
1

Revealing CNN Architectures via Side-Channel Analysis in
Dataflow-based Inference Accelerators

HANSIKA WEERASENA, University of Florida, USA

PRABHAT MISHRA, University of Florida, USA

Convolutional Neural Networks (CNNs) are widely used in various domains, including image recognition,

medical diagnosis and autonomous driving. Recent advances in data�ow-based CNN accelerators have enabled

CNN inference in resource-constrained edge devices. These data�ow accelerators utilize inherent data reuse

of convolution layers to process CNN models e�ciently. Concealing the architecture of CNN models is

critical for privacy and security. This paper evaluates memory-based side-channel information to recover

CNN architectures from data�ow-based CNN inference accelerators. The proposed attack exploits spatial

and temporal data reuse of the data�ow mapping on CNN accelerators and architectural hints to recover the

structure of CNN models. Experimental results demonstrate that our proposed side-channel attack can recover

the structures of popular CNN models, namely Lenet, Alexnet, VGGnet16, and YOLOv2.

CCS Concepts: • Security and privacy→ Embedded systems security; Side-channel analysis and counter-

measures; • Computing methodologies→Machine learning.

Additional Key Words and Phrases: Convolutional Neural Networks, Edge Inference Accelerators, Data�ow-

based Inference Accelerators, Side-channels, Model Extraction

1 INTRODUCTION

Convolution Neural Networks (CNNs) [16] are Deep Neural Networks (DNNs) that incorporate
convolution (Conv) layers specialized in processing multidimensional data. CNNs are used in a
wide range of applications, such as image and video recognition, classi�cation, and analysis. These
neural networks operate in two main phases: training and inference. The training phase involves
a time-consuming process of learning weights in the neural network, while inference uses the
pre-trained neural network to perform fast predictions. Resource-constrained edge devices perform
inference in the device rather than sending data to a centralized server for inference. These edge
devices can range from mobile phones to remote o�ine sensor networks.
Edge arti�cial intelligence (AI) enhances system performance by mitigating communication

bottlenecks between edge devices and servers, ensuring high availability independently of net-
work/internet connectivity, providing real-time insights, and minimizing the need for extensive
data storage [40]. AI at edge needs inference of pre-trained CNN models on resource-constrained
devices with energy and area constraints. General-purpose central processing units (CPUs) or
graphics processing units (GPUs) can be used for the purpose of training and inference of CNNs,
though GPUs are preferred for their superior parallel processing capabilities. Although central
CPUs or GPUs are used in training these CNNs at servers, data�ow-based accelerators are preferred
for inference at edge devices [8]. Data�ow is a computing scheme that utilizes inherent data reuse
of Conv layers to achieve e�cient CNN inference performance. Data�ow-based CNN accelerators

Authors’ addresses: Hansika Weerasena, University of Florida, Gainesville, FL, 32611, USA, hansikam.lokukat@u�.edu;

Prabhat Mishra, University of Florida, Gainesville, FL, 32611, USA, prabhat@u�.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

1539-9087/2024/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:2 Hansika Weerasena and Prabhat Mishra

save energy and execution time by reducing the cost of main memory accesses by introducing a
local memory hierarchy inside the accelerator [40]. Data�ows can be broadly classi�ed into four
categories depending on the type of stationary data [40]: weight stationary, output stationary, input
stationary, and row stationary. This paper explores two widely used data�ows: weight stationary
(WS) and output stationary (OS). These data�ow accelerators can be designed using Application
Speci�c Integrated Circuit (ASIC) as well as Field-Programmable Gate Array (FPGA). ASIC-based
accelerators are preferred in edge inference since they are energy e�cient while providing adequate
computational �exibility [28].

These CNN models need to be run on various edge devices with diverse hardware, software, and
�rmware developed by di�erent vendors. Supply chain vulnerability can lead to security concerns
for these edge devices with accelerators. For example, hardware Trojans can be inserted during
the design as well as fabrication phase of an ASIC-based accelerator with the malicious intent
of leaking sensitive information without being detected at the post-silicon veri�cation stage or
during runtime [32]. In many application scenarios, the structure of a CNN model should be kept
con�dential for the following reasons. (1) CNN model can be a company’s proprietary and critical
intellectual property. (2) Knowing the network model leads to designing and launching e�cient
adversarial attacks [5]. (3) User privacy can be compromised in a shared accelerator if the model
architecture is leaked, as it reveals unique data processing characteristics and intended uses of the
model, while also aiding adversaries in executing model inversion attacks [13]. Di�erent types of
side-channel analysis (memory, timing, electromagnetic emanation) are used in recovering CNN
structures from GPU/CPUs [19, 25, 26, 44, 47]. GPUs/CPUs use a temporal computing paradigm
where centrally controlled processing units can only fetch data from the memory hierarchy. On
the other hand, data�ow-based accelerators have a spatial computing paradigm where transfer
between individually controlled processing units is possible. Due to the inherent di�erence in
computing paradigm and underlying architecture, existing side-channel attacks on GPU/CPU-
based accelerators cannot be directly applied to data�ow-based accelerators. Furthermore, existing
memory-based side-channel attacks [21] on CNN processing focus on main memory to accelerator
memory transfer, which leads to reverse-engineering a large set of possible CNN structures for a
single CNN model. For example, [21] gives 24 possible structures for Alexnet [27].
In this paper, we try to answer a fundamental question: is it possible for an adversary to exploit

inherent data reuse of data�ow-based CNN inference accelerators via memory side-channels to ac-

curately recover architectures of CNN models? Our proposed research needs to answer two major
challenges in developing such an attack: (1) how to exploit di�erent data�ow patterns to converge
a large number of potential structures to a few, although di�erent layer structures can result in
the same side-channel values, (2) how to develop a generalized approach to recover structures
from di�erent input, output, layer sizes and their mapping on the accelerator? CNN consists of a
sequence of Conv, fully connected (FC), and pooling layers. Due to the prevalence of Conv layers
and their inherent data reuse, CNN accelerators focus on accelerating convolution layers. Therefore,
our study principally concentrated on exploiting these acceleration techniques to recover CNN
architectures. Speci�cally, this paper makes the following important contributions.

• We adapt and re�ne the bus snooping-based threat model used in GPUs [20, 21] to collect
memory-based side-channel information from data�ow-based CNN inference accelerators.
• We propose a mechanism to recover the structure of Conv and FC layers from weight
stationary and output stationary data�ow-based CNN inference accelerators with local
forwarding.
• Pooling layer parameters from the pooling module inside the CNN accelerator is recovered
under assumptions on typical pooling layer characteristics.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:3

• We propose a framework to recover the complete architecture of CNN by iterative recovery
of individual layers.
• Experimental results demonstrate that our approach can fully recover CNN architectures
from popular CNN models (Lenet [29], Alexnet [27], VGG-16 [37], and YOLOv2 [35]).

The rest of the paper is organized as follows. Section 2 presents background on CNN and data�ow-
based accelerators. Section 3 outlines the threat model. Section 4 describes our proposed approaches
for extracting CNN architectures. Section 5 presents the experimental results. Finally, Section 6
concludes the paper.

2 BACKGROUND AND RELATED WORK

This section �rst introduces DNNs and CNNs, focusing on the convolution operation. It then outlines
two primary architectures for processing CNNs: temporal architecture and spatial (data�ow-based)
architecture. The discussion emphasizes data�ow-based architectures, which are the main focus of
this paper. Finally, we review prior research on model extraction attacks on DNNs.

2.1 Convolutional Neural Networks (CNN)

Drawing inspiration from human brain, neural networks simulate a behavior of neurons where
each neuron computes a weighted sum of its inputs. This computation is not merely a linear
operation; it involves a nonlinear function (activation function) that activates the neuron only
if the weighted sum of inputs surpass a certain threshold. In a typical neural network, multiple
layers are stacked, each consisting of numerous neurons. These neurons are interconnected across
layers through connections known as weights, which determine the strength and in�uence of one
neuron’s output on the next layer’s input. The input layer receives values and transmits them to
subsequent layers, often including one or more ‘hidden layers’. These hidden layers process the
weighted inputs and pass them on to the output layer, which then delivers the �nal results. DNNs
involve architectures with multiple hidden layers, making these networks capable of serving as
universal function approximators. Speci�cally, CNNs, a specialized type of deep neural networks,
incorporate convolutional layers that excel at handling multi-dimensional data like images and
videos.

A typical input to a CNN is a matrix, such as an image, where each pixel value serves as an
input. An input can have multiple channels, for example, if the image is in RGB format, it will have
three channels, corresponding to the red, green, and blue components. CNN mainly consists of
three types of layers: convolutional, pooling, and fully connected (FC) layers [16]. Convolution
layers dominate the computations in CNN (about 90% [10]). A convolution layer takes an input
activation/input feature map (ifmap) and does 2-D convolution using a set of �lters with weights
to obtain an output feature map (ofmap). Applying di�erent �lters results in extracting di�erent
embedded features from the ifmap. Figure 1 illustrates a typical convolution operation with  
convolution �lters of size ' and having� input channels. It shows how the �rst element of ofmap is
calculated by the sum of element-wise multiplication between a �lter of size ' ×' ×� and the same
size neighborhood of ifmap. Stride and padding are two other vital parameters of a convolution
layer. Stride ((C ) represents the number of values a �lter moves horizontally or vertically during
a convolution operation. Padding (%3) is the number of additional values around the edges of
the ifmap before applying the convolution �lter. All convolution layers follow the relationship in
Equation 1. The same relationship holds for . and . ′.

- ′ = ((- − ' + 2%3)/(C) + 1 (1)

In an FC layer, all the values of ifmap are connected to all the values of ofmap. In other words, a
single ofmap value is composed using the weighted sum of all the ifmap values. The pooling layer

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:4 Hansika Weerasena and Prabhat Mishra

is typically used after Conv layer to reduce the dimensionality of the feature map. Max pooling and
average pooling are two frequently used pooling operations [15]. Conv and FC layer execution can
be viewed as a set of multiply and accumulate (MAC) operations, and modern accelerators perform
a large number of MAC operations in parallel.

C11

112111

121

C12C

R

R
K

Filter 1
C01

001000

011

C01
C

Y

X

K01

001000

011

K01

Y'

X'

K

R

R

C Filter K

ifmap
ofmap

R : Filter height/width
C : No. of Input Channels
K : No. of filters/output Channels

X/Y : ifmap width/height
X'Y' : ofmap width/height

Fig. 1. Convolution layer parameters, semantics and operation: An ' × ' ×� filter is applied on same size

neighborhood of ifmap of size - × . ×� to calculate single value in ofmap of size - ′ × . ′ ×  .

2.2 Architectures for CNN Inference

In the realm of deep learning, there are two critical phases: training and inference. The training
phase involves learning to perform a speci�c task, such as classifying an image into a designated
label. This process primarily focuses on determining the optimal weights within the network
using a training dataset. Speci�cally, within the convolutional layers, this phase is responsible
for learning the �lter weights. After training, the network used in the inference phase, using
predetermined weights to calculate outputs for new input data and perform its designated task.
This paper speci�cally examines the inference phase and the hardware architectures that facilitate
it, aiming to explore model extraction attacks.

Due to the growing popularity of DNNs, specialized hardware features have been developed to
optimize DNN processing. Highly-parallel compute architectures are instrumental in achieving opti-
mal performance during the inference phase, often paralleling MAC operations. These architectures
can be classi�ed into two paradigms: temporal and spatial [40]. Temporal architectures, commonly
found in CPUs and GPUs, enhance parallelism through vectors (SIMD) or parallel threads (SIMT)
and maintain a centralized control over numerous Arithmetic Logic Units (ALUs). These ALUs are
restricted to fetching data from the memory hierarchy without direct inter-ALU communication.
They map both fully connected (FC) and convolutional (Conv) layers to matrix multiplications for
parallelized MAC operations. For instance, the convolution operation can be reformulated as matrix
multiplication by converting one of the inputs into a Toeplitz matrix [39], which is used in temporal
accelerators. In spatial (data�ow) architecture, each ALU is equipped with its own control logic
and local memory. An ALU with its own local memory is referred to as a processing element (PE).
These PEs form a processing chain allowing direct data transfer between them. These architectures
do not necessitate mapping FC and Conv layers to generic matrix operations, enabling a more
natural execution of DNN layers via individual MAC operations. Data�ow accelerators mitigate
the memory bottlenecks common in temporal architectures by introducing multiple levels of local
memory hierarchy and interconnects. These include global bu�ers connecting to DRAM, small
local registers within each PE, and an inter-PE network facilitating direct data transfers between

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:5

PEs. This memory structure signi�cantly boosts energy e�ciency by reducing the cost of data
accesses by fetching data from local registers or neighboring PEs consuming substantially less
energy than accessing DRAM [40]. Due to the di�erences in architecture and processing between
the two paradigms, existing attacks designed for model extraction on CPUs/GPUs cannot be directly
applied to data�ow architectures.

2.3 Dataflow-based CNN Accelerators

The data�ow-based CNN inference accelerators considered in this study process the CNN layer
by layer [21]. In other words, the accelerator loads ifmap/weights of a particular layer to the
global bu�er, processes it, and writes ofmap of the layer back to the main memory. Data�ow
determines how the data is moved and processed through the accelerator architecture to perform
MAC operation needed for a CNN layer. Data�ow mapping refers to how MAC operations are
assigned to each processing element in each cycle. Data�ow-based CNN accelerators try to get
maximum data reuse e�cient data�ow mapping. A typical architecture [21, 31] of a data�ow-based
CNN inference accelerator used in edge devices is shown in Figure 4. The controller, interconnects,
global bu�er (GB), and PE arrays can be identi�ed as critical components of a CNN accelerator.

A typical CNN accelerator supports three separate Network-on-Chip (NoC)/interconnects [8, 28]
for two reasons: (1) di�erent data types (weights/ifmaps/ofmaps) need di�erent data transmission
patterns (unicast, multicast, and broadcast), and (2) enables high-speed data transfer and pipelined
operation. Data�ow de�nes how PEs and interconnects are arranged. While there are several types
of data�ows, including weight stationary (WS), output stationary (OS), input stationary (IS), and
row stationary (RS), this paper focuses on two most widely used con�gurations: WS and OS. There
are WS [6, 14, 28] and OS [11, 33] data�ow based architectures with subtle di�erences. Our study
focuses on the data�ow aspect of the accelerator by using a generic WS (Section 2.3.1) and OS
(Section 2.3.2) data�ow architecture with input forwarding. By proposing an attack on these generic
data�ow models, we enhance the generalizability and adaptability of our �ndings, making them
applicable to a broad range of accelerators.

PE1,1 PE1,2 PE1,(m-1) PE1,m

PE2,1 PE2,2 PE2,(m-1) PE2,m

PE1,m PE1,m PEn,(m-1) PEn,m

n

m

G
lo

ba
l B

uf
fe

r

Fig. 2. WS(<,=) architecture: weight stationary dataflow with n processing element (PE) arrays and m PEs

per array, with separate interconnects for weight/input reads and partial sum reads and writes from/to Global

Bu�er (GB). Neighboring PEs in an array has input-forwarding connections.

2.3.1 Weight Stationary Dataflow. As the name suggests, once a weight value is read to a PE, a
WS data�ow does all the MAC operations involving that weight before reading a new value to a
PE. Figure 2 shows an architecture of a weight stationary data�ow that reuses weights temporarily
and input activations spatially. It has = PE arrays, each with< PEs and denoted by the notation
WS(<,=). This accelerator has unicast NoC for weight, PE array-wise multicast supported NoC for
inputs, another interconnect for partial sum reads, and a �xed accumulation tree NoC with adders
similar to [28]. There are separate adder trees per array, and an adder tree will accumulate/sum up

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:6 Hansika Weerasena and Prabhat Mishra

PE1,1 PE1,2 PE1,3 PE1,4

W[1,1,1] W[1,1,2] W[1,1,3] W[1,1,4]

I[1,1,1] I[1,1,2] I[1,1,3] I[1,1,4]
Cycle1

I[1,1,2] I[1,1,3] I[1,1,4] I[1,1,5]Cycle2

PE1,1 PE1,2 PE1,3 PE1,4

W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1]

I[1,1,1] I[1,1,2] I[1,1,3] I[1,1,4]
Cycle1

I[1,1,2] I[1,1,3] I[1,1,4] I[1,1,5]
Cycle2

PE1,1 PE1,2 PE1,3 PE1,4

W[1,1,1] W[1,1,2] W[2,1,1] W[2,1,2]

I[1,1,1] I[1,1,2] I[2,1,1] I[2,1,2]
Cycle1

I[1,1,2] I[1,1,3] I[2,1,2] I[2,1,3]Cycle2

Mapped
Output O[1,1,1] O[1,1,2] O[1,1,3] O[1,1,4]

W[1,1,2] W[1,1,2] W[1,1,2] W[1,1,2]

(a)

(b)

(c)

Fig. 3. Dataflow mapping and data reads for the first two cycles for three scenarios: (a) mapping of 2 × 2 × 2

filter intoWS(4, 1), (b) mapping of 4 × 4 × 2 filter intoWS(4, 1), and (c) mapping of 2 × 2 filter into OS(4, 1)

with BC = 1 and ?3 = 0 and ifmap of {- = 5, . = 5,� = 2}, and ofmap of {- ′ = 4, . ′ = 4,  = 1}.

all weight activation products of an array in the preceding cycle. The resulting value is a partial
sum (psum) for a one ofmap entry. This architecture can process multiple �lters simultaneously
using separate PE arrays per �lter. This architecture minimizes ifmap reads by spatial reuse in
two ways: (1) PE array-wise multicast shares the same input values across multiple PE arrays
where each PE array calculates for a di�erent �lter, and (2) forwarding connection in a PE array
can share activation values between two cycles occurring due to the stride of the �lter. This
weight stationary architecture has �exibility in mapping, depending on the layer, the in-between
forwarding connections between PEs can be switched on/o�. Mapping of the layer to the PEs is
optimized for maximum PE utilization and minimizing input reads. For example, if < = 4 and
= = 1, the �rst row of two channels of 2 × 2 × 2 CNN �lter can be mapped as shown in Figure
3(a). If the �lter size is 4 × 4 × 2, only one channel row of the �lter is mapped in the �rst cycle as
shown in Figure 3(b). Both of the examples have a stride of one. State-of-the art MAERI accelerator
architecture [28] employs the basic WS data�ow detailed in this section.

2.3.2 Output Stationary Dataflow. An output-stationary data�ow accumulates psums correspond-
ing to one ofmap value in the internal register of a PE until it is fully calculated. In other words,
a PE is mapped to a single value of ofmap until that value is fully calculated. Similar to the WS
data�ow architecture discussed in Figure 2, it has = PE arrays, each with< PEs and denoted by the
notation OS(<,=), but with the following modi�cations. Instead of the internal register keeping
weights stationary, it accumulates psums. This accelerator has unicast NoC for inputs, single value
broadcast supported NoC for weights, and separate interconnect to write outputs to the GB. One
PE array will accumulate sums relevant to one row of ofmap so that forwarding links between
PEs in the array can have maximum utilization. Due to the broadcast of a single weight, every PE

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:7

calculates MAC relevant to one input channel in a cycle. In the �rst cycle, the accelerator multicasts
the same weight to all the PEs and unicasts relevant activations to each PE. After doing MAC
operations and accumulating the partial sum to the internal registry, di�erent weight is broadcast
in the second cycle. After the local forwarding of inputs, the remaining inputs are unicast relevant
to the previous partial sum. Figure 3(c) shows a layer mapping with one �lter with parameters
{' = 2,� = 2, BC = 1, ?3 = 0}, ifmap of {- = 5, . = 5,� = 2}, and ofmap of {- ′ = 4, . ′ = 4,  = 1}

to a< = 4 and = = 1 output stationary accelerator. As we can see, there is only one input read
(I[1,1,5]) in the second cycle due to spatio-temporal forwarding of inputs (I[1,1,2] and I[1,1,3]) from
the previous cycle. State-of-the art Shidiannao accelerator architecture [11] employs the basic OS
data�ow detailed in this section.

2.4 Related Work

There are many e�orts on leaking DNN/CNN architectures using side-channel attacks. Timing
and memory side channels have been used to recover DNN models in [19, 21, 26, 44]. An attack to
recover compact DNN models from GPU using timing, memory, power, and kernel side channels is
proposed in [26]. They assume the attacker knows power consumption, memory footprint, and
latency for backward and forward propagation for di�erent batch sizes. Hu et al. [19] propose
a method to �nd DNN architecture by eavesdropping into o�-chip data transfer between CPU
and GPU and exploiting the entire DNN execution stack (the DNN library, Hardware abstraction,
and Hardware). Another side-channel attack on analyzing main memory to accelerator memory
access trace and execution time is discussed in [21]. The adversary can control the input to the
accelerator and derive a set of potential models for the currently running DNN model. For example,
they propose 24 possible structures for Alexnet. Wei et al. [44] exploit context switching of GPU to
recover DNN models. This attack is made in the training stage because they can exploit multiple
uses of the same layers over training time. Similar threat model was proposed in [20] that recovers
DNN architecture through the acquisition of memory access events from bus snooping inside
GPU during inference time. Apart from memory and timing side channels, attacks are proposed
on cache side channels to recover DNN models [25, 30, 46]. Several studies have demonstrated
attacks using power [45] and electromagnetic side channels [3, 9, 17, 18, 47] to successfully recover
CNN models form GPU and other temporal architectures. These studies validate that recovering
DNN/CNN architecture is a critical security concern. All existing side-channel attacks to recover
DNN/CNN model architectures focus on temporal inference accelerators such as GPUs. Due to
inherent di�erences in architecture and processing mechanism, side-channel attacks on temporal
architectures cannot be directly applied to data�ow-based inference accelerators. To the best of our
knowledge, our paper is the �rst study on recovering CNN model architecture using memory side
channels of data�ow-based CNN inference accelerators.

3 THREAT MODEL AND PROBLEM FORMULATION

In this section, we de�ne the problem space and establish the threat model under which our attack
operates. This formulation is critical as it lays the groundwork for understanding the potential
vulnerabilities within data�ow-based CNN accelerators.

3.1 Problem Formulation

Figure 4 illustrates an overview of a typical data�ow-based CNN accelerator with layer-by-layer
execution described in Section 2.3. If we zoom into the processing of one layer, �rst, the host CPU
loads ifmap/weights to the GB. These ifmaps/weights are stored as arrays in memory, which means
they are stored in contiguous memory locations, and GB preserves the order. The PE arrays are
designed in a pipelined manner to do MAC operations in each cycle. Each PE in the PE array

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:8 Hansika Weerasena and Prabhat Mishra

memory
requests

CNN Accelerator

Host
CPU

DRAM
Processing Element

arrays

Controller

Global
Buffer

Pooling
module ReLu

weights

inputs

outputs

encrypted
instructions

ab

c

d

Fig. 4. Overview of a typical CNN accelerator. The controller, interconnects, global bu�er (GB), and processing

element (PE) arrays are the critical components. Unprotected communication can be snooped to extract

side-channel data.

has a local registry to hold or accumulate certain data elements to reuse in MAC operations. The
controller is responsible for loading weights/inputs/psums to individual PEs in each cycle. The
controller �rst calculates memory requests for the next cycle depending on the data�ow supported
by the accelerator and layer parameters. Then, it issues memory requests to the global bu�er.
The global bu�er uses interconnects between GB and PE arrays for data transfer. The focus of
this paper is to extract CNN model architecture based on memory side-channel information from
data�ow-based CNN accelerator.

3.2 Threat Model

The threat model assumes the adversary gathers the following memory side-channel information
regarding the execution of each layer CNN: (1) the total number of weight/input reads and output
writes, (2) the number of weight/input reads, output writes each cycle of execution until a targeted
event (4) that depends on the data�ow (the concrete de�nition of 4 in WS and OS data�ow are
stated in Section 4.3 and 4.4 respectively.), and (3) output stationary data�ow needs the virtual
address of weight reads in the �rst two cycles. Here, an input read means reading of a single value
from an ifmap and an output write means writing of a single value to an ofmap. Depending on the
adversary’s capabilities, there are several ways to obtain these three pieces of information. The
adversary can exploit unprotected communication between accelerator components. Information
(1) and (2) can be obtained by snooping interconnects from GB to PE arrays ( a in Figure 4). Since
these accelerators use separate interconnects for each data type, it is easy to distinguish and count
GB accesses that can be snooping on the interconnects. Alternatively, the adversary can obtain
information (1) and (2) along with (3) by snooping the unprotected bus between the controller
to GB ( b in Figure 4). If there is a pooling layer, for the recovery pooling layer parameters, the
adversary needs to �nd the number of pooling operations (#ĦĥĥĢ ). #ĦĥĥĢ can be recovered using the
number of output writes to DRAM from GB ( c in Figure 4) during the layer execution.
Bus snooping is a low-cost, practical and well understood attack that has been widely demon-

strated [4, 22, 23]. Snooping of these buses ( a , b and c ) can be done either through lightweight
Hardware Trojans (HTs) or physical microprobing of buses. The reliance on a long, distributed, and
potentially untrusted supply chain in chip design raises the risk of malicious implants, such as HTs,
introduced through various channels including untrusted CAD tools, rogue designers, or directly at
the foundry [32]. An HT can be clandestinely inserted into the RTL or netlist of an accelerator and
remain undetected not only at the post-silicon veri�cation stage but also during runtime [32]. Fur-
thermore, simple multiple HTs, such as HTs with counters inserted in on-chip communication for

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:9

snooping are harder to detect in runtime due to their insigni�cant area and power overhead [2, 43].
Advances in technology have signi�cantly improved microprobing capabilities, enabling the ex-
traction of encryption keys, intellectual property, and personal data from densely packed hardware
implementations, as demonstrated in recent studies [36, 38]. Notably, optical probing has been
used to obtain FPGA bitstream decryption keys from 28nm Xilinx devices [41], and focused ion
beam techniques have e�ectively extracted data from SoC buses [42]. These methods illustrate
that precise data extraction from buses can be leveraged in our attack to gather side-channel
information. Alternatively, compromised accelerator �rmware or host operating systems could
also exploit performance counters to stealthily extract relevant side-channel information ((1), (2),
and #ĦĥĥĢ ), complementing the physical snooping methods described earlier.

Our threat model also assumes that the adversary knows the accelerator architecture (number of
PE arrays, number of PEs in an array, and the bandwidth of interconnects for each data type) as
well as the data�ow mapping of each accelerator described in Section 2.3. Typically, these basic
architecture details are readily accessible for open-source or standard data-�ow accelerators [7,
11, 33]. We also assume the adversary knows the ifmap parameters (-,.,�) of the �rst layer.
Similar assumption is made in [21] because adversary can control inputs to the accelerator. In the
layer-by-layer recovery of CNN, knowing the previous layer ofmap parameters can be directly
used as ifmap parameters for the next layer. In other words, knowing the ifmap parameters of
the �rst layer and recovering the parameters of that layer indirectly �nds the ifmap parameters
of the second layer. The proposed attack is passive, where the adversary can only snoop on the
side-channel information but cannot alter data�ow mapping or data communication inside the
accelerator. Furthermore, the adversary does not need to know the training or testing data of the
CNN model.

The recovery of a CNNmodel’s architecture poses signi�cant risks for themodel owners and users.
(1) If the structure of a CNN is disclosed, it becomes easier for adversaries to craft e�cient adversarial
attacks [5, 20] �ne-tuned tomislead themodel without detection, thereby facilitating evasion attacks.
For example, if a particular model is used to detect and �ag network anomalies, an adversary can
manipulate network tra�c in such a way that it evades detection, allowing malicious activities to
proceed undetected and model owner failing to provide the intended functionality. (2) The exposure
of the model architecture can lead to the leakage of proprietary and critical intellectual property. For
many companies, the design of their models embodies valuable research and development e�orts,
and unauthorized access to this information can lead to competitive disadvantages and economic
losses. (3) As outlined in our paper, the leakage of model architecture in environments where the
hardware is shared, increases the risk of user privacy breaches. Adversaries can exploit the known
architecture to perform more e�ective model inversion attacks [13], potentially reconstructing
sensitive training data. In summary, there are various potential threats from the recovery of a
models’s architecture, including feasibility of adversarial attacks, loss of intellectual property, and
breaches of user privacy, all of which can have severe consequences for the model stakeholders.

4 EXTRACTING CNN ARCHITECTURE USING SIDE-CHANNEL ANALYSIS

Algorithm 1 shows an overview of the attack for recovering potential CNN structures from a
data�ow-based accelerator. Lines 3-9 elaborate layer-by-layer side-channel data collection, which
needs recognizing layer boundaries (line 5) discussed in Section 4.1. In each side-channel variable,
the Superscript ( 9 or :) speci�es the layer number relevant to the variable. Lines 10-14 elaborate
layer-by-layer structure recovery. The �rst dimension of the ;0~4AB 2D array (line 10) contains
the number of layers ( 9 ) in CNN, and the second dimension contains possible structures for each
layer. In layer-wise structure recovery, as the �rst step, the layer type is identi�ed (line 12), which
is discussed in Section 4.2. Then the side-channel information is used to recover each layer’s

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:10 Hansika Weerasena and Prabhat Mishra

Table 1. Table of notations.

= Number of PE arrays in an accelerator
< Number of PEs per array in an accelerator
,Ĩ Total no. of weight reads for the layer execution.
�Ĩ Total no. of input reads for the layer execution.

$ĭ Total no. of output reads for the layer execution.
Cě Cycle number of the targeted event 4 .
F Array of no. of weight reads at each cycle.
8 Array of no. of input reads at each cycle.
> Array of no. of output writes at each cycle.

8 [C] Number of input reads at CĪℎ cycle.

F [C] Number of weight reads at CĪℎ cycle.
&(3C) Virtual address of data 3C in global bu�er.

� Possible parameter sets for a Conv Layer.
248; (G) Round-up number x to nearest integer.

parameters (line 14). It is important to notice that if there are multiple potential structures for the
previous layer, the algorithm tries ifmap parameters (-,.,�) of all of them to recover potential
structures for the current layer (loop at line 13). Finally, the adversary �atten the 2D array ;0~4AB
to multiple 1D arrays satisfying 8 5<0? Ġ = > 5<0? Ġ−1 to get all the potential structures of the CNN
model (line 15).

Algorithm 1 Recovering potential CNN structures

1: Input: First ifmap parametes, {-1, .1,�1}
2: Output: Potential CNN architectures
3: j = 1 ² to count the number of layers
4: while processing of the CNN do

5: while IdentifyLayerBoundary() do

6: ,(Ĩ,Ġ ) , � (Ĩ,Ġ ) ,$ (ĭ,Ġ ) ← collect total R/W counts
7: F Ġ , 8 Ġ , > Ġ ← collect cycle-wise R/W counts until event 4
8: # (ĦĥĥĢ,Ġ ) ← collect No. of pooling operations

9: j ++

10: ;0~4AB = [] ² empty 2D array
11: for k=1 to j do
12: type← IdentifyLayerType(,(Ĩ,ġ ) , � (Ĩ,ġ ) ,$ (ĭ,ġ ) , # (ĦĥĥĢ,ġ ) )

13: for number of layer structures in layers[k-1] do
14: ;0~4AB [:] ∪ recoverLayer(,(Ĩ,ġ ) ,� (ĭ,ġ ) ,$ (ĭ,ġ ) ,Fġ ,8ġ ,>ġ , -ġ ,.ġ ,�ġ ,C~?4)

15: Return Flatten 2D array ;0~4AB to multiple 1D arrays satisfying 8 5<0? Ġ = > 5<0? Ġ−1 to get all
potential structures.

Algorithm 2 zooms into recovering individual layer structures. Depending on the layer type, the
layer recovery procedure calls di�erent functions (line 3, 5 and 8). The most crucial and di�cult
task is to recover Conv layer. The subscript in A42>E4A�>=EĀĂ highlights that the recovery of
the Conv layer depends on the data�ow. Therefore, recovery of Conv from WS data�ow and OS
data�ow are elaborated in Section 4.3 and 4.4, respectively. The function A42>E4A�>=EĀĂ returns
a list of potential structures (� ) but the conditional �lters used in recovering Conv layers in WS

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:11

Algorithm 2 Recovering layer parameters

1: function recoverLayer(,Ĩ , �Ĩ ,$ĭ,F, 8, >, -,. ,�, C~?4)
2: if type = FC then

3: layer ← recoverFC(,Ĩ , �Ĩ ,$ĭ)

4: if type = Conv then
5: H ← A42>E4A�>=EĀĂ (,Ĩ ,$ĭ,F, 8, >, -,. ,�)
6: if Conv layer has pooling then

7: for h in H do

8: h ∪ recoverPooling(#ĦĥĥĢ , -
′, . ′,  )

9: layer← �

10: retrun layer

and OS data�ows ensure that � is a list with a few solutions or one solution (Section 5 shows
Conv layer recovery in popular benchmarks converging to one structure). The recovery of FC
(line 3) and pooling (line 8) layers are discussed in Section 4.5 and 4.7, respectively. Table 1 outlines
the notations used in these algorithms. Figure 5 presents a high-level overview of our proposed
side-channel attack.

While processing of CNN :

Collect Layer specific 
Side-Channel data

(Section III)

N
o

layer
Boundary?

(Section IV-A)

Ye
s

New Layer detected (j++)

layer=ConvIdentify Layer Type
(Section IV-B) Recover Conv in OS

(Section IV-D)
Recover Conv in WS

(Section IV-C)

Recover FC layer
(Section IV-E)

layer=FC

Recover Pooling layer
(Section IV-F)

if there is pooling

Layer-wise
parameters

recoverd
all layers?

No

ifmap of prev. layer

Potential CNN
Structures

Yes

Recover Conv Layer

Fig. 5. Overview of the proposed side-channel a�ack to recover CNN model. The adversary collects layer-by-

layer side-channel information, and utilizes them to recover layer-by-layer CNN structure.

4.1 Identification of Layer Boundary

We present two ways to identify layer boundaries in a data�ow-based accelerator. The �rst method
is to use the Read-After-Write (RAW) dependency of ifmap current layer and ofmap of the previous
layer. Data�ow accelerators have sequential execution of the layers. Therefore, upon a successful
layer execution, the ofmap is written back to the hosts’ main memory (DRAM) and read it back
to GB in the next layer as ifmap. This event can be identi�ed using the memory trace as a RAW
dependency on the same memory address. This needs an adversary needs to collect or actively
observe the memory trace (address and cycle) between the GB and DRAM of the host. Similar
to collecting previous side-channel information, this can be done by snooping the memory bus
between GB to DRAM ( c in Figure 4).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:12 Hansika Weerasena and Prabhat Mishra

The second method is by identifying the con�guration phase between layers. However, this
approach is applicable in accelerators that have some recon�gurability. Since each layer di�ers,
there is a con�guration phase to data�ow mapping at each layer. Most CNN accelerators use a
separate low-bandwidth bus ( d in Figure 4) to send these con�gurations [28]. Therefore, looking
at active periods in that network is a simple way to identify boundaries. For example, the WS
data�ow-based accelerator con�gures (on/o�) forward links between PEs con�gured at each layer’s
beginning. The adversary can listen to this control message to identify layer boundaries.

4.2 Identification of Layer Type

The adversary needs to separate between FC, Conv, and Pooling layers. Because of no data reusability
in FC layers, the total number of weight reads (,Ĩ ) in a layer is equal to the multiplication between
the total number of input reads (�Ĩ ) and output writes ($ĭ ). This relationship is used to distinguish
an FC layer from a Conv layer. If there is a pooling layer after the execution of Conv layer, CNN
accelerators run the Conv layer together with the pooling layer using a separate pooling module as
shown in Figure 4 (not processed as two separate layers). An adversary can detect a pooling layer
by observing a di�erence between the number of outputs written to the global bu�er and those
written to DRAM inside the layer boundary.

4.3 Recovery of Conv Layer fromWeight Stationary Dataflow

There are �ve parameters (',�,  , (C, %3) that de�ne a Conv layer. Since the number of input chan-
nels (�) is known from ifmap parameters, an adversary needs to �nd four parameters (',  , (C, %3)
for successful Conv layer recovery. Algorithm 3 describes the attack steps for recovering a Conv
layer from the WS data�ow based architecture outlined in Section 2.3. We refer to the 1ĩĪ cycle
relative to each layer which is the �rst cycle with data transfer between GB to PE arrays. Here we
de�ne the targeted event for the cycle-to-cycle data collection as the cycle Cě where 8 [1] = 8 [Cě ].
In other words, the adversary collects data reads/writes between the �rst cycle and the next ones
with the same number of reads in the �rst cycle. This collects the number of data reads/writes
accountable for the one row of the output feature map.
Due to the inherent feature of a WS data�ow, a single weight value is read only once:

,Ĩ = '
2 ×� ×  (2)

Solving of Equation 2 with known� in positive integer (Z+) domain provides potential solutions
(� ) for {R,K} values of the layer parameters (line 2). Then the adversary calculates =ė , the number
of active PE arrays in the accelerator (line 3). While most of the time, the number of �lters ( ) is
greater than the number of PE arrays (=) of the accelerator architecture, resulting in =ė = =, the
value of =ė is calculated asF [1]/8 [1] regardless of whether  exceeds = or not. Due to the targeted
event of data collection, the number of cycles between reveals the width of the output feature map
(- ′) (line 4). Even when ' > < and folding is supported, the number of cycles up to the event
minus one re�ects the value of - ′. Then the adversary iterates (lines 5 - 16) through the potential
{',  } values and uses architectural hints and side-channel information to �lter out incompatible
{',  }. The �rst condition (line 6) applies when the potential value of ' is smaller than the active
PE array length (F [1]/=ė). As discussed in Section 2.3, the adversary uses the data�ow-mapping
property of the accelerator to minimize input reads by only fully mapping �lter rows. For example,
if the PE array length is 12 (< = 12) and ',  are 5 and 4, the layer is mapped as two 10 MACs
across two channels by utilizing only 10 PEs, not 12 Macs followed by 8. Line 6 checks the condition
((F [1]/=ė)%' ≠ 0) and �lter out solutions.

The adversary calculates the stride (BC ) of the respective potential ' (line 8). Since the forward
links between PEs are used to forward ifmap values from the previous cycle, the number of new

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:13

Algorithm 3 Recovering Conv Layer from WS data�ow

1: function A42>E4A�>=Eĭĩ (,Ĩ ,$ĭ,F, 8, >, -,. ,�)
2: � ← solve Equation 2 ∈ Z+

3: =ė ← F [1]/8 [1]

4: - ′ ← Cě − 1

5: for {',  } in H do

6: if ' f F [1]/=ė and (F [1]/=ė)%' ≠ 0 then

7: remove {',  }

8: BC ← 8 [2]/<0G ((<//'), 1)

9: if BC ∉ Z+ or BC > ' then

10: remove {',  }

11: ?3 ← substitute {', BC} and -,- ′ to Equation 1
12: if ?3 ∉ Z

+ or ?3 > ' then

13: remove {',  , BC}

14: . ′ ← substitute {', BC} and ., ?3 to Equation 1
15: if $ĭ ≠ - ′ × . ′ ×  then

16: remove {',  , BC, ?3}

17: return �

input reads for the current cycle is always an integer multiple of stride. At line 8,<//' (// is the
integer division) gives out the number of channels of a �lter mapped to the PE array when< g '.
If< < ' and folding is used, only one channel is mapped to a PE array. Taking the maximum,
consider both conditions (< g ' and< < ' ). The second cycle has input forwarding, and 8 [2] is
the number of new input reads after input forwarding. Therefore, dividing 8 [2] by the number of
channels mapped to one PE array is the stride for the selected '. The condition at line 9 checks
if the previously calculated BC is in the integer domain and is less than the �lter size ('). Then
adversary can use Equation 1 to calculate ?3 and check if ?3 is in the integer domain and it is
less than �lter width ('). Line 14 calculates . ′ using the Equation 1 from previously found values
(',., BC, ?3). The �nal condition asserts whether the side-channel information $ĭ equals expected
output writes (- ′ × . ′ ×  ). The returned � has potential solutions for the layer’s parameters
{',  ,�, BC, ?3}. In WS data�ow, $ĭ is equal to the di�erence between the number of partial sum
reads and writes (?BD<ĭ − ?BD<Ĩ ). Section 5.3 provides a case study on the second Conv layer of
Alexnet, which converges into one solution.

4.4 Recovery of Conv Layer from Output Stationary Dataflow

Algorithm 4 outlines the attack steps for recovering Conv layer parameters from the OS data�ow-
supported architecture described in the Section 2.3. Here we de�ne the targeted event for the
cycle-to-cycle data collection as the cycle where the �rst ofmap value is written. In other words,
the adversary collects the cycle-to-cycle data from the �rst cycle to the cycle where the �rst output
is written. In an OS data�ow, there are no partial outputs/sums. In other words, an ofmap value is
written only after it is fully calculated. The intuition behind the targeted event selection is to �nd
the number of weight reads responsible for fully calculating one ofmap value.
When we consider one ofmap value, it is generated from an accumulation of multiplications

between a single �lter of width and height of ' with� channels. In other words, the total responsible
weight reads for a single value in ifmap is '2� . Our selection of the targeted event ensures that the
(Cě −1) equals '

2� (line 2). Since the architecture reads one weight in a cycle, the relationship in line

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:14 Hansika Weerasena and Prabhat Mishra

Algorithm 4 Recovering Conv Layer from OS data�ow

1: function A42>E4A�>=Eĥĩ (,Ĩ ,$ĭ,F, 8, >, -,. ,�)
2: 4@ ← '2� = Cě − 1

3: ' ← solve 4@ for ' in Z+

4: BC ← &[F1] - &[F2]
5: for ?3 = 0 to ' − 1 do
6: - ′ ← substitute ', BC, ?3, - for Equation 1
7: . ′ ← substitute ', BC, ?3,. for Equation 1
8: if - ′, . ′ ∉ Z+ then

continue ² Not a solution
9:  ← substitute {- ′, . ′} to Equation 3
10: if  ∈ Z+ and {- ′, . ′, ',  ,�} satisfy Equation 4 then
11: � ← �∪ {',  ,�, BC, ?3}

12: return �

2 holds. Solving this relationship in the Z+ domain gives the value of R. Because of the forwarding
connections at each PE in the PE array, the di�erence between the virtual address of weight reads
from the controller gives the value of stride (line 4). Lines 5 to 11 iterate through all possible ?3
values. This loop termination considers that padding cannot exceed the �lter width ('). Lines 6 and
7 calculate the width (- ′) and height (. ′) of the ofmap for the selected ?3 . The condition at line 8
checks if the calculated - ′, . ′ is in Z+ domain; if not, we move to the next ?3 value in the loop. In
an OS data�ow, the number of total output written ($ĭ) to the GB:

$ĭ = - ′ × . ′ ×  (3)

Line 9 substitutes previously calculated {- ′, . ′} to the above equation and �nds  . Line 9 checks
for two conditions: (1) whether  is in Z+ domain, and (2) does the relationship stated in Equation
4 holds for the potential value set {- ′, . ′, ',  ,�}?

,Ĩ = (248; (
- ′

<
) × 248; (

. ′

=
))'2� (4)

All PEs in this OS architecture conducts MAC operations relevant to one output channel due to
the broadcasting of weights. Therefore, the psum accumulated at each registry is also relevant to

a single output channel. When we zoom into Equation 4, (248; (Ĕ
′

ģ
) × 248; (ĕ

′

Ĥ
)) gives the number

of tiles needed to calculate all ofmap values of a single output channel. A tile is a subset/block
of the output feature map that is processed as a unit. For example, if we process a layer with
(- ′, . ′ = 12,  = 1) in an OS(12, 4) architecture. The �rst tile calculates ofmap values for the �rst
four rows and the second and third tiles for the middle four rows and last four rows, respectively.
From the �rst line of the algorithm, '2� gives weight reads for one tile. So, the number of tiles per
single output channel × weight reads per tile × number of output channels gives the total weight
reads. Section 5.4 shows a case study on the second Conv layer of Alexnet that converged into one
solution.

4.5 Extraction of FC Layer Parameters

An FC layer can be considered a Conv layer with a �lter size equal to the size of the input,
e�ectively connecting all neurons to each other. Therefore, extracting FC layer parameters is
relatively straightforward compared to extracting Conv layer parameters. An FC layer has only
two parameters, which are input neuron size and output neuron size. FC layer parameters can be

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:15

determined independently of the data�ow architecture by solely examining the total data reads
and writes for the layer. The total number of input reads in a layer (�Ĩ ) equals the number of input
neurons in an FC layer. Similarly, the total number of output writes ($ĭ) equals the number of
output neurons. Additionally, a dense FC layer has,Ĩ = �Ĩ ×$ĭ relationship.

4.6 Identification of Activation Functions

Activation functions as integral components of a DNN’s architecture. In our study, we assume that
the accelerators incorporate the Recti�ed Linear Unit (ReLU) as the sole activation function, thereby
eliminating the need for its explicit identi�cation. The review of state-of-the-art data�ow CNN
inference accelerators, including those detailed in [7, 8], supports this assumption by consistently
showing ReLU as sole implementation inside the accelerator. This choice is based on empirical
evidence suggesting that CNNs typically achieve better performance with ReLU in their hidden
layers [1]. The type of activation function employed in �nal layer can often be inferred based on
the speci�c task that the model addresses. For instance, multi-class classi�cation tasks generally
use a softmax activation function, whereas binary classi�cation tasks might use a sigmoid function.
It is important to note that these �nal layer activations (e.g. sigmoid, softmax) are usually executed
outside the data�ow accelerator, on the host CPU [40]. However if future data�ow accelerators
support a variety of activation functions, such as Leaky ReLU or Parametric ReLU, our proposed
method to identify the activation function is to monitor which speci�c functional unit is activated
during the processing of each layer.

4.7 Extraction of Pooling Layer Parameters

Our methodology to extract pooling layers from max or average pooling depends on three assump-
tions based on typical pooling operations on CNNs. (1) Usually, the stride is greater than 1 [40].
(2) Max and average pooling typically does not use padding. (3) CNNs tend to use small pooling
�lter sizes because large pooling �lters tend to over�t models by losing information. The pooling
operation does not change the number of output channels ( ). Algorithm 5 outlines the steps to
recover pooling layer parameters ({'ĦĥĥĢ , BCĦĥĥĢ }) from side-channel information.

Algorithm 5 Recovering pooling layer

1: function recoverPooling(#ĦĥĥĢ , -
′, . ′,  )

2: for 'ĦĥĥĢ = 2 to - ′ do
3: for BCĦĥĥĢ = 'ĦĥĥĢ to 1 do

4: -ĦĥĥĢ ← ((-
′ − 'ĦĥĥĢ )/BCĦĥĥĢ + 1)

5: .ĦĥĥĢ ← ((.
′ − 'ĦĥĥĢ )/BCĦĥĥĢ + 1)

6: if #ĦĥĥĢ/ = -ĦĥĥĢ × .ĦĥĥĢ then

7: return {'ĦĥĥĢ , BCĦĥĥĢ }

The loop at line 2 searches for pooling layers for increasing �lter sizes, which gives more
dominance to small pool layers. The second loop (line 3) ensures the attack �rst tries to match a
non-overlapping pooling layer and increases the overlapping in subsequent iterations. Line 4 and 5
calculates the ofmap width (-ĦĥĥĢ ) and height (.ĦĥĥĢ ) after pooling. Finally, the condition at line 6
checks if the monitored #ĦĥĥĢ satis�es the calculated {-ĦĥĥĢ , .ĦĥĥĢ } values to �nd the pooling layer
parameters. If a particular CNN architecture employs a Global Average Pooling (GAP), we can use
the same side-channel data (#ĦĥĥĢ ) to identify it. Unlike average and max pooling, which involve
hyperparameters such as stride and �lter size, GAP operates by computing the average of each
feature map channel in the ofmap. This results in a single average value per channel, e�ectively

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:16 Hansika Weerasena and Prabhat Mishra

producing a vector of size  for an ofmap of dimensions - ′ × . ′ ×  . As GAP lacks con�gurable
parameters beyond its basic function, the only information we can derive from side-channel analysis
is the usage of GAP in a particular layer. If #ĦĥĥĢ corresponds exactly to the number of output
channels ( ), it indicates the use of GAP.

5 EXPERIMENTS

In this section, we �rst describe the experimental setup used to evaluate the e�ectiveness of
our attack. Next, we present results on popular CNN models demonstrating potential structures
recovered by our approach with two case studies on weight stationary and output stationary
architectures. Then, we discuss the applicability and limitations of the proposed method. Finally,
we outline potential mitigation techniques.

5.1 Experimental Setup

We performed modi�cations on top of the cycle-accurate Stonne [34] accelerator simulator to model
the WS data�ow described in Section 2.3.1. Furthermore, we extended Stonne, which originally only
supported theWS data�ow, to alsomodel the OS data�ow described in Section 2.3.2.We gathered the
side-channel information using the simulation stat of the global bu�er of the simulator. We provided
adequate bandwidth for interconnects of each data type (input, output, weight) in each simulation
so that any data loads will happen in one cycle (Section 5.5 discuss relaxing of this assumption).
We modeled a simple pooling module in both accelerators to mimic pooling operations and extract
the number of pooling operations. We modeled three concrete weight stationary accelerator
architectures from the architecture described in Section 2.3: WS(4, 4), WS(12, 4), and WS(24, 10).
Similarly, we used three output stationary data�ow accelerators: OS(4, 4), OS(10, 4), and OS(20, 10).
We attacked and recovered popular CNN models: a 5-layer Lenet, an 8-layer AlexNet, a 16-layer
VGGnet-16, and 28-layer YOLOv2 to evaluate the proposed CNN model recovery attack. Each CNN
model was subjected to 10 rounds of experiments to ensure robustness and repeatability of results.
Table 3 shows an overview of composition of the layers in these models.

We conduct experiments on real hardware implementations of the two weight stationary accel-
erator architectures (WS(4,4), and WS(12,4)). These architectures were implemented on the Alchitry
Cu FPGA board, which utilizes the Lattice iCE40 HX FPGA supported by the open source tool chain
IceStorm. The con�guration parameters of the accelerator implementation in our experiments are
outlined in Table 2.

Table 2. WS accelerator configuration parameters

Parameter Value

PE array dimensions: (m,n) [(4,4), (12,4)]

Precision (weights, ifmap, ofmap) 8 bits

GB to PE arrays input bus width 4 × 8 bits

GB to PE arrays weight bus width 4 × 8 bits

Accumulator tree precision 32 bits

Accumulated output bus width 4 × 32 bits

Input forwading path width 8 bits

Global bu�er size 256B

Due to space limitations on the FPGA, we opted for a relatively small global bu�er (GB). How-
ever, this constraint does not a�ect our ability to accurately recover side-channel information
regarding the number of memory reads and writes from GB. We use a Python frontend, similar
to the one used in STONNE [34], to emulate the host CPU. The UART (Universal Asynchronous

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:17

Table 3. Number of potential structures recovered from Lenet, Alexnet, VGGnet-16 and YOLOv2 using our

method and comparison with [21] that exploit DRAM to GBmemory access on temporal inference accelerator.

CNN model Lenet Alexnet VGGnet-16 YOLOv2

Number of layers

(Conv/Pool/FC)
3/2/2 5/3/3 13/5/3 23/5/0

Conv layer �lter sizes
5x5
2x2

11x11
5x5, 3x3

1x1
3x3

1x1
3x3

Number of

potential

structures

WS(4,4) 1 1 1 1
WS(12,4) 1 1 1 1
WS(24,10) 1 1 1 1
OS(4,4) 1 1 1 1
OS(10,4) 1 1 1 1
OS(20,10) 1 1 1 1
[21] 9 24 - -

Receiver/Transmitter) communication protocol is employed to facilitate serial communication
between the Python frontend and the FPGA-implemented accelerator. This setup allows us to
send control and data to the accelerator and receive snooped side-channel information from the
accelerator. To facilitate the capture of memory-based side-channel information, particularly the
number of memory reads and writes from the GB, we used snooping on the bus between the GB
and the processing element array ( a in Figure 4), as well as between the DRAM and GB ( c in
Figure 4). Snooping of buses was achieved by embedding two Hardware Trojans (HTs) into the
RTL of the accelerator, analogous to the use of hardware performance counters in GPUs to emulate
snooping, as discussed in previous studies [20]. We conducted 10 rounds of experiments for each
of the four CNN models: Lenet, AlexNet, VGGnet-16, and YOLOv2.

5.2 Results

As shown in Table 3, we can fully recover CNN parameters for Lenet, Alexnet, VGGnet-16, and
YOLOv2 for both WS and OS data�ow accelerators of three sizes, across all ten iterations per a
model. Furthermore, it shows our approach can recover exact model architectures compared to
model recovery via snooping DRAM to GB memory access [21] on temporal inference accelerator
that does not consider a data�ow. The layer boundaries of WS data�ow are identi�ed by monitoring
the con�guration phase and OS data�ow by observing RAW dependency of feature maps. The CNN
structure has converged into one solution, which highlights that for each Conv layers Algorithm 3
and 4 converged to one solution (B8I4 (� ) = 1) for the respective layer parameters. This is because
our method can recover exact values for some parameters (- ′ in WS and ' and BC in OS) and
use them with multiple condition checks to converge to the potential structure. Our �ndings
from these real-world experiments on FPGA implemented accelerator align with the results from
cycle-accurate simulation, successfully recovering the exact architecture of all four CNN models
every time, across all tested WS data�ow con�gurations.

Table 4. Side channel data (�Ĩ ,$ĭ ,,Ĩ ) for all fully connected layers of Alexnet on OS and WS dataflows.

Layer FC1 FC2 FC3

Input reads 9216 4096 4096

Weight reads 37748736 16777216 4096000

Output writes 4096 4096 1000

Since no approaches exist on data�ow architectures to recover CNN models, we compare our
results with [21], which uses the DRAM to GB memory access patterns and execution time of

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:18 Hansika Weerasena and Prabhat Mishra

layers on a temporal accelerator to recover CNN models. They were able to recover six potential
structures for Lenet and 24 potential structures for Alexnet. Since our approach exploits inherent
data�ow patterns and data reuse that leak critical characteristics of layers, our solution converged
into one correct structure in both cases across all architectures. This accurate recovery of CNN
architecture, facilitated by architectural hints from data�ow inference accelerators, highlights how
layer-speci�c mapping and processing enhance the leakage of CNN architectures. Table 4 and 5
shows side-channel data on all FC and pooling layers of Alexnet. The side-channel data of FC and
pooling layers do not depend on the speci�c data�ow architecture of the accelerator. Section 5.3
and 5.4 provide two case studies using Alexnet to provide insight into the recovery procedure of
Conv layers.

Table 5. Side channel data (#ĦĥĥĢ ) for all pooling layers of Alexnet running on the pooling module.

Layer Pool 1 Pool 2 Pool 3

Number of pool op. 69984 43264 9216

5.3 Case Study: Alexnet with Weight Stationary Dataflow

Table 6 shows the side-channel information used to recover all �ve Conv layers of Alexnet in the
WS(12, 4) accelerator. The attack needs only a relatively small number of cycle-wise data to be
collected. For example, the targeted event cycle in the second Conv layer is 27, while the total is
11197441 cycles. The rest of the section zooms in on recovering the second Conv layer of Alexnet
using Algorithm 3.

Table 6. Side-channel values for five Conv layers of Alexnet running on WS(12, 4) and the number of cycles.

Layer
Weight
reads

psum

reads
psum

writes
Event
cycle

Total
cycles

Conv1 34848 9292800 9583200 55 2395801

Conv2 614400 44603136 44789760 27 11197441

Conv3 884736 12395136 12460032 13 3115009

Conv4 1327104 18625152 18690048 13 4672513

Conv5 884736 12416768 12460032 13 3115009

The second Conv layer of Alexnet has 256 �lters ( = 256) with parameters {' = 5,� = 96, BC =

1, ?3 = 2}. This layer takes a input feature map of size {- = 27, . = 27,� = 96} and output a feature
map of paramaters {- ′ = 27, . ′ = 27,  = 256}. According to the data�ow mapping described in
Section 2.3, this layer is mapped as two rows (row size = 5) of �lter representing two input channels
in one PE array. There are four such PE arrays representing di�erent �lters. Figure 6 shows the
mapping of data�ow in the �rst two cycles in the �rst PE array with ten active PEs (the diagram
does not show unmapped and idle PE(1,11) and PE(1,12)). The mapping of weights maximizes the
input forwarding between two consecutive cycles (there are only two new input reads and eight
forwarding in second cycle). The other three PE arrays load weights of �lter 2-4 in the same relative
order and use the same ifmap values provided to the �rst PE array through array-wise multicast.
Execution of the Conv2 of Alexnet in WS(12, 4) results in,Ĩ = 614400, ?BD<Ĩ = 44603136,

and ?BD<ĭ = 44789760. The rest of the section goes through the Algorithm 3 to recover Conv2
parameters of Alexnet. Figure 7 shows the cycle-by-cycle number of GB reads/writes of di�erent
data types. The set H with potential (R,K) values = {(2,1600), (4,400), (5,256), (8,100), (10,64), (16,25),
(20,16), (40,4), (80,1)}. Then the number of active PE arrays can be calculated as =ė = 40/10 = 4.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:19

W[1,1,1] W[1,1,2] W[1,1,3]

I[1,1,1]

W[1,1,4] W[1,1,5] W[2,1,1] W[2,1,2] W[2,1,3] W[2,1,4] W[2,1,5]

I[2,1,1] I[2,1,3] I[2,1,4]

I[1,1,2] I[1,1,3] I[1,1,4] I[1,1,5] I[1,1,6] I[2,1,2] I[2,1,3] I[2,1,4] I[2,1,5] I[2,1,6]

Cycle 1

PE1,10PE1,9PE1,8PE1,7PE1,6PE1,5PE1,4PE1,3PE1,2PE1,1

Cycle 2

1st PE
Array

I[1,1,2] I[1,1,4]I[1,1,3] I[1,1,5] I[2,1,2] I[2,1,5]

Fig. 6. Dataflow mapping at 1ĩĪ and 2ĤĚ cycle of Alexnet Conv2 layer inWS(12,4) accelerator (only 1ĩĪ PE

array is shown).

6

2

10  

50  

27

psum writes ifmap reads weight reads

cycles

 targeted event 

Fig. 7. Cycle-wise number of data reads/writes until the targeted event of Alexnet Conv2 layer in WS(12,4).

Since the targeted event occurs in the 27Īℎ cycle, - ′ is 27. Then let us look at each condition and
what potential values are �ltered out. The �rst condition (line 6) applies to the �rst �ve elements of
� where ' f 10. From these �ve values, (4,400) and (8,100) are �ltered out from � . For example
(F1/=ė)%' is 10%4 = 2 for (4,400).
When considering the next two conditions in lines 9 and 12, Table 7 shows BC and ?3 values

generated according to the algorithm. 8 [2] = 2 is from side channels, which is used to calculate BC
for each value remaining in set � . When we look at the table, only (5,256) satisfy both conditions.
It is important to notice that potential ' g 10 fails the ?3 > ' condition. When we consider the
�nal condition and the remaining value of set H (5,256): - ′ × . ′ ×  = 186624, which is equal to
$ĭ = ?BD<ĭ − ?BD<Ĩ . Therefore, we can successfully recover Alexnets’ Conv2 layer parameters.

Table 7. Checking conditions 2 and 3 of Algorithm 3 for Conv2 of Alexnet on WS(12, 4) dataflow accelerator.

(R,K) (2,1600) (5,256) (10,64) (16,25) (20,16) (40,4) (80,1)

max(m//R,1) 6 2 1 1 1 1 1

st 4/6 1 2 2 2 2 2

pd - 2 35/2 41/2 45/2 65/2 105/2

x/✓ x ✓ x x x x x

5.4 Case Study: Alexnet with Output Stationary Dataflow

Table 8 shows the side-channel information used to recover all the �ve convolution layers of
Alexnet in the OS(10, 4) accelerator. The attack needs only a small number of cycle-wise data to
be collected. For example, the targeted event cycle in the �rst Conv layer is 363, while the total
is 2927233 cycles. The remainder of the section describes how to recover the �rst Conv layer of
Alexnet using Algorithm 4.

The �rst Conv layer of Alexnet has 96 �lters ( = 96) with parameters {' = 11,� = 3, BC =

4, ?3 = 0}. This layer takes an input feature map of size {- = 227, . = 227,� = 3} and outputs a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:20 Hansika Weerasena and Prabhat Mishra

Table 8. Side-channel information for all Conv layers on Alexnet running on OS(10, 4)

Layer
Weight
reads

Output
writes

Event
cycle

Total
cycles

Conv1 2927232 290400 363 2927233

Conv2 12902400 186624 2400 12902401

Conv3 7077888 64896 2304 7077889

Conv4 10616832 64896 3456 10616833

Conv5 7077888 43264 3456 7077889

feature map of parameters {- ′ = 55, . ′ = 55,  = 96}. Figure 8 shows data�ow mapping in the �rst
two cycles: the �rst ten entries of the �rst row of the ofmap are accumulated in the �rst row of
the PE array. Similarly, the subsequent three rows of the ofmap are mapped into the next three PE
arrays in order. The weight reads in consecutive cycles are done to maximize input forwarding. For
example, the reading of the, [1, 1, 5] in the second cycle after, [1, 1, 1] in the �rst cycle results in
only one input read from GB (� [1, 1, 41]) for that PE array. Only four input reads from GB in the
second cycle for all four PE arrays.

O[1,1,1] O[1,1,2] O[1,1,3] O[1,1,4]

W[1,1,1] W[1,1,1] W[1,1,1]

I[1,1,1] I[1,1,5]

W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1] W[1,1,1]

I[1,1,9] I[1,1,13] I[1,1,17]

O[1,1,5] O[1,1,6] O[1,1,7] O[1,1,8] O[1,1,9] O[1,1,10]

W[1,1,5] W[1,1,5] W[1,1,5]

I[1,1,5]

W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5] W[1,1,5]

I[1,1,9] I[1,1,13] I[1,1,17] I[1,1,21] I[1,1,25] I[1,1,29] I[1,1,33] I[1,1,37] I[1,1,41]

PE1,10PE1,9PE1,8PE1,7PE1,5PE1,4PE1,3PE1,2PE1,11st PE
Array &
mapped
Output

PE1,6

Cycle 1

Cycle 2

I[1,1,21] I[1,1,25] I[1,1,29] I[1,1,33] I[1,1,37]

Fig. 8. Dataflow mapping at 1ĩĪ and 2ĤĚ cycle of Alexnet Conv1 layer in OS(10, 4) accelerator (only 1ĩĪ PE

array is shown).

ofmap writes

81  

1

5

ifmap reads

weight reads

cycles

41  

363

 targeted event 

Fig. 9. Cycle-wise number of data reads/writes until the targeted event of Alexnet Conv1 layer in OS(10,4).

Execution of the Conv1 of Alexnet in OS(10, 4) results in,Ĩ = 2927232 and $ĭ = 290400. The
rest of the section goes through the Algorithm 4 to recover Conv1 parameters of Alexnet. Figure
9 shows the cycle-by-cycle number of GB reads/writes of di�erent data types. The cycle of the
targeted event (Cě ) is 364. Therefore, '

2� = 363 (line 1). Solving this in the Z+ domain gives ' = 11.
The virtual address di�erence between weight reads in the �rst (W[1,1,5]) and second (W[1,1,1])
cycle is 4, which is equal to the stride. When we consider the two conditions in lines 8 and 10,
Table 9 shows - ′/. ′ and  values generated according to the algorithm for each potential ?3
value (0-10). As shown in the table, only ?3 = 0 passes all the conditions. ?3 = 0 also satis�es
Equation 4 (2927232 = (248; (55/10) × 248; (55/4))112 × 3 × 96 )). Therefore, we can successfully
recover Alexnets’ Conv1 layer parameters.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:21

Table 9. Checking conditions 1 and 2 of Algorithm 4 for Conv1 of Alexnet on OS(10, 4) dataflow accelerator.

pd 0 1 2 3 4 5 6 7 8 9 10

X’/Y’ 55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60

K 96 - 92.6 - 89.3 - 86.3 - 83.4 - 80.6

x/✓ ✓ x x x x x x x x x x

5.5 Applicability and Limitations

Our proposed attack works on any concrete con�guration of abstract WS and OS data�ow archi-
tectures outlined in Section 2. For this study, we assumed there is no bandwidth limitation on
interconnect for each datatype. After relaxing this assumption, a minor modi�cation in Algorithm
3 in WS data�ow or 4 in OS data�ow can generate the same results. For example, if weight NoC
has a bandwidth limitation of 10 on the processing of the Conv layer in WS(12, 4), as elaborated in
Figure 7, four cycles would be spent on the initial weight memory read. We can identify the initial
four memory reads by either lagging of psum writes by three cycles or idling input interconnect for
three cycles. Another assumption we made was the accumulation of multiplication on one PE array
in WS data�ow happens in one cycle. If we relax this assumption and set q cycles for accumulating
a psum write in a PE array, every psum write will lag by extra @ − 1 cycles. A minor modi�cation of
calculating the event cycle as Cě − @ can �x this. Our approach can be applied to folding-supported
WS architectures since our attack uses side-channel information independent of folding.

One feature of our methodology warrants further discussion, is its approach to scenarios where
multiple potential structures for a previous layer might exist. In such cases, our algorithm tests
the ifmap parameters of each potential structure to identify the correct con�guration for the
subsequent layer. Our approach utilizes a layer-by-layer structure extraction mechanism where
integer factorization establishes an initial set of possible outcomes. These are then re�ned through
a set of rules driven by architectural hints and side-channel information, ensuring convergence to
a singular structure for each layer. Our experimental results, covering 64 layers across six di�erent
data�ow accelerators (384 combinations), consistently demonstrate a convergence to a single layer
structure, proving the robustness of our approach. Furthermore, if multiple structures exist in the
previous layer, the incompatibility with rules in the current or any preceding layer will further
narrow down the solutions. Due to the use of a layer-by-layer extraction approach, our method is
inherently scalable for more complex and deeper architectures; this is evidenced by its successful
scaling for deeper networks in our results.
In this paper, we develop a methodology for recovering CNN models from weight stationary

and output stationary data�ow architectures with input forwarding. The proposed attack can be
extended to any WS accelerator with input forwarding, such as MAERI [28], by leveraging the
hierarchical interconnects and input forwarding mechanisms to infer memory access patterns and
extract CNN model parameters. The main di�erence between MAERI and the WS architecture in
the paper lies in their recon�gurable interconnects, allowing dynamic adjustment of PE array size
when processing each layer. This control message for recon�guration can be snooped from the
same bus ( d in Figure 4) used in layer boundary identi�cation (Section 4.1). Once the PE size is
determined through snooping, the proposed attack can be applied accordingly. Our attack on OS
data�ow can be extended to other OS architectures with input forwarding [11, 33] to recover CNN
models. Both architectures, ShiDianNao [11] and Envision [33], adhere to the OS architectures
with input forwarding outlined in the paper, with subtle implementation di�erences. For example,
Envision, rather than having dedicated input forwarding at each PE array, uses a FIFO bu�er shared
between PE arrays for input forwarding. Since this does not change the observed side-channel
information (number of reads and writes) outside of the PE arrays, our attack can be extended

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:22 Hansika Weerasena and Prabhat Mishra

to this architecture as well. These extensions are feasible because both WS and OS architectures
share fundamental characteristics in data movement and reuse that were exploited in the attacks to
recover model parameters and structures. The underlying abstract methodology can be extended to
recover CNN models from other data�ow architectures using di�erent local forwarding data-type
(e.g., Neu�ow [12]) and di�erent data�ow types (input-stationary and row stationary [7]) by (1)
de�ning a targeted event/events to collect cycle-wise number of data reads and writes, (2) collecting
total reads and writes responsible for a layer, and (3) exploiting spatial and temporal data reuse
in (1) and (2) with architectural details. Our approach cannot be directly applied to recover CNN
structures with sparse FC and Conv layers such as Squeezenet [24]. Our study on recovering CNN
architectures highlights that memory access patterns should not be exposed to adversaries to avoid
the leaking of CNN model architectures through data�ow-based CNN accelerators.

5.6 Potential Mitigation Techniques

We highlight potential countermeasures that can be explored by designers in securing CNN ar-
chitectures against proposed memory-based side channel attacks. Several mitigation strategies
can be explored by the designers. (1) Introducing dummy operations that do not a�ect the �nal
output but alter the memory access patterns and computational behavior can help obscure the
true operations being executed, thereby confusing attackers and complicating their analysis of
side-channel data. (2) Implementing variable precision for weights and activations can make it
more challenging for attackers to determine the number of memory reads and writes, increasing
the di�culty of correlating observed memory operations with speci�c network layer structures. (3)
Employing decoy architectures and alternative data paths that activate during speci�c operations
can mislead attackers about the actual computational processes. (4) Speci�cally for OS data�ow
architectures, randomizing the order of data storage in memory, such as weights and activations, can
prevent attackers from easily correlating observed memory access patterns with speci�c operations.
These countermeasures can also be combined to form a multi-layered defense strategy against
side-channel attacks. Future research could further explore these mitigation techniques to validate
their e�ectiveness against model recovery attacks in data�ow-based inference accelerators.

6 CONCLUSION

Arti�cial intelligence at edge devices is becoming increasingly ubiquitous with the abundance of
data. Convolution neural networks (CNN) are executed using data�ow-based CNN accelerators
due to energy e�ciency. These accelerators use data�ows coupled with architectural designs to
maximize di�erent types of data reuse in CNN layers to e�ciently perform inference using CNN
models. This paper proposes an end-to-endmemory-based side-channel attack that exploits data�ow
patterns with the help of architectural hints to recover CNN model structures. Extensive evaluation
of multiple architectures on weight stationary and output stationary data�ows demonstrates that
our proposed method can fully recover well-known benchmark CNN models running in these CNN
accelerators. This work also highlights the importance of concealing memory access patterns in
data�ow-based inference accelerators.

ACKNOWLEDGMENTS

This work was partially supported by National Science Foundation (NSF) grant SaTC-1936040.

REFERENCES

[1] Abien Fred Agarap. 2018. Deep learning using recti�ed linear units (relu). arXiv preprint arXiv:1803.08375 (2018).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators 1:23

[2] M Meraj Ahmed, Abhijitt Dhavlle, Naseef Mansoor, Purab Sutradhar, Sai Manoj Pudukotai Dinakarrao, Kanad Basu,

and Amlan Ganguly. 2020. Defense against on-chip trojans enabling tra�c analysis attacks. In 2020 Asian Hardware

Oriented Security and Trust Symposium (AsianHOST). IEEE, 1–6.

[3] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN: Reverse engineering of neural network

architectures through electromagnetic side channel. (2019).

[4] Erik-Oliver Blass and William Robertson. 2012. TRESOR-HUNT: attacking CPU-bound encryption. In Proceedings of

the 28th Annual Computer Security Applications Conference. 71–78.

[5] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2018. Adver-

sarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069 (2018).

[6] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. 2010. A dynamically con�gurable

coprocessor for convolutional neural networks. In Proceedings of the 37th annual international symposium on Computer

architecture. 247–257.

[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss: An energy-e�cient recon�gurable

accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits 52, 1 (2016), 127–138.

[8] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A �exible accelerator for emerging deep

neural networks on mobile devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),

292–308.

[9] Łukasz Chmielewski and Léo Weissbart. 2021. On reverse engineering neural network implementation on GPU. In

Applied Cryptography and Network Security Workshops: ACNS 2021 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS,

Cloud S&P, SCI, SecMT, and SiMLA, Kamakura, Japan, June 21–24, 2021, Proceedings. Springer, 96–113.

[10] Jason Cong and Bingjun Xiao. 2014. Minimizing computation in convolutional neural networks. In Arti�cial Neural

Networks and Machine Learning–ICANN 2014: 24th International Conference on Arti�cial Neural Networks, Hamburg,

Germany, September 15-19, 2014. Proceedings 24. Springer, 281–290.

[11] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier

Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture. 92–104.

[12] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and Yann LeCun. 2011. Neu�ow:

A runtime recon�gurable data�ow processor for vision. In CVPR 2011 workshops. IEEE, 109–116.

[13] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion attacks that exploit con�dence information

and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security.

1322–1333.

[14] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio Culurciello. 2014. A 240 g-ops/s mobile

coprocessor for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition

workshops. 682–687.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.

[16] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang,

Gang Wang, Jianfei Cai, et al. 2018. Recent advances in convolutional neural networks. Pattern recognition 77 (2018),

354–377.

[17] Peter Horvath, Lukasz Chmielewski, Leo Weissbart, Lejla Batina, and Yuval Yarom. 2023. BarraCUDA: Bringing

Electromagnetic Side Channel Into Play to Steal the Weights of Neural Networks from NVIDIA GPUs. arXiv preprint

arXiv:2312.07783 (2023).

[18] Peter Horvath, Lukasz Chmielewski, Leo Weissbart, Lejla Batina, and Yuval Yarom. 2024. CNN architecture extraction

on edge GPU. arXiv preprint arXiv:2401.13575 (2024).

[19] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xinfeng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sherwood, and

Yuan Xie. 2019. Neural network model extraction attacks in edge devices by hearing architectural hints. arXiv preprint

arXiv:1903.03916 (2019).

[20] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Timothy

Sherwood, et al. 2020. Deepsni�er: A dnn model extraction framework based on learning architectural hints. In

Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems. 385–399.

[21] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering convolutional neural networks through

side-channel information leaks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[22] Andrew Huang. 2002. Keeping secrets in hardware: The microsoft xboxtm case study. In International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 213–227.

[23] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang Bao, Mingyu Chen, and Ninghui Sun. 2014. HMTT:

A hybrid hardware/software tracing system for bridging the DRAM access trace’s semantic gap. ACM Transactions on

Architecture and Code Optimization (TACO) 11, 1 (2014), 1–25.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:24 Hansika Weerasena and Prabhat Mishra

[24] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360

(2016).

[25] Mihailo Isakov, Lake Bu, Hai Cheng, and Michel A Kinsy. 2018. Preventing neural network model ex�ltration in

machine learning hardware accelerators. In 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST).

IEEE, 62–67.

[26] Nandan Kumar Jha, Sparsh Mittal, Binod Kumar, and Govardhan Mattela. 2020. DeepPeep: Exploiting design rami�ca-

tions to decipher the architecture of compact DNNs. ACM Journal on Emerging Technologies in Computing Systems

(JETC) 17, 1 (2020), 1–25.

[27] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2017. Imagenet classi�cation with deep convolutional neural

networks. Commun. ACM 60, 6 (2017), 84–90.

[28] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. Maeri: Enabling �exible data�ow mapping over dnn

accelerators via recon�gurable interconnects. ACM SIGPLAN Notices 53, 2 (2018), 461–475.

[29] Yann Le Cun, Lawrence D Jackel, Brian Boser, John S Denker, Hans Peter Graf, Isabelle Guyon, Don Henderson,

Richard E Howard, and William Hubbard. 1989. Handwritten digit recognition: Applications of neural network chips

and automatic learning. IEEE Communications Magazine 27, 11 (1989), 41–46.

[30] Yuntao Liu and Ankur Srivastava. 2020. Ganred: Gan-based reverse engineering of dnns via cache side-channel. In

Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop. 41–52.

[31] Raju Machupalli, Masum Hossain, and Mrinal Mandal. 2022. Review of ASIC accelerators for deep neural network.

Microprocessors and Microsystems 89 (2022), 104441.

[32] Prabhat Mishra, Swarup Bhunia, and Mark Tehranipoor. 2017. Hardware IP security and trust. Springer.

[33] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 2017. 14.5 envision: A 0.26-to-10tops/w subword-

parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm fdsoi. In 2017

IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 246–247.

[34] Francisco Muñoz-Martínez, José L Abellán, Manuel E Acacio, and Tushar Krishna. 2021. STONNE: Enabling cycle-level

microarchitectural simulation for dnn inference accelerators. In 2021 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 201–213.

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Uni�ed, real-time object

detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. 779–788.

[36] Qihang Shi, Navid Asadizanjani, Domenic Forte, and Mark M Tehranipoor. 2016. A layout-driven framework to assess

vulnerability of ICs to microprobing attacks. In 2016 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST). IEEE, 155–160.

[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556 (2014).

[38] Sergei Skorobogatov. 2017. How microprobing can attack encrypted memory. In 2017 Euromicro Conference on Digital

System Design (DSD). IEEE, 244–251.

[39] Gilbert Strang. 1986. A proposal for Toeplitz matrix calculations. Studies in Applied Mathematics 74, 2 (1986), 171–176.

[40] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. E�cient processing of deep neural networks: A

tutorial and survey. Proc. IEEE 105, 12 (2017), 2295–2329.

[41] Shahin Tajik, Heiko Lohrke, Jean-Pierre Seifert, and Christian Boit. 2017. On the power of optical contactless probing:

Attacking bitstream encryption of FPGAs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. 1661–1674.

[42] Huanyu Wang, Domenic Forte, Mark M Tehranipoor, and Qihang Shi. 2017. Probing attacks on integrated circuits:

Challenges and research opportunities. IEEE Design & Test 34, 5 (2017), 63–71.

[43] Hansika Weerasena and Prabhat Mishra. 2023. Security of Electrical, Optical and Wireless On-Chip Interconnects: A

Survey. ACM Trans. Des. Autom. Electron. Syst. (oct 2023). https://doi.org/10.1145/3631117

[44] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah Al Faruque. 2020. Leaky dnn: Stealing

deep-learning model secret with gpu context-switching side-channel. In 2020 50th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). IEEE, 125–137.

[45] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and

Xiaoniu Yang. 2020. Open dnn box by power side-channel attack. IEEE Transactions on Circuits and Systems II: Express

Briefs 67, 11 (2020), 2717–2721.

[46] Mengjia Yan, Christopher Fletcher, and Josep Torrellas. 2020. Cache telepathy: Leveraging shared resource attacks to

learn DNN architectures. In USENIX Security Symposium.

[47] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020. Deepem: Deep neural networks model

recovery through em side-channel information leakage. In 2020 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST). IEEE, 209–218.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Convolutional Neural Networks (CNN)
	2.2 Architectures for CNN Inference
	2.3 Dataflow-based CNN Accelerators
	2.4 Related Work

	3 Threat Model and Problem Formulation
	3.1 Problem Formulation
	3.2 Threat Model

	4 Extracting CNN Architecture using Side-Channel Analysis
	4.1 Identification of Layer Boundary
	4.2 Identification of Layer Type
	4.3 Recovery of Conv Layer from Weight Stationary Dataflow
	4.4 Recovery of Conv Layer from Output Stationary Dataflow
	4.5 Extraction of FC Layer Parameters
	4.6 Identification of Activation Functions
	4.7 Extraction of Pooling Layer Parameters

	5 Experiments
	5.1 Experimental Setup
	5.2 Results
	5.3 Case Study: Alexnet with Weight Stationary Dataflow
	5.4 Case Study: Alexnet with Output Stationary Dataflow
	5.5 Applicability and Limitations
	5.6 Potential Mitigation Techniques

	6 conclusion
	References

