluctuation effect to make
quantitative predictions of ARPES spectra.
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