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Abstract—State preparation is an essential component in
quantum information science. A recently developed steering
protocol utilizes a sequence of generalized measurements on a
detector to steer a quantum system towards a desired state.
However, it is designed as an open-loop technique that requires
accurate modeling of the overall quantum system and can
be prone to errors. To address this challenge, we propose
a closed-loop control technique that introduces feedback to
the steering protocol, providing robustness to noise and faster
state convergence. We introduce two strategies for feedback:
(1) a gradient-based active steering protocol that changes
the detector-system coupling conditioned on the detector’s
readout and (2) tuning the fixed detector-system coupling via
model-free reinforcement learning. We study the effectiveness
of these strategies under various noise models, including
both incoherent and decoherent noise, and discuss potential
applications in quantum technologies.

Index Terms—Quantum computing, quantum measurement,
quantum steering, state preparation, quantum control.

I. INTRODUCTION

The ability to initialize quantum systems to a desired

state, commonly referred to as state preparation, is a funda-

mental requirement for realizing quantum technologies. This

process is vital for a range of applications, such as quantum

computing where the correct application of gates to imple-

ment specific functionalities relies on the initial known state.

Similarly, quantum communication protocols require the

preparation of an initial entangled state, quantum memory

relies on state preparation to read and write quantum states,

and quantum sensors must be in a known state in order to

accurately measure external stimuli. A well-established and

successful approach to solve the task of state preparation

is via quantum optimal control. These methods rely on

the Schrödinger equation, its differentiability, and gradient-

based optimization methods, to improve the control fields

that manipulate the quantum system. One such technique

is Gradient Ascent Pulse Engineering (GRAPE) [1]–[3],

which evaluates and ascends along the gradients to reach a

desired state (or a quantum gate). However, many techniques

such as GRAPE are open-loop, also referred to as non-

feedback or passive, where the actions are independent of

the process output [4]. This makes them susceptible to

parameter uncertainties and noise processes that can arise in

devices, leading to inaccurate predictions of the underlying

quantum dynamics [5]–[7].

To address these challenges closed-loop control strategies,

also known as active, are employed by performing mea-

surements on the quantum system to incorporate feedback.

These strategies have led to important developments in

This work was partially supported by the NSF grant CCF-1908131.

...

0/1 0/1

(a) Passive steering

0/1 0/1

...

(b) Active steering

Fig. 1: Overview of the steering protocol where a system

couples with a detector. Measurements of the detector in-

duce a backaction on the system. Readouts of the detector

may be simply ignored (passive steering) or processed by

a classical computer to make decisions about the coupling

U (active steering). The goal is to reach a desired target

state |È·ð, with an arbitrary initial state Ä0. (a) Passive

steering is an open-loop protocol and utilizes a sequence of

generalized measurements on a detector to steer a quantum

system towards a desired state. (b) Active steering is a

closed-loop protocol and involves a detector coupled with

our system via a tunable unitary Ui (0 f i < N ) conditioned

on the readouts of the detector. As the detector is measured,

it induces a backaction on the system taking the state from

Äi to Äi+1. After measurement, the detector is reset back to

a known state (i.e. |0ð). The readout results are processed by

a classical computer, which selects the next unitary coupling

parameter Ui+1.

a variety of challenging tasks, including quantum error

correction [8], [9], state preparation [10]–[12], stabilization

[13], the Zeno effect [14], and removing entropy from a

system [15]. However, a downside of feedback-based active

strategies is that they are typically slower as each sequence

of measurements must be conducted in the weak regime,

meaning that a weak coupling of a detector with a system

is necessary. While a weak coupling between the system

and detector results in slower evolution, it is necessary

to prevent the system from collapsing, enabling repeated

measurements for obtaining feedback. The weak coupling is

associated with slow state convergence which can leave the

system exposed to its environment for longer periods, and

increases the likelihood of cascading errors. Furthermore, in



contemporary quantum devices [16] it is crucial to optimize

the utilization of quantum resources which makes slow

evolution resulting from weak coupling undesirable.

A novel approach for state preparation based on quantum

steering protocol takes advantage of the backaction induced

by measuring an entangled bipartite state [17]. In the case

of passive steering, this protocol repeatedly applies a fixed

operation on a coupled detector-system while performing

measurements on the detector to steer the system towards

a desired target state as illustrated in Figure 1(a). The

system state is prepared through a series of measurements,

where the readouts of the measurements’ are ignored. The

measurement readouts can be considered for halting the

repetition when the desired outcome is achieved [18]. This

steering protocol offers a significant advantage: with a par-

ticular form of strong coupling between the detector-system

and a single measurement, a state may be prepared instantly.

If a strong coupling is unattainable, repeated coupling and

measurements still result in convergence to the desired state

[19], [20]. Recent experimental results on cloud-accessible

quantum computers demonstrate the effectiveness of this

steering protocol [21]. While promising, the outcomes also

highlight the limitations of an open-loop control steering

protocol, where noise can lead to uncertainties in state

preparation.

To overcome such limitations, closed-loop control can be

employed utilizing the feedback. Recent theoretical work

[18] introduces feedback control to allow for real-time

adjustments in the steering protocol – active steering. The

goal of work [18] was to accelerate the rate of convergence

to a desired state. While the proposed faster protocol opti-

mizes the usage of quantum resources, it does not explicitly

account for system uncertainties or noise processes. In this

paper, we seek to address this concern, and introduce feed-

back strategies that yield stability even in the presence of

noise. Specifically, we propose the following two strategies:

1) A gradient-based active steering approach where the

final state fidelity is optimized for all quantum trajec-

tories, as shown in Figure 1(b).

2) A model-free reinforcement learning (RL) approach

that aims to improve passive steering (Figure 1(a)).

This is useful in the case when labeled data is scarce

or expensive to obtain.

We demonstrate the effectiveness of each method on simple,

yet realistic, noise models. This paper is structured as fol-

lows. First, we review the background and related works on

quantum feedback strategies, as well as recent developments

in measurement-induced steering of quantum systems. Next,

we briefly outline the relevant background information and

terminology used throughout the paper. We then present our

methodology for gradient-based optimization of the active

steering protocol followed by RL-based quantum steering.

Finally, we present experimental results of our approach and

summarizes our findings.

II. RELATED WORK

In a closed system without external disturbances or noises,

one can always prepare a target state by applying appropriate

unitary operations to the system. However, in open quantum

systems, it is difficult to maintain coherence because of

unavoidable coupling with the environment. Therefore, the

main challenge in quantum state preparation is obtaining

and protecting a target state in the presence of decoherence

caused by environmental noise. In this section, we review

some recent works on quantum control and outline the

general measurement-induced steering protocol.

A. Quantum State Engineering

Quantum feedback can be broadly categorized into two

main types: measurement-based feedback and coherent feed-

back, each presenting distinct advantages and challenges

depending on the specific application, as well as the desired

level of control and error tolerance. Measurement-based

feedback requires collapsing the quantum state through

measurement, followed by classical information processing

[22]. However, this method can introduce noise and errors

that negatively impact feedback control and the overall per-

formance of the quantum technology. Furthermore, the loss

of quantum coherence due to state collapse may constrain

the precision and control that can be achieved. In contrast,

coherent feedback [23] preserves the quantum nature of the

system and its feedback loop through continuous interac-

tions between the system and a quantum controller, such as

a detector. While this approach can provide enhanced control

and reduced noise, it also poses challenges in maintaining

coherence and preventing decoherence in the involved quan-

tum systems, making implementation more complex. In this

paper, we focus on steering, which, in essence, combines

elements of both methods, wherein measurements on a de-

tector supply feedback while simultaneous interaction with

the system and detector drives its evolution. The remainder

of this section examines related studies, and comments on

the differences and similarities with steering.

1) Gradient Ascent Pulse Engineering with Feedback:

Drawing inspiration from model-free reinforcement learn-

ing, feedback-GRAPE was developed to incorporate the re-

sponse to strong stochastic measurements while performing

direct gradient ascent optimization of quantum dynamics

[24]. In addition to the conventional optimization of control

parameters for the dynamics, feedback-GRAPE accounts for

the probabilistic state collapse resulting from measurements,

which in turn provide feedback to the system. This innova-

tive approach combines elements of both optimization and

feedback control, enabling more robust and efficient control

of quantum systems. Notably, our work also optimizes

control parameters for quantum dynamics, akin to feedback-

GRAPE. However, we consider strong measurements on a

coupled detector rather than direct measurements on the

system, and instead exploit the measurement backaction

to evolve the system state. Furthermore, unlike traditional

GRAPE, which optimizes pulses for continuous dynamics,



we focus on optimizing specific discrete gates (or quantum

circuits) (see Section III-A), providing a general perspective

that does not require detailed knowledge of the quantum

device. Nonetheless, when the control Hamiltonians for the

system of interest are universal, we may take pulses into

account by using the chain rule.

2) State Engineering via Dissipation: Quantum-state en-

gineering driven by dissipation has emerged as a promising

paradigm for manipulating and controlling quantum systems

by harnessing the dissipative dynamics that typically arise

from interactions between the system and its environment

[25]–[27]. While dissipation has traditionally been consid-

ered detrimental due to its potential to cause decoherence

and loss of information, researchers have started recognizing

its potential as a valuable resource for generating specific

quantum states or performing quantum operations. Seminal

works in this field have led to the development of various

techniques, such as engineered reservoirs and tailored con-

trol sequences, to guide quantum systems towards desired

target states or operations. In these scenarios, the dissipative

environment is assumed to be Markovian and is modeled

using Lindbladian dynamics. Similarly, steering incorporates

a detector that serves as an environment, and as the de-

tector state is freshly prepared, it also displays Markovian

behavior. A notable benefit of steering is that, in contrast to

the dissipation case where the environment simply becomes

entangled with the system, the measurement of a detector

enables feedback control possibilities, presenting new av-

enues for managing quantum systems. Moreover, the jump

operators in the Lindblad equation for steering are designed

based on the selected detector-system coupling, unlike in

the dissipative case where the environment itself provides

its own jump operators.

3) Quantum Error Correction: Other state engineering

and feedback strategies have also been proposed, including

feedback based on quantum error correction codes [28].

These strategies have shown promise for achieving fault-

tolerant quantum computing and stabilizing quantum states

in the presence of noise. However, the implementation

of quantum error correction codes is typically resource-

intensive, requiring a large number of physical qubits and

significant overhead for error detection and correction. Fur-

thermore, feedback based on quantum error correction codes

can be sensitive to the choice of code and the specific error

model, and the performance of the code may degrade as the

error rate increases.

B. Measurement-induced Steering

Quantum steering, as first coined by Schrödinger, refers

to the peculiar property of quantum mechanics whereby

an entangled quantum state may be steered from one state

to another due to an experimenter’s act of measurement

[29]. While the phenomena of quantum entanglement has

appeared in a number of application in the field of quantum

information, it has recently been utilized in developing

a novel protocol for state preparation [17]. The protocol

assumes that our system of interest, described by the density

matrix Äs, is allowed to couple with a detector with the

density matrix Äd. Secondly, the protocol assumes that the

detector can be quickly reset to a predefined pure state, and

that it is first initialized to this state. We label this state

to be |0ð. With these assumptions, the protocol prepares an

arbitrary target state |È·ð via a repetition of the following

steps:

1) At the n-th step, couple the detector and system

yielding a composite state described by the density

matrix Än+1
d−s = U(Äd ¹ Äns )U

 .

2) a) blind measurement of the detector resulting in a

system state

Än+1
s = Trd

[

Än+1
d−s

]

= Trd
[

UÄd ¹ ÄnsU
 
]

.
(1)

b) non-blind: projective measurement (Πr) of the

detector qubit resulting in a readout r, where the

system state now depends on r

Än+1
s = Trd

[

ΠrÄ
n+1
d−sΠ

 
r

tr(Än+1
d−sΠr)

]

. (2)

3) a) passive protocol: continue to next step.

b) active protocol: make a decision for the choice

of coupling U , dependent on the measurement

outcome, that appears in next iteration (or decide

to terminate).

4) Reinitialize the detector to the simple pure state Äd =
|0ð, and return to step 1.

In the paper, we discuss strategies 1 → 2(a) → 3(a)
and 1 → 2(b) → 3(b) which we simply refer to as

passive steering and active steering respectively. With a

sufficient number of iterations, the backaction induced by

our detector steers our system state to the desired target

state |È·ð. The initial state may be arbitrary pure or mixed.

However, the success of the protocol crucially depends

on the coupling operators U , which controls the kind of

backaction experienced by the system. In the passive case,

the operator U is chosen [17] such that the fidelity of the

system improves with each iteration:

ïÈ·| Äns |È·ð < ïÈ·| Än+1
s |È·ð . (3)

Because the operator U remains fixed, this is the simplest

case of the protocol. Furthermore, in the blind variation,

readouts of measurement are ignored and hence does not

require any additional processing. However, a fixed pre-

determined operator U may increase problems with noise.

In Section IV-B, we present a model-free reinforcement

framework that learns an U which will satisfy Equation 3

in the presence of noise.

However, in the active scenario, the operators Ui are de-

termined dynamically and do not need to satisfy Equation 3.

The only requirement is that at the end of protocol we arrive

at our target state:

ïÈ·| Äns |È·ð = 1. (4)



The active protocol allows us to gain feedback and tune

Ui for the next iteration. This provides an interesting op-

portunity to modify the behavior of the system without

directly measuring it. However, a strategy to choosing Ui is

a difficult [18] and open problem. In Section IV, we outline

our gradient-based method that optimizes the choice of Ui.

For further details on the variations of the protocol, we refer

to [18], [21].

III. BACKGROUND

In this section, we briefly introduce the terminology and

concepts used throughout the paper. We consider unitary

parametrization, noise models of quantum devices, and

ingredients for reinforcement learning.

A. Unitary Parametrization

As briefly mentioned in Section II-A1, we consider a

general quantum system, and therefore assume the system

is capable of preparing an arbitrary quantum evolution (e.g.

an arbitrary quantum gate). Any valid quantum gate on an

N dimensional system, excluding an irrelevant phase, lives

in the Lie group SU(N). Matrices in SU(N) have size

N × N , are unitary, and have a determinant equal to one.

From a group theoretical perspective, actions within the

SU(N) group can be represented by N2 − 1 generators

that are represented as N × N Hermitian and traceless

matrices, which generate infinitesimal rotations. The finite

rotations are generated with generalized Euler angles [30].

A convenient choice for these matrices are the generalized

Gell-mann matrices ¼i. Hence, a special unitary matrix U
can be specified by Euler angle coordinates ¹⃗ in the Gell-

mann basis ¼⃗
U = ei¹⃗·¼⃗. (5)

The generators generally do not commute, so ordered sum-

mation is assumed in Equation 5. An important property

is that these Euler angles are strictly real, which simplifies

differentiation with respect to the angles and for presenting

a reinforcement learning strategy.

B. Weyl Chamber

Any two qubit gate U ∈ SU(4) can be expressed

according to the Cartan decomposition [31], [32]

U = k1 exp

[

i

2

(

c1Ã
d
xÃ

s
x + c2Ã

d
yÃ

s
y + c3Ã

d
zÃ

s
z

)

]

k2 (6)

where Ãx, Ãy, Ãz are Pauli matrices for detector and system,

and k1,2 ∈ SU(2)¹SU(2) are single-qubit local operations.

By taking into account symmetries, the coefficients can be

limited to c1 ∈ [0, Ã] and c2, c3 ∈ [0, Ã/2]. They may

be interpreted as coordinates in a three-dimensional space,

where all possible two-qubit gates are points in a quarter

pyramid known as the Weyl-chamber. These coefficients

express the non-local “entangling” part of the gate U . The

chamber is depicted in Figure 8.

An additional characterization of two-qubit gates (or any

bipartite system) is via entanglement power [33]. Entangle-

ment power considers how much entanglement is produced

by a gate U on average, acting on a set of unentangled

states. In the two-qubit case, the entanglement power can

be expressed in terms of the coordinates c1, c2 and c3 [34],

ep(U) =
1

18
[3− cos 2c1 cos 2c2 + cos 2c2 cos 2c3

+ cos 2c3 cos 2c1]. (7)

The values are bound to 0 f ep f 2/9. Perfect entanglers,

ones that produce a maximally entangled state from some

product state, are in 1/6 f ep f 2/9.

C. Noise Models

In this paper, we consider two general noise models [7].

1) Decoherent noise: Decoherent noise is a type of noise

that arises in quantum systems due to interactions with

their environment, causing the system to lose its coherence

and become entangled with the environment. This leads to

errors in quantum operations and measurements, which can

significantly affect the accuracy and reliability of quantum

computations. We will consider depolarizing noise, which

is a general type decoherent noise.

Depolarizing noise is a process that randomly changes the

state of a qubit with a certain probability, causing it to lose

its coherence over time. This type of noise is characterized

by the depolarizing parameter p, which represents the prob-

ability that a qubit will experience a random Pauli rotation

around one of its axes. In other words, depolarizing noise

can be expressed as either maintaining its current state or

becoming mixed. If the state of a qubit is given by Ä then

depolarizing noise will map the state to

E(Ä) = (1− p)Ä+
p

N
I (8)

where I/N is mixed state of the detector. In this paper, we

use depolarizing noise to model faulty detector initialization.

2) Incoherent errors: Incoherent noise is another type of

noise that can affect quantum systems. Unlike decoherent

noise, which is due to the coupling of the system with

its environment, incoherent noise arises from fluctuations

within the quantum system itself. Examples of incoherent

noise include random variations in the amplitude or phase

of the qubits or gates, as well as errors in the initialization

or readout of qubits. We use incoherent noise to model

errors in the steering operator U . Specifically, to model

incoherent noise, we pick a set of R random unitary matrices

using the Gaussian Unitary Ensemble (GUE) [35], [36].

This is equivalent to generating through randomly chosen

generalized Euler angles from the Haar measure [30]

{Uj}Rj=1 = {ei¹⃗j ·¼⃗}Rj=1.

We associate a probability to each unitary matrix so that

{pj}Rj=1 s.t.

R
∑

j=1

pj = 1.

At each instance, a noisy unitary matrix Unoisy is generated

Unoisy = UUrand, Urand ∈ {Uj}Rj=1 (9)



Fig. 2: An overview of reinforcement learning.

with probability pr. Additionally, we add a parameter ϵ that

tunes the strength of Urand. In this paper, we use incoherent

errors to model faulty steering operators Ui.

D. Machine Learning Algorithms

Machine learning (ML) algorithms have received consid-

erable attention for various domains in recent years due to

their scalability in handling tasks [37]. Broadly speaking,

ML algorithms can be categorized into two major types,

supervised and unsupervised learning. Supervised learning

is a type of ML where the algorithm extract features from

ground-truth labeled data, and is often preferred when the

goal is to learn a mapping function from input to output data.

In cases where we have sufficient amount of data available,

supervised learning algorithms can often achieve high levels

of accuracy and performance. However, supervised learning

is not applicable in situations where labeled data is scarce

or expensive to obtain. In these cases, unsupervised learning

is more suitable.

Unsupervised learning is a type of machine learning

where the algorithm learns patterns and relationships from

unlabeled data, without the need for explicit supervision or

guidance from a human. One of the typical unsupervised

learning algorithm is reinforcement learning (RL), which

trains an agent to continuously learn decision-making be-

haviors by interacting with an environment and receiving

feedback rewards, as outlined in Section III-E. This self-

learning nature enables RL to perform well in scenarios

where it is difficult or impractical to provide sufficient

amount of labeled training data. Another advantage of RL

is interpretability and explainability. Because the algorithm

is trained in an iterative “feedback and update” manner, it is

often easier to understand why the RL model is making its

predictions and how the model gradually keeps improving

itself. However, RL requires continuously adapting and

improving itself over time. In this way, RL is relatively less

stable compared to supervised learning algorithms, and is

often hard to train for applications where the environment

is noisy or highly unpredictable.

E. Unsupervised Reinforcement Learning

A key challenge in feedback-based passive steering boils

down to finding a suitable unitary matrix U as the operator.

To address this challenge, Reinforcement Learning (RL) is

applied to our framework. RL has emerged as a promising

approach to excavate optimal solution in a large problem

space, as demonstrated by its successful application in

various domains [38]–[40]. RL is more similar to human

learning, where acquisition process involves exploration,

trial and error, and feedback from the environment, which

gradually teaches human the policies of interacting with the

world. Similarly, RL algorithms learn to discover optimal

strategies by constantly adjusting the ML model’s behavior

based on feedback from the environment, through a series

of attempts and iterations. An overview of RL framework

is shown in Figure 2. It consists of five core components:

Agent, Environment, Action, State and Reward.

The agent is the entity responsible for making decisions

and taking actions in the environment. In the context of

optimization problems, an agent can be viewed as a set of

test initials to be optimized. The environment is the system

that the agent interacts with. For example, the environment

typically refers to the objective function that needs to be

optimized. An action is a particular decision or choice made

by the agent that affects the environment. For example, an

action could correspond to mutating a particular set of input

parameters to evaluate the objective function. A state is a

description of the environment that is perceived by the agent.

For example, a state could include information about the

current status of the entire system, as well as any other

relevant variables or parameters. The reward is a feedback

signal from the environment that reflects the effect of the

agent’s latest action. For example, the reward is typically

defined as the improvement in the objective function after

applying the current set of input parameters. The goal of

the agent is to maximize the expected reward over time, by

learning to select actions that lead to better performance.

IV. FEEDBACK-BASED STEERING PROTOCOL

In this section we outline the two strategies for intro-

ducing feedback into the steering protocol, with the goal

of noise resilience. The first strategy is to consider active

steering, and allow changes in the steering operator based

on the previous history of readouts from the detector. We

formulate this as an optimization problem, where a classical

computer must derive the optimal steering operators at each

step: gradient-based active steering. The second strategy

seeks to improve the previously studied passive steering

[17], [21] where the detector readouts are ignored and the

steering operators remain fixed. We add feedback by con-

sidering the final fidelity of the system state, and modify the

steering operator via a reinforcement learning: reinforcement

learning passive steering.

A. Gradient-based Active Steering

As introduced in Section II-B, the active steering protocol

consists of a detector-system that is coupled via a parame-

terized unitary evolution U i
¹ with parameters ¹ (Equation 5)

and at a step i. Measurements are conducted on the detector,

which produces readout outcomes ri and resulting in a

backaction on the system. The act of measurement may be



(a) Visualization of the simplest case of active steering, where after
the first measurement an adjustment is made so that the desired
state will always be reached after the second measurement. The
illustration shows the first Bloch sphere in a random initial state.
A measurement is conducted on the detector (not shown) with two
possible outcomes. The result of this measurement is used to devise
a new coupling and measurement operation which always leads to
the same final state.

(b) Each node represents an application of a coupling unitary
followed by a measurement on the detector (not shown). The edges
represent the readout result of measurement (0/1) along with the
associated probability. The color of an edge represents the fidelity
of the system with respect to a desired target state. A histogram is
shown with a cumulative probability distribution of all trajectories.
In this example, with 3 measurements the system goes from an
arbitrary initial state to our desired target state.

Fig. 3: The evolution of a quantum system subject to the

gradient-based active feedback strategy.

defined in terms of a projection operator Πr, and will result

in a conditional system state

Äi+1
s =

{

Trd[Π0Äd−sΠ0/p0], p0 = Tr[Äd−sΠ0]

Trd[Π1Äd−sΠ1/p1], p1 = Tr[Äd−sΠ1]
(10)

where detector readouts are a 0 or a 1 with probability p0
and p1, respectively.

Our goal is to select Ui, and utilize them as a feedback

mechanism such that given path will steer to a desired

state. Specifically, in the context of quantum control, the

control parameters are the unitary coupling operators that

are applied at different steps, and depend on all previous

readout outcomes which we utilize to provide feedback,

U i
¹(rn, rn−1, . . . , r1). (11)

For the ease of illustration, we simplify the notation to

denote U j
¹ (r) to refer to the operator being dependent on

all readout outcomes up to rj . These feedback control

are differentiable, depending on parameters ¹, which may

be optimized via gradient-based optimization techniques.

Although the first unitary U1 does not depend on any pre-

vious readouts, it can still be optimized. Note that although

the unitary operators are differentiable with respect to the

parameters ¹, their dependence on measurement readouts

requires extra care. The key insight is to note that the

measurements are not conducted on the system, but rather

on the detector. Furthermore, the probabilities of different

readout outcomes depend on all the previously applied

unitary operators which is carried the evolution of detector

state. To account for this dependence, the evaluations of

gradients with respect to ¹ is done by summing all readout

paths. Therefore, when a gradient is computed with respect

to ¹, it also accounts for the dependency on the probability

that arises from the application of the first unitary and

measurement of the detector, U0
¹ (Ä

0
S ¹ |0ð ï0|)U0†

¹ .

Our goal is to minimize the overall cumulative error

J , which is referred to as the cost. In our case, the cost

is defined in terms of the final fidelity of our system

with respect target state. Hence, for a given sequence of

measurement readouts, we define

J (r) = 1− ïÈ·| Äns (r) |È·ð (12)

where ÄnS is the final system state after applying n-

repetitions of the protocol and which is dependent on all

prior readouts. As described previously, to account for all

readout paths, the cost is defined as a sum

ïJ ðr =
∑

r

Pn(r)J (Äns ) (13)

where Pn(r) is the cumulative probability of the path

defined through previous readouts r and for the iteration n.

In other words, the cost is a sum of all final fidelities (step n)

for all possibles sequences of readout outcomes. As we take

the gradient with respect to the parameters ¹, we note that

the derivative does not act on the cumulative probabilities

Pn(r). This is due to the protocol being independent to the

initial states Ä0s. Therefore, the gradient simply defined as

∂ ïJ (r)ðr
∂¹

=

〈

∂J (r)

∂¹

〉

r

. (14)

In general, the evaluation of the gradient with respect to

parameters ¹ can be done in two ways: using the analytical

expression to obtain expressions for the gradients that may

be evaluated numerically, or using automatic differentiation.

We opt to implement gradient evaluation via automatic

differentiation frameworks. This approach is particularly

useful when the time evolution described by U can consist

of many building blocks, such as a parameterized quantum

circuit.

1) Example: Single-Qubit State Preparation: In the sim-

plest case, we assume a qubit is coupled with a detector. An

example quantum trajectory of the qubit is shown Figure 3a

and Figure 3b for preparing a superposition state

|È·ð =
1√
2
(|0ð+ |1ð) . (15)



(a) The quantum trajectories produced
via measurements of the detector.
Each node shows the fidelity of the
two-qubit state for the desired

∣
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.

(b) The landscape along a
two-dimensional slice of
the parameter space (three
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(c) The density matrix of the two-qubit system, Äs in the Bell basis
as a colormap (absolute value of the matrix elements.) Än=0

s is a
randomly-chosen initial state and Än=2

s is the final state for all
four possible outcomes in (a). The two intermediate states in (a)
correspond to Än=1

s , sharing low overlap with the desired Bell state.

Fig. 4: Preparing a two-qubit Bell state, |È·ð = |Φ+ð = (|00ð+ |11ð)/
√
2, via feedback-based steering. The detector (not

shown) is a 2-level system that couples with two qubits. In two steps (N = 2), resulting in 3 steering operators (dimension

8× 8), the protocol was able to prepare the target state.

While it is possible to prepare the state in one iteration

(N = 1), we will later show that this is susceptible to

noise as this is equivalent to passive steering (no feedback is

possible). Figure 3a shows the next simplest case (N = 2)

by visualizing the qubit’s state on the Bloch sphere. Fig-

ure 3b now shows the convergence of state fidelity using

three measurements (N = 3).

2) Example: Two-qubit State Preparation: To illustrate

the effectiveness of the protocol, we consider a system

consisting of two qubits. While the number of detectors

required in the passive protocol is three [17], we are able to

use a single detector to prepare an arbitrary two-qubit state.

The noiseless results for the two-qubit steering are shown

in Figure 4. The protocol was able to prepare a specific

entangled state starting from a random initial state. The

density matrix elements given with respect to the Bell basis:

|Φ+ð = (|00ð+|11ð)/
√
2, |Φ−ð = (|00ð+|11ð)/

√
2, |Ψ+ð =

(|01ð+|10ð)/
√
2, |Φ−ð = (|01ð−|10ð)/

√
2. At the final iter-

ation, the matrix elements spanned by {|Φ−ð , |Ψ+ð , |Ψ−ð}
have zero value, while the element spanned by our desired

target state |È·ð = |Φ+ð is unity.

B. Reinforcement Learning Passive Steering

Based on the challenges and workflow discussed in

Section III-E, we propose a learning paradigm shown in

Figure 5 to map the objects in quantum steering onto

the five key components of reinforcement learning: agent,

environment, action, and reward. The agent, which interacts

with the environment, is chosen as the Euler angles used

to compose the operator unitary matrix U . The environment

is represented as the entire quantum system that receives

the composed operator U to perform quantum steering.

The state values record all the basic information of the

interaction between the current operator U and the quantum

system to evaluate the reward computation.

The action space is defined as all possible mutations

to the Euler angles, which produce an updated U that is

subsequently applied to the steering simulation. The reward-

based optimization step enables the reinforcement learning

Fig. 5: The reinforcement learning based U generator.

model to learn a sophisticated strategy to update initial

operators. However, the vast action space of Euler angles,

which is encoded as a vector of real number, makes it

impractical for encoding and simulation. To address this

challenge, we assign a Gaussian distribution to each of the

entrees. This produces the offset to the current entrees, and

the action is chosen randomly at each step based on the

parameterized distribution. This guarantees the coverage of

all possible actions. Moreover, the expectation of the current

can be precisely computed, making it possible to apply

policy gradient to optimize the parameters (µi, Ãi) during

the training phase.

The reward is the most important feedback information

from the environment that describes the effect of the latest

action. It often refers to the benefit of performing the current

operation. In our framework, we apply policy gradient, a

stochastic approach, to compute and optimize the reward

evaluation. To achieve this, the policy is represented by a

function, denoted as Ã¹(a|s), where s denotes the state and

a denotes the action. The parameter ¹ represents the policy

function. Ã¹(a|s) is the probability of selecting action a
given the state s. The objective function, which is dependent

on the policy, determines the value of the reward. Gradient

descent is applied to optimize ¹ and achieve the best reward.

The complete reward function is defined as:

J(¹) =
∑

s∈S

dÃ(s)
∑

a∈A

Ã¹(a|s)QÃ(s, a)

S and A denote the sets of all states and actions, re-

spectively. dÃ(s) represents the stationary distribution of

Markov chain for the policy function Ã¹, which is the

on-policy state distribution under Ã. This implies that the



reinforcement learning model continuously travels along

the Markov chain’s states until it eventually reaches a

steady state probability distribution. Formally, this can be

expressed as dÃ(s) = limt→∞P (st = s|s0, Ã¹). QÃ(s, a)
represents the one-step reward. In this work, temporary

Euler angles are applied to manipulate quantum steering for

several iterations, and the improvement in terms of fidelity

is recorded as the Q value. However, the sets S and A
are uncountable, and it is also impossible to run infinite

iterations to obtain an accurate value for dÃ . Therefore, we

approximate dÃ(s) by applying the current policy for ten

iterations, i.e., dÃ(s) = P (s10 = s|s0, Ã¹). According to

the policy gradient theorem [41], the gradient computation

can be expressed as:

∇J(¹) = ∇
∑

s∈S

dÃ(s)
∑

a∈A

Ã¹(a|s)QÃ(s, a) (16)

∝
∑

s∈S

dÃ(s)
∑

a∈A

∇Ã¹(a|s)QÃ(s, a) (17)

Since we are using Gaussian distributions to ma-

nipulate the Euler angles, ¹ in our case is G =
N1(µ1, Ã1),N2(µ2, Ã2), ...,N15(µ15, Ã15). In this context,

the action involves adding an offset ϵ to the corresponding

Euler angle entry. This can be expressed as:

∇Ã¹(a|s) = ∇ÃG(s+ {ϵi}|s), ϵi ∼ Ni(µi, Ãi)

In actual computation, we apply logarithmic loss for the ease

of computation, and by putting all these together, the policy

gradient computation can be accommodated as following

formula in our case:

∇J(¹) =EÃ[Q
Ã(s, a)∇G ln(ÃG(s+ {ϵi}|s))] (18)

ϵi ∼ Ni(µi, Ãi), i = 1, 2, ..., 15 (19)

and the overall training process of proposed RL model is

presented in Algorithm 1.

Algorithm 1: RL Training Process

Input : System Qubit (S), ancilla detector (D)

Model Parameter (G),number of epochs (k)
Output: Optimal Model Parameter G∗

1 Initialize S,D,G, k, learning rate ³, decay ratio µ
2 Initialize random Euler angles E
3 i = j = 0
4 repeat

5 Initialize Reward: R = 0
6 E = act(E , G)

7 U = createUnitary(E)
8 repeat

9 fidelity = Simulate(S, D, E)

10 R′ = R′ + µ · (1− fidelity)
11 until j g 10;

12 R = R+R′

13 Update parameter : G = G + ³∇¹J(R)
14 until i g k;

15 Return G

In summary, we described two complementary strategies

for active steering in this section: gradient-based and re-

inforcement learning. The choice of the strategy depends

on the specific configuration and the availability of labeled

data. If labeled data (Euler angles-fidelity mappings) is

available, then gradient-based method is beneficial due to

the high stability and resistance towards noise. However, if

labeled data is scarce or non-existent, or if interpretability is

important, then reinforcement learning is more appropriate.

V. EXPERIMENTS

In this section, we evaluate our gradient-based active

steering (GB + Active) strategy and our reinforcement

learning (RL + Passive) strategy for preparing quantum

states under different noise assumptions.

A. Experimental Setup

The experimental setup involves the use of Qiskit,

an open-source quantum computing software development

framework, along with a custom Julia library for perform-

ing gradient-based optimization of feedback-based quantum

steering. We implement noise models in our custom library

as well as in Qiskit for reinforcement learning. Our cus-

tom library is open-source [42], and utilizes Tullio’s [43]

flexible Einstein notation to perform operations on tensors

while simultaneously providing gradients using automatic

differentiation. The objective is to optimize the parameters

of steering protocol using quasi-Newton methods, namely

limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-

rithm [44], to maximize the fidelity of obtaining a specific

target state while considering the effects of noise. Our free

parameter is the number of iterations N of the protocol.

Therefore, for each N , we find an optimal solution for all

steering operators.

The reinforcement learning model in our approach was

conducted on a host machine with Intel i7 3.70GHz CPU, 32

GB RAM and RTX 3090 256-bit GPU. We choose Python

code using PyTorch with cudatoolkit (10.0) to implement

the machine learning framework. The total training process

consisted of 500 epochs.

We investigate the performance of a feedback-based steer-

ing protocol for preparing an arbitrary target state of a qubit

coupled to a detector. The protocol involves a closed-loop

control technique that utilizes feedback to steer the system

towards the target state. Specifically, we consider a detector

that is coupled to the system – a qubit or two-qubits – and

employ our two strategies for closed-loop control technique:

gradient-based active steering that changes the detector-

system coupling after each measurement, and tuning the

fixed detector-system coupling via model-free reinforcement

learning passive steering. We demonstrate the results of the

approaches on decoherent and incoherent noise models.

B. Decoherent Noise on the Detector

In this model, we assume that the detector can not

be initialized to a perfect pure state |0ð, as discussed in



Fig. 6: The fidelity landscape with respect to a two-dimensional slice of the parameter space. Gradient-based optimization

must find the global maxima of the fidelity landscape in order to determine the optimal values for the parameters. The

fidelity landscape provides insights into the sensitivity of the system to changes in the parameters. Namely, the feedback-

based steering protocol is locally stable, containing a range of parameters that yield high fidelity. While locally stable,

the addition of noise introduces islands of local maximas.

Fig. 7: The average fidelity of the gradient-based active

steering versus reinforcement learning passive steering in the

presence of faulty detector initialization. The depolarizing

error for the detector initialization is fixed to p = 0.2. The

reinforcement learning protocol incorrectly converges to a

fidelity of 89% while the gradient-based protocol converges

to 96% in 10 iterations. Each color line indicates an experi-

ment performed with a specific number of iterations N . The

error bars are taken from 100 samples of each experiment.

Section II-B. Instead, the detector is assumed to undergo

decoherence, and will be in a mixed state. The extent of

noise is parameterized by p, as defined in Equation 8.

We found that the gradient-based active steering was able

to overcome a faulty detector and achieve high fidelity

over longer iterations. This was achieved by optimizing the

steering operator based on feedback information obtained

from noisy measurements. As shown in Figure 7, as the

number of iterations increased, the protocol was able to

refine the steering operator further, resulting in 96% fidelity

in 10 iterations of the protocol. In comparison, the reinforce-

ment learning passive steering plateaued at 89% fidelity. The

optimizer attempts to minimize entropy from the composite

system as a result of a mixed detector state via gates that

have high entanglement power, as shown in Figure 8a.

In contrast, the reinforcement learning strategy was not

able to extract the entropy and obtain lower fidelity. This

is because the steering operator remained fixed (passive)

with each iteration, and the reinforcement learning algorithm

has no mechanism to modify it to account for the noise. In

other words, because the system state is an average of all

readout outcomes, the entropy remains fixed. Meanwhile,

the gradient-based active steering can optimize each operator

and produce an outcome that one quantum trajectory occurs

with high probability, whereas the unwanted entropy is

spread across the remaining low-probability trajectories.

Our results demonstrate the effectiveness of feedback-based

strategies in quantum systems, as they can adapt and opti-

mize in real-time to overcome various sources of noise and

errors. This has important implications for the development

of quantum technologies, as it provides a way to mitigate

the effects of noise and errors in real-time, improving the

reliability and robustness of quantum devices.

C. Incoherent Noise

In addition to investigating the protocol’s effectiveness

in overcoming decoherent noise on the detector, we also

tested its ability to handle incoherent noise. Specifically,

we assumed the steering operator was perturbed with a

randomly noisy unitary selected from a fixed set, as outlined

in Equation 9. We tested the protocol on different strengths

of noise. Figure 6 shows a two-dimensional slice of the

landscape corresponding to different noise strengths that

the gradient-based optimizer needs to traverse. From the

landscape we note two key properties: (1) the protocol is

resilient to small perturbations to the steering unitaries – in

other words, a quantum device has leeway in implementing

a unitary operator; (2) an increase in incoherent noise

strength, corresponds to a growth in the number of local

minima and maxima, which lowers the extent of perturbation

resilience. Figure 9 shows that the feedback-based steering

protocol is able to achieve high fidelity even in the presence

of incoherent noise. Even with an increase of noise, the

protocol was able to reach and maintain a high fidelity of

99%. In comparison, reinforcement learning passive steering

obtains significantly lower fidelity and with high variance.

The gradient-based active steering protocol’s effectiveness

in handling incoherent noise is due to its ability to adapt and

optimize the steering operator based on feedback informa-

tion obtained from the noisy measurements. By adjusting the

steering operator in real-time to account for the perturbations
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(c) Incoherent gate noise (ϵ = 0.5)

Fig. 8: Weyl chambers representing the non-local parts of the optimized steering operators Ui under different noise

parameters. The number of iterations in the protocol is fixed to N = 5. The color of each gate represents its entanglement

power which is related to the coordinates in the Weyl chamber [45]. In the presence of decoherence, majority of the

gates require high amounts of entanglement power as the protocol attempts to dispel the entropy from composite detector-

system. The gates in the presence of incoherent noise require less entanglement power, as the entropy of the composite

detector-system remains fixed (but changes for the system). For higher noise levels, the variation in the gates, and the

entanglement power, increases.

Fig. 9: Resilience of feedback-based steering in the presence

of incoherent gate noise. Each steering operator is perturbed

by a unitary that is randomly selected from a discrete set

of unitary operators. The strength of the perturbation is

given in terms of ϵ. Each color line indicates an experiment

performed with a specific number of iterations N . The error

bars are taken from 100 samples of each experiment. With

a sufficient number of iterations, the protocol is able to

overcome the noise and approaches a state fidelity 99%.

At lower noise strengths, the protocol achieves higher state

fidelity in fewer iterations. Meanwhile, the reinforcement

learning passive steering approach is unable to reach a

suitable average fidelity and suffers from fidelity variation

that scales with the strength of noise.

introduced by the incoherent noise, the protocol was able

to mitigate its effects and maintain high final fidelity. In

particular, the protocol converges to the desired target state

with low variance. Figure 8b and Figure 8c shows the gates

in the Weyl chamber. At low noise levels, the majority of

gates are perfect entanglers. At higher noise levels, the gates

tend to spread across the Weyl chamber, necessitating a

variety of entanglement operations. Unlike in the decoherent

case, high entangling power gates are minimal. We note that

it may be difficult to achieve certain types of entangling

gates on noisy devices. But, a trade-off may be made by

penalizing unwanted gates in the loss function.

VI. CONCLUSION

In this work, we have introduced a framework for

feedback-based steering, featuring two primary strategies:

gradient-based optimization and reinforcement learning.

These methods optimize the detector-system coupling, such

that the system is steered toward desired state due to

the measurement backaction of the detector. Our findings

indicate that gradient-based active steering is an effective

approach for state preparation in quantum systems, even

in the presence of noisy measurements and incoherent

noise. This insight holds significant implications for the

advancement of quantum technologies, as it offers a robust

control mechanism for contemporary quantum architectures.

The active steering strategy necessitates substantial com-

putational resources for higher-dimensional systems. In con-

trast, reinforcement learning-based passive steering is capa-

ble of learning a specific objective with limited resources.

However, it achieves lower fidelity under the influence

of noise, underscoring the importance of incorporating an

active mechanism to modify the detector-system coupling.

We emphasize the need for future research to investigate

and integrate both algorithms, leveraging their respective

strengths as outlined in this paper. Our research lays a solid

groundwork for feedback-based steering and highlights its

potential in preparing quantum states amidst noise.
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