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Network-on-Chip (NoC) is widely used to facilitate communication between components in sophisticated

System-on-Chip (SoC) designs. Security of the on-chip communication is crucial because exploiting any

vulnerability in shared NoC would be a goldmine for an attacker that puts the entire computing infrastructure

at risk. We investigate the security strength of existing anonymous routing protocols in NoC architectures,

making two pivotal contributions. Firstly, we develop and perform a machine learning (ML)-based �ow

correlation attack on existing anonymous routing techniques in Network-on-Chip (NoC) systems, reveal-

ing that they provide only packet-level anonymity. Secondly, we propose a novel, lightweight anonymous

routing protocol featuring outbound tra�c tunneling and tra�c obfuscation. This protocol is designed to

provide robust defense against ML-based �ow correlation attacks, ensuring both packet-level and �ow-level

anonymity. Experimental evaluation using both real and synthetic tra�c demonstrates that our proposed

attack successfully deanonymizes state-of-the-art anonymous routing in NoC architectures with high accuracy

(up to 99%) for diverse tra�c patterns. It also reveals that our lightweight anonymous routing protocol can

defend against ML-based attacks with minor hardware and performance overhead.

CCS Concepts: • Networks→ Network on chip; Security protocols; • Computing methodologies→

Neural networks; • Security and privacy→ Hardware attacks and countermeasures.

Additional Key Words and Phrases: System-on-chips, Network-on-chip Security, On-Chip Communication

Security, Anonymity, Deanonymization, Flow Correlation, Machine Learning, Anonymous Routing

1 Introduction

Advanced manufacturing technology allows the integration of heterogeneous Intellectual Property
(IP) cores on a single System-on-Chip (SoC). For example, Intel’s Xeon® Scalable Processor [23]
supports up to 64 cores. Traditional bus architectures fail to scale up with the communication
requirements of the increasing number of IP cores. Network-on-Chip (NoC) is the preferred
communication fabric to meet the high throughput and scalability requirements between these
IP cores. Due to time to market constraints and cost-e�ectiveness, SoC manufacturers tend to
use third-party vendors and services from the global supply chain [29]. Typically only a few IP
cores are designed in-house, while others are reusable IPs from third-party vendors. For example,
FlexNoc interconnect is used by four out of the top �ve fabless companies to facilitate their on-chip
communication [24]. A long and potentially untrusted supply chain can lead to the introduction of
malicious implants through various avenues, such as untrusted CAD tools, rogue designers, or at
the foundry. Furthermore, these sophisticated SoC designs make it harder to do complete security
veri�cation [28]. While designing energy-e�cient NoCs is a primary goal today, securing them is
equally crucial as exploiting an NoC could allow attackers to access communications between IP
cores and compromise the entire computing infrastructure’s security.

Figure 1 shows a 4 × 4 mesh NoC where mesh topology is the most commonly used topology in
NoC. A single tile consists of an IP core, Network Interface (NI), and Router. Security issues in a
typical NoC can be classi�ed based on various security goals (con�dentiality, integrity, anonymity,
authenticity, availability, and freshness) compromised by an attacker [44]. There are e�cient
detection and mitigation of security vulnerabilities [4, 10, 12, 18, 21, 37] for securing NoC-based
SoCs. In a typical NoC, to enable fast packet forwarding, the header information is kept as plaintext
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Fig. 1. In a 4x4 mesh NoC, each IP connects to NoC via a network interface and router. A malicious router

can intercept packets between �%ď and �%Ā , forwarding them to a remote adversary for sophisticated a�acks.

while the packet data is encrypted. An adversary can implant a hardware Trojan in a router ('8 in
Figure 1), which can collect packets from the same source-destination pair and send them to a remote
adversary that can launch tra�c and metadata analysis attacks [44]. For example, imagine a source
node (�%ď ) is a cryptographic accelerator that needs to communicate with a memory controller,
destination node (�%Ā ), to facilitate memory requests for the cryptographic operation. An adversary
can use a malicious router in the middle to collect packets between �%ď and �%Ā over a time interval
and recover the key by launching a ciphertext-only cryptanalysis attack [10, 31, 35]. Similarly, a
collection of packets belonging to the same communication session can also be analyzed to discover
what program is running at �%ď or reverse engineer the architectural design using a simple hardware
Trojan and powerful remote adversary [2, 3, 16]. Ensuring anonymity in NoC communication can
mitigate metadata and tra�c analysis attacks since anonymity ensures that there is no unauthorized
disclosure of information about communicating parties. Recent literature features two anonymous
routing approaches for securing NoC tra�c: ARNoC [10] and a stochastic anonymous routing (SAR)
protocol [31, 35]. Although these anonymous routing solutions provide packet-level anonymity,
we show that they fail to provide �ow-level anonymity by breaking anonymity via �ow correlation
attacks. After breaking anonymity, the adversary can launch various tra�c and metadata analysis
attacks on the deanonymized communication session. Speci�cally, this paper evaluates the security
strength of anonymous routing protocols in NoCs and makes the following major contributions.

• We propose an attack on existing anonymous routing by correlating NoC tra�c �ows via
machine learning (ML).
• We show that ourML-based attack can break the anonymity of the state-of-the-art anonymous
routing (ARNoC [10] and SAR [31, 35]) and validates the need for �ow-level anonymity.
• The robustness of the attack is assessed across diverse con�gurations and tra�c patterns.
• We propose a novel anonymous routing protocol with outbound tra�c tunneling and obfus-
cation as a lightweight countermeasure that ensures packet-level and �ow-level anonymity.
• Experimental results demonstrate that our countermeasure can defend against �ow correla-
tion attacks with minor hardware and performance overhead.

The remainder of this paper is organized as follows: Section 2 provides relevant background and
surveys related e�orts. Section 3 describes our ML-based attack on anonymous routing. Section 4
proposes a lightweight protocol to defend against such attacks. Section 5 presents experimental
results and evaluation. Finally, the paper is concluded in Section 6.

2 Background and Related Work

This section provides the relevant background and surveys the related e�orts to highlight the
novelty of this work.
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2.1 Network-on-Chip (NoC) Tra�ic

NoC enables communication by routing packets through a series of nodes. There are two types of
packets that are injected into the network: control and data packets. Consider an example when a
processor (�%ď ) wants to load data from a particular memory controller (�%Ā ), it will issue a control
packet requesting the data from memory. The packet travels through routers following a prede�ned
routing protocol. Upon reaching the destination IP, it responds with a data packet containing the
requested data. In general, header information is kept as plaintext and the payload data is encrypted.
At each source NI, the packets are divided into �xed-size �its, which is the smallest unit used for
�ow control. There is a head �it followed by multiple body �its and tail �its. Routing in NoC can be
either deterministic or adaptive; both approaches use header information to make routing decisions
at each router. XY routing is the most commonly used routing in mesh-based traditional NoCs,
which basically takes all the X links �rst, followed by Y links. NoC uses links to connect di�erent
components of the interconnects. Links can be either internal or boundary. A boundary link is a
link that connects a router to a network interface, while internal links connect two routers. Our
ML-based attack on anonymous routing makes use of the �ow of �its (inter-�it delays), whereas
our countermeasure manipulates routing decisions to create virtual tunnels.

2.2 A�acks on Anonymity and Anonymous Routing

In the context of communication, anonymity refers to the quality of being unidenti�able within a
set of subjects. The primary goal of anonymity is to protect the privacy of communicating parties.
Tra�c andmetadata analysis are two types of attacks that compromise the lack of anonymity in NoC
communication [44]. A tra�c analysis attack collects packets in a particular communication session
between parties and analyzes them to deduce various aspects, such as what type of application is
running in an SoC. Similarly, metadata analysis attacks use ancillary data of communications, such
as sender and receiver information, time stamps, and packet sizes, to compromise the privacy of
communication parties. Anonymous routing hides the identity of the communicating parties from
anyone listening in the middle and hinders the e�ectiveness of these attacks. In this context, we
consider two types of anonymity: packet-level and �ow-level anonymity. Packet-level anonymity
focuses on concealing individual data packets’ origin, destination, and content, while �ow-level
anonymity aims to obscure the relationship between packets in a communication session.

The Tor network [17], based on onion routing, and the I2P network [47], based on garlic routing,
are key examples of anonymous routing in traditional networks. Onion routing creates tunnels
through multiple hops, encrypting the message in layers equal to the number of hops. Each hop
peels o� a layer to gradually reveal the original message. Garlic routing extends onion routing
by bundling and encrypting multiple messages together, similar to garlic cloves. Many attacks
target Tor network anonymity, such as the �ow correlation attack [30], but they cannot be directly
applied to NoC for three key reasons. (1) Tra�c characteristics di�er signi�cantly between NoC and
traditional network due to varying use cases. NoC is used for routing simple on-chip communication
tra�c, such as cache coherence, memory accesses, and inter-processor communications. In contrast,
traditional networks handle complex use cases, such as enterprise data services, cloud computing
tasks, and multimedia streaming. (2) The existing attack relies heavily on packet size as a feature,
whereas NoC �its are the fundamental unit of �ow control, and they are of �xed size. (3) In NoCs, all
nodes function as onion routers, unlike traditional networks which mix normal and onion routers.

2.3 Related Work

The security of on-chip communication has been extensively studied, encompassing a wide range
of attacks and countermeasures, including eavesdropping attacks [4, 12, 32, 37, 41], spoo�ng
attacks [4, 26, 43], denial of service (DoS) attacks [8, 24, 27, 38, 39], side-channel attacks [9, 15, 33, 42],
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and packet tampering attacks [10, 37, 40]. Anonymity is crucial for secure on-chip communication,
but solutions in the traditional networks are too expensive for resource-constrained NoCs. An
anonymous routing protocol (SAR) that needs NoC packets to be identi�ed as secure and non-secure
packets is presented in [31, 35]. This approach stochastically selects a routing scenario for each
packet out of three scenarios available to confuse adversaries. Charles et al. [10] presented an
anonymous routing solution (ARNoC) for NoC based on onion routing [17] to ensure the anonymity
of a communication session. ARNoC creates an on-demand anonymous tunnel from the source to
the destination where intermediate nodes know only about the preceding and succeeding nodes.
Our proposed ML-based attack can break the anonymity of both ARNoC and SAR.

A threat model based on the insertion of Hardware Trojans (HTs) in network links is addressed
in [7, 46]. Yu and Frey [46] show that the Trojans can be inserted in boundary links and center
links that can do bit �ips in the header packet that can lead to deadlock, livelock, and packet
loss. Boraten and Kodi [7] discuss the DoS attacks that can be launched by malicious links. This
speci�c Trojan performs packet injection faults at the links, triggering re-transmissions from the
error-correcting mechanism. Ahmed et al. [2] introduce the concept of Remote Access Hardware
Trojan (RAHT), where a simple HT in NoC can leak sensitive information to an external adversary
who can launch complex tra�c analysis attacks. These RAHTs are hard to detect due to negligible
area, power, and timing footprint. Recent e�orts [3, 16] utilize a similar threat model that can
reverse engineer applications through tra�c analysis attacks. A threat model where an HT in
NoC collaborates with a colluding application is used to launch multitudes of attacks in the NoC
literature [8, 10, 22, 25, 32, 37]. Our proposed attack assumes malicious boundary links as the points
of data collection that gets remote access to external adversary through a colluding application.

ML-based techniques have been used to detect and mitigate attacks on NoCs in [38–40]. Sudus-
inghe et al. [39] used several ML techniques to detect DoS attacks on NoC tra�c. Reinforcement
learning is used by [40] to detect HTs in NoC at run time. Sinha et al. [38] use an ML-based
approach to localize �ooding-based DoS attacks. None of these approaches consider attacks or
countermeasures related to anonymous routing in NoC architectures. To the best of our knowledge,
our study is the �rst attempt to deanonymize exiting anonymous routing protocols via ML-based

�ow correlation attack and propose a lightweight countermeasure with packet-level and �ow-level

anonymity for NoC-based SoCs.

2.4 Flow Correlation Challenges

NoC tra�c �ow can be considered a time series data array with values of increasing timestamps
in order. For example, in a communication session, we can consider an array of time di�erences
between each packet coming into a node as a �ow. Flow correlation is when we take two such pairs
and compare if they are correlated in some manner. For example, in a network link, the �ow of
inter-�it delay entering and going out of the link are correlated. Though correlating outgoing and
incoming tra�c on a link seems straightforward, correlating tra�c between two nodes in a large
network with multiple hops in NoC is extremely di�cult for the following reasons:

• Queuing delay at each hop is unpredictable and can interfere with tra�c �ow characteristics.
• A pair of correlated nodes may communicate with other nodes, which is considered as noise.
• The communication path of the correlated pair may be shared by other nodes in SoC, which
will interfere with the tra�c �ow characteristics between correlated pairs.

3 ML-based A�ack on Anonymous Routing

We �rst outline the threat model used in the proposed attack. Next, we describe our data collection,
training, and application of the ML model to accomplish the attack.
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3.1 Threat Model

The threat model considers an NoC that uses encrypted tra�c and anonymous routing, either
ARNoC [10] or SAR [31, 35]. Thus, we consider tra�c to have packet-level anonymity; attackers
cannot identify the sender/receiver due to anonymous routing. Furthermore, they cannot recover
the payload due to encryption. The threat model consists of three major components: (1) a malicious
NoC, (2) a malicious program (collector), and (3) a pre-trained ML model.

Malicious NoC: The malicious NoC has malicious boundary links with Hardware Trojan (HT). The
HT counts the number of cycles between incoming and outgoing �its (inter-�it delay) to and from
an IP. After speci�c intervals, HT gathers all inter-�it delay into an array and sends it to the IP
where the malicious program (collector) is running. HT can be inserted by various adversaries
in the extended supply chain, such as through untrusted CAD tools, rogue engineers, or at the
foundry via reverse engineering, and remain undetected during post-silicon veri�cation [28]. A
similar threat model of inserting HT at NoC links has been discussed in [7, 46]. Note that the area
and power overhead of an HT is negligible in a large MPSoC [3].

Malicious Program: Cloud infrastructures use multi-core SoCs in multi-tenant platforms where they

are virtualized and allocated to various applications from di�erent users. The attacker disguised as
one of the multiple users of this shared virtualized system can easily launch a malicious program
and stay undetected. The collector is such a malicious program; it activates/deactivates HT to keep
it hidden from any run-time HT detection mechanisms. The main functionality of the collector is to
collect inter-�it-delays from HT-infected links and send them to the ML model. This threat model,
where a malicious NoC with an HT collaborates with a colluding application in same SoC ( i.e.
collector), is a well-documented approach in NoC security literature [13, 44].

ML Model: The pre-trained ML model runs in a remote server/cloud controlled by the adversary.
The �ow correlation uses the attacking phase out of two phases (training and attacking) of the ML
model. The training phase is detailed in Section 3.4. The attacking phase classi�es whether two
inter-�it delay arrays are correlated or not. Figure 2 shows a high-level overview of the proposed
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�ow correlation attack from the perspective of the ML model. The training phase is performed
o�ine and is responsible for collecting training data and training of the ML model. The adversary
can use an emulator or simulator mimicking the target system to collect data. The adversary can
generate a large amount of trained data by changing process mapping, benchmarks, and other
tra�c characteristics (as discussed in Section 5.1) to make the model generic. While training the ML
model for detecting correlation can be computationally expensive, it is not a limiting factor since
the training is a one-time activity. Note that the model can be retrained, if needed after speci�c
intervals, to ensure that it remains e�ective and up-to-date throughout its operational lifetime.

Figure 3 shows an example of the attacking phase on ARNoC. In ARNoC, a tunnel exists between
source and destination routers if their associated IPs are in a communication session. ARNoC
forms the tunnel to ensure anonymity by hiding the headers. The HTs in the links are in the
inactive state by default. The collector periodically checks the state of all infected boundary links
and �ags communicating links as suspicious. This is done via monitoring a simple heuristic of
inbound/outbound packet counts between two nodes. The collector will examine these counts and
instruct the HT to start collecting inter-�it delays if the di�erence is within a speci�ed threshold.
Imagine a scenario where an adversary suspects communication between the source (�%ď ) and
destination (�%Ā ); the collector activates HT associated with the boundary links of �%ď and �%Ā . On
activation, HTs start sending periodic inter-�it delay arrays to the collector. More speci�cally, the
Trojan will observe and leak both outbound (���ĥ

ď
) and inbound (���ğ

Ā
) tra�c �ows. Here, ���ĥ

ď

refers to the outbound inter-�it delay arrays from the source IP, and ���ğ
Ā
refers to the inbound

inter-�it delay arrays at the destination IP. Upon receiving inter-�it delay arrays, the collector is
responsible for sending collected data on inter-�it delay to the ML model. The adversary uses the
ML model to pinpoint two speci�c nodes that are communicating and breaks the anonymity.
After breaking anonymity through proposed �ow correlation, an attacker can launch either

metadata or tra�c analysis attacks [2, 3, 11, 16, 35], as discussed in Section 1 and 2. Breaking
anonymity can have signi�cant consequences in scenarios where preserving the anonymity of
data tra�c is critical. For example, in the case of con�dential computing [14], it can leak the host
memory region of an application by breaking anonymity between the computing node and the
memory controller. Furthermore, after breaking anonymity, attackers can use it as a stepping stone
for more advanced attacks, such as targeted denial-of-service attacks.

3.2 Collecting Data for Training

Algorithm 1 outlines the training data collection when running ARNoC or SAR. We collect inbound
and outbound inter-�it delays for all source and destination IPs (line 4). Then, we label each �ow pair
as either ‘1’ or ‘0’ according to the ground truth (line 5). If �%ď and �%Ā of �ow pair {���ĥ

ď
, � ��ğ

Ā
}

are correlated to each other (�%ď and �%Ā communicating in a session), the �ow pair is tagged as
‘1’ and otherwise ‘0’. These tagged �ow pairs are utilized as the training set. Note that only the
�rst ; elements of each �ow of �ow pair ({���ĥ

ď
, � ��ğ

Ā
}) will be used in the training and testing.

We model external tra�c interference on correlated �ows by considering two scenarios: other
nodes communicating with the correlated pair and with each other, re�ecting shared resource
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and resource path. We use a deep neural network (DNN) as the ML model for our proposed �ow
correlation attack. To ensure a generic dataset and su�cient data for DNN training, we conduct
multiple iterations of data collection (Algorithm 1), varying the mapping of correlated pairs to
di�erent NoC nodes each time. Section 5 elaborates on synthetic and real tra�c data collection.

Algorithm 1 Data Collection

1: X, Y← ∅
2: procedure CollectData ()

3: for ∀ (B, 3) ∈ (( , �) do
4: - ← - ∪ { ���ĥĩ , ���

ğ
Ě
}

5: . ← . ∪ 2 : 2 ∈ { 0, 1 }

6: return - , .

3.3 DNN Architecture

We carefully examined various con�gurations and reached out to the �nal DNN architecture shown
in Figure 4. We selected Convolution Neural Networks (CNN) [36] as our model architecture for the
following reasons. First, since multivariate time series have the same 2-dimensional data structures
as images, CNN for analyzing images is suitable for handling multivariate time series [48]. Second,
recently published works using CNN for �ow correlation [19, 30] has shown promising results. Our
�nal architecture has two convolution layers followed by three fully connected layers to achieve
promising performance. The �rst convolution layer (C1) has :1 number of kernels of size (2,F1).
The second convolution layer (C2) has :2 number of kernels of size (2,F2). The main intuition of C1
is to identify and extract the relationship between two tra�c �ows (���ĥ

ď
, ���ğ

Ā
), while we assign

the task of advancing features to C2. In our approach, both C1 and C2 have a stride of (2, 1). A
max-pooling layer immediately follows both convolution layers. Max pooling uses a max operation
to reduce the dimension of features, which also logically reduces over�tting. Finally, the result of
C2 is �attened and fed to a fully connected network with three layers. Additionally, the set (:1,
:2,F1,F2) are considered as hyper-parameters. We provide details on hyper-parameter tuning in
Section 5.2. We use ReLU as the activation function for all convolution and fully connected layers
to avoid the vanishing gradient problem and improve performance. Due to the fact that our task is
a binary classi�cation, we apply a sigmoid function in the last output layer to produce predictions.

3.4 Training the DNN Model

Algorithm 2 outlines the major steps in the training process of the ML model. Speci�c sizes and
parameters used in training are outlined in Section 5. We train the DNN over multiple epochs (line
6) using labeled inter-�it delay distributions as the input. During the training phase, the stochastic
gradient descent (sgd) optimizer minimizes the loss and updates the weights in the DNN (line
10). To achieve this binary classi�cation results from the last fully connected layer pass through a
sigmoid layer [20] (line 8) to produce classi�cation labels.
Formally, the sigmoid layer is a normalized exponential function 5 (G) = 1

1+ě−Į
, which aims at

mapping the given vector to a probability value that lies in [0, 1]. The value of the output of the
last layer is the predicted label ? (~) which can be denoted as:

? (~) =
1

1 + 4−(ĉ (ĩ,Ě ) )

where B and 3 denote the source and destination input distribution respectively, and " denotes
a function map for the entire DNN model. Since it is a binary classi�cation task, for given input
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Algorithm 2ML Model Training

1: - : [G1, ..., G Ġ , ..., GĊ ] where G Ġ = { ���
ĥ
ĩ , ���

ğ
Ě
} Ġ

2: . : [~1, ..., ~ Ġ , ..., ~Ċ ] where ~ Ġ ∈ {0, 1}
3: procedure TrainModel (- , . )
4: �8A2D8C B0<?;4B - 0=3 ;014;B .

5: ">34; "Θ 8=8C80;8I0C8>=

6: for 4?>2ℎ ∈ [1, ..., #>$5 �?>2ℎB] do
7: for G Ġ ∈ - and ~ Ġ ∈ . do

8: >DC Ġ = B86<>83("Θ (G Ġ ) )

9: ;>BB =
Ċ∑
Ġ
cross_entropy(>DC Ġ , ~ Ġ )

10: Θ = sgd(Θ,∇;>BB)

11: Return"Θ

(B, 3) pairs’ labels, their probability distributions are either (1, 0) for ‘true’ (correlated) and (0, 1)
for ‘false’ (uncorrelated). Therefore, we choose binary cross-entropy (line 9) as the loss function as
follows:

;>BB (? (~)) = −
1

#

Ċ∑

ğ=1

~ğ · ;>6(? (~ğ )) + (1 − ~ğ ) · ;>6(1 − ? (~ğ ))

where ~ is the label (1 for correlated pairs and 0 for uncorrelated pairs), and # is the total number of
training samples. The goal of model training is to minimize the loss function by gradient descent for
multiple iterations, where in each step the model parametersΘ are updated byΘ′ = Θ+∇;>BB (? (~)).

3.5 Predicting Correlation

The trained model is used in attacking phase as shown in Algorithm 3. During the attacking phase,
we feed the two inter-�it delay arrays from a suspicious source (() and destination (�) of the
ongoing communication session to the ML model (lines 4-5). The ML model will output 1 if the
source and destination are communicating, and 0 otherwise (lines 5). If ( and � are communicating
and the ML model output is 1, our attack has successfully broken the anonymity.

Algorithm 3 Attack on Anonymous Routing

1: ���ĥ
ď
: outbound inter-�it delay array of S

2: ���ğ
Ā
: inbound inter-�it delay array of D

3: "Θ : pre-trained model
4: procedure Attack ( {���ĥ

ď
, � ��ğ

Ā
},"Θ)

5: ? (~) ← predict({���ĥ
ď
, � ��ğ

Ā
},"Θ)

6: return ? (~)

4 Defending against ML-based A�acks

In this section, we propose a novel lightweight anonymous routing protocol as a countermeasure
against the ML-based attack described in Section 3. Figure 5 shows an overview of our proposed
anonymous routing that consists of two phases: 1) outbound tunnel creation and 2) data transfer
with tra�c obfuscation. We utilize two obfuscation techniques (cha�ng of �its and random delays).

4.1 Outbound Tunnel Creation

An outbound tunnel ($) ğ
ď
) is a route created from the source router (() of the tunnel to an arbitrary

router called tunnel endpoint (�ğ
ď
). Here, 8 indicates the parameter for each tunnel instance. Figure 6
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Fig. 5. Overview of the proposed lightweight anonymous routing to defend against flow correlation a�ack. It

has two phases: tunnel creation and data transfer with tra�ic obfuscation.
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�%Ā communication, cha�ed flit is inserted at #�ď and winnowed at �ğ
ď
('4). �

ğ
ď
adds random delay to the

flit sequence. The packet follows normal routing a�er an outbound tunnel ends.

shows how outbound tunnels,$) ğ
ď
and$) ğ

Ā
, are used when �%ď and �%Ā are injecting packets to the

network. It is important to highlight that these $) ğs are only bound to their source router and are
independent of any communication session. Each tunnel is associated with a timeout bound. After
the timeout, the tunnel that belongs to a particular source ( will cease to exist and a new tunnel
will be created with a di�erent endpoint (�ğ+1

ď
). �ğ

ď
of an $) ğ

ď
is randomly selected from any router

that is ℎģğĤ to ℎģėĮ hops away from the source of the tunnel. We use ℎģğĤ = 3 because a minimum
of three nodes are needed for anonymous routing and increasing it further will negatively a�ect the
performance [17]. ℎģėĮ can be con�gured to balance the performance and the number of endpoints.

Figure 7 zooms into the tunnel creation phase. A summary of notations used in tunnel creation
can be found in Table 1. Tunnel creation is a three-way handshake process. The source broadcasts
a Tunnel Initialization (TI) packet to all the routers and only �ğ

ď
responds back to the source with a

Tunnel Acceptance (TA) packet. Once the source receives an �� from �ğ
ď
, it sends the Tunnel

Con�rmation (TC) packet to �ğ
ď
. After these three steps, each router in the tunnel has two random

Virtual Circuit Identi�ers (VCI) saved in their routing table to de�ne the succeeding and preceding
hops representing the tunnel. For the rest of the section, we refer to �ğ

ď
as just �.

4.1.1 Tunnel Initialization. In the example (Figure. 6), ( sends a TI packet as:

{) � | |$%D ğď | |�=̂Čīćā
($%D ğď | |A ) | |)%D 

ğ
ď } (1)

) � identi�es the packet as a Tunnel Initiation packet.$%D ğ
ď
is the sources’ one-time public key for

the 8Īℎ tunnel and $%A ğ
ď
is the corresponding private key. In other words, an $) ğ

ď
can be uniquely

identi�ed by this key pair. %D ā and %A ā are the global public and private keys of �, respectively.
They will not be changed with each tunnel creation. $%D ğ

ď
and a randomly generated value A is

concatenated and encrypted through public-key encryption using the key %D ā (�=̂Čīćā
). Only �

can decrypt this encryption because only E has the corresponding private key (%A ā ). Finally, the
temporary public key ()%D ğ

ď
) is concatenated at the end of the packet. TI packet is broadcasted

instead of directly routed to avoid anonymity being broken at its birth.
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Fig. 7. Message transfer in a three-way handshake to create an outbound tunnel between router '1 and '4
and final state routing tables of each router representing the outbound tunnel.

Algorithm 4 TI Packet handling at '

1: ?:C :A TI packet
2: procedure HandleTI (?:C )
3: if $%D ğ

ď
in TL table then

4: discard ?:C
5: else

6: store $%D ğ
ď
and )%D ğ

ĦĨě (Ď)

7: if �4̂ČĨćĎ
(?:C [3]) is successful then

8: GenerateTA (�4̂ČĨćĎ
(?:C [3]), ?:C [4])

9: else

10: ?:C [4] ← )%D ğ
Ď

11: forward ?:C

Any Router (') receiving a TI packet will follow Algorithm 4. Tunnel Lookup (TL) table has
unique entries for every TI packet comes to the router. First, it tries to match $%D ğ

ď
with the

existing entries in the TL table. On match, the message will get discarded to avoid any duplication

Table 1. Notations used in tunnel creation.

�=̂ć Encrypts message" using key  
�4̂ć Decrypts message" using key  

$%D ğ
ď

One-time public key used by source (
$%A ğ

ď
Corresponding private key to $%D ğ

ď

%D ā Global public key of �
%A ā Corresponding private key to %D ā

)%D ğ
Ď

Temporary public key of node '
)%A ğ

Ď
Corresponding private key to )%D ğ

Ď

 ď−Ď Symmetric key shared between ( and '
=Ď Random nonce generated by node '
A Random number generated by (

?:C [8] 8Īℎ element of a packet ?:C
?A4 (') Previous router (in upstream direction)
=4GC (') Next router (in downstream direction)

A0=3 (0, 1) Generates random number between 0 and 1

10



Algorithm 5 TA packet generation at �

1: ?0A<1 : parameter resolved to $%D ğ
ď
| |A

2: procedure GenerateTA (8=1, )%D Ď)
3: if ?0A<1 [1] ≠ $%D 

ğ
ď
then

4: discard the ?:C
5: else

6: generate and store =ā and  ď−ā
7: 4=2 ← �=̂ĐČćğ

ĤěĮĪ (ā)
(�=̂ċČīćğ

ď

(A | |=ā | |  ď−ā))

8: return {)�| |4=2}

due to TI packet broadcasting (line 4). Otherwise,$%D ğ
ď
and)%D ğ

ĦĨě (Ď)
are stored in the TL table

(line 6). Next, ' will try to decrypt the message and if it is successful, it should recognize itself as
the intended endpoint and run Algorithm 5 (line 8). If not, ' will replace )%D ğ

ĦĨě (Ď)
with its own

temporary key )%D ğ
Ď
and forward the TI packet to the next hop (=4GC ('))(line 10 and 11). For

example, in �gure 6, after receiving a TI packet from '2, '3 will generate and forward the following
TI packet to '4:

{) � | |$%D ğď | |�=̂Čīćā
($%D ğď | |A ) | |)%D 

ğ
Ď3
} (2)

4.1.2 Tunnel Acceptance. Upon receiving the TI packet, � runs Algorithm 4 �rst and then calls
Algorithm 5 as the endpoint of the tunnel. Algorithm 5 shows the outline of TA packet generation
at any endpoint router (�). First, � validates the integrity of the packet by comparing decrypted
$%D ğ

ď
value and plaintext $%D ğ

ď
value (line 3). If the packet is validated for integrity, Algorithm

5 will execute the following steps. First, it will generate random nonce =ā which will be used as
VCI. Next, it will generate a symmetric key  ď−ā to use between ( and �. Then it will log both =ā
and  ď−ā in the TL table and =ā in the routing table as indexed VCI (line 6). Next, it will perform
encryption of the concatenation of =ā ,  ď−ā and A using the key $%D ğ

ď
which will allow only ( to

decrypt the content (line 7). Finally, the resultant encryption is encrypted again by the)%D ĤěĮĪ (ā )
(line 7). In the �gure 6, �ğ

ď
will generate the following TA packet:

{)�| |�=̂ĐČīćğ

Ď3

(�=̂ċČīćğ

ď

(A | |=ā | | ď−ā))} (3)

When a router ' receives a TA packet, it will execute Algorithm 6. If the router is the source of
the$) ğ , it will execute Algorithm 7 (line 4). Otherwise, it will go through the following steps. First,
it decrypts the packet using the temporary private key ()%A ğ

Ď
) (line 6) and generates a random

nonce and symmetric key (=Ď ,  ď−Ď). This generated =Ď and  ď−Ď are stored in '’s TL table (line

Algorithm 6 TA packet handling at R

1: ?:C : A TA packet
2: procedure HandleTA (?:C )
3: if ' is ( of $) ğ then
4: GenerateTC (?:C )
5: else

6: 32C ← �4̂ĐČĨćğ

Ď

(?:C [2])

7: generate and store =Ď and  ď−Ď
8: 4=2 ← �=̂ċČīćğ

ď

(32C | |=Ď | | ď−Ď)

9: 4=2 ← �=̂ĐČīćğ

ĤěĮĪ (Ď)
(4=2)

10: return {)�| |4=2}

11



Algorithm 7 TC packet generation at S

1: ?:C :A TA packet
2: procedure GenerateTC (?:C )
3: 342 ← �4̂ĐČĨćğ

ď

(?:C [2])

4: for no of hops in OT do

5: 342 ← �4̂ċČĨćğ

ď

(342)

6: 4=2 ← A

7: for R = E to next(S) do
8: 4=2 ← =(') | |�=̂ćď−Ď

(4=2)

9: return {)� | |4=2}

7). The nonce and symmetric key pair is concatenated to the decrypted packet (32C ) (line 7 and 8),
which will be encrypted using source public key ($%D ğ

ď
) to add another layer of security (line

8). Finally, ' will encrypt the content with the public key of the next hop =4GC (') (line 9). In the
example, '2 forwards the following TA packet to '1:

{)�| |�=̂ĐČīćğ

Ď2

(�=̂ċČīćğ

ď

(�=̂ċČīćğ

ď

(�=̂ċČīćğ

ď

(A | |=ā | | ď−ā) | |=Ď3 | | ď−Ď3 ) | |=Ď2 | | ď−Ď2 ))} (4)

4.1.3 Tunnel Confirmation. Algorithm 7 depicts the TC packet generation at the source router ( .
)%A ğ

ď
is used to decrypt the outermost encryption (line 3), then each layer of the inner encryption

is peeled away using the $%A ğ
ď
(loop from line 4 to 5). ( extracts information of all the VCIs and

symmetric keys. A is used to check the authenticity of the packet received (make sure the TA is
a packet from the actual endpoint �). Finally, starting from � to ?A4 (() (reverse order of routers
in tunnel excluding (), A is encrypted by the respective symmetric key and concatenated with
the respective nonce iteratively (loop from line 7 to 8). In the �gure 6, ( generates the TC packet
structured as:

{)� | |=Ď2 | |�=̂ćď−Ď2
(=Ď3 | |�=̂ćď−Ď3

(=ā | |�=̂ćď−ā
(A )))} (5)

)� denotes the packet type. The packet is layered and encrypted using the symmetric keys
distributed in the previous stage. Here, =∗ represents the outgoing VCI at each router from ( to
?A4E (�). For example, =Ď2 de�nes outgoing VCI of ( and =Ď3 de�nes outgoing VCI for '2. After the
TC packet is received by each node, it decrypts the outermost layer and stores the corresponding
outgoing VCI value in the routing table indexed as incoming VCI. For example, when '2 receives
the packet it will decrypt the content using key  ď−Ď2 and store the outgoing VCI as =Ď3 in the
routing table indexed as =Ď2 . Similarly, all the routers in between ( and � will update the routing
table entry corresponding to the tunnel. In the example, '2 will send )� packet to '3 structured as
follows:

{)� | |=Ď3 | |�=̂ćď−Ď3
(=ā | |�=̂ćď−ā

(A ))} (6)

Finally, '3 will send the TC packet to � ('4) structured as:

{)� | | (=ā | |�=̂ćď−ā
(A )} (7)

The packet transfers during the tunnel creation is inherently secure. This is because the tunnel
creation phase ensures the transfer of only publicly available information as plaintext, while all
sensitive data (including VCIs) are encrypted using symmetric or asymmetric methods. The only
way an attacker can break anonymity of a packet is by knowing all the VCIs of the tunnel. This is
not possible since the asymmetric and symmetric cryptography are computationally secure.
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4.2 Data Transfer

A previously created outbound tunnel ($) ğ
ď
) is used to transfer messages anonymously from �%ď to

�%Ā . Before transferring the packet, the source will encrypt the actual destination header using the
key  ď−ā which is the symmetric key shared between the source and endpoint during the tunnel
creation. When we consider the data transfer through tunnel $) ğ

ď
, a Data Transfer (DT) packet is

injected into the tunnel by S structured as:

{�) | |=Ď2 | |�=̂ćď−ā
(�) | |�=̂Ā (")} (8)

Here, DT is the packet type identi�er, =Ď2 is the outgoing VCI, and �=̂Ā (") is the encrypted
payload of the packet. At the router, '2, the outgoing VCI is identi�ed through a simple routing
table lookup on the incoming VCI of the packet. Then '2 replaces the outgoing VCI of the packet
(=Ď2 ) with the next outgoing VCI, which is =Ď3 , and routes the packet to the next hop. Similarly, '3
replaces the outgoing VCI of the packet to =ā . Note that any intermediate node including � does
not know both source and destination of a single packet which ensures anonymity.

4.3 Tra�ic Obfuscation

The main intuition behind the tra�c obfuscation is to add noise to inbound and outbound �ows
(���ĥ

ď
, ���ğ

Ā
), so it will be harder for ML-model to do accurate �ow correlation. Section 4.3.1 and

4.3.2 introduce two tra�c obfuscation techniques.

4.3.1 Obfuscation with Cha�s. We introduce a cha�ng scheme as our �rst obfuscation technique.
Cha� is a dummy �it with no usable data. Speci�cally, we insert cha�/cha�s in outbound tunnel
tra�c at the network interface of the source and �lter out cha�s at the endpoint of the tunnel. The
outbound �ow (���ĥ

ď
) will have inter-�it delay data relevant to both cha�s and legitimate �its but

inbound �ow (���ğ
Ā
) will have inter-�it delay data relevant only to legitimate �its. Algorithm 8

describes the cha�ng process at the NI of the source. Wakeup procedure (Line 1 - 4) is the periodical
function called by every NI in every clock cycle. We introduce a procedure named AddChaff (Line
5 - 23) to obfuscate tra�c through cha�ng.
We insert cha�s in two speci�c scenarios to ensure the obfuscation scheme works with the

majority of tra�c patterns: (i) �rst scenario: insert cha�s in the long gap between �its (line 6 - 13),
and (ii) second scenario: insert cha� �it in middle of closely packed �its (line 14 - 21). When the
outbound link of source NI is idle for more than )ę cycles (Line 6, the �rst scenario is considered.
The intuition behind this method is to hinder the possibility of ML-model using long inter-�it
delays of inbound and outbound �ows in sparse tra�c scenarios. In order to control overhead, we
use a percentage threshold (%ę ) and ensure only %ę of idle gaps between packets get obfuscated
(line 8 - 9). If chosen to be obfuscated, a dummy packet of is created and is enqueued to the output
queue of the NI (line 10 - 13). At the endpoint of the tunnel, the dummy �its are �ltered out
and discarded. The cha�Id header is used to identify cha�ed �it or packet. In the �rst scenario,
a hash of the NI identi�cation number is used as cha�ed id. Unlike other headers, this header
is encrypted by  ď−ā which is the symmetric key shared between the source (() and endpoint
(�) during the tunnel creation (line 12). Therefore, only endpoint can �lter cha�ed packets by
decrypting �=̂ćď−ā

(hash(#�ąĀ ).
When the input queue of source NI received a packet (line 14), the �rst scenario is considered

(line 15 - 21). The intuition behind this scenario is to hinder the possibility of ML-model using burst
of small inter �its delays of inbound and outbound �ows in heavy tra�c. The example shown in
Figure 6 demonstrates the cha�ng in second scenario and removing that cha�. Here, %ę limits the
number of packets being obfuscated (line 16 - 17). If chosen to be obfuscated, cha� is inserted in
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Algorithm 8 Add Cha� at source NI

1: procedureWakeup ( )
2: .....
3: AddChaff(2 5 ;06)
4: .....
5: procedure AddChaff(2 5 ;06)
6: if 2 5 ;06 = �0;B4 and getIdleCy(;8=:ĥ ) > )ę then

7: 2 5 ;06 = True

8: A0=3#> ← A0=3 (0, 99)

9: if A0=3#> f %ę then

10: =�;8CB ← A0=3 (4, 5)

11: 3%:C ← =4F %02:4C (=�;8CB)

12: 3%:C .2ℎ�3 ← �=̂ćď−ā
(ℎ0Bℎ(#�ąĀ ))

13: >DC?DC&D4D4.4=@D4 (3D<<~%:C)

14: if 8=?DC&D4D4.A428E43%02:4C () = )AD4 then

15: 2 5 ;06 = True

16: A0=3#> ← A0=3 (0, 99)

17: if A0=3#> f %ę then

18: 2ℎ�3 ← A0=3 (0, ;4=(8=?DC%:C))

19: 3�;8C = =4F 5 ;8C ()

20: 4=2�ℎ�3 ← �=̂ćď−ā
(ℎ0Bℎ(#�ąĀ ) |2ℎ�3)

21: ?:C .8=B4AC (2ℎ�3, 4=2�ℎ�3, 3�;8C)

22: if >DC?DC&D4D4.B4=3%02:4C () = )AD4 then

23: 2 5 ;06 = �0;B4

the middle of legitimate packets at a random position (Line 18 - 21).  ď−ā is used to encrypt cha�Id,
represents the position of cha� �it, which is used by the endpoint to �lter the cha�ed �it.

A random number generator is already in the NI for cryptographic process. Therefore, the same
generator is used for random number generation in line 8, 10 and 16. If the c�ag (line 3, 6, 7, 15
and 23) variable is true, it indicates the current gap between �its was already checked for insertion
of packet. It is important to note that, (1) the dummy �its are added only when outbound link is
idle, therefore, it has less impact on the program running on source IP, and (2) the dummy �its will
only impact at most 3 internal links associated with the tunnel, therefore, it has less impact on the
other tra�c in the network. The scenario two inserts relatively less number of dummy �its and
they will only impact at most 3 internal links. Experimental results in Section 5.8 validate that our
obfuscation technique only results in negligible overhead.

4.3.2 Obfuscation with Random Delay. The second obfuscation technique adds random delays
to selected �its and tries to tamper with the timing aspect of the tra�c �ow. Flits belonging to
only %Ě percentage of packets are subject to added delays. The tunnel endpoint is responsible for
adding delays. Traveling through the rest of the hops the �it propagates the delay to the destination
tampering with timing features of the inbound �ow (���ğ

Ā
). Figure 6 demonstrates the e�ect of

added delay in tra�c �ows. It is clear that cha�ng and random delays obfuscate the actual tra�c
between source and destination. Both of these techniques can be used simultaneously or in a
standalone manner depending on the requirement. Experimental results (Table 11 and 12) show
that both techniques e�ectively defend against ML-based �ow correlation attacks.
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Table 2. System and interconnect configuration

Parameter Details

Processor con�gurations X86, 2GHz

L1 I & D cache 64KB, 64KB (64B block size)

Coherency Protocol MI

Topology 8×8 Mesh

Cha�ng rate (%ę ) and delay addition rate (%Ě ) 50%

5 Experimental Evaluation

We model our proposed ML-based attack and countermeasures on a cycle-accurate Gem5 [6], a
multi-core simulator, with Garnet 2.0 [1] for the interconnection network modeling. We use a
64-core system and the detailed system con�guration is given in Table 2. Splash-2 [34] benchmark
applications as well as multiple synthetic tra�c patterns were used in evaluation. We used Pytorch
library to implement the proposed DNN architecture. First, we show the results of the �ow corre-
lation attack in existing anonymous routing (ARNoC [11] and SAR [31, 35]). Later, we show the
robustness of the proposed anonymous routing protocol to mitigate the attack. In order to evaluate
the area and energy overhead of our approach against state-of-the-art anonymous routing, we
implemented ARNoC and our approach in Verilog and synthesized both designs using Synopsys
Design Compiler with 32nm Synopsys standard cell library.

5.1 Data Collection

This section demonstrates the data collection on Gem5 for the training of DNN. Although the input
to DNN is in the same structure, the inherent di�erences in synthetic tra�c and real benchmarks
led us to two ways of collecting �ow pairs for training.

5.1.1 Synthetic Tra�ic. We performed data collection using Uniform-Random synthetic tra�c with
the following modi�cation. All IPs send packets to randomly selected IPs except two (�%ď and �%Ā ).
These two IPs are the correlated pair communicating in a session. From all the packets injected
from the source IP (�%ď ), only ? percent of packets are sent to the destination IP (�%Ā ), and the
remaining packets ((100 − ?)%) are sent to other nodes. For example, ? = 80% means 80% of the
total outbound packets from �%ď will have �%Ā as the destination, while the other 20% can have any
other IP except IP �%ď and �%Ā as the destination. Note that this 20% can be viewed as noise from the
perspective of communication between �%ď and �%Ā . Here, tra�c between correlated pair models
concentrated point-to-point tra�c between two nodes (e.g., processing core and memory controller).
The random point-to-point tra�c models other NoC tra�c in a heterogeneous SoC other than cache
coherence tra�c such as monitoring and management tra�c, inter-process communication and
message passing between heterogeneous IP cores. This randomized tra�c between uncorrelated
pairs introduces uncontrolled noise to correlated tra�c �ow. Therefore, random point-to-point
synthetic tra�c models worst-case-scenario for �ow correlation attack.

To make the dataset generic, for a single ? value, we conduct experiments covering all possible
mapping of correlated pairs to NoC nodes, which are 8064 mappings (64×63×2). We consider four
tra�c distributions with ? value of 95%, 90%, 85%, and 80%. In other words, we consider four
di�erent noise levels (5%, 10%, 15% and 20%) for our data collection simulations. The full dataset for
a certain ? value contains 24192 �ow pairs ({���ĥ

ď
, ���ğ

Ā
}) which consists of 8064 correlated tra�c

�ow pairs and 16128 uncorrelated tra�c �ow pairs. Note that for each correlated �ow pair, we
selected two arbitrary uncorrelated �ow pairs. To evaluate our countermeasures, when collecting
obfuscated tra�c, we kept both %ę and %Ě at 50% to ensure uniform distribution of obfuscation.
When obfuscating tra�c using added delay, we vary the delay between 1 − 5 cycles because a
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higher delay may lead to unacceptable performance overhead. We collected three categories of data
sets: one with cha�ng only, one with random delay only, and one with applying both cha�ng and
delaying simultaneously.

5.1.2 Real Tra�ic. Here, we collect response cache coherence tra�c from memory controller to
requester. This is done via �ltering out using virtual network (vnet) used for memory response
tra�c to requester which is vnet 4. We consider �ve Splash-2 benchmark application pairs running
on two processors (%1 and %2) where two memory controllers ("�1 and"�2) are serving memory
requests. The benchmark pairs used are {�t, fmm}, {fmm, lu}, {lu, barnes}, {barnes, radix}, {radix, �t},
where the �rst benchmark runs on %1 and the second runs on %2. The selected benchmarks have
the diversity to make the dataset generic (for example, �t and radix are signi�cantly di�erent [5]).
The address space of the benchmark running in %1 is mapped only to"�1. Therefore, %1 only talks
with the"�1, and they are the correlated pair. The address space of the benchmark running in %2
is assigned to both "�1 and "�2 in a way that, the ratio between memory request received by
"�1 from %1 to memory request received by"�1 from %2 to be ? : (100 − ?). This percentage ? is
similar to that of synthetic tra�c and (100 − ?)% is the noise. For example, when ? = 85%, "�1

serves 15% packets to %2 when it severs 85% packets to %1.
Similar to synthetic tra�c, we considered four values for ? which are 95%, 90%, 85%, and 80%.

For a single ? value and a single benchmark pair, we conducted experiments covering all possible
mapping of correlated pairs to NoC nodes, which are 4032 mappings (64×63). The "�2 and %2
were randomly chosen in all these mappings. The full dataset for a certain ? value and benchmark
pair contains 16128 �ow pairs (4032 correlated pairs and 12096 uncorrelated pairs). To evaluate
our countermeasures, we collect obfuscated data similar to synthetic tra�c. We automated data
collection using the gem5 simulator with a shell script that simulates di�erent benchmarks and
application mappings. This process produces tra�c traces from gem5 as textual logs. We then
developed a Python script to pre-process these traces into 2D numpy arrays of inter-�it delays,
serving as input for the DNN.

5.2 Hyperparameter Tuning

Hyperparameters are parameters set before training to improvemodel performance, such as learning
rate and �lter size. We rigorously tested various hyperparameter combinations to achieve superior
attack success rates. The training process consists of 10-20 epochs with a consistent learning rate
of 0.0001. We performed batch normalization and adjusted the batch size to 10 for the training set.
As for convolution layers (C1 and C2 in Figure 4), the channel size is selected as :1 = 1000 and
:2 = 2000, withF1 = 5 andF2 = 30, for C1 and C2, respectively. As for fully connected layers, sizes
are selected as 3000, 800, and 100 for FC1, FC2, and FC3, respectively.

There are a lot of challenges in tuning since the �nalized parameters re�ect a trade-o� between
cost and e�ectiveness. First, the learning rate of the raining was reduced from 0.001 to 0.0001
which increases the training time but successfully avoids the Local Minima problem. Our decision
to limit training to 10-20 epochs was primarily based on initial experiments that employed early
stopping based on validation error. This approach consistently showed that performance stabilized
within this range. Additionally, restricting the number of epochs to 10-20 served as a regularization
technique to further mitigate the risk of over�tting. Batch size is also decreased from 50 to 10. In this
way, fewer samples are provided for one iteration of training, but it improves the stability of training
progress. Additionally, the selection of parameters for convolution layers properly addressed their
responsibilities. As discussed in Section 3.3, C1 focuses on extracting rough relationships while C2
on advancing features. Therefore, C2 possesses two times of channels of C1, and a wider stride
(30:5) to improve e�ciency.

16



Table 3. Performance of ML-based a�ack on existing anonymous routing (ARNoC [10]) for di�erent tra�ic

distributions. ? Accuracy Recall Precision F1 Score

95 97.16% 91.98% 99.47% 95.58%

90 97.04% 93.35% 97.50% 95.38%

85 94.64% 91.32% 92.30% 91.81%

80 91.70% 80.02% 94.10% 86.60%

5.3 Training and Testing

In our study, we randomly divided a dataset of �ow pairs for a speci�c con�guration into a 2:1 ratio
for the training and testing sets. Flow pairs were labeled as ‘1’ for correlated and ‘0’ for uncorrelated.
We assessed our experiments using following four evaluation metrics.

• Accuracy:
ĪĦ+ĪĤ

ĪĦ+ĪĤ+Ĝ Ħ+Ĝ Ĥ

• Recall:
ĪĦ

ĪĦ+Ĝ Ĥ

• Precision:
ĪĦ

ĪĦ+Ĝ Ħ

• F1 Score: 2 ČĨěęğĩğĥĤ·ĎěęėĢĢ
ČĨěęğĩğĥĤ+ĎěęėĢĢ

Here, C? , C=, 5 ? and 5 = represent true positive, true negative, false positive, and false negative,
respectively. Intuitively, recall is a measure of a classi�er’s exactness, while precision is a measure
of a classi�er’s completeness, and F1 score is the harmonic mean of recall and precision. The reason
for utilizing these metrics comes from the limitation of accuracy. For imbalanced test cases (e.g.,
> 90% positive labels), a naive ML model which gives always-true output can reach > 90% accuracy.
The goal of the attacker is to identify correlating node pairs and launch complex attacks. Here,
5 = is when an actual correlating pair is tagged as non-correlating by the DNN. 5 ? is when an
actual non-correlating pair is tagged as correlating by the DNN. From an attacker’s perspective,
the negative impact of wasting time on launching an unsuccessful attack on 5 ? is relatively low
compared to an attacker missing a chance to launch an attack due to a 5 =. Therefore, recall is the
most critical metric compared to others when evaluating this �ow correlation attack.

5.4 ML-based A�ack on Synthetic Tra�ic

We evaluated the proposed attack for all four tra�c distributions. The tra�c injection rate was
�xed to 0.01, and the IFD array size to 250. Table 3 summarizes the results of the attack on ARNoC.
All the considered tra�c distributions show good metric numbers. We can see a minor reduction
in performance with a reducing value of ? . This is expected because of the increase in the number
of uncorrelated packets in correlated �ow pairs, making the correlation hard to detect. Even for
the lowest tra�c distribution of 80% between two correlating pairs, the attacking DNN is able to
identify correlated and uncorrelated �ow pairs successfully with good metric values.
Table 4 summarizes the attack results on SAR, showing trends similar to those in the attack

on ARNoC (Table 3). The main reason for this similarity is that our attack focuses on correlating
inbound and outbound �ows rather than focusing on breaking obfuscation techniques to hide
communicating parties. Even though SAR uses packet-wise path diversity for anonymous routing,
the proposed �ow correlation attack performswell due to two reasons: (1) packet-level path diversity
will not a�ect inter-�it delay inside the packet which is the fundamental feature of the proposed
ML-based attack, and (2) since there are only three path scenarios (XY, YX, and XYX ) with a
subtle variation, the variation of delay between �its of two adjacent packets is negligible to a�ect
�ow correlation adversely. These results con�rm that our attack is realistic and can be applied on
state-of-the-art anonymous routing (both ARNoC and SAR) to break anonymity across di�erent
tra�c characteristics with varying noise. Due to the similarity of the attack performance in both
anonymous routing protocols, we only consider ARNoC for the subsequent experiments.
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Table 4. Performance of ML-based a�ack on existing anonymous routing (SAR [31, 35]) for di�erent tra�ic

distributions. ? Accuracy Recall Precision F1 Score

95 96.91% 91.61% 99.07% 95.19%

90 96.67% 92.78% 96.90% 94.80%

85 94.59% 91.96% 91.53% 91.74%

80 92.30% 81.21% 94.97% 87.55%

Table 5. Performance of ML-based a�ack on existing anonymous routing for di�erent tra�ic injection rates.

TIR Accuracy Recall Precision F1 Score

0.001 95.32% 92.29% 93.51% 92.89%

0.005 94.72% 90.14% 93.98% 92.02%

0.01 94.64% 91.32% 92.30% 91.81%

0.05 93.86% 88.56% 92.67% 90.56%

5.5 Stability of ML-based A�ack

In this section, we assess the stability of the proposed ML-based attack by varying con�gurable
parameters. For experiments in this section, we use synthetic tra�c with the value of ? as 85% and
the rest of the parameters as discussed in the experimental setup except for the varying parameter.

5.5.1 Varying tra�ic injection rates (TIR). We collected tra�c data for four tra�c injection rates:
0.001, 0.005, 0.01 and 0.05, and conducted the attack. Table 5 provides detailed results on metrics
over selected values. We can see a small reduction in overall metrics including recall, with the
increase in injection rate. This is because, higher injection rates will create more congestion and
bu�ering delays on NoC tra�c. The indirect noise from congestion and bu�ering delays makes it
slightly hard for the ML model to do �ow correlation. Overall, our proposed ML model performs
well in di�erent injection rates since all the metrics show good performance.

5.5.2 Varying IFD Array Size. We collected tra�c data by varying the size of IFD array size (;) in
the range of 50 to 550 and conducted the attack on existing anonymous routing. Table 6 shows
detailed results on metrics over selected values. For a lower number of �its, the relative values of
the recall and other metrics are low. However, with the increasing number of �its, the accuracy
also improves until the length is 250. This is due to the increase in the length of the IFD array the
ML model has more features for the �ow correlation. After the value of 250, the accuracy saturates
at around 94.5%. In subsequent experiments, we kept ; to 250 because ML-based attack performs
relatively well with less monitoring time.

Table 6. Performance metrics of ML-based a�ack on existing anonymous routing for varying number of flits.

IFD Array size(l) Accuracy Recall Precision F1 Score

50 83.53% 96.45% 67.96% 79.74%

100 90.92% 96.17% 80.28% 87.51%

150 90.93% 74.10% 98.32% 84.51%

250 94.64% 91.32% 92.30% 91.81%

350 94.71% 86.21% 97.39% 91.46%

450 94.58% 93.21% 90.58% 91.87%

550 94.66% 88.97% 94.30% 91.56%

5.5.3 Varying Network Size. To evaluate the stability of the ML model on varying network sizes,
we analyzed the model on 16 core system with 4×4, 64 core system with 8×8, and 256 core system
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Table 7. Performance of ML-based a�ack on existing anonymous routing for di�erent mesh sizes.

Mesh Size Accuracy Recall Precision F1 Score

4×4 94.76% 91.86% 92.63% 92.24%

8×8 94.64% 91.32% 92.30% 91.81%

16×16 92.72% 80.28% 96.98% 87.84%

Table 8. Performance of ML-based a�ack on ARNoC [10] using MI protocol for di�erent noise levels in real

benchmarks. ? Accuracy Recall Precision F1 Score

95 99.43% 99.79% 98.01% 98.89%

90 99.11% 99.84% 96.75% 98.27%

85 98.76% 98.16% 97.01% 97.58%

80 96.08% 98.79% 87.15% 92.61%

with 16×16 mesh topology. Table 7 shows the performance results of the ML model for di�erent
network sizes. Attack on 4×4 mesh shows slightly good metric values compared to 8×8. The attack
on a 16×16 network shows relatively low accuracy and recall, due to the network’s larger size,
which alters the temporal characteristics of the tra�c. With four times as many nodes and roughly
double the average hops (10.67 compared to 5.33 in the 8x8 mesh), the 16x16 mesh experiences
more congestion. These conditions introduce additional noise, such as queuing delays, which a�ect
the communication patterns observable through inter-�it delays. Despite these challenges, the
achieved recall of 80.28% is su�ciently high for a successful attack. Considering good accuracy and
other metrics, our ML-based attack shows stability across di�erent mesh sizes.

5.6 ML-based A�ack on Real Benchmarks

We trained and tested the model using two techniques. In the �rst technique, we merge datasets
of a single ? value across all 5 benchmark combinations outlined in Section 5.1 to create the total
dataset. Therefore, the total dataset has 80640 �ow pairs before the 2:1 test to train split. Table 8
summarizes the results for the �rst technique across all ? values. Good metric numbers across all
tra�c distributions show the generality of the model across di�erent benchmarks. In other words,
our attack works well across multiple benchmarks simultaneously. Even 20% noise (? = 80) shows
recall value just remains robust around 98%. While lower precision may lead to resources being
spent on false positives, this issue is relatively minor compared to the potential harm posed by high
recall rates. From an adversarial perspective, recall is the critical metric, as discussed in Section 5.3.
To evaluate our attack success across cache-coherence protocols, we trained and test model

using MOESI-hammer protocol using �rst technique. To enable a fair comparison with previous MI
protocol experiments, we kept the MOESI protocol private cache size for each node the same as
that of the MI protocol. Speci�cally, we kept L1 instruction and data cache size 32KB and L2 cache
size 64KB per node. Table 9 summarizes the attack results on systems with MOESI-hammer cache
coherence protocol. Since we only focus on �rst ; = 450 inter-�it delays, the less cache coherence
tra�c of MOESI-hammer protocol does not a�ect the training of the ML model. Comparable results
across all tra�c distributions similar to MI protocol demonstrate that our attack is successful across
multiple cache coherence protocols. Therefore, for simplicity, we only consider MI cache coherence
protocol for experiments involving real tra�c in the remainder of this paper.
When we compare the performance of attack on real tra�c against synthetic tra�c (Table 3),

attack on real tra�c shows better performance. This is primarily for two reasons. (a) The synthetic
tra�c generation is totally random. More precisely, the interval between two packets is random
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Table 9. Performance of ML-based a�ack on ARNoC [10] using MOESI-hammer protocol across di�erent

tra�ic distributions with real benchmarks

? Accuracy Recall Precision F1 Score

95 99.46% 99.85% 98.08% 98.96%

90 99.07% 99.81% 97.61% 98.18%

85 98.81% 98.45% 96.94% 97.69%

80 96.45% 98.81% 88.48% 93.36%

Table 10. Performance of ML-based a�ack on ARNoC [10] using when p=85 across real benchmark combina-

tions. benchmark Accuracy Recall Precision F1 Score

{�t, fmm} 98.29% 99.11% 94.42% 96.71%

{fmm, lu} 99.32% 97.63% 99.70% 98.65%

{lu, barnes} 97.84% 91.60% 99.76% 95.51%

{barnes, radix} 96.14% 84.59% 99.73% 91.54%

{radix, �t} 96.62% 97.05% 90.66% 93.75%

Table 11. Performance metrics of ML-based a�ack on proposed lightweight anonymous routing for di�erent

tra�ic distributions when trained with non-obfuscated tra�ic and tested with obfuscated tra�ic

Cha�ng Delay Cha�ng + Delay

? Acc. Rec. Prec. F1. Acc. Rec. Prec. F1. Acc. Rec. Prec. F1.

95 66.55% 0.3% 33.33% 0.6% 81.32% 56.70% 81.67% 66.93% 63.36% 14.37% 37.18% 20.70%

90 66.59% 25.68% 49.78% 33.88% 71.73% 66.15% 56.48% 60.94% 56.47% 42.27% 40.45% 41.34%

85 61.2% 2.6% 12.4% 4.4% 72.57% 50.59% 60.61% 55.15% 66.33% 40.50% 49.39% 44.51%

80 72.76% 26% 77.16% 38.89% 73.41% 34.97% 70.37% 46.72% 60.34% 30.72% 39.75% 34.65%

and the next destination of a speci�c source is random. This level of randomness is not found in
real tra�c making �ow correlation in real tra�c relatively easy. (b) In synthetic tra�c all 64 nodes
talk with each other making higher bu�ering delays eventually making �ow correlation harder.
However, bu�ering delays have a minor impact compared to randomness. The second technique
uses dataset of a single ? value and single benchmark pair. Table 10 summarizes the results for the
second technique when ? = 85 across �ve benchmark pairs. All benchmarks display strong metrics,
though accuracy and recall slightly decrease in the 3rd and 4th rows. Both benchmark pairs have
barnes benchmark, which has lowest bytes per instruction in all benchmarks [45]. This results in
sparse inter-�it array, eventually making it relatively harder to do �ow correlation.
Misclassi�cations can have signi�cant implications, and it is important to consider them from

the perspective of an attacker. Misclassi�cations can be divided into two types: false positives and
false negatives. False positives occur when uncorrelated tra�c is incorrectly identi�ed as correlated.
In this scenario, an adversary would wastefully allocate resources to act upon these false leads to
launch further attacks, ultimately yielding no actual threat. While pursuing false leads might seem
ine�cient, adversaries usually have su�cient resources and can in�ict signi�cant damage when
they correctly identify correlated nodes. This potential for harm outweighs the minor setbacks
caused by occasional false positives. On the other hand, false negatives represent a critical error
from the attackers standpoint. This type of error occurs when actual correlated communicating
pair go undetected. Missing such opportunities can be detrimental to the adversary’s objectives,
particularly if the goal is to cause maximum disruption.
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Table 12. Performance metrics of ML-based a�ack on proposed lightweight anonymous routing for di�erent

tra�ic distributions when trained and tested with non-obfuscated tra�ic

Cha�ng Delay Cha�ng + Delay

? Acc. Rec. Prec. F1. Acc. Rec. Prec. F1. Acc. Rec. Prec. F1.

95 76.64% 33.60% 84.67% 48.11% 94.22% 87.31% 94.99% 90.99% 73.80% 25.49% 80.70% 38.75%

90 79.45% 43.71% 87.39% 58.28% 93.58% 93.42% 87.66% 90.45% 77.95% 46.9% 78.14% 58.69%

85 78.75% 38.93% 93.16% 54.92% 90.65% 86.83% 84.99% 85.90% 77.06% 48.85% 74.65% 59.05%

80 79.75% 74.41% 67.58% 70.83% 87.70% 80.32% 82.08% 81.19% 77.56% 74.41% 64.13% 68.89%

Table 13. Performance metrics of ML-based a�ack on proposed lightweight anonymous routing di�erent for

noise levels on real benchmarks.

? Accuracy Recall Precision F1 Score

95 89.93% 76.67% 82.44% 79.45%

90 88.78% 77.08% 78.30% 77.69%

85 87.63% 62.04% 84.34% 71.49%

80 85.89% 76.85% 70.23% 73.39%

Table 14. Performance metrics of ML-based a�ack on proposed lightweight anonymous routing for real

benchmarks. benchmark Accuracy Recall Precision F1 Score

{�t, fmm} 87.64% 65.91% 80.24% 72.37%

{fmm, lu} 90.67% 83.03% 80.20% 81.59%

{lu, barnes} 84.98% 57.75% 76.19% 65.70%

{barnes, radix} 84.24% 40.35% 97.59% 57.10%

{radix, �t} 82.60% 37.67% 82.66% 51.79%

5.7 Robustness of the Proposed Countermeasure

We evaluate the robustness of our lightweight anonymous routing in two ways. First, we assess our
countermeasure (Section 4) against the ML-based attack (Section 3) on synthetic and real tra�c.
Second, we examine the overall e�ectiveness of our attack in breaking anonymity.

We evaluate our countermeasure against ML-based attacks in three con�gurations for synthetic
tra�c: (1) using cha�ng, (2) using a delay, and (3) using both cha�ng and delay to obfuscate
tra�c. For each of the three con�gurations, we evaluate the ML-based attack on two scenarios: (1)
train with non-obfuscated tra�c and test with obfuscated tra�c (Table 11), and (2) train and test
with obfuscated tra�c (Table 12). In all three con�gurations, the attack on the �rst scenario has
performed poorly (the proposed countermeasure defends very well). This is expected because the
attacking DNN has not seen any obfuscated data in the training phase. If we focus on the scenario
of using a delay to obfuscate tra�c (Table 12), we can see a signi�cant reduction in all the metrics.
Large drops in recall when using cha�ng as the obfuscation technique validate that the proposed
countermeasure produces a signi�cant negative impact on attackers’ end goals. Adding random
delay reduces accuracy and recall by about 3% compared to non-obfuscated tra�c in all the tra�c
distributions. Whereas, combining cha�ng with delay reduces accuracy and recall by about 3% as
compared to cha�ng alone. In other words, combining two obfuscation techniques did not seem
to have any synergistic e�ect. We recommend cha�ng as a good obfuscation con�guration since
adding delay has only a small advantage despite its overhead. Note that the poor performance
of added random delay as a countermeasure validates the fact that our proposed attack is robust
against inherent random network delays in the SoC.

When evaluating the performance of countermeasures using benchmark applications, we consider
only cha�ng to obfuscate tra�c. Furthermore, we only train and test with obfuscated tra�c which
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guarantees to give a strong evaluation of the countermeasure. As discussed in section 5.6 we evaluate
the countermeasure using two techniques, (1) merged datasets across benchmarks (Table 13) and
(2) datasets per benchmark when ? value is �xed (Table 14). When we focus on Table 13, we see an
overall reduction of metric values compared to the attack without countermeasure. Even though
the accuracy reduction is around 10%, the countermeasure has reduced recall value drastically. This
will negatively a�ect the attacker due to missing a chance to launch an attack due to higher 5 =.
When we compare the performance of the countermeasure on real tra�c against synthetic tra�c
(Table 12), the countermeasure on synthetic tra�c has performed relatively better. This is due to
the same two reasons mentioned in section 5.6 brie�y, the randomness of synthetic tra�c and
increased bu�er delay because every node communicates.
We evaluate the anonymity of proposed lightweight anonymous routing in three attacking

scenarios. The �rst scenario is when one of the intermediate routers in the outbound tunnel is

malicious. The malicious router only knows the identity of the preceding and succeeding router, so
the anonymity of the �its traveling through the tunnel is secured. The second scenario is when
the tunnel endpoint is malicious. The router will have the actual destination of the packet but not
the source information; therefore by having a single packet, the malicious router cannot break
the anonymity. This scenario is also considered secure in the traditional onion routing threat
model [17]. Complex attacks in malicious routers need a considerable number of packets/�its to be
collected. It is hard due to two following reasons: (1) Our proposed solution changes the outbound
tunnel of a particular source frequently. (2) Since the source and destination have two independent
outbound tunnels, it is infeasible to collect and map request/reply packets. The �nal scenario is
when an intermediate router in a normal routing path is malicious. This scenario arises when �its
use normal routing after it comes out of the outbound tunnel. Similar to the previous scenario, the
packet only knows about the true destination, and anonymity is not broken using a single packet.
In other words, outbound tunnels change frequently, and the source and destination have di�erent
tunnels making it hard to launch complex attacks to break anonymity by collecting packets.
The robustness of our approach can be evaluated in terms of deadlock handling. We have

implemented our model using Garnet 2.0, where the XY routing mechanism is used to guarantee
deadlock-free communication. When we focus on our countermeasure, the �rst step of tunnel
creation (Tunnel Initialization) uses the existing XY routing protocol to broadcast TI packets. The
path of the TI packet determines the tunnel shape. Since a TI packet cannot take a Y to X turn, any
tunnel created on XY routing inherently uses only XY turns inside the tunnel. Hence, in the data
transfer phase, all the communication inside and outside the outbound tunnel will only take X to Y
turns, ensuring deadlock-free communication.

5.8 Overhead of the Proposed Countermeasure

Figure 8a shows the average packet latency for our proposed lightweight countermeasure over
ARNoC [10] and SAR [31, 35] in the data transmission phase. Obfuscating with cha� �it, which
is the recommended obfuscation technique from Section 5.7, has only a 13% and 11% increase in
performance overhead compared to ARNoC and [35], respectively. Our approach reduces tunnel
creation overhead by 35.53% compared to ARNoC, as shown in Figure 8b, due to our strategy of
creating shorter, outbound-only tunnels from the source to the random router (tunnel endpoint),
unlike ARNoC’s longer source-to-destination tunnel for outbound and inbound tra�c. SAR does
not have a tunnel creation phase. A key aspect of our approach is that tunnel creation occurs in the
background, ensuring it does not directly impact data transfer performance. Overall, our approach
is lightweight compared to ARNoC and has negligible performance overhead against [35] while
delivering both packet-level and �ow-level anonymity.
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Fig. 8. Comparison of proposed countermeasure versus ARNoC and SAR: (a) average packet latency of data

transfer, and (b) average execution time for tunnel creation (SAR does not have tunnel creation phase).

Table 15. Comparison of area and energy overhead between ARNoC and proposed countermeasure in NoC.

ARNoC Our Approach Overhead

Area(`<2) 2914300 2957429 + 1.47%

Energy(<� ) 54.04 55.45 + 2.6%

In addition to low-performance overhead, our lightweight anonymous routing has the inherent
advantage of utilizing any adaptive routing mechanisms supported by NoC architectures (endpoint
of output tunnel to the destination), while ARNoC cannot accommodate adaptive routing proto-
cols because of having a pre-built tunnel from the source to destination. Similarly, SAR cannot
accommodate adaptive routing due to its anonymous routing solution tightly bound to XY, YX,
and XYX routing patterns. Table 15 compares the area and energy overhead of our lightweight
countermeasure against ARNoC in 8×8 mesh topology. In the implementation, our approach uses
only the cha�ng obfuscation. The energy consumption was calculated by averaging the energy
consumption of running the FFT benchmark across all possible mappings of the processing node
and memory controller in mesh NoC-based SoC as discussed in Section 5.1.2. We observe a 1.47%
increase in area and a 2.6% increase in energy. The area and energy overhead are negligible consid-
ering the performance improvement and additional security provided by our proposed anonymous
routing compared to the state-of-the-art anonymous routing ARNoC.

6 Conclusion

Network-on-Chip (NoC) is a widely used solution for on-chip communication between Intellectual
Property (IP) cores in System-on-Chip (SoC) architectures. Anonymity is a critical requirement for
designing secure and trustworthy NoCs. In this paper, we made two important contributions. We
proposed a machine learning-based attack that uses tra�c correlation to break the state-of-the-art
anonymous routing for NoC architectures. We developed a lightweight and robust anonymous
routing protocol to defend against ML-based attacks. Unlike existing anonymous routing protocols
that only o�er anonymity at the packet level, our proposed protocol enhances security by providing
anonymity at both the packet level and the �ow level. Extensive evaluation using real as well as
synthetic tra�c demonstrated that our ML-based attack can break anonymity with high accuracy
(up to 99%) for diverse tra�c patterns. The results also reveal that our lightweight anonymous
routing protocol that uses cha�ng as tra�c obfuscation is robust against ML-based �ow correlation
attacks with minor performance and hardware overhead.
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