Breaking On-Chip Communication Anonymity using Flow
Correlation Attacks

HANSIKA WEERASENA, University of Florida, USA
PRABHAT MISHRA, University of Florida, USA

Network-on-Chip (NoC) is widely used to facilitate communication between components in sophisticated
System-on-Chip (SoC) designs. Security of the on-chip communication is crucial because exploiting any
vulnerability in shared NoC would be a goldmine for an attacker that puts the entire computing infrastructure
at risk. We investigate the security strength of existing anonymous routing protocols in NoC architectures,
making two pivotal contributions. Firstly, we develop and perform a machine learning (ML)-based flow
correlation attack on existing anonymous routing techniques in Network-on-Chip (NoC) systems, reveal-
ing that they provide only packet-level anonymity. Secondly, we propose a novel, lightweight anonymous
routing protocol featuring outbound traffic tunneling and traffic obfuscation. This protocol is designed to
provide robust defense against ML-based flow correlation attacks, ensuring both packet-level and flow-level
anonymity. Experimental evaluation using both real and synthetic traffic demonstrates that our proposed
attack successfully deanonymizes state-of-the-art anonymous routing in NoC architectures with high accuracy
(up to 99%) for diverse traffic patterns. It also reveals that our lightweight anonymous routing protocol can
defend against ML-based attacks with minor hardware and performance overhead.

CCS Concepts: « Networks — Network on chip; Security protocols; - Computing methodologies —
Neural networks; « Security and privacy — Hardware attacks and countermeasures.

Additional Key Words and Phrases: System-on-chips, Network-on-chip Security, On-Chip Communication
Security, Anonymity, Deanonymization, Flow Correlation, Machine Learning, Anonymous Routing

1 Introduction

Advanced manufacturing technology allows the integration of heterogeneous Intellectual Property
(IP) cores on a single System-on-Chip (SoC). For example, Intel’s Xeon® Scalable Processor [23]
supports up to 64 cores. Traditional bus architectures fail to scale up with the communication
requirements of the increasing number of IP cores. Network-on-Chip (NoC) is the preferred
communication fabric to meet the high throughput and scalability requirements between these
IP cores. Due to time to market constraints and cost-effectiveness, SoC manufacturers tend to
use third-party vendors and services from the global supply chain [29]. Typically only a few IP
cores are designed in-house, while others are reusable IPs from third-party vendors. For example,
FlexNoc interconnect is used by four out of the top five fabless companies to facilitate their on-chip
communication [24]. A long and potentially untrusted supply chain can lead to the introduction of
malicious implants through various avenues, such as untrusted CAD tools, rogue designers, or at
the foundry. Furthermore, these sophisticated SoC designs make it harder to do complete security
verification [28]. While designing energy-efficient NoCs is a primary goal today, securing them is
equally crucial as exploiting an NoC could allow attackers to access communications between IP
cores and compromise the entire computing infrastructure’s security.

Figure 1 shows a 4 X 4 mesh NoC where mesh topology is the most commonly used topology in
NoC. A single tile consists of an IP core, Network Interface (NI), and Router. Security issues in a
typical NoC can be classified based on various security goals (confidentiality, integrity, anonymity,
authenticity, availability, and freshness) compromised by an attacker [44]. There are efficient
detection and mitigation of security vulnerabilities [4, 10, 12, 18, 21, 37] for securing NoC-based
SoCs. In a typical NoC, to enable fast packet forwarding, the header information is kept as plaintext

Authors’ Contact Information: Hansika Weerasena, University of Florida, Gainesville, FL, USA, hansikam.lokukat@ufl.edu;
Prabhat Mishra, University of Florida, Gainesville, FL, USA, prabhat@ufl.edu.

, Vol. 1, No. 1, Article . Publication date: November 2024.

: .
IP core :
Network
Interface : Remote
IPp Adversary
Router i
Rg Rqo Ryq Ry NIp|
Malicious
Router
Network Rq3 Ry Rys Rig

Link
Fig. 1. In a 4x4 mesh NoC, each IP connects to NoC via a network interface and router. A malicious router
can intercept packets between IPs and IPp, forwarding them to a remote adversary for sophisticated attacks.

while the packet data is encrypted. An adversary can implant a hardware Trojan in a router (Rg in
Figure 1), which can collect packets from the same source-destination pair and send them to a remote
adversary that can launch traffic and metadata analysis attacks [44]. For example, imagine a source
node (IPs) is a cryptographic accelerator that needs to communicate with a memory controller,
destination node (IPp), to facilitate memory requests for the cryptographic operation. An adversary
can use a malicious router in the middle to collect packets between IPs and IPp over a time interval
and recover the key by launching a ciphertext-only cryptanalysis attack [10, 31, 35]. Similarly, a
collection of packets belonging to the same communication session can also be analyzed to discover
what program is running at IPs or reverse engineer the architectural design using a simple hardware
Trojan and powerful remote adversary [2, 3, 16]. Ensuring anonymity in NoC communication can
mitigate metadata and traffic analysis attacks since anonymity ensures that there is no unauthorized
disclosure of information about communicating parties. Recent literature features two anonymous
routing approaches for securing NoC traffic: ARNoC [10] and a stochastic anonymous routing (SAR)
protocol [31, 35]. Although these anonymous routing solutions provide packet-level anonymity,
we show that they fail to provide flow-level anonymity by breaking anonymity via flow correlation
attacks. After breaking anonymity, the adversary can launch various traffic and metadata analysis
attacks on the deanonymized communication session. Specifically, this paper evaluates the security
strength of anonymous routing protocols in NoCs and makes the following major contributions.

e We propose an attack on existing anonymous routing by correlating NoC traffic flows via
machine learning (ML).

e We show that our ML-based attack can break the anonymity of the state-of-the-art anonymous
routing (ARNoC [10] and SAR [31, 35]) and validates the need for flow-level anonymity.

e The robustness of the attack is assessed across diverse configurations and traffic patterns.

e We propose a novel anonymous routing protocol with outbound traffic tunneling and obfus-
cation as a lightweight countermeasure that ensures packet-level and flow-level anonymity.

o Experimental results demonstrate that our countermeasure can defend against flow correla-
tion attacks with minor hardware and performance overhead.

The remainder of this paper is organized as follows: Section 2 provides relevant background and
surveys related efforts. Section 3 describes our ML-based attack on anonymous routing. Section 4
proposes a lightweight protocol to defend against such attacks. Section 5 presents experimental
results and evaluation. Finally, the paper is concluded in Section 6.

2 Background and Related Work

This section provides the relevant background and surveys the related efforts to highlight the
novelty of this work.

2.1 Network-on-Chip (NoC) Traffic

NoC enables communication by routing packets through a series of nodes. There are two types of
packets that are injected into the network: control and data packets. Consider an example when a
processor (IPs) wants to load data from a particular memory controller (IPp), it will issue a control
packet requesting the data from memory. The packet travels through routers following a predefined
routing protocol. Upon reaching the destination IP, it responds with a data packet containing the
requested data. In general, header information is kept as plaintext and the payload data is encrypted.
At each source NI, the packets are divided into fixed-size flits, which is the smallest unit used for
flow control. There is a head flit followed by multiple body flits and tail flits. Routing in NoC can be
either deterministic or adaptive; both approaches use header information to make routing decisions
at each router. XY routing is the most commonly used routing in mesh-based traditional NoCs,
which basically takes all the X links first, followed by Y links. NoC uses links to connect different
components of the interconnects. Links can be either internal or boundary. A boundary link is a
link that connects a router to a network interface, while internal links connect two routers. Our
ML-based attack on anonymous routing makes use of the flow of flits (inter-flit delays), whereas
our countermeasure manipulates routing decisions to create virtual tunnels.

2.2 Attacks on Anonymity and Anonymous Routing

In the context of communication, anonymity refers to the quality of being unidentifiable within a
set of subjects. The primary goal of anonymity is to protect the privacy of communicating parties.
Traffic and metadata analysis are two types of attacks that compromise the lack of anonymity in NoC
communication [44]. A traffic analysis attack collects packets in a particular communication session
between parties and analyzes them to deduce various aspects, such as what type of application is
running in an SoC. Similarly, metadata analysis attacks use ancillary data of communications, such
as sender and receiver information, time stamps, and packet sizes, to compromise the privacy of
communication parties. Anonymous routing hides the identity of the communicating parties from
anyone listening in the middle and hinders the effectiveness of these attacks. In this context, we
consider two types of anonymity: packet-level and flow-level anonymity. Packet-level anonymity
focuses on concealing individual data packets’ origin, destination, and content, while flow-level
anonymity aims to obscure the relationship between packets in a communication session.

The Tor network [17], based on onion routing, and the I2P network [47], based on garlic routing,
are key examples of anonymous routing in traditional networks. Onion routing creates tunnels
through multiple hops, encrypting the message in layers equal to the number of hops. Each hop
peels off a layer to gradually reveal the original message. Garlic routing extends onion routing
by bundling and encrypting multiple messages together, similar to garlic cloves. Many attacks
target Tor network anonymity, such as the flow correlation attack [30], but they cannot be directly
applied to NoC for three key reasons. (1) Traffic characteristics differ significantly between NoC and
traditional network due to varying use cases. NoC is used for routing simple on-chip communication
traffic, such as cache coherence, memory accesses, and inter-processor communications. In contrast,
traditional networks handle complex use cases, such as enterprise data services, cloud computing
tasks, and multimedia streaming. (2) The existing attack relies heavily on packet size as a feature,
whereas NoC flits are the fundamental unit of flow control, and they are of fixed size. (3) In NoCs, all
nodes function as onion routers, unlike traditional networks which mix normal and onion routers.

2.3 Related Work

The security of on-chip communication has been extensively studied, encompassing a wide range
of attacks and countermeasures, including eavesdropping attacks [4, 12, 32, 37, 41], spoofing
attacks [4, 26, 43], denial of service (DoS) attacks [8, 24, 27, 38, 39], side-channel attacks [9, 15, 33, 42],

and packet tampering attacks [10, 37, 40]. Anonymity is crucial for secure on-chip communication,
but solutions in the traditional networks are too expensive for resource-constrained NoCs. An
anonymous routing protocol (SAR) that needs NoC packets to be identified as secure and non-secure
packets is presented in [31, 35]. This approach stochastically selects a routing scenario for each
packet out of three scenarios available to confuse adversaries. Charles et al. [10] presented an
anonymous routing solution (ARNoC) for NoC based on onion routing [17] to ensure the anonymity
of a communication session. ARNoC creates an on-demand anonymous tunnel from the source to
the destination where intermediate nodes know only about the preceding and succeeding nodes.
Our proposed ML-based attack can break the anonymity of both ARNoC and SAR.

A threat model based on the insertion of Hardware Trojans (HTs) in network links is addressed
in [7, 46]. Yu and Frey [46] show that the Trojans can be inserted in boundary links and center
links that can do bit flips in the header packet that can lead to deadlock, livelock, and packet
loss. Boraten and Kodi [7] discuss the DoS attacks that can be launched by malicious links. This
specific Trojan performs packet injection faults at the links, triggering re-transmissions from the
error-correcting mechanism. Ahmed et al. [2] introduce the concept of Remote Access Hardware
Trojan (RAHT), where a simple HT in NoC can leak sensitive information to an external adversary
who can launch complex traffic analysis attacks. These RAHTS are hard to detect due to negligible
area, power, and timing footprint. Recent efforts [3, 16] utilize a similar threat model that can
reverse engineer applications through traffic analysis attacks. A threat model where an HT in
NoC collaborates with a colluding application is used to launch multitudes of attacks in the NoC
literature [8, 10, 22, 25, 32, 37]. Our proposed attack assumes malicious boundary links as the points
of data collection that gets remote access to external adversary through a colluding application.

ML-based techniques have been used to detect and mitigate attacks on NoCs in [38-40]. Sudus-
inghe et al. [39] used several ML techniques to detect DoS attacks on NoC traffic. Reinforcement
learning is used by [40] to detect HTs in NoC at run time. Sinha et al. [38] use an ML-based
approach to localize flooding-based DoS attacks. None of these approaches consider attacks or
countermeasures related to anonymous routing in NoC architectures. To the best of our knowledge,
our study is the first attempt to deanonymize exiting anonymous routing protocols via ML-based
flow correlation attack and propose a lightweight countermeasure with packet-level and flow-level
anonymity for NoC-based SoCs.

2.4 Flow Correlation Challenges

NoC traffic flow can be considered a time series data array with values of increasing timestamps
in order. For example, in a communication session, we can consider an array of time differences
between each packet coming into a node as a flow. Flow correlation is when we take two such pairs
and compare if they are correlated in some manner. For example, in a network link, the flow of
inter-flit delay entering and going out of the link are correlated. Though correlating outgoing and
incoming traffic on a link seems straightforward, correlating traffic between two nodes in a large
network with multiple hops in NoC is extremely difficult for the following reasons:

¢ Queuing delay at each hop is unpredictable and can interfere with traffic flow characteristics.

o A pair of correlated nodes may communicate with other nodes, which is considered as noise.

e The communication path of the correlated pair may be shared by other nodes in SoC, which
will interfere with the traffic flow characteristics between correlated pairs.

3 ML-based Attack on Anonymous Routing

We first outline the threat model used in the proposed attack. Next, we describe our data collection,
training, and application of the ML model to accomplish the attack.

‘ Training Phase | ‘ Attacking Phase |

Training Data Collection Potential communicating
(Section 3.2) pair<S,D>

O Mg Predicting Correlation
N T (Section 3.5)

o
S - !

(Section 3.3) Breaks Anonymity

Training the DNN
(Section 3.4)

Fig. 2. Overview of our proposed ML-based attack that consists of two phases (training and attacking).

[IFDp'
IFDg®

| || | time
E—
time
Ry
= Malicious
Link

e}

Ri3 Rig Ris Rig ML-Model

30000

Collector

Fig. 3. Malicious boundary links outside the anonymous tunnel extract flow pair (IFD?, IFDIi)) and send
them to the collector. Then, collector sends them to ML-model.

3.1 Threat Model

The threat model considers an NoC that uses encrypted traffic and anonymous routing, either
ARNOC [10] or SAR [31, 35]. Thus, we consider traffic to have packet-level anonymity; attackers
cannot identify the sender/receiver due to anonymous routing. Furthermore, they cannot recover
the payload due to encryption. The threat model consists of three major components: (1) a malicious
NoC, (2) a malicious program (collector), and (3) a pre-trained ML model.

Malicious NoC: The malicious NoC has malicious boundary links with Hardware Trojan (HT). The
HT counts the number of cycles between incoming and outgoing flits (inter-flit delay) to and from
an IP. After specific intervals, HT gathers all inter-flit delay into an array and sends it to the IP
where the malicious program (collector) is running. HT can be inserted by various adversaries
in the extended supply chain, such as through untrusted CAD tools, rogue engineers, or at the
foundry via reverse engineering, and remain undetected during post-silicon verification [28]. A
similar threat model of inserting HT at NoC links has been discussed in [7, 46]. Note that the area
and power overhead of an HT is negligible in a large MPSoC [3].

Malicious Program: Cloud infrastructures use multi-core SoCs in multi-tenant platforms where they

are virtualized and allocated to various applications from different users. The attacker disguised as
one of the multiple users of this shared virtualized system can easily launch a malicious program
and stay undetected. The collector is such a malicious program; it activates/deactivates HT to keep
it hidden from any run-time HT detection mechanisms. The main functionality of the collector is to
collect inter-flit-delays from HT-infected links and send them to the ML model. This threat model,
where a malicious NoC with an HT collaborates with a colluding application in same SoC (i.e.
collector), is a well-documented approach in NoC security literature [13, 44].

ML Model: The pre-trained ML model runs in a remote server/cloud controlled by the adversary.
The flow correlation uses the attacking phase out of two phases (training and attacking) of the ML
model. The training phase is detailed in Section 3.4. The attacking phase classifies whether two
inter-flit delay arrays are correlated or not. Figure 2 shows a high-level overview of the proposed

1FDS°

L
23

1Fop'

Id— Conv2D —>|<- Max-pool->|<- Conv2D -P|<-Max Pool-b|4— Dense Layers

Fig. 4. DNN architecture has two convolution layers (C1, C2) and three fully connected layers (FC1 - FC3).

flow correlation attack from the perspective of the ML model. The training phase is performed
offline and is responsible for collecting training data and training of the ML model. The adversary
can use an emulator or simulator mimicking the target system to collect data. The adversary can
generate a large amount of trained data by changing process mapping, benchmarks, and other
traffic characteristics (as discussed in Section 5.1) to make the model generic. While training the ML
model for detecting correlation can be computationally expensive, it is not a limiting factor since
the training is a one-time activity. Note that the model can be retrained, if needed after specific
intervals, to ensure that it remains effective and up-to-date throughout its operational lifetime.

Figure 3 shows an example of the attacking phase on ARNoC. In ARNoC, a tunnel exists between
source and destination routers if their associated IPs are in a communication session. ARNoC
forms the tunnel to ensure anonymity by hiding the headers. The HTs in the links are in the
inactive state by default. The collector periodically checks the state of all infected boundary links
and flags communicating links as suspicious. This is done via monitoring a simple heuristic of
inbound/outbound packet counts between two nodes. The collector will examine these counts and
instruct the HT to start collecting inter-flit delays if the difference is within a specified threshold.
Imagine a scenario where an adversary suspects communication between the source (IPs) and
destination (IPp); the collector activates HT associated with the boundary links of IPs and IPp. On
activation, HTs start sending periodic inter-flit delay arrays to the collector. More specifically, the
Trojan will observe and leak both outbound (/FD?) and inbound (IFDB) traffic flows. Here, IFD?
refers to the outbound inter-flit delay arrays from the source IP, and IFD, refers to the inbound
inter-flit delay arrays at the destination IP. Upon receiving inter-flit delay arrays, the collector is
responsible for sending collected data on inter-flit delay to the ML model. The adversary uses the
ML model to pinpoint two specific nodes that are communicating and breaks the anonymity.

After breaking anonymity through proposed flow correlation, an attacker can launch either
metadata or traffic analysis attacks [2, 3, 11, 16, 35], as discussed in Section 1 and 2. Breaking
anonymity can have significant consequences in scenarios where preserving the anonymity of
data traffic is critical. For example, in the case of confidential computing [14], it can leak the host
memory region of an application by breaking anonymity between the computing node and the
memory controller. Furthermore, after breaking anonymity, attackers can use it as a stepping stone
for more advanced attacks, such as targeted denial-of-service attacks.

3.2 Collecting Data for Training

Algorithm 1 outlines the training data collection when running ARNoC or SAR. We collect inbound
and outbound inter-flit delays for all source and destination IPs (line 4). Then, we label each flow pair
as either ‘1’ or ‘0’ according to the ground truth (line 5). If IPs and IPp, of flow pair {IFD$, IFD}}
are correlated to each other (IPs and IPp communicating in a session), the flow pair is tagged as
‘1’ and otherwise ‘0. These tagged flow pairs are utilized as the training set. Note that only the
first I elements of each flow of flow pair ({IFDZ, IFDB}) will be used in the training and testing.
We model external traffic interference on correlated flows by considering two scenarios: other
nodes communicating with the correlated pair and with each other, reflecting shared resource

and resource path. We use a deep neural network (DNN) as the ML model for our proposed flow
correlation attack. To ensure a generic dataset and sufficient data for DNN training, we conduct
multiple iterations of data collection (Algorithm 1), varying the mapping of correlated pairs to
different NoC nodes each time. Section 5 elaborates on synthetic and real traffic data collection.

Algorithm 1 Data Collection

1: X, Y0

2: procedure CoLLECTDATA ()

3: forV (s,d) € (S, D) do

4 X « X U{IFD¢, IFD}, }
5: Ye—YUc:ce{0,1}
6 return X, Y

3.3 DNN Architecture

We carefully examined various configurations and reached out to the final DNN architecture shown
in Figure 4. We selected Convolution Neural Networks (CNN) [36] as our model architecture for the
following reasons. First, since multivariate time series have the same 2-dimensional data structures
as images, CNN for analyzing images is suitable for handling multivariate time series [48]. Second,
recently published works using CNN for flow correlation [19, 30] has shown promising results. Our
final architecture has two convolution layers followed by three fully connected layers to achieve
promising performance. The first convolution layer (C1) has k; number of kernels of size (2, wy).
The second convolution layer (C2) has k, number of kernels of size (2, w). The main intuition of C1
is to identify and extract the relationship between two traffic flows (IFDg, IF Df:)), while we assign
the task of advancing features to C2. In our approach, both C1 and C2 have a stride of (2, 1). A
max-pooling layer immediately follows both convolution layers. Max pooling uses a max operation
to reduce the dimension of features, which also logically reduces overfitting. Finally, the result of
C2 is flattened and fed to a fully connected network with three layers. Additionally, the set (k;,
k2, wi, wy) are considered as hyper-parameters. We provide details on hyper-parameter tuning in
Section 5.2. We use ReLU as the activation function for all convolution and fully connected layers
to avoid the vanishing gradient problem and improve performance. Due to the fact that our task is
a binary classification, we apply a sigmoid function in the last output layer to produce predictions.

3.4 Training the DNN Model

Algorithm 2 outlines the major steps in the training process of the ML model. Specific sizes and
parameters used in training are outlined in Section 5. We train the DNN over multiple epochs (line
6) using labeled inter-flit delay distributions as the input. During the training phase, the stochastic
gradient descent (sgd) optimizer minimizes the loss and updates the weights in the DNN (line
10). To achieve this binary classification results from the last fully connected layer pass through a
sigmoid layer [20] (line 8) to produce classification labels.

Formally, the sigmoid layer is a normalized exponential function f(x) = ﬁ which aims at
mapping the given vector to a probability value that lies in [0, 1]. The value of the output of the
last layer is the predicted label p(y) which can be denoted as:

(_ 1
PW) = TGy

where s and d denote the source and destination input distribution respectively, and M denotes
a function map for the entire DNN model. Since it is a binary classification task, for given input

Algorithm 2 ML Model Training

1: X : [x1, ..., %), ..., xn] where x; = { IFDY, IFD}, };
2 Y:[y1, . Yj, .., yn] where y; € {0,1}

3: procedure TRAINMODEL (X, Y)

4 Circuit samples X and labels Y

5 Model Mg initialization

6: for epoch € [1, ..., NoOfEpochs] do

7:

8

for x; € Xandy; € Y do
out; = sigmoid(Me(x;))
N

9 loss = 3, cross_entropy(out;, y;)
J

10: O = sgd(0®, Vloss)

11: Return Mg

(s, d) pairs’ labels, their probability distributions are either (1, 0) for ‘true’ (correlated) and (0, 1)
for ‘false’ (uncorrelated). Therefore, we choose binary cross-entropy (line 9) as the loss function as

follows: 1 ¥
loss(p(y) = =5), i 1og(p(yn) + (1=) - log(1 = p(yy))
i=1

where y is the label (1 for correlated pairs and 0 for uncorrelated pairs), and N is the total number of
training samples. The goal of model training is to minimize the loss function by gradient descent for
multiple iterations, where in each step the model parameters © are updated by ® = ©+Vloss(p(y)).
3.5 Predicting Correlation

The trained model is used in attacking phase as shown in Algorithm 3. During the attacking phase,
we feed the two inter-flit delay arrays from a suspicious source (S) and destination (D) of the
ongoing communication session to the ML model (lines 4-5). The ML model will output 1 if the
source and destination are communicating, and 0 otherwise (lines 5). If S and D are communicating
and the ML model output is 1, our attack has successfully broken the anonymity.

Algorithm 3 Attack on Anonymous Routing

: IFD? : outbound inter-flit delay array of S
. IFDL : inbound inter-flit delay array of D
: Mg : pre-trained model

. procedure Attack ({IFD, IFDL}, Me)
p(y) « predict({IFD,IFDL}, Me)
return p(y)

4 Defending against ML-based Attacks

In this section, we propose a novel lightweight anonymous routing protocol as a countermeasure
against the ML-based attack described in Section 3. Figure 5 shows an overview of our proposed
anonymous routing that consists of two phases: 1) outbound tunnel creation and 2) data transfer
with traffic obfuscation. We utilize two obfuscation techniques (chaffing of flits and random delays).
4.1 Outbound Tunnel Creation

An outbound tunnel (OTSi) is a route created from the source router (S) of the tunnel to an arbitrary
router called tunnel endpoint (Eg). Here, i indicates the parameter for each tunnel instance. Figure 6

8

Phase 1 | ‘ Phase 2

Tunnel Creation Traffic Obfuscation

T
Tunnel Initialization Tunnel Acceptance Tunnel Confirmation » D;ta TranjfZer Chaffing Random Delay
(Section 4.1.1) (Section 4.1.2) (Section 4.1.3) (Section 4.2) (Section 4.3.1) (Section 4.3.2)

Fig. 5. Overview of the proposed lightweight anonymous routing to defend against flow correlation attack. It
has two phases: tunnel creation and data transfer with traffic obfuscation.

)
ey | 1] gy | | | oy | |] Normal

' N\ e P Routing
SIR, R, Ry ESIRy) | Path
4/ ' 1
______________________ . i i Random
rogo ni_ i Delay
L] O OED
—_— é
time I I I I I I
= I P e B> q

‘
'

Re R1o R | Rp
'
| Fit '
'

I Chaffed ~ © | - f - oty - b -~
Flit

\ IFDp!

]
'
'
'
o]
) ! i
Epl/Rq4 Ris Ris)i i
f

________________ time

Fig. 6. Two separate outbound tunnels OTSi and OTé are used by IPs and IPp for communication. In IPs to
IPp communication, chaffed flit is inserted at NIs and winnowed at E’S (Ry). E; adds random delay to the
flit sequence. The packet follows normal routing after an outbound tunnel ends.

shows how outbound tunnels, OTSi and OTB, are used when IPs and IPp, are injecting packets to the
network. It is important to highlight that these OT's are only bound to their source router and are
independent of any communication session. Each tunnel is associated with a timeout bound. After
the timeout, the tunnel that belongs to a particular source S will cease to exist and a new tunnel
will be created with a different endpoint (Eg“). Eg of an OTSi is randomly selected from any router
that is hp,ip to hpax hops away from the source of the tunnel. We use h,,;, = 3 because a minimum
of three nodes are needed for anonymous routing and increasing it further will negatively affect the
performance [17]. hjqx can be configured to balance the performance and the number of endpoints.

Figure 7 zooms into the tunnel creation phase. A summary of notations used in tunnel creation
can be found in Table 1. Tunnel creation is a three-way handshake process. The source broadcasts
a Tunnel Initialization (TI) packet to all the routers and only Ef responds back to the source with a
Tunnel Acceptance (TA) packet. Once the source receives an ACK from E., it sends the Tunnel
Confirmation (TC) packet to Eg After these three steps, each router in the tunnel has two random
Virtual Circuit Identifiers (VCI) saved in their routing table to define the succeeding and preceding
hops representing the tunnel. For the rest of the section, we refer to Eg as just E.

4.1.1 Tunnel Initialization. In the example (Figure. 6), S sends a TI packet as:
{T11|OPuKs||Efpux, (OPuKs||r)||TPuKs} (1)

TT identifies the packet as a Tunnel Initiation packet. OPuKé is the sources’ one-time public key for
the i*? tunnel and OPrKé is the corresponding private key. In other words, an OTSi can be uniquely
identified by this key pair. PuKg and PrKg are the global public and private keys of E, respectively.
They will not be changed with each tunnel creation. OPuK é and a randomly generated value r is
concatenated and encrypted through public-key encryption using the key PuKg (Efipyx,). Only E
can decrypt this encryption because only E has the corresponding private key (PrKg). Finally, the
temporary public key (TPuKé) is concatenated at the end of the packet. TI packet is broadcasted
instead of directly routed to avoid anonymity being broken at its birth.

Index

out VCI Index| outVCI Index| outVCI Index| outVCI

source

nR2 nR2 R3 nR3 ns ngy | endpoint
SIR, SR, = 1) ESREwD
Eq (1) —_— | E 2 ' : : Tl Packet ‘
: ‘):\ q. (2) ’: |
Eq. (4) : : Eq. (3) : :TA Packeti
Eq. (5) . EQ.(6) — > Eq.(7) : £ TC Packet
1 1

) 1

Fig. 7. Message transfer in a three-way handshake to create an outbound tunnel between router Ry and Ry
and final state routing tables of each router representing the outbound tunnel.

Algorithm 4 TI Packet handling at R

1: pkt :A TI packet
2: procedure HANDLETI (pkt)

3:
4
5:
6

7:

10:
11:

if OPuK{ in TL table then
discard pkt
else
store OPuK{ and TPuK’

pre(R)

if Dép,k, (pkt[3]) is successful then
GENERATETA (Dép,k, (pkt[3]), pkt[4])
else
pkt[4] — TPuK},
forward pkt

Any Router (R) receiving a TI packet will follow Algorithm 4. Tunnel Lookup (TL) table has
unique entries for every TI packet comes to the router. First, it tries to match OPuK} with the
existing entries in the TL table. On match, the message will get discarded to avoid any duplication

Table 1. Notations used in tunnel creation.

Eng
Dég
OPuK;,
OPrK;
PuKE
PFKE
TPuK},
TPrKg
Ks-r
nR

r

pkt[i]
pre(R)
next(R)
rand(a, b)

Encrypts message M using key K
Decrypts message M using key K
One-time public key used by source S
Corresponding private key to OPuKé
Global public key of E

Corresponding private key to PuKg
Temporary public key of node R
Corresponding private key to TPuK I’é
Symmetric key shared between S and R
Random nonce generated by node R
Random number generated by S

ith element of a packet pkt

Previous router (in upstream direction)
Next router (in downstream direction)
Generates random number between a and b

Algorithm 5 TA packet generation at E

1: parm : parameter resolved to OPuK;Hr
2: procedure GENERATETA (in;, TPuKg)

3 if parm;[1] # OPuK! then

4 discard the pkt

5: else

6 generate and store ng and Ks_g

7 enc « Enrpgi (Efopyi (r]|ngl| Ks-£))
8

next(E)

return {TA||enc}

due to TI packet broadcasting (line 4). Otherwise, OPqu and TPqu’;re (r) Ar€ stored in the TL table
(line 6). Next, R will try to decrypt the message and if it is successful, it should recognize itself as

the intended endpoint and run Algorithm 5 (line 8). If not, R will replace TPuK ;; re(R) with its own

temporary key TPuK}’;, and forward the TI packet to the next hop (next(R))(line 10 and 11). For
example, in figure 6, after receiving a TI packet from R;, Rs will generate and forward the following

TI packet to Ry:) .)
{TI||OPuK||Efipuk, (OPuKg||r) || TPuKp, })

4.1.2 Tunnel Acceptance. Upon receiving the TI packet, E runs Algorithm 4 first and then calls
Algorithm 5 as the endpoint of the tunnel. Algorithm 5 shows the outline of TA packet generation
at any endpoint router (E). First, E validates the integrity of the packet by comparing decrypted
OPuK; value and plaintext OPuK; value (line 3). If the packet is validated for integrity, Algorithm
5 will execute the following steps. First, it will generate random nonce ng which will be used as
VCI. Next, it will generate a symmetric key Ks_g to use between S and E. Then it will log both ng
and Ks_g in the TL table and ng in the routing table as indexed VCI (line 6). Next, it will perform
encryption of the concatenation of ng, Ks_r and r using the key OPuKé which will allow only S to
decrypt the content (line 7). Finally, the resultant encryption is encrypted again by the TPuKex: ()
(line 7). In the figure 6, E§ will generate the following TA packet:
{TAlEfzpurg, (Efopu (rlingl|Ks-£))} ®)
When a router R receives a TA packet, it will execute Algorithm 6. If the router is the source of
the OT", it will execute Algorithm 7 (line 4). Otherwise, it will go through the following steps. First,
it decrypts the packet using the temporary private key (TPrK}) (line 6) and generates a random
nonce and symmetric key (ng, Ks_g). This generated ng and Ks_g are stored in R’s TL table (line

Algorithm 6 TA packet handling at R

1: pkt : A TA packet
2: procedure HANDLETA (pkt)

3 if Ris S of OT' then

4 GENERATETC (pkt)

5 else

6: det « Dérp, i (pkt[2])

7 generate and store ng and Ks_g
8 enc «— EﬂOPqu(dctHnRHKS,R)
9 enc < Efipp, ki (enc)

next(R)
10: return {TA||enc}

Algorithm 7 TC packet generation at S

1: pkt :A TA packet

2: procedure GENERATETC (pkt)
3 dec — Dérp,: (pkt[2])

4 for no of hops in OT do

5 dec — DéOP,Kg-(dec)

6: enc «r

7: for R = E to next(S) do

8: enc « n(R)||Efg,_(enc)
9: return {TC||enc}

7). The nonce and symmetric key pair is concatenated to the decrypted packet (dct) (line 7 and 8),
which will be encrypted using source public key (OPuK}) to add another layer of security (line
8). Finally, R will encrypt the content with the public key of the next hop next(R) (line 9). In the
example, R, forwards the following TA packet to R;:

{TA| |EﬁTPuK}i?2 (Efiopuki (Efopuk: (Efiopui (]|nel|Ks—£)lIng,||Ks-r,)|Ing, [1Ks-gr,))} (4)

4.1.3 Tunnel Confirmation. Algorithm 7 depicts the TC packet generation at the source router S.
TPrK; is used to decrypt the outermost encryption (line 3), then each layer of the inner encryption
is peeled away using the OPrK (loop from line 4 to 5). S extracts information of all the VCIs and
symmetric keys. r is used to check the authenticity of the packet received (make sure the TA is
a packet from the actual endpoint E). Finally, starting from E to pre(S) (reverse order of routers
in tunnel excluding S), r is encrypted by the respective symmetric key and concatenated with
the respective nonce iteratively (loop from line 7 to 8). In the figure 6, S generates the TC packet

structured as:
(TClIng, Bk, (ni, || Efies_y, (mllEiiy (7))} (5)

TC denotes the packet type. The packet is layered and encrypted using the symmetric keys
distributed in the previous stage. Here, n. represents the outgoing VCI at each router from S to
prev(E). For example, ng, defines outgoing VCI of S and ng, defines outgoing VCI for R,. After the
TC packet is received by each node, it decrypts the outermost layer and stores the corresponding
outgoing VCI value in the routing table indexed as incoming VCI. For example, when R, receives
the packet it will decrypt the content using key Ks_g, and store the outgoing VCI as ng, in the
routing table indexed as ng,. Similarly, all the routers in between S and E will update the routing
table entry corresponding to the tunnel. In the example, R, will send TC packet to Rs structured as
follows:

{TClIng, ||Efiks_g, (ngl|Efks_ (r)} (6)
Finally, R; will send the TC packet to E (Ry) structured as:

{TCll(ngllEfigs_ (r)} ™)

The packet transfers during the tunnel creation is inherently secure. This is because the tunnel
creation phase ensures the transfer of only publicly available information as plaintext, while all
sensitive data (including VCIs) are encrypted using symmetric or asymmetric methods. The only
way an attacker can break anonymity of a packet is by knowing all the VCIs of the tunnel. This is
not possible since the asymmetric and symmetric cryptography are computationally secure.

4.2 Data Transfer

A previously created outbound tunnel (OTSi) is used to transfer messages anonymously from IPs to
IPp. Before transferring the packet, the source will encrypt the actual destination header using the
key Ks_g which is the symmetric key shared between the source and endpoint during the tunnel
creation. When we consider the data transfer through tunnel OT!, a Data Transfer (DT) packet is
injected into the tunnel by S structured as:

{DT||ng,||Efigs_ (D)||Efip (M) } ®)

Here, DT is the packet type identifier, ng, is the outgoing VCI, and Efip (M) is the encrypted
payload of the packet. At the router, Ry, the outgoing VCI is identified through a simple routing
table lookup on the incoming VCI of the packet. Then R, replaces the outgoing VCI of the packet
(ng,) with the next outgoing VCI, which is ng,, and routes the packet to the next hop. Similarly, Rs
replaces the outgoing VCI of the packet to ng. Note that any intermediate node including E does
not know both source and destination of a single packet which ensures anonymity.

4.3 Traffic Obfuscation

The main intuition behind the traffic obfuscation is to add noise to inbound and outbound flows
(IFD?, IFDB), so it will be harder for ML-model to do accurate flow correlation. Section 4.3.1 and
4.3.2 introduce two traffic obfuscation techniques.

4.3.1 Obfuscation with Chaffs. We introduce a chaffing scheme as our first obfuscation technique.
Chaff is a dummy flit with no usable data. Specifically, we insert chaff/chaffs in outbound tunnel
traffic at the network interface of the source and filter out chaffs at the endpoint of the tunnel. The
outbound flow (IFDY) will have inter-flit delay data relevant to both chaffs and legitimate flits but
inbound flow (IFD})) will have inter-flit delay data relevant only to legitimate flits. Algorithm 8
describes the chaffing process at the NI of the source. WAKEUP procedure (Line 1 - 4) is the periodical
function called by every NI in every clock cycle. We introduce a procedure named ADDCHAFF (Line
5 - 23) to obfuscate traffic through chaffing.

We insert chaffs in two specific scenarios to ensure the obfuscation scheme works with the
majority of traffic patterns: (i) first scenario: insert chaffs in the long gap between flits (line 6 - 13),
and (ii) second scenario: insert chaff flit in middle of closely packed flits (line 14 - 21). When the
outbound link of source NI is idle for more than T, cycles (Line 6, the first scenario is considered.
The intuition behind this method is to hinder the possibility of ML-model using long inter-flit
delays of inbound and outbound flows in sparse traffic scenarios. In order to control overhead, we
use a percentage threshold (P.) and ensure only P, of idle gaps between packets get obfuscated
(line 8 - 9). If chosen to be obfuscated, a dummy packet of is created and is enqueued to the output
queue of the NI (line 10 - 13). At the endpoint of the tunnel, the dummy flits are filtered out
and discarded. The chaffld header is used to identify chaffed flit or packet. In the first scenario,
a hash of the NI identification number is used as chaffed id. Unlike other headers, this header
is encrypted by Ks_g which is the symmetric key shared between the source (S) and endpoint
(E) during the tunnel creation (line 12). Therefore, only endpoint can filter chaffed packets by
decrypting Efig, .(hash(NIip).

When the input queue of source NI received a packet (line 14), the first scenario is considered
(line 15 - 21). The intuition behind this scenario is to hinder the possibility of ML-model using burst
of small inter flits delays of inbound and outbound flows in heavy traffic. The example shown in
Figure 6 demonstrates the chaffing in second scenario and removing that chaff. Here, P limits the
number of packets being obfuscated (line 16 - 17). If chosen to be obfuscated, chaff is inserted in

Algorithm 8 Add Chaff at source NI

: procedure WAKEUP ()

1
2
3
4@
5. procedure ADDCHAFF(cflag)
6 if cflag = False and getldleCy(link,) > T, then
7 cflag = True

8 randNo < rand(0,99)

9 if randNo < P, then

10: nFlits « rand(4,5)

11: dPkt < new Packet(nFlits)

12: dPkt.chld «— EﬁKsiE(haSh(NIID))

13: outputQueue.enque(dummyPkt)

14: if inputQueue.recivedPacket() = True then
15: cflag = True

16: randNo < rand(0,99)

17: if randNo < P, then

18: chld « rand(0, len(inputPkt))

19: dFlit = new flit()

20: encChld « Eng, ,(hash(NIip)|chld)
21: pkt.insert(chld, encChld, dFlit)

22: if outputQueue.sendPacket() = True then
23: cflag = False

the middle of legitimate packets at a random position (Line 18 - 21). Ks_g is used to encrypt chaffld,
represents the position of chaff flit, which is used by the endpoint to filter the chaffed flit.

A random number generator is already in the NI for cryptographic process. Therefore, the same
generator is used for random number generation in line 8, 10 and 16. If the cflag (line 3, 6, 7, 15
and 23) variable is true, it indicates the current gap between flits was already checked for insertion
of packet. It is important to note that, (1) the dummy flits are added only when outbound link is
idle, therefore, it has less impact on the program running on source IP, and (2) the dummy flits will
only impact at most 3 internal links associated with the tunnel, therefore, it has less impact on the
other traffic in the network. The scenario two inserts relatively less number of dummy flits and
they will only impact at most 3 internal links. Experimental results in Section 5.8 validate that our
obfuscation technique only results in negligible overhead.

4.3.2 Obfuscation with Random Delay. The second obfuscation technique adds random delays
to selected flits and tries to tamper with the timing aspect of the traffic flow. Flits belonging to
only P; percentage of packets are subject to added delays. The tunnel endpoint is responsible for
adding delays. Traveling through the rest of the hops the flit propagates the delay to the destination
tampering with timing features of the inbound flow (IFD})). Figure 6 demonstrates the effect of
added delay in traffic flows. It is clear that chaffing and random delays obfuscate the actual traffic
between source and destination. Both of these techniques can be used simultaneously or in a
standalone manner depending on the requirement. Experimental results (Table 11 and 12) show
that both techniques effectively defend against ML-based flow correlation attacks.

Table 2. System and interconnect configuration

Parameter Details

Processor configurations X86, 2GHz

L11& D cache 64KB, 64KB (64B block size)
Coherency Protocol MI

Topology 8%8 Mesh

Chaffing rate (P.) and delay addition rate (Py) 50%

5 Experimental Evaluation

We model our proposed ML-based attack and countermeasures on a cycle-accurate Gem>5 [6], a
multi-core simulator, with Garnet 2.0 [1] for the interconnection network modeling. We use a
64-core system and the detailed system configuration is given in Table 2. Splash-2 [34] benchmark
applications as well as multiple synthetic traffic patterns were used in evaluation. We used Pytorch
library to implement the proposed DNN architecture. First, we show the results of the flow corre-
lation attack in existing anonymous routing (ARNoC [11] and SAR [31, 35]). Later, we show the
robustness of the proposed anonymous routing protocol to mitigate the attack. In order to evaluate
the area and energy overhead of our approach against state-of-the-art anonymous routing, we
implemented ARNoC and our approach in Verilog and synthesized both designs using Synopsys
Design Compiler with 32nm Synopsys standard cell library.

5.1 Data Collection

This section demonstrates the data collection on Gem5 for the training of DNN. Although the input
to DNN is in the same structure, the inherent differences in synthetic traffic and real benchmarks
led us to two ways of collecting flow pairs for training.

5.1.1 Synthetic Traffic. We performed data collection using Uniform-Random synthetic traffic with
the following modification. All IPs send packets to randomly selected IPs except two (IPs and IPp).
These two IPs are the correlated pair communicating in a session. From all the packets injected
from the source IP (IPs), only p percent of packets are sent to the destination IP (IPp), and the
remaining packets ((100 — p)%) are sent to other nodes. For example, p = 80% means 80% of the
total outbound packets from IPs will have IPp as the destination, while the other 20% can have any
other IP except IP IPs and IPp as the destination. Note that this 20% can be viewed as noise from the
perspective of communication between IPs and IPp. Here, traffic between correlated pair models
concentrated point-to-point traffic between two nodes (e.g., processing core and memory controller).
The random point-to-point traffic models other NoC traffic in a heterogeneous SoC other than cache
coherence traffic such as monitoring and management traffic, inter-process communication and
message passing between heterogeneous IP cores. This randomized traffic between uncorrelated
pairs introduces uncontrolled noise to correlated traffic flow. Therefore, random point-to-point
synthetic traffic models worst-case-scenario for flow correlation attack.

To make the dataset generic, for a single p value, we conduct experiments covering all possible
mapping of correlated pairs to NoC nodes, which are 8064 mappings (64x63%2). We consider four
traffic distributions with p value of 95%, 90%, 85%, and 80%. In other words, we consider four
different noise levels (5%, 10%, 15% and 20%) for our data collection simulations. The full dataset for
a certain p value contains 24192 flow pairs ({IFDZ, IFD}}) which consists of 8064 correlated traffic
flow pairs and 16128 uncorrelated traffic flow pairs. Note that for each correlated flow pair, we
selected two arbitrary uncorrelated flow pairs. To evaluate our countermeasures, when collecting
obfuscated traffic, we kept both P, and P; at 50% to ensure uniform distribution of obfuscation.
When obfuscating traffic using added delay, we vary the delay between 1 — 5 cycles because a

15

higher delay may lead to unacceptable performance overhead. We collected three categories of data
sets: one with chaffing only, one with random delay only, and one with applying both chaffing and
delaying simultaneously.

5.1.2 Real Traffic. Here, we collect response cache coherence traffic from memory controller to
requester. This is done via filtering out using virtual network (vnet) used for memory response
traffic to requester which is vnet 4. We consider five Splash-2 benchmark application pairs running
on two processors (P; and P;) where two memory controllers (MC; and MC;) are serving memory
requests. The benchmark pairs used are {fft, fmm}, {fmm, lu}, {lu, barnes}, {barnes, radix}, {radix, fft},
where the first benchmark runs on P; and the second runs on P,. The selected benchmarks have
the diversity to make the dataset generic (for example, fft and radix are significantly different [5]).
The address space of the benchmark running in P; is mapped only to MC;. Therefore, P; only talks
with the MC;, and they are the correlated pair. The address space of the benchmark running in P,
is assigned to both MC; and MC; in a way that, the ratio between memory request received by
MC; from P; to memory request received by MC; from P, to be p : (100 — p). This percentage p is
similar to that of synthetic traffic and (100 — p)% is the noise. For example, when p = 85%, MC;
serves 15% packets to P, when it severs 85% packets to P;.

Similar to synthetic traffic, we considered four values for p which are 95%, 90%, 85%, and 80%.
For a single p value and a single benchmark pair, we conducted experiments covering all possible
mapping of correlated pairs to NoC nodes, which are 4032 mappings (64x63). The MC, and P,
were randomly chosen in all these mappings. The full dataset for a certain p value and benchmark
pair contains 16128 flow pairs (4032 correlated pairs and 12096 uncorrelated pairs). To evaluate
our countermeasures, we collect obfuscated data similar to synthetic traffic. We automated data
collection using the gem5 simulator with a shell script that simulates different benchmarks and
application mappings. This process produces traffic traces from gem5 as textual logs. We then
developed a Python script to pre-process these traces into 2D numpy arrays of inter-flit delays,
serving as input for the DNN.

5.2 Hyperparameter Tuning

Hyperparameters are parameters set before training to improve model performance, such as learning
rate and filter size. We rigorously tested various hyperparameter combinations to achieve superior
attack success rates. The training process consists of 10-20 epochs with a consistent learning rate
of 0.0001. We performed batch normalization and adjusted the batch size to 10 for the training set.
As for convolution layers (C1 and C2 in Figure 4), the channel size is selected as k; = 1000 and
k2 = 2000, with w; = 5 and w; = 30, for C1 and C2, respectively. As for fully connected layers, sizes
are selected as 3000, 800, and 100 for FC1, FC2, and FC3, respectively.

There are a lot of challenges in tuning since the finalized parameters reflect a trade-off between
cost and effectiveness. First, the learning rate of the raining was reduced from 0.001 to 0.0001
which increases the training time but successfully avoids the Local Minima problem. Our decision
to limit training to 10-20 epochs was primarily based on initial experiments that employed early
stopping based on validation error. This approach consistently showed that performance stabilized
within this range. Additionally, restricting the number of epochs to 10-20 served as a regularization
technique to further mitigate the risk of overfitting. Batch size is also decreased from 50 to 10. In this
way, fewer samples are provided for one iteration of training, but it improves the stability of training
progress. Additionally, the selection of parameters for convolution layers properly addressed their
responsibilities. As discussed in Section 3.3, C1 focuses on extracting rough relationships while C2
on advancing features. Therefore, C2 possesses two times of channels of C1, and a wider stride
(30:5) to improve efficiency.

Table 3. Performance of ML-based attack on existing anonymous routing (ARNoC [10]) for different traffic
distributions.

p | Accuracy | Recall | Precision | F1 Score
95 97.16% 91.98% 99.47% 95.58%
90 97.04% 93.35% 97.50% 95.38%
85 94.64% 91.32% 92.30% 91.81%
80 91.70% 80.02% 94.10% 86.60%

5.3 Training and Testing

In our study, we randomly divided a dataset of flow pairs for a specific configuration into a 2:1 ratio
for the training and testing sets. Flow pairs were labeled as ‘1’ for correlated and ‘0’ for uncorrelated.
We assessed our experiments using following four evaluation metrics.

p

. _tp+tn fsion:
e Accuracy: et fpifn e Precision: /P

. _Ip . o Precision-Recall
e Recall: tp+fn ¢ F1Score: 2Precision+Recall

Here, tp, tn, fp and fn represent true positive, true negative, false positive, and false negative,
respectively. Intuitively, recall is a measure of a classifier’s exactness, while precision is a measure
of a classifier’s completeness, and F1 score is the harmonic mean of recall and precision. The reason
for utilizing these metrics comes from the limitation of accuracy. For imbalanced test cases (e.g.,
> 90% positive labels), a naive ML model which gives always-true output can reach > 90% accuracy.
The goal of the attacker is to identify correlating node pairs and launch complex attacks. Here,
fn is when an actual correlating pair is tagged as non-correlating by the DNN. fp is when an
actual non-correlating pair is tagged as correlating by the DNN. From an attacker’s perspective,
the negative impact of wasting time on launching an unsuccessful attack on fp is relatively low
compared to an attacker missing a chance to launch an attack due to a fn. Therefore, recall is the
most critical metric compared to others when evaluating this flow correlation attack.

5.4 ML-based Attack on Synthetic Traffic

We evaluated the proposed attack for all four traffic distributions. The traffic injection rate was
fixed to 0.01, and the IFD array size to 250. Table 3 summarizes the results of the attack on ARNoC.
All the considered traffic distributions show good metric numbers. We can see a minor reduction
in performance with a reducing value of p. This is expected because of the increase in the number
of uncorrelated packets in correlated flow pairs, making the correlation hard to detect. Even for
the lowest traffic distribution of 80% between two correlating pairs, the attacking DNN is able to
identify correlated and uncorrelated flow pairs successfully with good metric values.

Table 4 summarizes the attack results on SAR, showing trends similar to those in the attack
on ARNoC (Table 3). The main reason for this similarity is that our attack focuses on correlating
inbound and outbound flows rather than focusing on breaking obfuscation techniques to hide
communicating parties. Even though SAR uses packet-wise path diversity for anonymous routing,
the proposed flow correlation attack performs well due to two reasons: (1) packet-level path diversity
will not affect inter-flit delay inside the packet which is the fundamental feature of the proposed
ML-based attack, and (2) since there are only three path scenarios (XY, YX, and XYX) with a
subtle variation, the variation of delay between flits of two adjacent packets is negligible to affect
flow correlation adversely. These results confirm that our attack is realistic and can be applied on
state-of-the-art anonymous routing (both ARNoC and SAR) to break anonymity across different
traffic characteristics with varying noise. Due to the similarity of the attack performance in both
anonymous routing protocols, we only consider ARNoC for the subsequent experiments.

Table 4. Performance of ML-based attack on existing anonymous routing (SAR [31, 35]) for different traffic
distributions.

p | Accuracy | Recall | Precision | F1 Score
95 96.91% 91.61% 99.07% 95.19%
90 96.67% 92.78% 96.90% 94.80%
85 94.59% 91.96% 91.53% 91.74%
80 92.30% 81.21% 94.97% 87.55%

Table 5. Performance of ML-based attack on existing anonymous routing for different traffic injection rates.

TIR | Accuracy | Recall | Precision | F1 Score
0.001 95.32% 92.29% 93.51% 92.89%
0.005 94.72% 90.14% 93.98% 92.02%
0.01 94.64% 91.32% 92.30% 91.81%
0.05 93.86% 88.56% 92.67% 90.56%

5.5 Stability of ML-based Attack

In this section, we assess the stability of the proposed ML-based attack by varying configurable
parameters. For experiments in this section, we use synthetic traffic with the value of p as 85% and
the rest of the parameters as discussed in the experimental setup except for the varying parameter.

5.5.1 Varying traffic injection rates (TIR). We collected traffic data for four traffic injection rates:
0.001, 0.005, 0.01 and 0.05, and conducted the attack. Table 5 provides detailed results on metrics
over selected values. We can see a small reduction in overall metrics including recall, with the
increase in injection rate. This is because, higher injection rates will create more congestion and
buffering delays on NoC traffic. The indirect noise from congestion and buffering delays makes it
slightly hard for the ML model to do flow correlation. Overall, our proposed ML model performs
well in different injection rates since all the metrics show good performance.

5.5.2 Varying IFD Array Size. We collected traffic data by varying the size of IFD array size (I) in
the range of 50 to 550 and conducted the attack on existing anonymous routing. Table 6 shows
detailed results on metrics over selected values. For a lower number of flits, the relative values of
the recall and other metrics are low. However, with the increasing number of flits, the accuracy
also improves until the length is 250. This is due to the increase in the length of the IFD array the
ML model has more features for the flow correlation. After the value of 250, the accuracy saturates
at around 94.5%. In subsequent experiments, we kept [to 250 because ML-based attack performs
relatively well with less monitoring time.

Table 6. Performance metrics of ML-based attack on existing anonymous routing for varying number of flits.

IFD Array size(l) | Accuracy | Recall | Precision | F1 Score
50 83.53% 96.45% 67.96% 79.74%
100 90.92% 96.17% 80.28% 87.51%
150 90.93% 74.10% 98.32% 84.51%
250 94.64% 91.32% 92.30% 91.81%
350 94.71% 86.21% 97.39% 91.46%
450 94.58% 93.21% 90.58% 91.87%
550 94.66% 88.97% 94.30% 91.56%

5.5.3 Varying Network Size. To evaluate the stability of the ML model on varying network sizes,
we analyzed the model on 16 core system with 4x4, 64 core system with 8x8, and 256 core system

18

Table 7. Performance of ML-based attack on existing anonymous routing for different mesh sizes.

Mesh Size | Accuracy | Recall | Precision | F1 Score
4x4 94.76% 91.86% 92.63% 92.24%
8%8 94.64% 91.32% 92.30% 91.81%

16X16 92.72% 80.28% 96.98% 87.84%

Table 8. Performance of ML-based attack on ARNoC [10] using MI protocol for different noise levels in real
benchmarks.

p | Accuracy | Recall | Precision | F1 Score
95 99.43% 99.79% 98.01% 98.89%
90 99.11% 99.84% 96.75% 98.27%
85 98.76% 98.16% 97.01% 97.58%
80 96.08% 98.79% 87.15% 92.61%

with 16x16 mesh topology. Table 7 shows the performance results of the ML model for different
network sizes. Attack on 4x4 mesh shows slightly good metric values compared to 8x8. The attack
on a 16x16 network shows relatively low accuracy and recall, due to the network’s larger size,
which alters the temporal characteristics of the traffic. With four times as many nodes and roughly
double the average hops (10.67 compared to 5.33 in the 8x8 mesh), the 16x16 mesh experiences
more congestion. These conditions introduce additional noise, such as queuing delays, which affect
the communication patterns observable through inter-flit delays. Despite these challenges, the
achieved recall of 80.28% is sufficiently high for a successful attack. Considering good accuracy and
other metrics, our ML-based attack shows stability across different mesh sizes.

5.6 ML-based Attack on Real Benchmarks

We trained and tested the model using two techniques. In the first technique, we merge datasets
of a single p value across all 5 benchmark combinations outlined in Section 5.1 to create the total
dataset. Therefore, the total dataset has 80640 flow pairs before the 2:1 test to train split. Table 8
summarizes the results for the first technique across all p values. Good metric numbers across all
traffic distributions show the generality of the model across different benchmarks. In other words,
our attack works well across multiple benchmarks simultaneously. Even 20% noise (p = 80) shows
recall value just remains robust around 98%. While lower precision may lead to resources being
spent on false positives, this issue is relatively minor compared to the potential harm posed by high
recall rates. From an adversarial perspective, recall is the critical metric, as discussed in Section 5.3.

To evaluate our attack success across cache-coherence protocols, we trained and test model
using MOESI-hammer protocol using first technique. To enable a fair comparison with previous MI
protocol experiments, we kept the MOESI protocol private cache size for each node the same as
that of the MI protocol. Specifically, we kept L1 instruction and data cache size 32KB and L2 cache
size 64KB per node. Table 9 summarizes the attack results on systems with MOESI-hammer cache
coherence protocol. Since we only focus on first I = 450 inter-flit delays, the less cache coherence
traffic of MOESI-hammer protocol does not affect the training of the ML model. Comparable results
across all traffic distributions similar to MI protocol demonstrate that our attack is successful across
multiple cache coherence protocols. Therefore, for simplicity, we only consider MI cache coherence
protocol for experiments involving real traffic in the remainder of this paper.

When we compare the performance of attack on real traffic against synthetic traffic (Table 3),
attack on real traffic shows better performance. This is primarily for two reasons. (a) The synthetic
traffic generation is totally random. More precisely, the interval between two packets is random

Table 9. Performance of ML-based attack on ARNoC [10] using MOESI-hammer protocol across different
traffic distributions with real benchmarks

p | Accuracy | Recall | Precision | F1 Score
95 99.46% 99.85% 98.08% 98.96%
90 99.07% 99.81% 97.61% 98.18%
85 98.81% 98.45% 96.94% 97.69%
80 96.45% 98.81% 88.48% 93.36%

Table 10. Performance of ML-based attack on ARNoC [10] using when p=385 across real benchmark combina-
tions.

benchmark | Accuracy | Recall | Precision | F1 Score
{fft, fmm} 98.29% 99.11% 94.42% 96.71%
{fmm, lu} 99.32% 97.63% 99.70% 98.65%
{lu, barnes} 97.84% 91.60% 99.76% 95.51%
{barnes, radix} | 96.14% 84.59% 99.73% 91.54%
{radix, fft} 96.62% 97.05% 90.66% 93.75%

Table 11. Performance metrics of ML-based attack on proposed lightweight anonymous routing for different
traffic distributions when trained with non-obfuscated traffic and tested with obfuscated traffic

Chaffing Delay Chaffing + Delay

p Acc. Rec. | Prec. F1. Acc. Rec. | Prec. F1. Acc. Rec. | Prec. F1.
95 || 66.55% | 0.3% | 33.33% | 0.6% 81.32% | 56.70% | 81.67% | 66.93% || 63.36% | 14.37% | 37.18% | 20.70%
90 || 66.59% | 25.68% | 49.78% | 33.88% || 71.73% | 66.15% | 56.48% | 60.94% || 56.47% | 42.27% | 40.45% | 41.34%
85| 61.2% 2.6% 12.4% 4.4% 72.57% | 50.59% | 60.61% | 55.15% || 66.33% | 40.50% | 49.39% | 44.51%
80 || 72.76% 26% 77.16% | 38.89% | 73.41% | 34.97% | 70.37% | 46.72% || 60.34% | 30.72% | 39.75% | 34.65%

and the next destination of a specific source is random. This level of randomness is not found in
real traffic making flow correlation in real traffic relatively easy. (b) In synthetic traffic all 64 nodes
talk with each other making higher buffering delays eventually making flow correlation harder.
However, buffering delays have a minor impact compared to randomness. The second technique
uses dataset of a single p value and single benchmark pair. Table 10 summarizes the results for the
second technique when p = 85 across five benchmark pairs. All benchmarks display strong metrics,
though accuracy and recall slightly decrease in the 3rd and 4th rows. Both benchmark pairs have
barnes benchmark, which has lowest bytes per instruction in all benchmarks [45]. This results in
sparse inter-flit array, eventually making it relatively harder to do flow correlation.

Misclassifications can have significant implications, and it is important to consider them from
the perspective of an attacker. Misclassifications can be divided into two types: false positives and
false negatives. False positives occur when uncorrelated traffic is incorrectly identified as correlated.
In this scenario, an adversary would wastefully allocate resources to act upon these false leads to
launch further attacks, ultimately yielding no actual threat. While pursuing false leads might seem
inefficient, adversaries usually have sufficient resources and can inflict significant damage when
they correctly identify correlated nodes. This potential for harm outweighs the minor setbacks
caused by occasional false positives. On the other hand, false negatives represent a critical error
from the attackers standpoint. This type of error occurs when actual correlated communicating
pair go undetected. Missing such opportunities can be detrimental to the adversary’s objectives,
particularly if the goal is to cause maximum disruption.

20

Table 12. Performance metrics of ML-based attack on proposed lightweight anonymous routing for different
traffic distributions when trained and tested with non-obfuscated traffic

Chaffing Delay Chaffing + Delay

P Acc. Rec. | Prec. F1. Acc. Rec. | Prec. F1. Acc. Rec. | Prec. F1.
95 || 76.64% | 33.60% | 84.67% | 48.11% || 94.22% | 87.31% | 94.99% | 90.99% || 73.80% | 25.49% | 80.70% | 38.75%
90 || 79.45% | 43.71% | 87.39% | 58.28% || 93.58% | 93.42% | 87.66% | 90.45% || 77.95% | 46.9% | 78.14% | 58.69%
85 || 78.75% | 38.93% | 93.16% | 54.92% || 90.65% | 86.83% | 84.99% | 85.90% || 77.06% | 48.85% | 74.65% | 59.05%
80 || 79.75% | 74.41% | 67.58% | 70.83% || 87.70% | 80.32% | 82.08% | 81.19% || 77.56% | 74.41% | 64.13% | 68.89%

Table 13. Performance metrics of ML-based attack on proposed lightweight anonymous routing different for
noise levels on real benchmarks.

p | Accuracy | Recall | Precision | F1 Score
95 89.93% 76.67% 82.44% 79.45%
90 88.78% 77.08% 78.30% 77.69%
85 87.63% 62.04% 84.34% 71.49%
80 85.89% 76.85% 70.23% 73.39%

Table 14. Performance metrics of ML-based attack on proposed lightweight anonymous routing for real
benchmarks.

benchmark | Accuracy | Recall | Precision | F1 Score
{ftt, fmm} 87.64% 65.91% 80.24% 72.37%
{fmm, lu} 90.67% 83.03% 80.20% 81.59%
{lu, barnes} 84.98% | 57.75% 76.19% 65.70%
{barnes, radix} | 84.24% 40.35% 97.59% 57.10%
{radix, fft} 82.60% | 37.67% | 82.66% | 51.79%

5.7 Robustness of the Proposed Countermeasure

We evaluate the robustness of our lightweight anonymous routing in two ways. First, we assess our
countermeasure (Section 4) against the ML-based attack (Section 3) on synthetic and real traffic.
Second, we examine the overall effectiveness of our attack in breaking anonymity.

We evaluate our countermeasure against ML-based attacks in three configurations for synthetic
traffic: (1) using chaffing, (2) using a delay, and (3) using both chaffing and delay to obfuscate
traffic. For each of the three configurations, we evaluate the ML-based attack on two scenarios: (1)
train with non-obfuscated traffic and test with obfuscated traffic (Table 11), and (2) train and test
with obfuscated traffic (Table 12). In all three configurations, the attack on the first scenario has
performed poorly (the proposed countermeasure defends very well). This is expected because the
attacking DNN has not seen any obfuscated data in the training phase. If we focus on the scenario
of using a delay to obfuscate traffic (Table 12), we can see a significant reduction in all the metrics.
Large drops in recall when using chaffing as the obfuscation technique validate that the proposed
countermeasure produces a significant negative impact on attackers’ end goals. Adding random
delay reduces accuracy and recall by about 3% compared to non-obfuscated traffic in all the traffic
distributions. Whereas, combining chaffing with delay reduces accuracy and recall by about 3% as
compared to chaffing alone. In other words, combining two obfuscation techniques did not seem
to have any synergistic effect. We recommend chaffing as a good obfuscation configuration since
adding delay has only a small advantage despite its overhead. Note that the poor performance
of added random delay as a countermeasure validates the fact that our proposed attack is robust
against inherent random network delays in the SoC.

When evaluating the performance of countermeasures using benchmark applications, we consider
only chaffing to obfuscate traffic. Furthermore, we only train and test with obfuscated traffic which

21

guarantees to give a strong evaluation of the countermeasure. As discussed in section 5.6 we evaluate
the countermeasure using two techniques, (1) merged datasets across benchmarks (Table 13) and
(2) datasets per benchmark when p value is fixed (Table 14). When we focus on Table 13, we see an
overall reduction of metric values compared to the attack without countermeasure. Even though
the accuracy reduction is around 10%, the countermeasure has reduced recall value drastically. This
will negatively affect the attacker due to missing a chance to launch an attack due to higher fn.
When we compare the performance of the countermeasure on real traffic against synthetic traffic
(Table 12), the countermeasure on synthetic traffic has performed relatively better. This is due to
the same two reasons mentioned in section 5.6 briefly, the randomness of synthetic traffic and
increased buffer delay because every node communicates.

We evaluate the anonymity of proposed lightweight anonymous routing in three attacking
scenarios. The first scenario is when one of the intermediate routers in the outbound tunnel is
malicious. The malicious router only knows the identity of the preceding and succeeding router, so
the anonymity of the flits traveling through the tunnel is secured. The second scenario is when
the tunnel endpoint is malicious. The router will have the actual destination of the packet but not
the source information; therefore by having a single packet, the malicious router cannot break
the anonymity. This scenario is also considered secure in the traditional onion routing threat
model [17]. Complex attacks in malicious routers need a considerable number of packets/flits to be
collected. It is hard due to two following reasons: (1) Our proposed solution changes the outbound
tunnel of a particular source frequently. (2) Since the source and destination have two independent
outbound tunnels, it is infeasible to collect and map request/reply packets. The final scenario is
when an intermediate router in a normal routing path is malicious. This scenario arises when flits
use normal routing after it comes out of the outbound tunnel. Similar to the previous scenario, the
packet only knows about the true destination, and anonymity is not broken using a single packet.
In other words, outbound tunnels change frequently, and the source and destination have different
tunnels making it hard to launch complex attacks to break anonymity by collecting packets.

The robustness of our approach can be evaluated in terms of deadlock handling. We have
implemented our model using Garnet 2.0, where the XY routing mechanism is used to guarantee
deadlock-free communication. When we focus on our countermeasure, the first step of tunnel
creation (Tunnel Initialization) uses the existing XY routing protocol to broadcast TI packets. The
path of the TI packet determines the tunnel shape. Since a TI packet cannot take a Y to X turn, any
tunnel created on XY routing inherently uses only XY turns inside the tunnel. Hence, in the data
transfer phase, all the communication inside and outside the outbound tunnel will only take X to Y
turns, ensuring deadlock-free communication.

5.8 Overhead of the Proposed Countermeasure

Figure 8a shows the average packet latency for our proposed lightweight countermeasure over
ARNOoC [10] and SAR [31, 35] in the data transmission phase. Obfuscating with chaff flit, which
is the recommended obfuscation technique from Section 5.7, has only a 13% and 11% increase in
performance overhead compared to ARNoC and [35], respectively. Our approach reduces tunnel
creation overhead by 35.53% compared to ARNoC, as shown in Figure 8b, due to our strategy of
creating shorter, outbound-only tunnels from the source to the random router (tunnel endpoint),
unlike ARNoC’s longer source-to-destination tunnel for outbound and inbound traffic. SAR does
not have a tunnel creation phase. A key aspect of our approach is that tunnel creation occurs in the
background, ensuring it does not directly impact data transfer performance. Overall, our approach
is lightweight compared to ARNoC and has negligible performance overhead against [35] while
delivering both packet-level and flow-level anonymity.

22

Bl ARNoC M SAR Chaffing M Delay

B Our Approch [l ARNoC
W Chaffing + Delay

A‘o T
» n
o o
< S 400
3130 1 3
a @ 300 ~
2 g
820 + el
3 S200
e 3
£ 4
g1 £ 100
a w

0 - 0 -

(a) Packet latency (b) Execution time

Fig. 8. Comparison of proposed countermeasure versus ARNoC and SAR: (a) average packet latency of data
transfer, and (b) average execution time for tunnel creation (SAR does not have tunnel creation phase).

Table 15. Comparison of area and energy overhead between ARNoC and proposed countermeasure in NoC.

ARNoC | Our Approach | Overhead
Area(um?) | 2914300 2957429 +1.47%
Energy(m]) | 54.04 55.45 +2.6%

In addition to low-performance overhead, our lightweight anonymous routing has the inherent
advantage of utilizing any adaptive routing mechanisms supported by NoC architectures (endpoint
of output tunnel to the destination), while ARNoC cannot accommodate adaptive routing proto-
cols because of having a pre-built tunnel from the source to destination. Similarly, SAR cannot
accommodate adaptive routing due to its anonymous routing solution tightly bound to XY, YX,
and XYX routing patterns. Table 15 compares the area and energy overhead of our lightweight
countermeasure against ARNoC in 8X8 mesh topology. In the implementation, our approach uses
only the chaffing obfuscation. The energy consumption was calculated by averaging the energy
consumption of running the FFT benchmark across all possible mappings of the processing node
and memory controller in mesh NoC-based SoC as discussed in Section 5.1.2. We observe a 1.47%
increase in area and a 2.6% increase in energy. The area and energy overhead are negligible consid-
ering the performance improvement and additional security provided by our proposed anonymous
routing compared to the state-of-the-art anonymous routing ARNoC.

6 Conclusion

Network-on-Chip (NoC) is a widely used solution for on-chip communication between Intellectual
Property (IP) cores in System-on-Chip (SoC) architectures. Anonymity is a critical requirement for
designing secure and trustworthy NoCs. In this paper, we made two important contributions. We
proposed a machine learning-based attack that uses traffic correlation to break the state-of-the-art
anonymous routing for NoC architectures. We developed a lightweight and robust anonymous
routing protocol to defend against ML-based attacks. Unlike existing anonymous routing protocols
that only offer anonymity at the packet level, our proposed protocol enhances security by providing
anonymity at both the packet level and the flow level. Extensive evaluation using real as well as
synthetic traffic demonstrated that our ML-based attack can break anonymity with high accuracy
(up to 99%) for diverse traffic patterns. The results also reveal that our lightweight anonymous
routing protocol that uses chaffing as traffic obfuscation is robust against ML-based flow correlation
attacks with minor performance and hardware overhead.

Acknowledgments

This work was partially supported by National Science Foundation (NSF) grant SaTC-1936040.

23

References

[1] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. 2009. GARNET: A detailed on-chip network model
inside a full-system simulator. ISPASS (2009).

[2] M Meraj Ahmed, Abhijitt Dhavlle, Naseef Mansoor, Sai Manoj Pudukotai Dinakarrao, Kanad Basu, and Amlan Ganguly.
2021. What Can a Remote Access Hardware Trojan do to a Network-on-Chip?. In 2021 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 1-5.

[3] M Meraj Ahmed, Abhijitt Dhavlle, Naseef Mansoor, Purab Sutradhar, Sai Manoj Pudukotai Dinakarrao, Kanad Basu,
and Amlan Ganguly. 2020. Defense against on-chip trojans enabling traffic analysis attacks. In 2020 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE, 1-6.

[4] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2014. Fort-NoCs: Mitigating the threat of a
compromised NoC. In Proceedings of the 51st Annual Design Automation Conference. 1-6.

[5] Christian Bienia, Sanjeev Kumar, and Kai Li. 2008. Parsec vs. splash-2: A quantitative comparison of two multithreaded
benchmark suites on chip-multiprocessors. In 2008 IEEE International Symposium on Workload Characterization. IEEE,
47-56.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R Hower, Tushar Krishna, and Somayeh Sardashti. 2011. The gem5 simulator. SSIGARCH Computer Architecture
News (2011).

[7] Travis Boraten and Avinash Karanth Kodi. 2016. Mitigation of denial of service attack with hardware Trojans in NoC
architectures. In Parallel and Distributed Processing Symposium, 2016 IEEE International. IEEE, 1091-1100.

[8] Travis Boraten and Avinash Karanth Kodi. 2016. Packet security with path sensitization for nocs. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1136-1139.

[9] Travis H Boraten and Avinash K Kodi. 2018. Securing NoCs against timing attacks with non-interference based

adaptive routing. In 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). IEEE, 1-8.

Subodha Charles, Megan Logan, and Prabhat Mishra. 2020. Lightweight anonymous routing in NoC based SoCs. In

2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 334-337.

[11] Subodha Charles and Prabhat Mishra. 2020. Lightweight and trust-aware routing in NoC-based SoCs. In 2020 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI). 160-167.

Subodha Charles and Prabhat Mishra. 2020. Securing network-on-chip using incremental cryptography. In 2020 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 168-175.

Subodha Charles and Prabhat Mishra. 2021. A survey of network-on-chip security attacks and countermeasures. ACM

Computing Surveys (CSUR) 54, 5 (2021), 1-36.

Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint Archive (2016).

Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and Mengjia Yan. 2022. Don’t Mesh

Around:{Side-Channel} Attacks and Mitigations on Mesh Interconnects. In 31st USENIX Security Symposium (USENIX

Security 22). 2857-2874.

Abhijitt Dhavlle, M Meraj Ahmed, Naseef Mansoor, Kanad Basu, Amlan Ganguly, and Sai Manoj PD. 2023. Defense

against On-Chip Trojans Enabling Traffic Analysis Attacks based on Machine Learning and Data Augmentation. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023).

[17] Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. 2004. Tor: The second-generation onion router. Technical
Report. Naval Research Lab Washington DC.

[18] Amlan Ganguly, Paul Wettin, Kevin Chang, and Partha Pande. 2011. Complex network inspired fault-tolerant NoC

architectures with wireless links. In Proceedings of the fifth ACM/IEEE International Symposium on Networks-on-Chip.

169-176.

Shengnan Guo, Youfang Lin, Shijie Li, Zhaoming Chen, and Huaiyu Wan. 2019. Deep spatial-temporal 3D convolutional

neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems 20, 10 (2019),

3913-3926.

[20] Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function parameters on the speed of backpropagation
learning. In From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks
Malaga-Torremolinos, Spain, June 7-9, 1995 Proceedings 3. Springer, 195-201.

[21] Yuanwen Huang, Prabhat Mishra, and Farimah Farahmandi. 2019. System-on-Chip Security: Validation and Verification.
Springer Nature.

[22] Mubashir Hussain, Amin Malekpour, Hui Guo, and Sri Parameswaran. 2018. EETD: An Energy Efficient Design for

Runtime Hardware Trojan Detection in Untrusted Network-on-Chip. In 2018 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI). IEEE, 345-350.

Intel. 2024. 5th Gen Intel® Xeon® Processors. https://www.intel.com/content/www/us/en/products/docs/processors/

xeon/5th-gen-xeon-product-brief.html. [Online].

(10

[t

(12

—

(13

[t

[14
[15

—_

[16

—

(19

—

[23

—

24

[24] Rajesh JS, Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2015. Runtime detection of a bandwidth
denial attack from a rogue network-on-chip. In Proceedings of the 9th International Symposium on Networks-on-Chip.
1-8.

[25] Manoj Kumar JYV, Ayas Kanta Swain, Sudeendra Kumar, Sauvagya Ranjan Sahoo, and Kamalakanta Mahapatra. 2018.
Run time mitigation of performance degradation hardware trojan attacks in network on chip. In 2018 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 738-743.

[26] Brian Lebiednik, Sergi Abadal, Hyoukjun Kwon, and Tushar Krishna. 2018. Spoofing prevention via rf power profiling
in wireless network-on-chip. In Proceedings of the 3rd International Workshop on Advanced Interconnect Solutions and
Technologies for Emerging Computing Systems. 1-4.

[27] R Manju, Abhijit Das, John Jose, and Prabhat Mishra. 2020. SECTAR: secure NoC using Trojan aware routing. In
IEEE/ACM International Symposium on Networks-on-Chip (NOCS).

[28] Prabhat Mishra, Swarup Bhunia, and Mark Tehranipoor. 2017. Hardware IP security and Trust. Springer.

[29] Prabhat Mishra and Subodha Charles. 2021. Network-on-Chip Security and Privacy. Springer Nature.

[30] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. Deepcorr: Strong flow correlation attacks on Tor using
deep learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1962-1976.

[31] Ahmad Patooghy, Mahdi Hasanzadeh, Amin Sarihi, Mostafa Abdelrehim, and Abdel-Hameed A Badawy. 2023. Securing
Network-on-chips Against Fault-injection and Crypto-analysis Attacks via Stochastic Anonymous Routing. ACM
Journal on Emerging Technologies in Computing Systems 19, 3 (2023), 1-21.

[32] Venkata Yaswanth Raparti and Sudeep Pasricha. 2019. Lightweight mitigation of hardware Trojan attacks in NoC-based
manycore computing. In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

[33] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, and Johanna Sepulveda. 2016. Gossip noc—avoiding timing side-
channel attacks through traffic management. In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
601-606.

[34] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016. Splash-3: A properly synchronized
benchmark suite for contemporary research. In 2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 101-111.

[35] Amin Sarihi, Ahmad Patooghy, Mahdi Hasanzadeh, Mostafa Abdelrehim, and Abdel-Hameed A Badawy. 2021. Securing
network-on-chips via novel anonymous routing. In Proceedings of the 15th IEEE/ACM International Symposium on
Networks-on-Chip. 29-34.

[36] Jurgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks 61 (2015), 85-117.

[37] Johanna Septlveda, Andreas Zankl, Daniel Florez, and Georg Sigl. 2017. Towards protected MPSoC communication
for information protection against a malicious NoC. Procedia computer science 108 (2017), 1103-1112.

[38] Mitali Sinha, Setu Gupta, Sidhartha Sankar Rout, and Sujay Deb. 2021. Sniffer: A machine learning approach for DoS
attack localization in NoC-based SoCs. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11, 2
(2021), 278-291.

[39] Chamika Sudusinghe, Subodha Charles, and Prabhat Mishra. 2021. Denial-of-service attack detection using machine
learning in network-on-chip architectures. In Proceedings of the 15th IEEE/ACM International Symposium on Networks-
on-Chip. 35-40.

[40] Ke Wang, Hao Zheng, and Ahmed Louri. 2020. Tsa-noc: Learning-based threat detection and mitigation for secure
network-on-chip architecture. IEEE Micro 40, 5 (2020), 56—63.

[41] Hansika Weerasena, Subodha Charles, and Prabhat Mishra. 2021. Lightweight Encryption using Chaffing and Win-
nowing with All-or-Nothing Transform for Network-on-Chip Architectures. In 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 170-180.

[42] Hansika Weerasena and Prabhat Mishra. 2023. Revealing CNN Architectures via Side-Channel Analysis in Dataflow-
based Inference Accelerators. arXiv preprint arXiv:2311.00579 (2023).

[43] Hansika Weerasena and Prabhat Mishra. 2024. Lightweight Multicast Authentication in NoC-based SoCs. In 2024 25th
International Symposium on Quality Electronic Design (ISQED). IEEE, 1-8.

[44] Hansika Weerasena and Prabhat Mishra. 2024. Security of Electrical, Optical, and Wireless On-chip Interconnects: A
Survey. ACM Transactions on Design Automation of Electronic Systems 29, 2 (2024), 1-41.

[45] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-2
programs: Characterization and methodological considerations. ACM SIGARCH computer architecture news 23, 2 (1995),
24-36.

[46] Qiaoyan Yu and Jonathan Frey. 2013. Exploiting error control approaches for hardware trojans on network-on-chip
links. In International symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFIS). 266-271.

[47] Bassam Zantout and Ramzi Haraty. 2011. I2P data communication system. In Proceedings of ICN. Citeseer, 401-409.

[48] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. 2017. Convolutional neural networks
for time series classification. Journal of Systems Engineering and Electronics 28, 1 (2017), 162-169.

25

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Network-on-Chip (NoC) Traffic
	2.2 Attacks on Anonymity and Anonymous Routing
	2.3 Related Work
	2.4 Flow Correlation Challenges

	3 ML-based Attack on Anonymous Routing
	3.1 Threat Model
	3.2 Collecting Data for Training
	3.3 DNN Architecture
	3.4 Training the DNN Model
	3.5 Predicting Correlation

	4 Defending against ML-based Attacks
	4.1 Outbound Tunnel Creation
	4.2 Data Transfer
	4.3 Traffic Obfuscation

	5 Experimental Evaluation
	5.1 Data Collection
	5.2 Hyperparameter Tuning
	5.3 Training and Testing
	5.4 ML-based Attack on Synthetic Traffic
	5.5 Stability of ML-based Attack
	5.6 ML-based Attack on Real Benchmarks
	5.7 Robustness of the Proposed Countermeasure
	5.8 Overhead of the Proposed Countermeasure

	6 Conclusion
	References

