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Abstract—Network-on-Chip (NoC) is responsible for managing
communication in modern SoCs. The ubiquity of NoC and
its distributed nature across the chip has made it a focal
point of attacks. Spoofing attacks by impersonating the nodes
in SoC can lead to unauthorized information access and can
also be employed to launch denial of service attacks. Modern
software tends to use more parallelism among multiple cores,
increasing multicast communication among cores to exchange
cache coherence messages. Traditional multicast authentication
solutions are not effective due to the resource-constrained nature
of NoC-based SoCs. In this paper, we propose a lightweight
multicast authentication mechanism that utilizes existing unicast
authentication infrastructures in NoC using one-way accumula-
tors. Experimental results demonstrate the effectiveness of our
approach with required security while incurring minor area and
performance overhead.

Index Terms—Multicast Communication, Network-on-Chip,
Security, Authentication

I. INTRODUCTION

The advancement of manufacturing technologies has en-

abled the integration of more and more diverse intellectual

property (IP) cores on the same System-on-Chip (SoC). Mul-

tiprocessor SoC (MPSoC) is dominated by a large number of

computing cores that support parallel computation and muti-

programming workloads. Commercial MPSoC such as Altra®

multicore server processor has 128 cores [1]. Network-on-

chip (NoC) has become the de facto standard in providing

communication infrastructure among these core MPSoCs to

eliminate communication bottlenecks. For example, leading

MPSoC manufacturing companies such as Intel use Skylake

Mesh [2] NoC in server-grade processors. In a typical MPSoC,

NoC is mainly used for communicating cache coherence

and other control messages between processors and memory

subsystems.

Due to the steady increase in the number of cores in

MPSoC, parallel programming has become a viable option

for performance improvement in applications that can exploit

parallelism. Therefore, modern programs and compiler opti-

mizations are designed to exploit the parallelism provided by

multiple cores. This trend is expected to improve over time [3].

Parallel workloads lead to increased one-to-many (multicast)

communication inside MPSoCs. Multicast communication in

NoC can be used in replication, barrier synchronization, cache

coherency in distributed shared caches, and clock synchroniza-

tion [4].

When considering cache coherence, the intensity of one-to-

many communication in NoC depends on the specific cache

coherence protocol. For example, the MESI directory-based

cache coherence protocol has 5 - 13% multicast traffic when

running SPLASH2 and PARSEC benchmarks [5]. Similarly,

the multicast ratio can increase over 50% for broadcast-based

protocols [6]. It is important to note that multicast intensity is

expected to increase further with the increase in parallelisms in

programs. Traditionally, NoC treats multicast traffic patterns as

repeated unicast traffic, which is known as software multicast.

Software multicast can lead to hostspots and performance

bottleneck in NoCs. Consider a simple example to understand

the implications. Assume that there are only 5% multicast

messages with 10 destinations of 100 total messages. If

software-multicast is used there will be 95 unicast packets

and 50 software-unicast packets. Therefore, software-unicast is

not a scalable solution for multicast communication in NoC.

A multitude of path-based and tree-based multicast routing

schemes [7], [8], [9] are proposed in the literature for efficient

multicast communication in NoC. Figure 1 illustrates XY tree-

based multicast routing that is used in this paper.
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Fig. 1: Multicast communication from source (S) to three

destinations (D1, D2, D3). Multicast packets follow the same

path according to XY protocol and branch out when necessary.

Due to cost and time-to-market constraints, it has become

an industry norm to use third-party Intellectual Property (IP)

blocks in designing SoCs. These third-party IPs pose security

concerns as they can come with malicious implants, hidden

backdoors, and undocumented bugs. Additionally, long supply

chains and potentially untrusted vendors can increase security

concerns in SoC. Since NoC has access to all the components

in SoC, it has become the focal point of the attackers. Ensuring

authenticity against spoofing attacks is recognized as one of

the critical security concerns in NoC [10]. In a spoofing attack,

a malicious node can impersonate another node to violate the

security of SoC. Though there are existing lightweight unicast



security solutions [11], [12], [13] for authentication, they

cannot be applied for multicast communication since they use

shared keys or secret between source and destination. On the

other hand, the existing multicast authentication solutions from

traditional computer networks are not suitable for resource-

constrained NoCs.

This paper tries to answer the following question: Is there

a way to provide lightweight multicast packet authentication

in resource-constrained NoCs? Specifically, this paper makes

the following research contributions.

• We propose a lightweight multicast authentication scheme

that utilizes the existing unicast authentication infrastruc-

ture in NoC.

• We show that our multicast authentication scheme can

provide the desired level of security.

• Our multicast authentication can also provide reconfig-

urable security.

• Experimental results demonstrate that our proposed mul-

ticast authentication scheme has minimal performance

and area overhead.

The rest of the paper is organized as follows. Section II

presents background on hashing-based authentication and

surveys the related efforts. Section III outlines the threat

model and provides the problem formulation. Section IV

describes our proposed lightweight multicast authentication

scheme. Section V presents the experimental results. Finally,

Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce one-way accumulator as a

cryptographic primitive and outline a scheme for fast one-way

accumulation. Next, we survey prior efforts related to NoC

security.

A. Fast One-way Accumulator

One-way accumulator was proposed as an alternative to

digital signature by [14]. In accumulated hashing, items are

combined and hashed to generate a unique hash code, where

individual items can prove their membership in the accu-

mulated hash code. A one-way accumulator is a one-way

hash function with the quasi-commutative property. A function

f : A × B → A is said to be quasi-commutative if for all

a ∈ A, and for all b, c ∈ B:

f(f(a, b), c) = f(f(a, c), b) (1)

Simply, the order of accumulation of the items does not

affect the final outcome. The value a is considered as the

seed. Nyberg [15] defined a fast way of doing accumulated

hashing which is elaborated in the rest of the section.

Let N = 2d be the upper bound of the number of

possible accumulated items. Then h : {0, 1}∗ → {0, 1}l be a

cryptographically secure hash function that has the tag length

of l = rd, where r is an integer representing the length of the

accumulated hash value. So if X = x1, . . . , xm be the items

to be accumulated (m f N).

yi = h(xi), i = 1 . . .m

Define αr : {0, 1}l → {0, 1}r. αr takes a input of length

l and interpret as r of sub-strings of d. Then it will replace

every all zero bit-strings with 0 and others with 1. So if we take

yi from y1, . . . , ym, yi is represented as yi = (yi,1, . . . , yi,r).
Then for each yij , if yij = {0}d it is replaced by 0, or 1
otherwise. The resultant r length bit-string is the output of αr

which can be expressed as ai = (ai,1, . . . , ai,r).
The fast accumulation [15] can be mathematically repre-

sented as follows, where s is the seed, » is the bitwise and

operator and
∏

represent bitwise prod operator:

Tg = H(s,X) = s»

m
∏

i=1

αr(h(xi)) (2)

Since the bitwise operator is commutative and the hash func-

tion has the property of one-wayness, H is quasi-commutative.

Verification of membership of item xi using the accumulated

hash is straightforward. We need to calculate ai of an item

i as ai = αr(h(xi)). Then, check whether ai » H(s,X) =
H(s,X) to see if the item xi is in the accumulated hash.

The security of the accumulator depends on the ability of

an adversary to forge a single accumulated value (ai) of an

item i. The security is compromised when forged ai passes

an item from membership validation. For a security level t,
the length of the accumulated hash r = N × e × t, where

e is the Napier’s number. Our proposed modification of the

fast accumulator for multicast authentication needs a different

security guarantee discussed in Section IV-A.

B. Related Work

Security of NoC has been extensively studied across dif-

ferent security goals (confidentiality, authenticity, integrity,

anonymity and freshness) due to the evolving threat landscape

in SoCs [10]. Malicious NoC is a common threat model seen

across many types of attacks [13], [16], [17], [18], [19], [20]

since most SoC tend to use third-party NoC IPs. For example,

the threat model in [13] assumes that NoC IP is malicious.

Specifically, there are malicious routers that can eavesdrop,

tamper packets and impersonate other nodes in SoC. Malicious

routers have been used as a threat model in [16], [17] to

launch denial of service (DoS) attacks using packet tampering

and flooding. In [16], the authors introduced four types of

hardware Trojans (HT) in the router, which can change header

bits including address to launch spoofing attacks.

Several efforts have been made to secure NoC traffic against

spoofing or node impersonating attacks. The solution for con-

fidentiality with authenticated encryption provides protection

against spoofing attacks through authentication [11], [12], [13],

[21]. For example, [13] uses Siphash [22] for authentication

which is a lightweight and fast hash function well suited

for short inputs and is an ideal candidate for NoC-based

SoCs. SipHash iteratively performs a series of add, rotation,

and XOR operations to achieve fast MAC computation for

short messages. It can introduce hardware overhead of 2%

when compared to the entire baseline MPSoC. We assume

that Siphash authentication is implemented in each network

interface of the node. All of these solutions on authenticity



depend on a pre-shared secret (key) shared between two

communicating parties, which is suitable for unicast traffic

with one sender and receiver. Any of these solutions cannot

be directly applied on multicast communication because there

are multiple receivers.

Several efforts can be found in traditional computer net-

works to authenticate multicast traffic. Public key cryptog-

raphy [23] has the natural asymmetric property that can be

utilized for multicast authentication. Here, the sender can send

an authentication tag by signing with the private key and

receivers can use the public key to verify the authenticity.

Although this method provides adequate security, it is not suit-

able for resource-constrained NoC. Several group key-based

protocols [24] are proposed in traditional networks where a key

is shared between the multicast group to generate a message

authentication code. The main issue with this approach is it

uses a weaker threat model where the members of the group

are trusted. An adversary inside the group can easily imperson-

ate another member in the group using the shared key. A MAC

for each recipient is another approach used for trivial multicast

authentication which has high communication overhead due

to long packet sizes. µ-TESLA [25] is a lightweight multicast

authentication scheme that uses hash-chains, but the delayed

verification of this scheme makes it vulnerable to multitudes of

attacks [26], [27], including DoS. An HMAC-based multicast

authentication scheme is proposed in [28], which accumulates

HMAC tags of all receivers to create the final tag. However,

usage of HMAC makes it computationally intensive for NoC.

To the best of our knowledge, our proposed approach is the

first attempt in securing multicast communication to ensure

the complete authenticity of NoC traffic.

III. PROBLEM FORMULATION AND THREAT MODEL

In directory-based cache coherence protocols, multicast

messages are responsible for communicating cache invalida-

tion messages. These messages are short control messages that

are sent from the owner of the cache data to all the cores

that are sharing that cache data. Our threat model assumes

the possibility of one of the multiple malicious routers with

HT that can impersonate nodes and send fake invalidation

messages, as shown in Figure 2. These fake invalidation

messages will invalidate cache blocks that are in use by several

nodes, which will result in performance degradation due to

multiple reasons. (1) All the users of the cache blocks need

to send read requests to reacquire the cache blocks, resulting

in increased traffic. (2) Application execution may be halted

due to an invalidated cache block. (3) Traffic hotpots may

happen around the owner of the cache block with simultaneous

requests. Kim et al.[29] shows severe performance degradation

(more than 100%) due to fake cache invalidation requests.

Therefore, authenticating cache invalidation packets is critical.

Our trust model assumes network interface (NI) to be

trustworthy because they are fabricated in-house. A similar

trust model has been used in [17], [16], [13]. Furthermore, we

assume Siphash [22] is available for unicast authentication at

each NI. This Siphash scheme uses the shared key between
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Fig. 2: Fake invalidation message is sent by a malicious router

impersonating cache block owner (S). The shared data in the

cache of D1, D2, and D3 will be invalidated.

the sender and receiver to generate the message authentication

code and then uses the same key to validate the authenticity

of the message. Since the invalidation is sent as a single

multicast message targeting multiple destinations, the existing

authentication scheme cannot be used to authenticate the

origin of the message. This allows a malicious adversary

to send a fake cache invalidation impersonating the actual

owner of the cache block. Section IV describes our proposed

lightweight authentication scheme that utilizes the existing

unicast authentication implementation.

IV. LIGHTWEIGHT MULTICAST AUTHENTICATION

Figure 3 shows an overview of our lightweight muticast

authentication scheme. Our proposed scheme has two major

components: (i) multicast MAC tag generation at sender, and

(ii) multicast tag verification at receiver. The tag generation

and verification procedures are shown in Algorithm 1 and

Algorithm 3, respectively. Table I summarizes the notations

used in these algorithms.

Algorithm 1 Multicast MAC tag generation at sender

1: Input: {M,ks,1 . . . ks,m}
2: Output: multicast authenticated packet

3: Tg ← {1}r

4: for i=1 to m do

5: tag ← siphash(ks,i,M)
6: ltag ← prng(tag)
7: Tg ← Tg » αr(ltag)

8: pkt←M ||Tg
9: Return pkt

Algorithm 1 highlights the major steps at the sender to

generate accumulated MAC Tag (Tg). Tg is initialized to the

’1’s of length r. This is to ensure that it will adhere to the

upper bound on a number of zeros to make multicast MAC

tag unforgeable, which is elaborated in section IV-A. Lines

5-7 show steps to be conducted targeting each receiver of

the multicast packet. There are m number of receivers where
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Fig. 3: Overview of our proposed lightweight multicast authentication. It consists of two major components: (i) tag generation

by source(S) and (ii) verification by one of the multicast destinations (Di). Both tag generation and verification are implemented

in the network interface of the sender and receivers.

m f N . First, MAC tag is generated by the existing MAC

algorithm for unicast which is Siphash. Siphash is a keyed hash

function, where the sender uses the pre-shared symmetric key

between sender and receiver (kS,D) and the message payload

as inputs to Siphash. This tag is short (64 bits), but the αr

needs a bit sequence of length l = r × d. Therefore, we use

a pseudorandom number generator that will map 64 bit short

MAC to a l length long random bit sequence (line 6). Then

αr function will be applied on to the expanded tag where it

will map it to a bit sequence of length r (line 7).

TABLE I: Table of notations.

» Bitwise and operation
Tg Accumulated Hash/Tag
h Cryptographically secure hash function
s Seed value
N Upper bound of number of items accumulated
M Message payload

ks,i Symmetric key between node s and i

d log2(N)
m number of multicast destinations
r length of Tg

t Desired security level
z Minimum number of 1’s in Tg

prng Pseudorandom number generator
X Set of items to be accumulated
|| Concatenation operator

αr alpha transformation: {0, 1}l → {0, 1}r, r < l

The implementation of αr is described in Algorithm 2,

which is based on the procedure outlined in Section II-A. It

takes the bit-sequence of length l and generates r-length bit-

sequence (α value) of a receiver. First, the bit-string is parsed

as r of d length sub-strings (line 3). Then it will replace every

all zero bit-sub-strings with 0 and others with 1 (lines 5 - 9).

Finally, the α value of the receiver is accumulated to the

Tg by applying bit-wise AND operation (line 7 in Algorithm

1). The generation of the accumulated MAC Tag can be

summarized by modifying Equation 2 as follows.

Tg = {1}r »
m
∏

i=1

αr(prng(siphash(ks,i,M))) (3)

Algorithm 2 Alpha Transformation

1: Input: bit sequence in ∈ {0, 1}l

2: Output: bit sequence out ∈ {0, 1}r

3: Parse in as y1|| . . . ||yr where length(yj) = d
4: out← empty bit sequence

5: for j=1 to r do

6: if yj = {0}
d then

7: out← out||0

8: else

9: out← out||1

10: return out

Equation 3 highlights that we have modified the original

fast accumulation proposed by [15] by replacing the hash

function by using a cryptographically secure hash (Siphash)

and a pseudorandom generator. This allows the modified

accumulation to be used for multicast authentication with

bounds discussed in Section IV-A

Algorithm 3 is used by the receiver to verify the authenticity

of the message using the accumulated MAC tag. First, the

receiver parses the packet to separate out the actual message

payload and the tag (line 3). Then Siphash is applied with

the key between sender and receiver (ks,i) and payload to

generate a short tag (line 4). The short tag is extended to

a long random bit sequence using a pseudorandom number

generator (prng) by providing the short tag as the seed (line

5). Finally, a conditional check is done (line 6) to verify that

the authenticity of the message is from the correct sender. This



Algorithm 3 Multicast MAC tag verification at receiver

1: Input: {pkt, ks,i}
2: Output: authenticity of the packet

3: parse pkt as M ||Tg′

4: tag ← siphash(ks,i,M)
5: ltag ← prng(tag)
6: if αr(ltag)» Tg′ is Tg′ then

7: valid pkt

8: else

9: spoofed pkt

is done by doing bitwise AND between αr(tag) and Tg′ and

then comparing it again with Tg′.

A. Security Analysis

There are some group key-based protocols where a sym-

metric key is shared between a group. They pose a security

threat of using the same key across multiple nodes where

there’s more possibility of key being leaked and a malicious

node inside the group to launch attacks. Therefore, we did not

consider lightweight symmetric group key sharing protocols

for multicast authentication.

If we consider a unicast message authentication code, it

should have the property of unforgery to be secure. If the

hash function is proven to be secure, it cannot be forged.

Since our approach uses a cryptographically secure has func-

tion (siphash), we can rely on the same security properties.

Similarly, since prng uses siphash tag as the seed, the l length

tag cannot be forged. Therefore, we can claim that individual

accumulated hashes cannot be forged. We need to show that

the accumulated hash cannot be forged by an adversary. Since

the validation of the authenticity is done through bitwise AND

operation (»), an attacker can send a forged accumulated

signature with large number of 0s to increase the probability

of the validation. For example, if the actual accumulated hash

is Tg = 11001000, ai is 11101100, and if adversary used all

zero {0}8 as the forged accumulated hash (Tg′), the tag will

be verified because {0}8 » ai = {0}
8. Therefore, we need to

define an upper bound on number of 0s in Tg depending on

the security requirement (t). On the other hand, we need to

define a lower bound on number of 1s to be on a valid Tg.

Assume that the number of ones in the r-length accumulated

hash is z. We can think of the bit composition of the final

accumulated MAC tag as a binomial distribution associated

with two possible outcomes: (1) a bit being 1 and (2) a bit

being 0. We can define discrete random variable Z as the

number of 1’s in the tag Tg. Then the probability of having

z ones in a r-bit long tag is given by the probability mass

function of a binomial distribution:

Pr(Z = z) =

(

r

z

)

pk(1− p)r−z (4)

We can find the probability p by looking at the accumulation

process. Since the probability of ai,j to be 0 after applying αr

is 2−d, Pr(ai,j = 1) = 1 − 2−d. If we consider one bit of

accumulated MAC tag Tgi that accumulates individual MAC

tags for m destinations:

p = Pr(Tgi = 1) = (1− 2−d)m (5)

By substituting probability p to the equation, we get the

probability mass function as follows:

Pr(Z = z) =
(r

z

)

(1− 2−d)m
(

1− (1− 2−d)m
)r−z

(6)

Equation 6 gives the probability of having exactly z 1’s in

tag Tg. Our goal is to find a lower bound on number of 1’s.

Since, the probability of getting z or more 1’s in bit sequence

of Tg is equal to 1 minus the probability of getting z or fewer

1s (1− Pr(Z f z)).

P (Z > z) = 1−

z
∑

i=0

(r

i

)

(1− 2−d)m
(

1− (1− 2−d)m
)r−i

(7)

By examining Equation 7, we can observe that probability

Pr(Z > z) depends on r, d, and m. The discussion in

Section II-A highlights that r depends on security strength

t. For a particular configurations of SoC (NoC size and cache

coherence protocol) of multicast authentication to secure cache

invalidations, we can fix d and m. For example, when using

MESI in a 4 × 4 mesh, the maximum possible m is 8 and d
is 3 [30]. Therefore, the minimum value for z depends on r.

TABLE II: Minimum multicast tag length for increasing

security levels when N = 8.

security
level (t)

Minimum
1s in tag (z)

Minimum
tag length (r)

4 32 128

6 48 196

8 64 262

10 80 330

15 120 500

20 160 672

Now let us focus on the verification of the proposed

authentication scheme in a scenario when Tg′ is a forged MAC

by an adversary. Since the verification now has a lower bound

on number of 1s on Tg′, it cannot have 1s less than min(z).
Let there be z 1s in the final MAC tag. Then the probability

of an arbitrary bit to be 1 on Tg is Pr(Tgj = 1) = z/r. If

we focus on αr calculation of the ith receiver, probability of

ai,j to be 0 after applying αr is 2−d (Pr(ai,j = 0) = 2−d).

If Tg′j » ai,j ̸= Tg′j , the receiver will detect forged MAC.

For a successful forge, the attacker need to avoid this scenario

for all r bits. The probability of doing so can be written as

follows :

Prforge = 1−
(

2−d ×
z

r

)r

=
(

1−
z

N · r

)r

(8)

For any real number, inequality 1+x f ex holds, therefore,

for x = − z
N×r , we deduce that 1− z

N×r f e−z/Nr. By raising

both sides to the power of r, we obtain:
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Prforge =
(

1−
z

N · r

)r

f e−z/N (9)

Now for fixed N and security level t we can calculate q
using Equation 9. Then Equation 7 can be used to calculate

respective r values. Table II shows calculated r and z values

for increasing t values for M = 8.

B. Pipelined Multicast Authentication

The discussion from the previous section highlights that

the length of the long tag after applying prng is relatively

high. For example, when N = 8 and t = 10, the value of l
is 652 bits. Generating long bit sequence takes more cycles

than generating MAC using Siphahsh. Therefore, we use two

prngs working simultaneously in pipelined manner as shown

in Figure 4.

Assume that we need u cycles for generating single unicast

MAC and v cycles for generating long MAC where u < v.

When there are m multicast recipients, this approach will

result in total of mu+v+1 cycles in total for generating multi-

cast MAC tag. A non-pipelined approach will take u+mv+1
cycles.

V. EXPERIMENTS

In this section, we first describe the experimental setup.

Next, we present the results and demonstrate the performance

and overhead of our approach.

A. Experimental Setup

We used the gem5 [31] simulator, which is a cycle-

accurate full system simulator to evaluate our approach.

The “GARNET2.0” model was used as on-chip intercon-

nection model [32]. We modified the network interface (NI)

and routers of gem5 source to simulate the XY-tree based

multicast routing. For securing unicast traffic, we model

SipHash-2-4 [22] which produces a 64bit tag. For pseudo-

random number generator in multicast signature, we model

xoroshiro128+ [33]. Then, the proposed countermeasure was

implemented on the NI of the gem5 source. We modified gar-

net synthetic traffic to generate multicast packets for evaluating

our approach on synthetic traffic. Multiple benchmarks from

SPLASH-2 and PARSEC benchmarks were run as applications

to capture performance on actual traffic. The configuration

parameters used in our experiments are outlined in Table III.

TABLE III: gem5 configuration parameters.

Synthetic traffic configuration

Topology 4 x 4 mesh

Packet length
unicast : 1 flit and 5 flits
multicat : 1 flit

Multicast ratio 10%

Multicast destination count 4-8 (uniformly random)

No. of nodes 16

Vnets
0: 1 flit multicast, 1: 1 flit unicast
2: 5 flit unicast

Full System Configuration

Cahe Coherence protocol MESI Two Level

Topology 4 x 4 mesh

No. of directories 16

Core frequency 2GHz

Instruction Set Architecture x86

L1 Cache (I & D) 16KB

L2 Cache 256KB

The configurations were carefully chosen considering real

multicast traffic characterization by [30]. For example, in 4x4

mesh, the destinations per multicast message in directory-

based coherence vary between 2 and 8. We compare our

approach (MulAuth) against two scenarios:

• No-MulAuth: NoC without supporting authentication of

multicast packets. Note that unicast authentication uses

Siphash 2-4 algorithm.

• Pub-MulAuth: Since there are no previous efforts of

multicast authentication on NoC, we compare it with tra-

ditional public/private key multicast authentication. Here,

multicast packets are authenticated with private key and

validated with public key.

To evaluate the area overhead of our approach, we synthe-

sized the network interface with proposed multicast authenti-

cation using Synopsys Design Compiler with ASAP7nm [34]

library.

B. Performance Analysis

Figure 5 shows normalized packet latency for increasing

packet injection rates when 10% of the total packets are multi-

cast packets. The packet latencies are normalized against Pub-

MulAuth packet latencies. For MulAuth, we fixed the security

level to be 10 (t = 10). Our lightweight multicast authen-

tication scheme incurs significantly less overhead compared

to public key multicast authentication. For example, at packet

injection rate 0.001 multicast authentication scheme introduces
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Fig. 5: Comparison of normalized average packet latency

across increasing packet injection rates for synthetic traffic.

performance overhead of 0.7x while traditional public key

multicast results in 15x performance overhead compared to

no authentication on multicast packets. At higher injection

rate of 0.1, our approach incurs relatively high overhead (1.4x

times compared to no authentication) due to buffering of the

multicast authentication process. At the same injection rate

(0.1), traditional public key authentication incurs overhead of

≈ 400x times.

We evaluated our approach across multiple benchmarks

of SPLASH-2 and PARSEC, namely, Blacksholes, Barnes,

Raytrace, and fft. Figure 6 shows normalized average packet

latency across the benchmarks for No-MulAuth, MulAuth,

and Pub-MulAuth scenarios. For MulAuth, we fixed the se-

curity level to be 10 (t = 10). The packet latencies are

normalized against Pub-MulAuth packet latencies. It can be

observed that our proposed scheme behaves similarly across

all benchmarks. When benchmarked against an unprotected

multicast traffic scenario, our method exhibits an average

performance overhead of 0.87x across all benchmarks. In

contrast, traditional public key multicast authentication has a

significantly higher average overhead of 17.3x. Synthetic and

real traffic experimental results highlight that our proposed

approach is suitable when multicast authentication is needed

to secure NoC traffic.

Figure 7 shows average packet latency of synthetic traffic

when we increase security of multicast authentication. When

security level increases, the accumulated MAC tag length

(r) increases according to Table II. This results in increase

of packet latency in two ways: (1) prng need to generate

longer bit-streams will incur more cycles, and (2) increase

in r results in more flits per packet resulting in increase of

NoC traffic congestion. This reconfigurability allows security

designer to trade-off between security and performance of the

system considering both threat model of the adversary and

performance requirement.

C. Overhead Analysis

Our approach shows an area overhead of only 2.2% com-

pared to the baseline network interface with unicast authenti-
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Fig. 6: Comparison of normalized average packet latency

across SPLASH-2 and PARSEC benchmarks.
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Fig. 7: Average packet latency across increasing security levels

for 10% multicast packet percentage.

cation. This is because baseline NoC has a network interface

with logic for siphash and key tables. Our approach only needs

additional logic for xoroshiro128+ prng and fast accumulation

which are both lightweight. Therefore, our approach is ideal

for resource-constrained NoC architectures.

VI. CONCLUSION

Network-on-Chip (NoC) is a widely used solution for com-

munication between IP cores in modern SoCs. The ubiquity

of NoC and its distributed nature across the chip has made it

a focal point of attacks. While there are existing solutions for

protecting unicast traffic, they cannot be used for protecting

multicast traffic. Moreover, traditional multicast authentication

solutions can lead to unacceptable performance overhead. In

this paper, we developed a lightweight multicast authentication

scheme by leveraging state-of-the-art unicast authentication

and accumulation techniques. Our approach is configurable

and provides adequate security. Experimental results demon-

strate the effectiveness of our approach with an acceptable area

and performance overhead.
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