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ABSTRACT
Declarative querying is a cornerstone of the success and longevity
of database systems, yet it is challenging for novice learners ac-
customed to di!erent coding paradigms. The transition is further
hampered by a lack of query debugging tools compared to the
plethora available for programming languages. The paper samples
several systems that we build at Duke University to help students
learn and debug database queries. These systems have not only
helped scale up teaching and improve learning, but also inspired
interesting research on databases. Furthermore, with the rise of
generative AI, we argue that there is a heightened need for skills in
scrutinizing and debugging AI-generated queries, and we outline
several ongoing and future work directions aimed at addressing
this challenge.
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1 INTRODUCTION
Relational querying was invented more than half of a century
ago [5]. While other programming languages wax and wane, SQL
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has remained among the most popular languages according to
the latest Stack Over#ow Developer Survey [15]. As database re-
searchers, we take great pride in our tradition of declarative query-
ing. This tradition, which enables automatic optimization, sets data-
base systems apart from others with more imperative style of pro-
gramming. It is arguably the most important feature underpinning
the success and longevity of SQL databases.

However, declarative querying is very much an acquired taste.
Many students struggle to learn to write and debug relational alge-
bra or SQL, because most of them "rst learned to program in more
imperative styles. Besides adjusting to a very di!erent style, stu-
dents also face a lack of tools for learning and debugging relational
queries. Most programming languages have integrated develop-
ment environments with sophisticated debugging support, but we
have yet to see a true debugger for SQL (not counting syntax high-
lighters, autocompleters, or the systems we are currently building).
One challenge lies in the declarative nature of SQL itself, for it is
not even clear how to debug a declarative speci"cation. While we
can trace through and debug a query execution plan, this plan, be-
cause of automatic optimization, may bear little or no resemblance
to the original query. Hence, insights gained through tracing the
execution may not be helpful with "xing semantic errors in the
query.

There is also a sense of urgency in addressing the challenges of
debugging SQL, or in general, an implementation against a declara-
tive speci"cation. In recent years, Generative AI has become better
at coding SQL as well as other languages by leaps and bounds.
Looking forward, rather than writing low-level code that requires
mastering idiosyncrasies of speci"c languages, developing high-
level speci"cations may become a more important task for humans.
On the other hand, despite continued improvement in AI code gen-
eration, there is still no reliable method for vetting the semantic
correctness of complex queries and code. This problem could be
exacerbated in the future, when fewer people might have the same
level of mastery and experience with speci"c languages as today.
While this future may not sound palatable, it is a possibility that
we should not risk overlooking and fail to prepare for. Given the
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declarative tradition of our database community, it stands to reason
that we should be at the forefront in tackling the challenge of how
to prepare our next generation for the future.

In this short paper accompanying a keynote talk at DataEd 2024,
we outline several systems developed at Duke University to address
the challenges outlined above. Collectively they belong to a project
we call HNRQ: Helping Novices Learn and Debug Relational Queries.
We will start with the classroom setting and discuss how to use
small examples to help students see wrong queries (Section 2), and
how to o!er actionable hints to help students "x wrong queries
(Section 3). We will then consider a more general setting where a
correct solution in SQL may not be known in advance, and discuss
our design for a SQL debugger and a vision for verifying query
correctness without assuming knowledge of SQL (Section 4). We
conclude in Section 5 with acknowledgments.

Disclaimers. There is considerable content overlap with [14],
particularly in Section 2, as both [14] and this paper are extended
abstracts for invited talks summarizing collaborative work under
the HNRQ project. This paper is meant to provide an overview
of our work along with some high-level intuitions; for technical
details as well as discussion of related work, please refer to our
previously published papers, cited in this paper.

2 RATEST & CINSGEN: UNDERSTANDING
QUERIES THROUGH EXAMPLES

Every database teacher has faced student questions along these
lines: “Why did you mark my query wrong?” Or, in an era when
we have turned increasingly to automation to cope with exploding
enrollment in computer science classes: “Why did my query fail
the autograder?” Consider the following database schema about
beers, drinkers, bars, and their relationships:
Beer(name, brewer), Drinker(name, address), Bar(name, address),
Likes(drinker, beer), Serves(bar, beer, price),
Frequents(drinker, bar, times_a_week)

Suppose we ask students to write a query to "nd, for each beer Eve
likes, the bar(s) serving it at the highest price. Here is a reference
query 𝐿𝐿 that answers this question correctly:
SELECT DISTINCT S1.beer, S1.bar -- 𝐿𝐿

FROM Likes L, Serves S1
WHERE L.drinker LIKE 'Eve %'
AND L.beer = S1.beer AND NOT EXISTS (SELECT * FROM Serves S2

WHERE S2.beer = S1.beer AND S2.price > S1.price);

A student may write the following incorrect query:
SELECT DISTINCT S1.beer, S1.bar -- 𝐿
FROM Likes L, Serves S1, Serves S2
WHERE L.drinker LIKE 'Eve %'
AND L.beer = S1.beer AND S1.beer = S2.beer AND S1.price >

S2.price;

For each beer Eve likes, this incorrect query 𝐿 "nds the bar not
serving it at the lowest price. For untrained eyes, spotting this
mistake is challenging. An autograder can detect that 𝐿 (𝑀) ω
𝐿𝐿(𝑀) for some test database instance 𝑀 , but debugging on these
instances, even moderately sized ones, can be overwhelming for
students. Imagine what experienced teachers would do: instead of
using the whole test instance𝑀 , they would choose a small example
to illustrate the mistakes: e.g., the instance in Table 1, with only 9
rows total, is enough to show that 𝐿 ! 𝐿𝐿.

How to derive such small counterexample instances automati-
cally is at heart of the RATest [12, 13] system we have developed.
Given two queries 𝐿 and 𝐿𝐿 and a database instance 𝑀 where
𝐿 (𝑀) ω 𝐿𝐿(𝑀), we want to "nd a small instance 𝑀→ ↑ 𝑀 such
that 𝐿 (𝑀→) ω 𝐿𝐿(𝑀→).1 A practical way of solving this problem
is to pick a row 𝑁 in the symmetric di!erence between 𝐿 (𝑀) and
𝐿𝐿(𝑀), and "nd a small 𝑀→ ↑ 𝑀 such that 𝑁 remains in the symmet-
ric di!erence between 𝐿 (𝑀→) and 𝐿𝐿(𝑀→). To this end, we trace
the “provenance” [7] for 𝑁 back to base table rows, and "nd the
minimum set of such rows needed to support the derivation of
𝑁 , which reduces to solving a min-ones satis!ability problem. The
problem complexity depends on the size of the provenance expres-
sion and is heavily in#uenced by the type of queries. With some
performance optimizations, such as aggressively pushing down
selections induced by the choice of 𝑁 , RATest is able to "nd small
counterexample instances for most queries at interactive speed.

However, aggregation still posed particularly interesting chal-
lenges. We had to change our problem de"nition for practicality—
not just to achieve acceptable running time but also to have bounded-
size counterexamples. For instance, consider the following queries:
SELECT beer, AVG(price) FROM Serves GROUP BY beer; -- 𝐿1
SELECT beer, AVG(price) FROM Serves GROUP BY beer -- 𝐿2
HAVING COUNT(*) > 1000;

For 𝐿1, insisting the exact result row 𝑁 be returned by 𝐿1 would
force RATest to "nd a subset of price values with the same exact
average as the overall, a daunting task that may not yield any proper
subset. For 𝐿2, its HAVING condition would force any instance to
have at least 1000 rows. Therefore, to address the issues exposed by
the above examples, RATest does not attempt to reproduce the same
row 𝑁 in the di!erence between two query results; rather, it simply
ensures that the queries return di!erent results for 𝑁 ’s group. To
further enable smaller counterexamples, RATest may parameterize
queries di!erently: e.g., instead of constructing a counterexample
for HAVING COUNT(*) > 𝑂 where 𝑂 = 1000 as in the original query,
we can do so for 𝑂 = 3, assuming that the query is written in a way
that generalizes to di!erent 𝑂 values.

Since its "rst deployment in a large undergraduate database
course at Duke University in Fall 2018, RATest has become a staple
in our database curriculum, bene"ting more than 1,600 students
to date. Our user study [12] showed that RATest improved student
performance on challenging home problems, and an overwhelming
majority of users found the tool helpful in understanding their
mistakes and and debugging queries. In retrospect, we attribute
RATest’s success to howwell it "ts the learning setting. Importantly,
RATest’s counterexamples do not reveal solution queries or full
test database instances, which would have introduced incentives
to game the system. For students struggling to understand why

1At this point, it is instructive to compare RATestwith the seminal work of Cose!e [4],
which can also generate small counterexample instances to show that two queries are
not equivalent. However, Cose!e does not assume the knowledge of a large instance
that already di!erentiates the queries. This feature is a double-edged sword: on one
hand, not relying on any test instances makes Cose!e more powerful than RATest;
on the other hand, Cose!e must deal with the generally undecidable problem of
testing query equivalence [1], which necessarily implies that Cose!e may fail to "nd
counterexamples for some queries. In contrast, RATest’s assumption of a known large
counterexample 𝑀 immediately makes the problem decidable, which allows us to
support more queries that may arise in practice. Also, if 𝑀 a real-world instance,
counterexamples constructed out of 𝑀 will have meaningful concrete values that are
easier for students to understand.
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Drinker
name address

Eve Edwards 32767 Magic Way

Likes
drinker beer

Eve Edwards American Pale Ale

Beer
name brewer

American Pale Ale Sierra Nevada
Bar

name address
Restaurant Memory 1276 Evans Estate

Tadim 082 Julia Underpass
Restaurante Ra!aele 7357 Dalton Walks

Serves
bar beer price

Restaurant Memory American Pale Ale 2.25
Tadim American Pale Ale 2.75

Restaurante Ra!aele American Pale Ale 3.50

↓

Result of𝐿𝐿

beer bar
American Pale Ale Restaurante Ra!aele

Result of𝐿
beer bar

American Pale Ale Restaurante Ra!aele
American Pale Ale Tadim

Table 1: Concrete example illustrating 𝐿 ! 𝐿𝐿.

Drinker
name address

drinker1 𝐿

Likes
drinker beer
drinker1 beer1

Beer
name brewer
beer1 𝐿

Bar
name address
bar1 𝐿
bar2 𝐿
bar3 𝐿

Serves
bar beer price
bar1 beer1 price1
bar2 beer1 price2
bar3 beer1 price3

Global condition
drinker1 LIKE ’Eve %’

AND price1 < price2 < price3

↓

Result of𝐿𝐿

beer bar
beer1 bar3
Result of𝐿

beer bar
beer1 bar3
beer1 bar2

Table 2: Abstract example illustrating 𝐿 ! 𝐿𝐿.

their queries fail autograder tests, RATest o!ers small, illustrative
examples that are tailored towards their mistakes, and the supply
of these examples is seemingly in"nite—they can keep debugging
until their queries are correct. It would be impossible to achieve
such a tailored learning experience with manual e!ort, given the
oversize and understa!ed classes nowadays in our discipline.

Concrete vs. Abstract Examples. Despite its success, we wanted
to improve RATest further. First, the concrete instances contain
so many details to the point of being distracting: e.g., in Table 1,
drinker and bar addresses do not contribute to understanding in any
way; the speci"c serving prices do not matter either, so long as they
are ordered such that there exists a price between the highest and
the lowest to di!erentiate 𝐿𝐿 and 𝐿 . An idea we had is to abstract
an example to hide unnecessary details and highlight its properties
required for an counterexample. This was one of the motivations
for our follow-up system called CINSGEN [6, 10].

Table 2 shows the abstract counterexample produced by CINS-
GEN, which generalizes the concrete one in Table 1. This abstract
example is a conditional instance (or c-instance for short), which was
inspired by c-tables for incomplete databases [9]. In a c-instance,
concrete values are replaced with named variables (such as price1)
or “don’t-care” (𝐿), and there is a global condition involving the
named variables. Each c-instance conceptually represents all possi-
ble concrete instances where named variables are instantiated with
speci"c values that satisfy the global condition. It is not di$cult to
see from Table 2 that c-instances are more compact and informative
than concrete instances.

CINSGEN in fact tackles the more general problem of construct-
ing c-instances to “satisfy” (i.e., generate result rows for) a given
query. Applied in the setting of illustrating mistakes in 𝐿 relative
to 𝐿𝐿, it constructs c-instances to satisfy the symmetric di!erence
between 𝐿 and 𝐿𝐿. Additionally, CINSGEN aims to enumerate
all ways to satisfy a query (motivated by the notion of coverage

in software testing), allowing it to construct c-instances to illus-
trate di!erent mistakes in 𝐿 , without assuming any known test
instance.2 Our user study of CINSGEN [6] showed that it further
enhanced students’ ability to "nd bugs in queries beyond RATest.
However, interestingly, when asked whether they preferred con-
crete instances (RATest) versus abstract instances (CINSGEN), more
preferred concrete instances. This preference is unfortunate but
understandable. Luckily, it also appears to be conditionable: the
graduate students involved the study were more comfortable with
abstract instances than the undergraduate students. We shall revisit
this point later in Section 4.

3 QR-HINT: FROM UNDERSTANDING TO
FIXING QUERIES

Even if students understand why their queries are wrong, it is not
always clear how to "x their queries. Therefore, we have built the
Qr-Hint [8] system to automatically suggest "xes. As an example,
given the same database schema in Section 2, suppose we want to
rank, for each beer Amy likes, the bars she frequents serving this
beer according to the serving price. Assuming no ties for simplicity,
here is the (correct) reference query 𝐿𝐿:
SELECT L.beer, S1.bar, COUNT(*) -- 𝐿𝐿

FROM Likes L, Frequents F, Serves S1, Serves S2
WHERE L.drinker = F.drinker AND F.bar = S1.bar
AND L.beer = S1.beer AND S1.beer = S2.beer
AND S1.price <= S2.price

GROUP BY F.drinker, L.beer, S1.bar
HAVING F.drinker = 'Amy';

Here is a student’s query 𝐿 , which is incorrect:
SELECT s2.beer, s2.bar, COUNT(*) -- 𝐿
FROM Likes, Serves s1, Serves s2
WHERE drinker = 'Amy'
AND Likes.beer = s1.beer AND Likes.beer = s2.beer
AND s1.price > s2.price

GROUP BY s2.beer, s2.bar;

Some mistakes are easy to spot: e.g., 𝐿 misses table Frequents in
its join. Other mistakes are tricky. For example, it is tempting to
suggest changing > to <= in𝐿 ’s s1.price > s2.price to match𝐿𝐿,
but this suggestion is wrong: a careful inspection of𝐿 would reveal
that it intends table aliases s1 and s2 to play the roles of S2 and
S1 (note the reverse order) in 𝐿𝐿, so the correct suggestion should
be changing > to >=. Finally, many syntactic di!erences between 𝐿
and 𝐿𝐿 do not lead to semantic di!erences. For example, it is "ne
for𝐿 to check Amy in WHERE instead of HAVING, and not to include
drinker in its GROUP BY.

2Now, without this assumption, we are in the same territory as Cose!e [4]: because
query equivalence is undecidable in general, CINSGEN cannot guarantee that it will
"nd a c-instance counterexample.
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The above example highlights several challenges. Because there
are many ways to write a correct query that are syntactically dif-
ferent but logically equivalent, we cannot rely on syntax alone to
suggest "xes. On the other hand, good teachers will not ignore how
the wrong query is written in suggesting "xes—“let’s go through
your query and "x it” o!ers a better learning experience than
“forget it, just do what the solution does.” Furthermore, in most
cases, there is no easy way to say that a part of a query is “de"-
nitely” wrong. For example, suppose that a correct query contains
the predicate A>=0 AND A+B>0, while a wrong query says A>0 AND
A+B>0. We cannot simply call A>0 wrong, because it is still part
of another correct query (A>0 AND A+B>0) OR (A=0 AND B>0). This
observation prompted us to shift our perspective/approach from
"nding wrong parts of a query to a more constructive one of "nding
repairs to make a query correct.

These insights led us to the following (idealized) problem formu-
lation. Given a query 𝐿 not equivalent to the reference query 𝐿𝐿,
consider all queries logically equivalent to𝐿𝐿 but possibly very dif-
ferent syntactically. Among these, we would like to pick 𝐿𝐿→ ↔ 𝐿𝐿

whose syntactic edit distance (as a measure for repair cost) to 𝐿 is
minimized. Unfortunately, this idealized formulation entails solving
the query equivalence problem, which is undecidable in general as
discussed also in Section 2. Furthermore, for a wrong query with
multiple issues such as𝐿 above, this formulation o!ers no guidance
on how to provide hints: students often get confused when asked
to come up with multiple repairs that need to work together as a
whole to make 𝐿 correct.

In the end, we developed a practical yet still principled approach
for Qr-Hint, based on the idea of hinting and "xing a query step
by step in stages. Stages naturally correspond to components of a
single-block SQL query (including grouping and aggregation). Each
stage has a “viability check” that the working query 𝐿 must pass
before advancing to the next, which sets an explainable goal for the
student to achieve. Qr-Hint guarantees that following its hints for
a given stage will lead to a query passing this check. Furthermore,
if 𝐿 passes a stage’s viability check, there must exist some correct
query (i.e., equivalent to 𝐿𝐿) in the end that agrees with 𝐿 up to
and including this stage; in other words, Qr-Hint ensures steady
progress towards the goal, so the student never has to revisit an
earlier stage. While we cannot guarantee the overall optimality of
hints and "xes because of reduction from query equivalence testing,
Qr-Hint can provide some local optimality guarantees for its repair
algorithm within each stage.

As an example, for the example (𝐿,𝐿𝐿) pair in this section, a
teacher can leverage Qr-Hint as follows. First, in the FROM stage,
whose goal is to ensure𝐿 gets data from the right multiset of tables,
Qr-Hint "nds that Frequents needs to be added to FROM; based
on this information, the teacher may ask the student to double-
check 𝐿’s FROM tables to see what other piece of information is
required.3 Assuming that the students adds the correct table and
join conditions, Qr-Hint proceeds to the WHERE stage, whose goal
is to ensure 𝐿 considers the correct subset of of input row combi-
nations for further grouping and aggregation. There, Qr-Hint "nds
the repair s1.price>s2.price " s1.price>=s2.price; based

3It may be feasible to use Generative AI to convert repairs to hints in natural language,
a direction that we are still exploring.

on this repair, the teacher may highlight s1.price>s2.price for
the student to investigate further. Notably, even though hinting
happens one stage at a time, Qr-Hint’s repair algorithm does look
ahead of the current stage, so it can avoid false alarms such as 𝐿 ’s
extra Amy check in WHERE as discussed earlier.

Readers can refer to [8] for details on each stage of Qr-Hint, but
we will brie#y describe the WHERE stage to illustrate some technical
challenges. Suppose we have already established the correct map-
ping among the FROM tables in 𝐿 and 𝐿𝐿 and “uni"ed” their WHERE
predicates 𝑃 and 𝑃𝐿 to use same variables for the same columns.
Our goal is to "nd the smallest repair to 𝑃 to make it logically equiv-
alent to 𝑃𝐿. For simplicity, consider the following sub-problem. Let
𝑃 be represented as a syntax tree whose internal nodes are logical
operators (↗,↘,¬) and leaves are atomic predicates. Suppose we
are allowed to replace only one subtree of 𝑃 with a new subtree 𝑄
such the resulting tree is equivalent to 𝑃𝐿. What is the smallest (in
size) such 𝑄?

When written out, the problem appears to be one that solves for
an unknown formula 𝑄 given a logical statement involving 𝑄 , e.g.:
𝑅=1↘· · ·↘(𝑄↗𝑆>2)↘· · · ≃ 𝑃𝐿. Interestingly, it turns out that there
are only two possibilities. One is that no 𝑄 can make the statement
true; i.e., the repair site is not feasible. The other possibility is a
continuous “range” of solutions: any 𝑄 such that 𝑇𝑁 ⇐ 𝑄 ⇐ 𝑈𝑁 will
do, where 𝑇𝑁 and 𝑈𝑁 , which we call lower and upper bounds of 𝑄 , are
some logical formulae involving atomic predicates in 𝑃 and 𝑃𝐿. We
have devised e$cient procedures for testing whether a repair site
is feasible, and if yes, computing the appropriate lower and upper
bounds; see [8]. Then, the problem reduces to "nding the simplest
𝑄 “sandwiched” between two logical formulae. Figure 1 provides
some geometric intuition of this optimization problem on a very
simple example. Here, we would like to solve for 𝑄 in 𝑉 ↗ 𝑄 ≃ 𝑃𝐿,
where all predicates are over columns 𝑅 and 𝑆. Geometrically, in
two-dimensional space of all possible (𝑅,𝑆) values, each of the
inequality atomic predicate involving either 𝑅 or 𝑆 corresponds to
a halfspace, and 𝑊 , 𝑃𝐿, and 𝑄 all can be seen as polyhedra formed
by these halfspaces. The lower bound 𝑇𝑁 (the least possible solution
for 𝑄) in this case is the same as 𝑃𝐿, the rectangle in the center,
while the upper bound 𝑈𝑁 (the most relaxed solution for 𝑄 ) is the ⇒
shape with a thick outline representing 𝑃𝐿 ↘ ¬𝑊 . Any 𝑄 between
the lower and upper bounds is a solution because the portion of 𝑄
outside 𝑃𝐿 gets “clipped” by 𝑉 in 𝑉↗𝑄 . We look for the simplest (i.e.,
fewest-sided) polyhedron sandwiched between 𝑇𝑁 and 𝑈𝑁 , which is
the three-sided rectangular shape with a highlighter-style outline.
Now, think of 𝑄 as a Boolean function which variables representing
satisfaction of individual atomic predicates. Each partition of the
space induced by the halfspaces corresponding to these predicates
(3 ⇑ 3 grid shown in Figure 1) is a minterm. Since 𝑇𝑁 ⇐ 𝑄 ⇐ 𝑈𝑁 , 𝑄
must set all partitions inside 𝑇𝑁 to be true and all partitions outside
𝑈𝑁 to be false; partitions in between are don’t-cares (either true
or false). Hence, the problem of "nding the simplest 𝑄 reduces
to standard Boolean logic minimization with don’t-cares, which
Qr-Hint solves using the standard ESPRESSO tool [3].

We tested the coverage of Qr-Hint using real student queries
from a database class at Duke University as well as queries crafted to
cover additional common SQL issues identi"ed in the literature [2].
Among the student queries, 11% contained SQL features that Qr-
Hint currently does not support, such as outer-joins and general
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Figure 1: Example illustrating the geometric intuition for
!nding the smallest repair for 𝑄 such that 𝑉 ↗ 𝑄 ≃ 𝑃𝐿.

subqueries, but Qr-Hint handled the rest perfectly, which covered
the ten most common issues identi"ed in [2]. We also stress-tested
the speed of Qr-Hint using wrong queries generated by injecting
errors into WHERE (which is the most expensive stage) of the TPC-
H [16] benchmark queries. Running on a desktop, Qr-Hint was
able to "nd single-site repairs under ten seconds with surgical
precision. Finding optimal repairs involving two sites took two to
three minutes, which leaves room for improvement but is already
helpful to the teaching sta! in helping students. For queries with
three or more injected errors in WHERE, Qr-Hint was able to "nd
reasonably good but sometimes non-optimal repairs under three
minutes. While we have yet to deploy Qr-Hint in a classroom, our
user study with 15 students showed that its hints generally helped
debugging and are on par with (if not better than) hints manually
produced by graduate teaching assistants. Details of the evaluation
can be found in [8].

4 I-REX & D-DOXA: DEBUGGING WITHOUT A
REFERENCE QUERY

While the systems in the previous sections are e!ective in helping
students in a classroom setting, an assumption they make is the
knowledge of a reference query 𝐿𝐿, which already correctly com-
putes the intended result. Outside the classroom setting, however,
we may not have such a luxury. The more general setting is when
a user knows what the query should do, which oftentimes is or can
be speci"ed in natural language, but there is no 𝐿𝐿 speci"ed in
SQL or another formal language. The user may write a potentially
incorrect query 𝐿 or use Generative AI to do so from a natural lan-
guage speci"cation. In either case, we are faced with the challenge
of debugging 𝐿 without the help of a reference query 𝐿𝐿.

One ongoing project we are pursuing is a SQL debugger called
I-Rex, an earlier version of which was demonstrated in [11] and de-
ployed in our classrooms. As discussed in Section 1, if we care about
correctness (rather than performance) of a query 𝐿 , debugging 𝐿 ’s
execution plan is not helpful, as this plan may bear little resem-
blance to how 𝐿 is written. The key idea behind I-Rex is to provide
an illusion of executing 𝐿 in a “literal” fashion based on how it is
written. Speci"cally, a FROM clause corresponds to nested loops over
the tables in the same order, with the table aliases acting as loop
variables that iterate over rows from each table in a deterministic
order. A conditional statement in the inner loop checks the WHERE
condition. Uses of subqueries and common table expressions (WITH)
can be seen as invoking functions returning tables, and correlated
subqueries are simply parameterized functions that are invoked in
the inner loop with speci"c parameter values derived from loop

variables. Grouping, aggregation and projection, and ordering are
treated as additional processing steps after FROM and WHERE. The
execution is reproducible by design, down to processing order.

This literal approach to query execution makes it easy for the
user to map execution to the query speci"cation, and to convert
insights gained in observing execution to "xes on the query. Be-
cause our execution approach conceptually employs traditional
programming constructs such as loops, conditionals, and functions,
it is friendly to users familiar with imperative programming but
new to declarative querying. It also allows I-Rex to include features
analogous to those found in popular debuggers of imperative lan-
guages. For example, users can step through query execution (and
“into” correlated subqueries), and observewhat complex expressions
evaluate to for particular combinations of input rows (and values of
correlated references). At the same time, the declarative nature of
SQL allows I-Rex to provide novel debugging features more power-
ful than traditional debuggers. For example, users can fast-forward
and fast-rewind execution at will; they can trace lineage among
rows forward and backward in input, intermediate result, and "nal
result tables; they can “pin” particular rows in these tables for inves-
tigation, which conceptually restricts execution an “input subspace”
relevant only to the pinned rows.

One challenge in realizing I-Rex’s literal approach to query exe-
cution is that it is far more costly than optimized execution plans.
Our current I-Rex prototype only works on small database instances,
but we are actively developing a new, scalable version of I-Rex for
debugging on massive databases. The key insight is that at any
point in time, the user is observing only a small portion of the
overall execution. Thanks to advanced features such as fast for-
warding/rewinding, lineage tracing, and pinning, most debugging
sessions will likely not require observing the entire execution. Thus,
while overall execution is ine$cient, I-Rex aims to produce traces
for just the given portions of the overall execution e$ciently. We
hope to roll out this new version of I-Rex in 2025.

Verifying Queries Without Knowing SQL. Finally, as a "rst step
towards debugging SQL written by Generative AI, we have recently
embarked on a system called D-Doxa that helps a user verify if a
SQL query is semantically correct. We assume a setting di!erent
from I-Rex: the user has limited or no knowledge of SQL (but still
understands how data is represented using tables). The user has
in mind what the correct query should do and can describe it in-
formally in natural language. Suppose a Generative AI tool o!ers
a SQL query 𝐿 based on the user’s prompts. D-Doxa then asks a
series of questions to the user, with the goal of determining, in the
end, whether 𝐿 correctly realizes what the user has in mind. The
simplest form of question would be to present a concrete database
instance to the user, such as the one in Table 1, and ask the user
whether a particular result row of 𝐿 is indeed correct. Unfortu-
nately, while concrete instances are good at showing that a query
is incorrect, they are less e!ective (and impossible without some
assumption on the form of correct queries) in proving that a query
is correct, i.e., it returns the desired result for all possible database
instances. D-Doxa’s idea is to use abstract instances instead, such
as the c-instance in Table 2. A user response on an abstract instance
immediately generalizes to all concrete instances conforming to it,
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which makes it possible to verify𝐿 ’s correctness with fewer rounds
of interactions.

As discussed at the end of Section 2, however, we are aware
that more students prefer concrete instances to abstract ones. As
we have done in CINSGEN [10], D-Doxa plans to combine both
concrete and abstract instances: asking the user to con"rm query
result on an abstract instance in general, but still providing concrete
instances as an aid. We are also hopeful that students will be trained
to be more comfortable with abstract instances, as we adapt our
curriculum to focus more on abstract reasoning and other skills
that may become more valuable in the era of Generative AI.

5 CONCLUSION
In this extended talk abstract, we have presented some of our
projects at Duke University motivated by how to teach databases
more e!ectively and at scale. It is worth noting that besides ped-
agogical questions, this line of work has also opened up many
interesting research questions with the "eld of databases itself
(which this abstract focuses on). We argue that education-inspired
research deserves more attention from the wider database research
community, as the rise of Generative AI has called in question what
and how to teach future researchers and practitioners. For those
of us in academia, instead of lamenting that we do not have access
to real “customer pain points” to inform our research agenda, we
should recognize the unique opportunity we have to understand
the needs of our students and make direct, consequential impacts.
These students are our real users, and as our future generation, they
are too important a group to ignore.
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