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We describe a system called Qr-HINT that, given a (correct) target query Q* and a (wrong) working query
Q, both expressed in SQL, provides actionable hints for the user to fix the working query so that it becomes
semantically equivalent to the target. It is particularly useful in an educational setting, where novices can
receive help from QrR-HINT without requiring extensive personal tutoring. Since there are many different ways
to write a correct query, we do not want to base our hints completely on how Q* is written; instead, starting
with the user’s own working query, Qr-HINT purposefully guides the user through a sequence of steps that
provably lead to a correct query, which will be equivalent to Q* but may still “look” quite different from it.
Ideally, we would like Qr-HINT’s hints to lead to the “smallest” possible corrections to Q. However, optimality
is not always achievable in this case due to some foundational hurdles such as the undecidability of SQL query
equivalence and the complexity of logic minimization. Nonetheless, by carefully decomposing and formulating
the problems and developing principled solutions, we are able to provide provably correct and locally optimal
hints through Qr-HINT. We show the effectiveness of Qr-HINT through quality and performance experiments
as well as a user study in an educational setting.
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1 INTRODUCTION

In an era of widespread database usage, SQL remains a fundamental skill for those working with
data. Yet, SQL’s rich features and declarative nature can make it challenging to learn and understand.
When students encounter difficulties in debugging their SQL queries, they often turn to instructors
and teaching assistants for guidance. However, this one-on-one approach is limited in scalability.
Syntax errors are easy to fix, but many queries contain subtle semantic errors that may require
careful and time-consuming debugging. To save time, the teaching staff is often tempted to give
hints based on how the reference solution query is written, ignoring what students have written
themselves, but doing so misses opportunities for learning. A SQL query can be written in many
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ways that are different in syntax but nonetheless equivalent semantically. Seasoned teaching staff
knows how to guide students through a sequence of steps that, starting with their own queries,
lead them to a corrected version that is equivalent to the solution query but without revealing the
solution query. Our goal is to build a system to help provide this service to students in a more
scalable manner.

ExampLE 1. Consider the following database (keys are underlined) about beer drinkers and bars:
Likes(drinker, beer), Frequents(drinker, bar), Serves(bar, beer, price). Suppose we want to write an SQL query for the
following problem: For each beer b that Amy likes and each bar r frequented by Amy that serves
b, show the rank of r among all bars serving b according to price (e.g., if r serves b at the highest
price, r’s rank should be 1). We assume that there are no ties.

The reference solution query Q* is given as follows:
SELECT L.beer, S1.bar, COUNT(x)

FROM Likes L, Frequents F, Serves S1, Serves S2
WHERE L.drinker = F.drinker AND F.bar = S1.bar

AND L.beer = S1.beer AND S1.beer = S2.beer

AND S1.price <= S2.price
GROUP BY F.drinker, L.beer, S1.bar
HAVING F.drinker = 'Amy';

Now consider a wrong student query Q:

SELECT s2.beer, s2.bar, COUNT(*)

FROM Likes, Serves s1, Serves s2

WHERE drinker = 'Amy'
AND Likes.beer = s1.beer AND Likes.beer = s2.beer
AND s1.price > s2.price

GROUP BY s2.beer, s2.bar;

Suggesting good hints to help students fix Q is not easy. First, there are many ways to write a query
that is equivalent to Q*, and queries that look very different syntactically might be semantically
similar or equivalent, so relying solely on the syntactic difference between Q and Q* to propose
fixes is ineffective and potentially misleading. In Example 1, even though Q* has a HAVING clause, it
would be confusing to suggest add HAVING to Q, because the condition drinker="Amy "' in Q’s WHERE
serves the same purpose. Also, even though Q has Likes.beer=s2.beer in WHERE while O* has S1.beer=S2beer,
the difference is non-consequential because of the transitivity of equality. Yet another example is
sl.price>s2price in Q versus Sl.price<$2price in Q*. It would be wrong to suggest changing > to < in Q,
because an examination of the entire Q would reveal that the student intends s2 (and s1) in Q to
serve the role of $1 (and S2) in Q*. The correct fix is actually changing > to >.!

Second, it is often impossible to declare a part of Q as “wrong” since one could instead fix the
remainder of Q to compensate for it. For example, we could argue that sl.price>s2.price in Q is “wrong,”
but there exists a correct query containing precisely this condition, e.g., with (s1.price>s2.price OR
sl.price=s2price) . Hence, it is difficult to formally define what “wrong” means. Instead of basing our
approach heuristically on calling out “wrong” parts, we formulate the problem as finding the
“smallest repairs” to Q that make it correct.

Third, hints are for human users, so for a query with multiple issues—which is often the case in
practice—we must be aware of the cognitive burden on users and not overwhelm them by asking

! Another wrong hint would be to suggest changing COUNT (%) to COUNT(*)+1 in Q’s SELECT instead of changing the
inequality because doing so misses the top-ranked bars. Qr-HINT will not make such a mistake.
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them to make multiple fixes simultaneously. This desideratum introduces the challenge of planning
the sequence of hints and defining appropriate intermediate goals.

Finally, effective hinting faces several fundamental barriers. Realistically, we cannot hope to
always provide “optimal” hints because doing so entails solving the query equivalence problem for
SQL, which is undecidable [1, 28, 41, 52]; even for decidable query fragments, Boolean expression
minimization is known to be on the second level of the polynomial hierarchy (precisely Z'g [16]).

To address the challenges, we propose Qr-HINT, a system that, given a target query Q* and a work-
ing query Q, follows the logical execution flow (i.e., FROM—WHERE —GROUPBY—HAVING—SELECT)
and produces step-by-step hints for the user to edit the working query to eventually achieve Q*.
The sequence of steps is guaranteed to lead the user on a correct path to eventual correctness. The
following example shows Qr-HINT helps fix the query in Example 1.

ExampLE 2. Continuing with Example 1, Qr-HINT automatically generates the sequence of hints
below. Currently built for the teaching staff, Qr-HINT only generates the “repairs” below; using these
repairs, the teaching staff would then hint to the user in natural language. With the recent advances in
generative Al chatbots, it would not be difficult to automate the natural language hints as well; the
advantage of using Qr-HINT in that setting would be to provide provable guarantees on the quality of
hints, which otherwise would be difficult, if not impossible, for generative Al to achieve by itself.

Stage  QR-HINT repair Hint in natural language
FROM  Frequents needed It looks like you are missing one table—read the problem carefully
and see what other piece of information you need.
WHERE  s1.price>s2.price —  Your WHERE has a small problem with s1.price>s2.price. Think through
s1.price>s2.price some concrete examples and see how you may fix it.

Note the sequential nature of the hints above; the working query constantly evolves. Qr-HINT first
focuses on FROM and will only proceed to WHERE after FROM is “viable.” After adding Frequents to FROM,
the user will also need to add appropriate join conditions in WHERE; if these were not added correctly,
the second step above would suggest additional repairs. It turns out that for this example, only the
above two hints are needed to fix the query. In particular, Qr-HINT knows not to suggest spurious hints
such as adding to Frequents.drinker to GROUP BY or changing s2beer to Likes.beer in SELECT.

We make the following contributions:

e We develop a novel framework that allows Qr-HINT to provide step-by-step hints to fix a working
SQL query with the goal of making it equivalent to a target query. This framework formalizes the
notion of “correctness” for a sequence of hints, allowing Qr-HINT to guarantee that every hint is
actionable and is on the right path to achieve eventual correctness. Further, by formulating the
hinting problem in terms of finding repair sites in Q with viable fixes, we are able to quantify the
quality of the hints.

e Since the optimality of hints, in general, is impossible to achieve due to the foundational hurdles
discussed earlier, we aim to provide guarantees on the “local” optimality of Qr-HINT in each
step. We design practical algorithms with sensible trade-offs between optimality and efficiency.

e We evaluate the performance and efficacy of Qr-HINT experimentally. We further perform a user
study involving students from current/past database courses offered at the authors’ institution.
Our findings indicate that Qr-HINT finds repairs that are optimal or close to optimal in practice
under reasonable time, and they lead to hints that are helpful for students.

2 RELATED WORK

Debugging Query Semantics. There are two main lines of work toward debugging query seman-
tics (as opposed to syntax or performance). The first line helps debug a query but without knowing
the correct (reference) query; in this regard, it differs fundamentally from Qr-HINT. Qex [53] is a
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tool for generating input relations and parameter values for unit-testing parameterized SQL queries.
SQLLint [10-13, 30] detects suspected semantic errors in a query, alerting users to what may be
indicative of efficiency, logical, or runtime errors. The work highlights a list of common semantic
errors made by students and SQL users [12], but it does not suggest edits, and fixing the suspected
errors will not guarantee that the query is correct. Habitat [25, 31] is a query execution visualizer
that allows users to highlight parts of a query and view their intermediate results. While it helps
users spot possible errors, it gives no edit suggestions if errors exist. More recently, QueryVis [42]
turns queries into intuitive diagrams, helping users better understand the semantics of the queries
and spot potential errors.

The second line of work, more directly related to Qr-HINT, focuses on checking a query against
a reference query and/or helping to explain their difference. However, previous work has not
been able to suggest small fixes that will make the user query equivalent to the reference query.
XData [19] checks the correctness of a query by running the query on self-generated testing datasets
based on a set of pre-defined common errors, but it provides no guarantees beyond this pre-defined
set. Cosette [21-23] uses constraint solvers and theorem provers to establish the equivalence of
two queries or construct arbitrary instances that differentiate them. From a large database instance,
RATest [44] utilizes data provenance to generate a small, illustrative instance to differentiate
queries. C-instances [29] aims at constructing small abstract instances based on c-tables [37] that
can differentiate two given queries in all possible ways. While Cosette, RATest, and c-instances can
provide examples illustrating how two queries are semantically different, they can only indirectly
help users pinpoint errors in the original query; none of them is able to suggest fixes. Chandra
et al. [18] developed a grading system that canonicalizes queries by applying rewrite rules and
then decides partial credits based on a tree-edit distance between logical plans. However, as query
syntax differs signficiantly from canonicalized plans after rewrite, edits on a canonicalized plan do
not translate naturally to small fixes on the original query, making it hard for users to use these
edits as hints. Finally, SQLRepair [47] fixes simple errors in an SPJ query using constraint solvers
to synthesize/remove WHERE conditions until the query produces correct outputs over all testing
instances. Its scope of error is much narrower than what we consider, and its tests-driven nature
offers no guarantee of query equivalence.

Program Repair and Feedback for GPL. Several approaches have been developed for program
repair in general-purpose programming languages (GPL), but none can be directly applied or easily
transferred to SQL. First, a wrong program is usually aligned with reference program(s) ([3, 32, 54])
and fixes are generated based on the selected reference program using various techniques. Such an
approach is similar to Qr-HINT, but SQL is essentially different from GPL as SQL is declarative
and GPLs are usually procedural. While it is possible to write programs in GPL to simulate the
execution of a specific SQL query, there is no well-defined mapping between the syntax of SQL and
any GPL. As a result, it is impossible to apply such program repair techniques to SQL in general.
Another approach is to leverage test cases to synthesize “patches” for the wrong program so that it
returns the same output as the reference program for all test cases ([36, 45, 48, 51, 56]). However,
such an approach heavily relies on the test cases to cover all possible errors and thus usually fails
to guarantee semantic equivalence. Besides the traditional approaches, recent work explores ML
algorithms to provide feedback and correction ([8, 9, 20, 33, 34, 43, 46]). In addition, large language
models such as GPT-3 [15] have shown an ability to explain the semantics of SQL queries, but does
not guarantee the correctness of fixes.

Testing query equivalence. While the query equivalence problem in general is undecidable
[1, 5, 50, 52], tools and algorithms are developed to check the equivalence of various classes of
queries with restrictions and assumptions [4, 17, 21-23, 26, 38-40, 49, 55, 57]. Although they give a
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deterministic answer on equivalence, these tools/algorithms cannot provide any explanation on
which parts of the users’ queries cause semantic differences from the reference queries.

3 THE QR-HINT FRAMEWORK

Queries. We consider SQL queries that are select-project-join queries with an optional single level
of grouping and aggregation. For simplicity of presentation, we assume these are single-block SQL
queries with SELECT, FROM (without JOIN operators), and WHERE (with condition defaulting to TRUE
if missing) clauses,? together with optional GROUP BY and HAVING clauses. We refer to such a query
as an SPJA query if it contains grouping or aggregation or DISTINCT; otherwise, we will call it an
SP¥ query.

We assume the default bag (multiset) semantics of SQL. Given query Q, let F(Q) denote the cross

product of Q’s FROM tables (including multiple occurrences of the same table, if any); and let FW(Q)
denote the query that further filters F(Q) by Q’s WHERE condition (i.e., FW(Q) is a SELECT * query
with the same FROM and WHERE clauses as Q). Furthermore, if Q is SPJA, let FWG(Q) denote the
(non-relational) query® that further groups the result rows of FW(Q) according to Q’s GROUP BY
expressions (or 0 if there are none but Q contains aggregation nonetheless, in which case all result
rows belong to a single group). Finally, if Q is SPJA, let FWGH(Q) denote the (non-relational) query
that filters the groups of FWG(Q) according to Q’s HAVING conditions (which defaults to TRUE if
missing). When discussing equivalence (denoted =) among above queries, we require that they
return the same bag of result rows (ignoring row and column ordering) for any underlying database
instance, and additionally, for queries returning groups, they return the same partitioning of result
rows (ignoring group ordering).
SMT Solvers. As with previous work [21, 44, 57], we leverage satisfiability modulo theory (SMT)
solvers to implement various primitives used by our system. Such a solver can decide whether a
formula, modulo the theories it references, is satisfiable, unsatisfiable, or unknown (beyond the
solver’s capabilities). Specifically, we use the popular SMT solver Z3 [24] to implement the following
three primitives. Given two quantifier-free expressions, Iskquiv(ey, e;) tests whether e; & e; (for
logic formulae such as those in WHERE) or e; = e, (for value experssions such as those in SELECT or
GROUP BY). Given a logic formula p, IsUnSatisfiable(p) and IsSatisfiable(p) return, respectively, whether p
is satisfiable or unsatisfiable, respectively. All above primitives may return “unknown” when Z3 is
unsure about its answer. However, when they return true, Z3 guarantees that the answer is not a
false positive. Our algorithms in subsequent sections act only on (true) positive answers from these
primitives. For complex uses, it is often convenient to frame equivalence/satisfiability testing using
a context C, or a set of logical assertions (e.g., types declaration, known constraints, and inference
rules) under which testing is done. We use subscripts to specify the context: e.g., IsUnSatisfiable (p) is
a shorthand for IsUnSatisfiable (( A ccc €) A p).

ExampLE 3. Consider a query with a WHERE condition stipulating that A > 100 for an INT-typed
column A, as well as a HAVING condition MAX(A) > 101. We might wonder whether the HAVING
condition is unnecessary. To this end, we call IsUnSatisfiable » (p) with

A has type Array(Z)
Vie N:A[i] > 100

¢ MAX has type Amay(Z) —> Z |’ p i ~(MAX(A) = 101).
Vi € N, X of type Array(Z) : MAX(X) > X[i]

2We can handle a query with common table expressions (WITH) and subqueries in FROM that are aggregation-free, as well as
non-outer JOINs in FROM, by rewriting the query into single-block SQL.
3This query is non-relational because it returns, besides the bag of rows from FW(Q), a partitioning of them into groups.
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The first two assertions in C are derived from the type of A and the WHERE conditions; here the array-
typed A refers to a collection of A values. The last two specify (some) general inference rules on the
SQL aggregate function MAX. Z3 correctly returns true, meaning that MAX(A) > 101 must be true under
C and is therefore unnecessary.

Our use of Z3 for reasoning with SQL aggregation, such as the example above, goes beyond
the practice in previous work, where aggregation functions are mostly treated as uninterpreted
functions. For example, to test the equality of two aggregates, [57] conservatively checks whether
input value sets or multisets for the aggregate function are equal. In contrast, we encode properties
of SQL aggregation functions in a way that allows Z3 to reason with them. As formulae become more
complicated, e.g., with quantifiers and arrays, Z3 no longer offers a complete decision procedure
(as there exists no decision procedure for first-order logic) and may return “unknown” more often.
Nonetheless, practical heuristics employed by Z3 allow it to handle many cases of practical uses to
Qr-HINT.

3.1 Approach

Given a (syntactically correct) working query Q and a target query Q*, Qr-HINT provides hints in
stages to help the user edit the working query incrementally until it becomes semantically equivalent
to Q*. Each stage focuses on one specific syntactic fragment of the working query. Qr-HINT gives
actionable hints for the user to edit this fragment with the aim of bringing Q a step “closer” to
being equivalent to Q*. Qr-HINT strives to suggest the smallest edits possible and avoid suggesting
unnecessary edits. Upon passing a viability check, the working query Q clears the current stage
and moves on to the next. After clearing all stages, Qr-HINT guarantees that Q = Q* (even if
syntactically they are still different).

We now briefly outline the concrete stages of QrR-HINT; the details will be presented in the
subsequent sections.

For an SPJ query, there are three stages. (1) We start with Q’s FROM clause (Section 4) and make
sure that its list of tables can eventually lead to a correct query; following this stage, F(Q) = F(Q*).
(2) Next, we provide hints to repair Q’s WHERE clause (Section 5) such that FW(Q) = FW(Q™), i.e., the
repaired query returns the same sub-multiset of rows as Q* that satisfy the WHERE clause, ignoring
SELECT. (3) Finally, we handle Q’s SELECT clause and ensure the working query returns correct
output column values. Importantly, we make inferences of equivalence under the premise that all
rows before SELECT already satisfy WHERE; this use of WHERE allows us to infer more equivalent
cases and avoid spurious hints.

For an SPJA query, there are five stages. (1) The first stage handles FROM as in the SPJ case. (2)
The second stage handles WHERE, but with a twist. As we have seen from Example 1, some condition
can be either WHERE or HAVING, and it would be misleading to hint its absence from WHERE to be
wrong; hence, Qr-HINT will look “ahead” at the two queries’ HAVING and GROUP BY clauses to avoid
misleading the user. At the end of this stage, instead of insisting that FW(Q) = FW(Q*) for the
original Q*, we may rewrite Q* (by legally moving some conditions between WHERE and HAVING) as
needed first. (3) The third stage is GROUP BY, where we provide hints to edit Q’s GROUP BY expressions
to achieve equivalent grouping, i.e., FWG(Q) = FWG(Q*). Here, we infer equivalence under the
premise that the rows to be grouped all satisfy WHERE. (4) The fourth stage is HAVING, where we
provide hints to repair Q’s HAVING condition in the same vein as WHERE; however, inferences in this
stage would additionally consider both WHERE and GROUP BY, and they are more challenging because
of aggregation functions. After this stage, we have FWGH(Q) = FWGH(Q™). (5) The fifth and final
stage is SELECT, which is similar to the SPJ case, but with the challenge of handling aggregation
functions while simultaneously considering WHERE, GROUP BY, and HAVING.
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Progress and Correctness. Note that to clear a stage, the user only needs to come up with a fix
to pass the viability checks up to this stage. Even though Qr-HINT may examine the queries in
their entirety, the user does not have to think ahead about how to make the entire query correct.*
Moreover, once a stage is cleared, Qr-HINT never requires the user to come back to fix the same
fragment again. This stage-by-stage design with “localized” hints helps limit the cognitive burden
on the user.

The following theorem formalizes the intuition that this stage-based approach leads to steady,
forward progress toward the goal of fixing the working query. It follows from the observation that
our solution for each stage ensures the properties asserted below, which we will show stage by
stage in the subsequent sections.

THEOREM 3.1. Let Qy = Q denote the initial working query and Q* denote the target query. Let V;
denote the viability check for stage i, and Q; denote the working query upon clearing stage i, where Q;
satisfies V1, Vo, . .., V;. We say that two queries are stage-i consistent if they are identical syntactically
except in the fragments that stage i + 1 and beyond focus on. For each stage i, the following hold:

(Hmt leads to fix) If Q;i_1 fails to satisfy V;, there exists a query Ql such that Q, satisfies Vi, Va, ..., Vi,
Q; is stage-(i — 1) consistent with Q;_1, and Q; follows the stage-i hmtprovzded by OR-HINT.

(Fix leads to eventual correctness) There exists a query O such that O = QO* and Q is stage-i
consistent with Q;.

We delegate all proofs in this paper to the full technical report [35].

Optimality. Ideally, we would like Qr-HINT to suggest the “best possible” hints, e.g., those leading
to minimum edits to the working query. Unfortunately, it is impossible for any system to provide
such a guarantee in general, because doing so entails being able to determine the equivalence of
SQL queries: if Q = Q* to begin with, the system should not suggest any fix. It is well-known that
the equivalence of first-order queries with only equality comparisons is undecidable [1]. Under
bag semantics, even the decidability of equivalence of conjunctive queries has not been completely
resolved [41]. Once we open up to the full power of SQL, which can express integer arithmetic, even
equivalence of selection predicates becomes undecidable via a simple reduction to the satisfiability
of Diophantine equations [28].

Given the foundational hurdles above, Qr-HINT seeks a pragmatic solution. Instead of offering
any global guarantee on the optimality of its hints, which is impossible, Qr-HINT establishes, for
each stage, guarantees on the necessity or minimality of its hints under certain assumptions. For
example, for the FROM stage, Qr-HINT guarantees its suggested fixes are optimal for SPJ queries,
but for some SPJA queries, it may suggest a fix that turns out to be unnecessary. As another
example, for the WHERE stage, the optimality of Qr-HINT depends on, among other things, Z3-based
primitives offering complete decision procedures. In each subsequence section, we will state any
such assumption explicitly.

Finally, it is important to note that Qr-HINT s progress and correctness properties (Theorem 3.1)
do not rely on these assumptions. In the worst case, the user may be hinted to make some fixes
that are unnecessary or unnecessarily big, but Qr-HINT will still ensure that the user gets a correct
working query in the end.

Limitations. Following Theorem 3.1, Qr-HINT is guaranteed to generate correct hints for select-
project-join queries with an optional single level of grouping and aggregation. On the other hand,
QR-HINT currently has several limitations. 1) Qr-HINT may sometimes suggest suboptimal or even

“In some cases, just to maintain syntactic correctness, a fix may necessitate trivial edits to fragments handled in future
stages: e.g., if we remove a table from FROM, we will need to remove references to this table in the rest of the query. However,
the user never needs to worry about making those edits semantically correct—that responsibility falls on future stages.
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unnecessary fixes (even though they still lead to correct queries), as discussed above; the reason
lies in fundamental hurdles due to the undecidability of SQL query equivalence and the use of
heuristics to tame complexity. 2) Qr-HINT currently does not handle NULL values and assumes
that all database columns are NOT NULL. With some additional effort and complexity, Qr-HINT can
be extended to handle NULL using the technique in [57] of encoding each column with a pair of
variables in Z3 (one for its value and the other a Boolean representing whether it is NULL). The
same applies to OUTER JOIN. 3) Except the case of aggregation-free subqueries in FROM mentioned in
Footnote 2, Qr-HINT does not support subqueries in general. Subqueries involving aggregation, in
general, cannot be folded into the outer query block. Subquery constructs such as NOT EXISTS and
NOT IN entail supporting queries involving the difference operator, which we have not yet studied.
If we do not care about the number of duplicates in the result, positive subqueries with EXISTS and
IN could be rewritten as part of the join in the outer select-project-join query and supported as such.
However, this approach is unsatisfactory, especially since our handling of FROM (Section 4) does
assume that duplicates matter. In general, more work is needed to develop a comprehensive solution
for subqueries. 4) Finally, Qr-HINT does not consider database constraints such as keys and foreign
keys. While we can, in theory, encode some constraints as logical assertions and include them as
part of the context when calling Z3, these assertions (with quantifiers) can significantly hamper
Z3’s performance. Future work is needed to develop more robust algorithms for incorporating
constraints.

4 FROM STAGE

This stage aims to ensure F(Q) = F(Q*). Recall that a FROM clause may reference a table T multiple
times, and each reference is associated with a distinct alias (which defaults to the name of T). Each
column reference must resolve to exactly one of these aliases. Let Tables(Q) denote the multiset of
tables in the FROM clause of Q, and let Aliases(Q) denote the set of aliases they are associated with
in Q. With a slight abuse of notation, given table T, let Aliases(Q, T') denote the subset of Aliases(Q)
associated with T (a non-singleton Aliases(Q, T) implies a self-join involving T). Given an alias
t € Aliases(Q), let Table(Q, t) denote the table that ¢ is associated with in Q.
The viability check (Theorem 3.1, stage 1) for FROM is simple:

Vi : Check if Tables(Q) 2 Tables(Q*)

where £ denotes multiset equality. If the working query Q fails the viability check, Qr-HINT simply
hints, for each table T whose counts in Tables(Q) and Tables(Q*) differ (including cases where T is used
in one query but not the other), that the user should consider using T more or less to make the counts
the same. It is straightforward to see that this hint leads to a fix that makes Tables(Q) = Tables(Q*),
which enables the user to further edit Q into some Q = Q* without retouching FROM: at the very
least, one can make Q isomorphic to Q* up to the substitution of table references with those in
Aliases(Q). This observation establishes the progress and correctness properties (see Theorem 3.1) of
FROM-stage hints, which we state below along with the remark that F(Q) = F(Q*) after this stage.

LEmMMA 4.1. Qr-HINT’s FROM-stage hint leads to a fixed working query Q1 that (1) passes the viability
check V; Tables(Q1) = Tables(Q™); (2) satisfies F(Q1) = F(Q*); and (3) leads to eventual correctness.

While the correctness of the FROM-stage hint is straightforward, its optimality is surprisingly

strong. The following lemma states that the viability check is, in fact, necessary—regardless of what
could be done in WHERE and SELECT—under reasonable assumptions.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 164. Publication date: June 2024.



QR-HINT: Actionable Hints Towards Correcting Wrong SQL Queries 164:9

LEMMA 4.2. Two SPJ queries Q* and Q cannot be equivalent under bag semantics if Tables(Q*) #
Tables(Q) assuming no database constraints are present, and there exists some database instance for
which either Q* or Q returns a non-empty result.

Table Mappings. To facilitate analysis in subsequent stages, Qr-HINT needs a way to “unify” table
and column references in Q and Q* so that all of them use the same set of table aliases.

DEFINITION 1. Given queries Q* and Q over the same schema where Tables(Q*) = Tables(Q), a table
mapping from Q* to Q is a bijective function m : Aliases(Q*) — Aliases(Q) with the property that two
corresponding aliases are always associated with the same table, i.e., VYt € Aliases(Q*) : Table(Q*, t) =

Table(Q, m(t)).

If the queries have no self-joins, it is straightforward to establish this mapping by table names.
With self-joins, however, it can be tricky because we must match multiple roles played by the
same table across queries. The information contained in FROM alone would be insufficient for
matching. One approach is to explore every possible table mapping and select the one that leads
to the minimum fix. Doing so would blow up complexity by a factor exponential in the number
of self-joined tables. Qr-HINT instead opts for a heuristic that picks the single most promising
table mapping. Here we describe the heuristic briefly. For each alias, we build a “signature” that
captures how its columns are used by various parts of the query in a canonical fashion. We define
a distance (cost) metric for the signatures. Then, for each table involved in self-joins, to determine
the mapping between its aliases in Q and Q*, we construct a bipartite graph consisting of these
aliases and solve the minimum-cost bipartite matching problem. We illustrate the high-level idea
using the example below.

ExaMpLE 4. Continuing with Example 1, the following are signatures (one per column) for 51 and 52
in Q* and sl and s2 in Q.

|S1in Q* |S2in Q* [s1in Q [s2in Q
WHERE &  bar:|={Fbar} ={F.bar} None None
HAVING beer:|={L.beer, S2.beer} | ={L.beer, S2.beer} | ={ Likes.beer, s2.beer} | ={ Likes.beer, s2.beer}
price: | <{S2.price} >{S2.price} >{s2price} <{sl.price}
GROUP BY { bar, beer} {beer} {beer} {beer}
SELECT bar:| {2} 0 0 {2}
beer:| {1} {1} {1} {1}
price:| @ 0 0 0

For example, S1.beer’s WHERE/HAVING signature says that it is involved in an equality comparison
with both Lbeer and S2beer; the latter is inferred—QRr-HINT automatically adds column references and
constants that obviously belong to the same equivalence class. Likewise, S1’s GROUP BY signature includes
both bar and beer, with the latter added because of its equivalence to the GROUP BY column Lbeer. When
comparing signatures, all aliases are replaced by table names (which is a heuristic simplification);
therefore, all four WHERE/HAVING signatures above for beer are considered the same. In this case, what
makes the difference in bipartite matching turns out to be the SELECT signatures for bar, which clearly
favors the mapping with 51+ s2 and 52+ sl.

Once we have selected the table mapping m, we can then “unify” Q* and Q. For convenience,
we simply rename each alias a in Q* to m(a); in subsequent sections, we shall assume that O* and
Q have consistent column references.

5The assumption of a not-always-empty result may seem out of the blue, but it is necessary. For example, queries SELECT 1
FROM R WHERE FALSE and SELECT 1 FROM R, R WHERE FALSE are equivalent—both always return empty results. However, if at
least one of Q* and Q can return non-empty results, Tables(Q*) 2 Tables(Q) becomes necessary for equivalence. Our proof
of Lemma 4.2, in fact, builds on such a non-empty result.
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\D>11](D<7][E<5)
X X9 X10 X11 X12

(b) P
Fig. 1. Syntax trees for P* and P in Example 5.

5 WHERE STAGE

WHERE is our most involved stage, aimed at making small edits to the WHERE condition of Q so
that it becomes logically equivalent to that of QO*, thereby ensuring FW(Q*) = FW(Q) (recall from
Section 3.1). Let P and P* denote the WHERE predicates in Q and Q*, respectively. We assume that
they have already been unified by the selected table mapping to have the same set of column
references, as discussed in Section 4. The viability check for the WHERE stage (Theorem 3.1, stage 2)
is simply that P is logically equivalent to P*:

V, : Check if P & P*

As discussed in Section 1, if P & P*, there are many different ways to modify P so that becomes
logically equivalent to P*, and it is impossible to declare any part of P as definitively “wrong”
Therefore, we suggest the smallest possible edits on P to reduce the cognitive burden on the user.
We formalize the notion of “small edits” below. We represent P and P* using syntax trees, where:

e Internal (non-leaf) nodes represent logical operators A, V, and —. Let op(x) denote the operator
associated with node x, and Children(x) denote the x’s child nodes. If op(x) is =, |Children(x)| = 1. If
op(x) € {A, v}, |Children(x)| > 2.

e Leaf nodes are atomic predicates involving column references and/or literals. We treat each
unique column reference as a free variable over the domain of the referenced column. We support
basic SQL types as well as standard comparison, arithmetic, and string operators to the extent
supported by Z3, e.g.: A>5, B<2C-10, D LIKE "Eve%’.

ExampiE 5. Consider the following logical formulae P* and P where A, B, C, D, E are integers:

P*: (A=C A (E<5V D>10V D<7) V (A=B A (D#E vV D>F))
P: (A=C A (D#E V D>F)) V (A=C A (D>11V D<7 V E<5))

The syntax trees of P* and P are shown in Figure 1.

DEFINITION 2 (REPAIR FOR SQL PREDICATE). Given a quantifier-free logical formulae P represented
as a tree, a repair of P is a pair (S, F) where S is a set of disjoint subtrees of P called the repair sites,
and F is function that maps each site x € S to a new formulae F (x) called the fix for x. Given a
target predicate P*, a repair (S, F) for P is correct if applying it to P—i.e., replacing each x € S with
F (x)—results in a formulae P’ such that P’ < P*.
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Algorithm 1: RepairWhere(x, x*, n)

Input :a wrong predicate x, a correct predicate x*, and a cap n on the number of repair sites
Output :a repair (S, ) with minimum cost
1 let S, = 0,7 = 0;

2 let ¢, denote the minimum cost so far, and oo initially;

3 foreach set S of <n disjoint subtrees in x, in ascending |S| order do

4 if Cost(S, ) > co then // cost due to # sites alone is already too big

5 L return (S, %o); // safe to stop now
6 if x* € CreateBounds(x, S) then

7 let _, F = DeriveFixes(x, S, x*, x™);

8 if ¢co > Cost(S, ) then

9 LletSo=S,‘7‘-o=7‘-;

10 return (S, F5);

DEFINITION 3 (COST OF A REPAIR). Given target predicate P*, the cost of a repair (S, F) for P is:

dist(s, F (s))

Cost(S,F) =w - |S| + s;g W, where (1)
dist(s, F (s)) = |s| + |F (s)], and (2)

w € R* controls the relative weights of the cost components.

Here, we simply define dist(-, -) to be the number of nodes deleted and inserted by the repair; other
notions of edit distance could be used too. The denominator under dist(+, -) serves to normalize the
measure relative to the sizes of the queries. Also, note that the w - |S| term adds a fixed penalty for
each additional repair site. Intuitively, Qr-HINT will present all repair sites (without the associated
fixes) to the user as a hint. Even a moderate number of repair sites will pose a significant cognitive
challenge—if there were so many issues with P, we might as well ask the user to rethink the whole
predicate (which would be a single repair site at the root). In our experiments (Section 9), we set
w = 1/6, and the number of repair sites per WHERE rarely goes above two or three.

ExAMPLE 6. Consider Figure 1. One correct repair for P consists of three sites (x4, X10, X12) and the

corresponding fixes (A=B, D>10, E<5). The cost for this repair is 3w + 3>f2(i;r21) = % + % =0.75.

Another correct repair for P consists of two sites (x5, x3) and the corresponding fixes E<5V D>10 V

D<7 and A=B A (D#E V D>F). The cost for this repair is 2w + 8) (5460 _ 14 % ~ 1.08.

12+12 3
A trivial single-site repair that replaces the entire P with P* would have cost 1w + (igig)

=~ 1.16.

Algorithm 1 is our overall procedure for computing a minimum-cost repair for a predicate. It
considers all possible sets of repair sites, prioritizing smaller ones because the number of repair
sites heavily influences the repair cost, and stopping once the lowest cost found so far is no greater
than a conservative lower bound on the cost of the repairs to be considered. In the worst case,
the number of repairs to be considered is exponential in the size of P, but in practice, the early
stopping condition usually kicks in when the number of repair sites is 2 or 3, so the number of
repairs considered is usually quadratic or cubic in |P|.

The two key building blocks of Algorithm 1 are CreateBounds and DeriveFixes, which we describe in
more detail in the remainder of this section. Intuitively, CreateBounds (Section 5.1) provides a quick
and “exact” test to determine whether a given set of repair sites could ever lead to a correct repair. If
yes, Derivefixes (Section 5.2) then finds the “optimal” fixes for these repair sites. Our algorithms use Z3,
so their exactness and optimality depend on Z3’s completeness for the types of predicates they are
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Algorithm 2: CreateBounds(x, S)

Input :apredicate x, and a set S of disjoint subtrees (repair sites) of x
Output :lower and upper bounds for x achievable by fixing S

if x € S then return [false, true] ;

2 else if x is atomic then return [x,x] ;

3 else if op(x) € {A, V} then

-

4 foreach c € Children(x) do

5 L let [Ic, uc] = CreateBounds(c, S[c]);°

6 return O cchiden(x) les Ocectildien(x)Ue] Where © = op(x);

7 else // op(x) is -

8 let ¢ = Children(x) [0]; // the only child of x
9 let [, uc] = CreateBounds(c, S|[c]);
10 return [—u, —l.];

given. DeriveFixes’s optimality further hinges on a Boolean minimization procedure (MinBoolExp) that it
also uses. On the other hand, since Z3 inferences are sound, progress and correctness (Section 3.1)
are guaranteed.

LEmMMA 5.1. WHERE-stage hint leads to a fixed working query Q, with WHERE condition that 1) passes
the viability check P & P*; 2) satisfies FW(Q2) = FW(Q™); and 3) leads to eventual correctness.

LEMMA 5.2. Given P and P*, assuming that Z3 inference is complete with respect to the logic
exercised by P and P*, and that MinBoolExp finds a minimum-size Boolean formula equivalent to its
given input, the repair returned by RepairWhere(P, P*, |P|) is optimal (i.e., has the lowest possible cost)
if there exists an optimal repair that either contains a single site or has all its sites sharing the same
parent in P.

Note that Lemma 5.2 provides optimality for two important cases that commonly arise in practice:
1) P makes a single (presumably small) mistake; 2) P is either conjunctive or disjunctive (because
all atomic-predicate nodes share the same A or V parent node).

5.1 Viability of Repair Sites

The key idea is that, given a set of repair sites in P, we can quickly compute a “bound” that precisely
defines what can be accomplished by any fixes at these sites (and only at these sites). We first give
the definition of bounds and introduce some notations. Give quantifier-free logical formulae P, , P,
and Pt such that P, = P = P+, we say that [Py, P1] is a bound for P, denoted P € [P, P+]. We
call P+ an upper bound of P and P, a lower bound of P.

CreateBounds (P, S) (Algorithm 2) computes a precise bound for any predicate that can be obtained
by fixing P at the given set S of repair sites. It works by computing a bound for each node in P
in a bottom-up fashion, starting from the repair sites or leaves of P. We call these bounds repair
bounds. Intuitively, the repair bound at a repair site would be [false, true], because a fix can change
it to any logical formula. If a subtree contains no repair sites underneath, it would have a very
tight repair bound of [p, p], where p denotes the formulae corresponding to the subtree, which is
unchangeable by the given repair. The internal logical nodes combine and transform these bounds
in expected ways in Algorithm 2.

EXAMPLE 7. Given repair sites {x4, x10, X12} for P in Figure 1, CreateBounds computes the repairs bounds
shown below.

®For node x in P, S[x] denotes the subset of S that belong to the subtree rooted at x.
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l Node(s) [ repair lower bound[ repair upper bound [

X4 false ‘ true

X8, X9, X5 original predicate in P
x2 false |  D#EVD>F
X6 original predicate in P
Xx10 false l true
X11 original predicate in P
X12 false true
X7 D<7 true
x3 A=C A D<7 A=C

x1 (P) A=C A D<7 D+#EV D>F Vv A=C

The following shows that repair bounds computed by CreateBounds are valid. The proof uses an
induction on the structure of P.

LEMMA 5.3 (VALIDITY OF REPAIR BOUNDS). Given a predicate P and a set S of repair sites,
CreateBounds(P, S) outputs two predicates P, and Pr, such that applying any repair (S, F) (with the
given S) will result in a predicate P’ € [Py, P1].

Lemma 5.3 immediately yields a method for deciding whether a candidate set S of repair sites is
viable: if the target formula P* ¢ [P, Pt] given S, then there does not exist a set of correct fixes F
for S. The next natural question to ask is: if the target formula P* € [P,, Pr] given S, is it always
possible to find some correct fixes? The answer to this question is yes—and Section 5.2 will provide
constructive proof. Hence, repair bounds provide a precise test of whether a set S of repair sites is
viable.

For example, continuing from Example 7, using Z3, it is easy to verify that P* € [A=C A
D<7, D#E V D>F V A=C]; therefore, {x4, x19, X12} is a viable set of repair sites for P with respect
to P*.

5.2 Derivation of Fixes

Suppose the target formula P* falls within the repair bound [P, P+] computed by CreateBounds(P, S).
We now introduce DeriveFixes (Algorithm 3) that computes correct fixes  for S. The idea is to traverse
P’s syntax tree top-down and derive a target bound for each node x. As long as we repair subtrees
rooted at x’s children such that the resulting predicates fall within their respective target bounds,
we will have a repair for x that makes its result predicate fall within x’s target bound. We start
from P’s root with the desired target bound [P*, P*] and “push it down”; whenever we reach a
repair site, its fix would simply be the smallest formula (found by MinFix) that falls within the target
bound we have derived for the repair site.

The intuition behind how to “push down” the target bound at node x to its children is as follows.
First, the repair bound on a child ¢ of x dictates what repairs are possible—the target bound we set
for ¢ must be bound by its repair bound. However, we want to tighten the repair bound as little as
possible because a looser target bound gives MinFix more freedom in finding a small formula. As a
simple example, consider the target bound [a; A ay, (a1 Aaz) V as], where ay, ay, a3 are independent
atomic predicates. The smallest formula within this bound is a; A a,. However, if the target bound
were looser, e.g., [a; A az A as, (a1 A az) V as], the smallest formula within this new bound would
be just as, smaller than before.

Lines 15-22 of Algorithm 3 spells out our strategy. We will illustrate the key ideas with Example 7
and Figure 1. Consider pushing down the target bound of [P*, P*] at x; to x; and x3. Note that our
choices of target bounds for x, and x5 are constrained by their respective repair bounds in the table
of Example 7; in general, we will need to raise these lower bounds and/or lower these upper bounds
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Algorithm 3: DeriveFixes(x, S, I*, u*)

Input :apredicate x, a set S of disjoint subtrees (repair sites) of x, and a target bound [I*, u*] for x
to achieve by fixes

Output :a repair represented as a set of (s, f) pairs, one for each s € S

if x € S then return {(x, MinFix(I*,u*))} ;

2 else if x is atomic then return 0 ;

-

3 else if op(x) is — then

4 let ¢ = Children(x) [0]; // the only child of x
5 return DeriveFixes(c, S|[c], —|u3‘, —-lg‘);
6 let ©® = op(x) ; // either A or V at this point

foreach c € Children(x) do

L let (I, uc] = CreateBounds(c, S[c]);

9 let R = Children(x) N S ; // children of x being repaired
10 if R = () then let r = @ and C = Children(x);

11 else // treat all children being repaired as one

e 3

12 let r = O.cgc and [I, u,] = [false, true];
13 | let C = Children(x) \ R U {r};
14 let7=0; // result set of (s, f) pairs to be computed

15 foreach ¢ € C do

// Combine bounds from all other children:

16 let [l/, u’] = [G)Clec\{c}lc/’ G‘)Clec\{c}ucr];
17 if ©® is A then

18 ‘ let [} = 1*;letu} = uc A (u* vV —u');
19 else //®is v
20 L let X = 1. v (I* A=l); let uX = u™;

21 if ¢ is not r then let ¥ = F U DeriveFixes(c, S|c], l:, u: ;
22 else let ¥ = F U DistributeFixes(MinFix(1X, uX), C) ;

23 return F;

in a way such that any repairs on x; and x3 within these bounds ensure that x;’s target bound is
met. Let us focus on setting the target bound for x,. As argued above, we would like it to be as loose
as possible. Thankfully, because x; < x3 V x3, x3 can help “cover” some of x;. Specifically, no matter
how we end up repairing xs, we know it is lower-bounded by A=C A D<7 (denote this formula by
I"). Hence, x3 will certainly cover the P* A’ part of P*, leaving x, responsible to cover only P* A=l’.
This observation motivates us to set the lower target bound for x; by raising its lower repair bound
(denote it by I.) to I. vV (P* A =I’) (Line 20) instead of all the way up to I, V P*. On the other hand,
x3 does not help with setting the upper target bound for x,. We have to set x;’s upper target bound
to P*, because if x; “overshoots” P*, V-ing it with any x3 formula will not bring it down. In sum,
we set the target bound for x; as [I. V (P* A =), P*] = [P*~(A=C A D<7), P*]. A symmetric
argument leads to setting the target bound for x3 as [(A=C A D<7) Vv P*, P*] (in this case x; offers
no help to x3 because it is lower-bounded only by false). The intuition behind pushing the target
bound through A is analogous to that described above for Vv but instead boils down to lowering
upper bounds as little as possible (as opposed to raising lower bounds). Completing the rest of
Example 7, we show the target bounds derived by DeriveFixes for P given repair sites {xg4, x19, X12} in
Table 1.

Another aspect of DeriveFixes worth mentioning is its handling of the case when multiple repair sites
have the same A or V parent (which is common because many queries in practice are conjunctive;
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l Node(s) [ target lower bound [ target upper bound [

x1 (P) P* P*

X2 P* A =(A=C A D<7) P*

X4 P* A =(A=C A D<7) | P* v =(D#E vV D>F)
X5, X8, X9 same as in original predicate

X3 P* v (A=CAD<7) | P*

X6 same as in original predicate

X7 P* v (A=C A D<7) P* Vv =(A=C)
X10 A X12 P* A ~(D<7) P* v =(A=C)

X11 same as in original predicate

Table 1. Target lower and upper bounds in Example 5

therefore, their trees have only two levels- the root and the leaves). Since A and V are commutative,
all such sites can be combined into effectively one site (r in Algorithm 3) to be fixed. In Example 5
above, x79 and x;, are handled in this manner. Once we obtain a fix for r using MinFix (in conjunctive
normal form for A or disjunctive normal form for V), DistributeFixes distributes the r’s clauses to the
repair sites (Line 22) based on syntactic similarities between them.

The following is the main result of this section, which affirms that so long as a candidate set S
of repair sets passes the repair bound check in Section 5.1, there must exist a correct repair for ¥
and DeriveFixes will find it. This lemma and Lemma 5.3 together imply that our repair bound check is
exact.

LEMMA 5.4 (ExISTENCE OF CORRECT REPAIR). Suppose P* € CreateBounds(P, S). DeriveFixes(P, S, P*, P*)
returns ¥ such that applying (S, F) to P yields a formula equivalent to P*.

In the remainder of this section, we first focus on MinFix, which DeriveFixes uses to find the smallest

formula within a target bound. We end with a discussion of complexity, optimality, and, when we
cannot guarantee optimality, techniques to mitigate suboptimality.
Finding Smallest Formula with a Bound. Given a target bound [I*, u*] for a repair site, MinFix
needs to find a formula g with the smallest size possible such that g € [I*, u*]. This goal is intimately
related to the Boolean minimization problem, which has been well studied and known to be hard [16].
Many practically effective tools have been developed over the years, so our strategy is to leverage
these tools for Qr-HINT. There are two technical challenges: 1) Boolean minimization is formulated
in terms of expressions involving independent Boolean variables, while our formulae involve atomic
predicates whose truth values are not independent. 2) Our minimization problem is given a bound
as opposed to a single expression that Boolean minimization typically expects.

To address (1), we run a heuristic procedure using Z3 to identify a set A of “unique” atomic
predicates that appear in I* and u*; those that are logically equivalent to others or can be expressed
easily in terms of others (e.g., with a negation) are excluded. This procedure does not need to
detect or remove intricate dependencies (such that A>C follows from A>B and C<B); any such
dependencies will still be caught later. Then, we map each predicate in A to a unique Boolean
variable and convert [* and u* into Boolean expressions involving these variables.

To address (2), we note that many practical Boolean minimization tools accept the specification
of Boolean expressions as truth tables with possible don’t-care output entries. Our idea is to use
don’t-cares to encode the constraint implied by the target bound. Specifically, we generate a truth
table whose rows correspond to truth assignments of the Boolean variables for A. If a particular
assignment is not feasible (which is testable in Z3) due to interacting atomic predicates, we mark
the output for the row as don’t-care. For each feasible assignment, if I* and u* evaluate to the same
truth value, we designate the output for that row to be this value. If I* evaluates to false and u*
evaluates to true, we mark the output as don’t-care—reflecting the flexibility offered by the bound.
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(Note that because I* = u*, the case where [* and u* evaluate to true and false respectively cannot
occur.)

The current implementation of QrR-HINT uses ESPRESSO [14] as the primitive MinBoolExp for
finding a minimum-size Boolean expression given a truth table with don’t-cares.

Complexity and Optimality. In our analysis below, let ¥ denote the combined size of formulae
P and P*. Derivefixes’s main cost comes from calls to MinFix and Z3. The number of times that MinFix
is invoked is |S|, which is O(k) but is usually a small constant in practice. MinFix runs in time
exponential in the number of Boolean variables, which is capped at k. To construct the input truth
table for MinBoolExp, MinFix will also call Z3 O(2*) times. Each Z3 call may take time exponential
in the length of its input, though in practice, we time out with an inconclusive answer. Finally,
as discussed at the beginning of Section 5, the number of calls to DeriveFixes by RepairWhere can be
worst-case exponential in k, but in practice it will be O(x?). Regardless, the overall complexity
of RepairWhere is exponential in the complexity of the WHERE predicates. Although this worst-case
complexity seems daunting, we have found that Qr-HINT delivers acceptable performance in
practice: thankfully, x is often small, and the structures of P and P* and the interdependencies
among their atomic predicates tend to be much simpler than, e.g., our Example 5.

The optimality result is presented earlier as Lemma 5.2. Intuitively, the guarantees (which still
depend on the primitives Z3 and MinBoolExp) stem from two observations: 1) if repair is limited to a
single site, the target bound computed by DeriveFixes is indeed the best one can do; and 2) if all sites
share the same parent, DeriveFixes would effectively process them as a single site. However, target
bounds for non-combinable repair sites cannot be set optimally in an independent manner; the
approach taken by DeriveFixes, which essentially assumes that siblings receive the least amount of help
possible from each other when pushing down target bounds, cannot guarantee a minimum-size
repair. Indeed, our running example Example 5 with repair sites {x4, x10, x12} is an instance where
DeriveFixes fails to set target bounds optimally, because x4 has a different parent from x;9 and x2.
To mitigate this problem, we have developed a more sophisticated algorithm (called DeriveFixesOPT)
for finding fixes for multiple sites holistically. A full discussion of DeriveFixesOPT is beyond the scope
of this paper (details in [35]). DeriveFixesOPT increases the complexity by another factor of 25! It is
heuristic in nature (as it prioritizes repair sites by how constrained they are) and cannot guarantee
optimality beyond Lemma 5.2. However, it does well in practice and better than DeriveFixes. Since |S]|
is small in practice, the complexity overhead is a good price to pay.

ExampLE 8. In Example 5, for repair sites {x4, x10, X12}, DeriveFixes returns fixes x4 +— A=BV (A=C A
D>10) V (A=C AD<7); x19 — (A=BAD#E) V (A=BAD>F); x12 — (A=CAD>10) V (A=C AE<5).
On the other hand, DeriveFixesOPT finds the optimal fixes x4 — A=B; x19 > D>10; x1, > E<5.

6 GROUP BY STAGE

We check the GROUP BY equivalence assuming Q*, Q have equivalent FROM and WHERE clauses.
We focus on ensuring FWG(Q) = FWG(Q), regardless of the order and the number of expressions
involved in their GROUP BY clauses.

In the following, we consider the case where both Q and Q* have grouping and/or aggregation.
Suppose we have unified the WHERE conditions and GROUP BY expressions in the two queries
according to the table mapping m. Let P denote the resulting formula for Q*’s WHERE condition
(which at this point is logically equivalent to Q’s), and let 0 and o* denote the resulting lists of
GROUP BY expressions for Q and Q*, respectively. Note that the ordering of the GROUP BY expressions
is unimportant. Also, if a query involves aggregation but has no GROUP BY, we consider the list of
GROUP BY expressions to be an empty list. Same column references across P, 0, and o0* are treated as
same variables. Our goal is to compute a subset A~ of GROUP BY expressions to be removed from Q,
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as well as a set A* of additional GROUP BY expressions to be added to Q, such that the resulting query
will always produce the same grouping of intermediate result tuples (produced by FROM-WHERE) as
Q*. In practice, we may not want to reveal A*, but instead simply hint that Q misses some GROUP
BY expressions. We may repeat the hinting process several times until GROUP BY is completely fixed.

Repairing grouping is trickier than it seems because seemingly very different GROUP BY lists can
produce equivalent grouping, as illustrated by the following example.

Example 6.1. Consider two queries over tables R(A,B) and S(C,D):
|| SELECT B FROM R, S WHERE B=C GROUP BY B, D; -- Q*
|| SELECT C FROM R, S WHERE B=C GROUP BY C+D, C; -- Q

The two queries are equivalent, even though none of the pairs of GROUP BY expressions are equivalent
when examined in isolation.

To address this challenge, instead of comparing pairs from ¢* and o in isolation, we holistically
consider these lists as well as the WHERE condition, and go back to the definition of GROUP BY as
computing a partitioning of intermediate result tuples. Formally, the viability check for this stage
is that ¢ and o0* achieve the same partitioning, or more precisely:

Vi Check ifvtl,tz S FW(Q*) : /\i(oi[tl] =Oi[t2]) = /\i(O;[tl]ZO;[tz])

Here, t; and t; denote intermediate result tuples, which are known to satisfy P; we use o[t] to
denote evaluating e over ¢.” This approach underlines our algorithm FixGrouping (Algorithm 4).

ExaMPLE 9. Consider the two queries in Example 6.1. The table mapping is trivial and we simply
use column names to name variables. We have: P is B = C, 0* = [B,D], ando = [C + D,C]. The
logical statement that establishes the equivalence of grouping is

V(A1, B1,C1,D1), (A2, B2,C2, D2) :
(B1:C1 A BZZCZ) // both (A1, B1,Cq, D]) and (Az, By, Cy, Dz) satisfy P

(B1=B2 A D1=D3) //Q™*’s grouping criterion

= & (C1+D1=C+Dy A C1=C3) // Q’s grouping criterion|

Note that instead of referring to tuples t; and t,, we simply refer to variables representing their column
values in the above.

In FixGrouping, to find A~, which are “wrong” expressions in o, we check, for each o;, whether it is
possible that given P[t;] A P[t;], we can have A; (o} [t1] =0} [t;]) but not 0;[t;] =o0;[t,]. If yes, that
means o; is wrong with respect to o*, because while ¢, and ¢, should belong to the same group per
0*, grouping by o; alone would have forced them into separate groups instead. After identifying all
wrong expressions in ¢ and removing them, we are left with a partitioning potentially coarser than
0* but otherwise consistent with o*. We then find A* to be further added in a similar fashion.

LEMMA 6.2. We say that two lists of GROUP BY expressions are equivalent if they produce the
same partitioning for the above query over any database instance. Let (A~, A*) = FixGrouping(P, 0, 0*).
Assuming that subroutine IsSatisfiable returns no false positives, we have:

Correctness: GROUP BY-stage hint leads to a fixed working query Qs that 1) passes the viability
check (0,0* are equivalent), 2) satisfies FWG(Q3) = FWG(Q*); and 3) leads to eventual correctness.

Further assuming that IsSatisfiable returns no false negatives, we have:

Strong Minimality of A™: Let (A7, A}) denote the minimal A~ and A* respectively, then for any
(A7, A}) such that 6 \ A7 U A? is equivalent to 6%, A~ C AS.

Weak Minimality of A*: [fA" # 0, then there exists no AJ such that o \ A, is equivalent to o*.

"Formally, we treat  as an assignment of variables (column references) in e to variables representing corresponding column
values in ¢. Hence, e[ ¢] is an expression obtained from e by replacing each variable (column reference) v with variable #(v).
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Algorithm 4: FixGrouping(P, 5, 0*)
Input :aformula P and two expression lists 6 and o*

Output :apair (A~,A"), where A~ C [1..dim(d)] is a subset of indices of 6 and A* C [1..dim(d*)]

is a subset of indices of 0*
let 3 denote the set of variables in P, 6, and 0*;

-

2 let t1, t; be two assignments of g to new sets of variables #; and Us;
3 let G* denote the formula Ai(or[t1]=07[t2]);

4 let A™ =0

5 foreach o; € 0 do

6 if IsSatisfiable(P[t1] A P[t2] A G* A 0i[t1] #0i[t2]) then

L | letA” =AU {i};

8 let G denote the formula Ajgp- (0i[t1]=0;i[t2]);

9 let A* = 0;

10 foreach oF € o* do

1 if IsSatisfiable(P[t1] A P[t2] A G A oF[t1]# 0] [t2]) then
12 L let AT = At U {i};

13 let G = G A of [t1] # 0] [t2];

14 return (A7, A%);

The strong minimality of A~ means that we can hint each expression therein as a “must-fix”
The weak minimality of A* works perfectly as we simply hint that the wrong query needs some
additional GROUP BY expressions.

7 HAVING STAGE

At HAVING stage, we aim at further ensuring that FWGH(G) = FWGH(G*) assuming that O* and Q
unified by a table mapping and have equivalent FROM, WHERE, and GROUP BY. While HAVING can
also be modeled as a logical formula, there are new challenges: 1) unlike WHERE, inputs to HAVING
formulae are arrays of tuples [ti, ..., t,] instead of single tuples, 2) we need to consider aggregate
functions, and 3) we cannot test HAVING alone without considering WHERE’s effect.

ExampLE 10. Consider two queries over R(A,B) and S(C,D):
SELECT A FROM R, S WHERE A=C AND A>4 GROUP BY A, B

|| HAVING A > B + 3 AND 2xSUM(D) > 10; -- Q*
|| SELECT A FROM R, S WHERE A=C GROUP BY A, B, C
|| HAVING C > B + 3 AND SUM(D * 2) > 10 AND A>4; —- Q

The two queries are equivalent because A=C in WHERE, because 2 distributes over SUM, and because
A>4 can be either in WHERE or HAVING.

Our strategy is to construct two formulae H*, H for the HAVING conditions of Q*, Q respectively,
such that equivalence of H* and H implies FWGH(G) = FWGH(G*). To this end, for each reference to
a GROUP BY column in HAVING, we replace it with a variable from the same domain, and we translate
HAVING expressions outside aggregate function calls in the same way as we handle WHERE: e.g., A>B+3
becomes A>B+3. For each reference to a column not in GROUP BY, we introduce an array variable to
capture the fact that it refers to a collection of values from rows in the same group. Moreover, for
each aggregate function call, we introduce a new array variable to represent the collection of input
values if they are computed from an expression, and we use a universally quantified assertion to
relate this variable to the source column values: e.g., for SUM(D*2) we introduce array-valued D,
to represent D*2 values, and we related it to the array-valued D representing D values by asserting
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Vi € N : D,[i] = D[i] X 2. Such assertions, along with the WHERE condition and additional inference
rules for aggregate functions, go into a context as discussed in Section 3 and illustrated in Example 3.

ExampLE 11. For Example 10, HAVING formulae for Q*, Q are:
(H®) A>B+3 A (2xSUM(D)>10)
(H) C>B+3 A SUM(D3)>10 A A>4

We test their equivalence under the following context:

D, Dy have type Array(Z)
A=CANA>4
Vi e N:Dy[i] =D[i] x 2

SUM has type Amay(Z) — Z
Ve € Z,X and Y of type Array(Z) :
(Vi e N: X[i] x c =Y[i]) = SUM(X) X ¢ = SUM(Y)

In the above, the assertions underneath the horizontal line are generic assertions encoding properties
of aggregate functions useful for inferring equivalences. Only those relevant to Example 10 are listed
here; for a complete list see [35].

The viability check for HAVING (Theorem 3.1, stage 4) is that H is logically equivalent to H*
under HAVING base context C, i.e.:

Vy : Check if H © H*under C

Note that this check implicitly applies to all groups. If a constraint solver fails to establish equiva-
lence, we invoke the exact same procedures as for WHERE to find a repair.

LEMMA 7.1. HAVING-stage hint leads to a fixed working query Q4 with HAVING condition that
1) passes the viability check; 2) satisfies FWGH(Q4) = FWGH(Q™); and 3) leads to eventual correciness.

As with WHERE, the correctness of the above lemma relies only on the fact that Z3 inference
is sound with respect to the logic exercised by H, H*, and C and that MinBoolExp always finds a
Boolean formula equivalent to its given input. We could additionally guarantee optimality similar to
Lemma 5.2 by making the same assumptions therein (completeness of Z3 inference and optimality
of MinBoolExp) plus the additional assumption that the context C encodes all properties of aggregate
functions relevant to inference.

8 SELECT STAGE

This stage aims at fixing SELECT as needed to ensure Q = Q*, assuming that they already have
equivalent FROM, WHERE, GROUP BY and HAVING. We test the equivalence between SELECT expressions
with a context C dependent on the type of the query: if the queries are SPJ], we simply assert the
WHERE condition in C; if the queries are SPJA, we use the same C defined by the HAVING-stage.

Let 6 and 0* denote the resulting ordered lists of SELECT expressions for Q, Q*, respectively. The
viability check (Vs) is that dim(o) = dim(0*) and 6[i] is equivalent to 0*[i] for 1 < i < dim(0*), i.e.
both SELECTs have the same number of expressions and expressions on the same index position
are equivalent. If SELECT clauses are not equivalent between Q*, Q, our goal becomes to compute
A~ of SELECT expression to be removed from Q at the corresponding index position and A* of
expressions to be added to Q at the corresponding index position.

The algorithm checks the equivalence between (6[i], 0*[i]) and add A~ and A* respectively if
they are inequivalent. Finally, excessive expressions in Q or Q* will also be added to A~ and A*
respectively. After fixing SELECT, we guarantee Q* = Q.
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9 EXPERIMENTS

We test three aspects of Qr-HINT: coverage, accuracy, and running time. For coverage, we test the
ability of QrR-HINT to fix wrong queries that arise in real-world classroom settings. For accuracy and
running time, we focus on Algorithm 1, which is the bottleneck of Qr-HINT due to calls to DeriveFixes
or DeriveFixesOPT. As fix minimization incurs exponential time, we examine 1) how the number of
unique predicates affects running time, 2) how close the generated repairs are to the optimal if
queries are not conjunctive, 3) a comparison between the running time and optimality of DeriveFixes
and DeriveFixesOPT. In general, DeriveFixesOPT strives for smaller fixes and hence incurs longer running
time than DeriveFixes.

Implementation/Test Environment. We implemented Qr-HINT in Python 3.10 using Apache
Calcite [6] to parse SQL queries and Z3 SMT Solver [24] to test constraint satisfiability. We used
ESPRESSO in PyEDA [27] for fix minimization. We ran the experiments locally on a 64-bit Ubuntu
20.04 LTS server with 3.20GHz Intel Core i7-8700 CPU and 32GB 2666MHz DDR4.

Test Data Preparation. To prepare the first test dataset, denoted STUDENTS, we examined 2,000+
real student queries from an undergraduate database course in one semester at the first author’s
institution. These queries came from 4 introductory-level SQL questions (with 4 reference queries),
and altogether they included 341 wrong queries. Out of these, 35 (11%) used SQL features not
supported by Qr-HINT (see limitations at the end of Section 3). Hence, we end up with 306 supported
wrong queries in STUDENTS. (At the time of writing, we are still exploring with the institutional
review board the possibility of making this dataset publicly available.)

To further expand coverage of errors, we cross-checked STUDENTS queries with the list of SQL
issues indicative of semantic errors categorized by Brass et al. [12] (which did not publish a query
dataset). Out of the 43 issues in [12], 18 involve SQL features not currently supported by Qr-HINT,
but they only make up for a small minority (11.4%) of the observed instances as reported by [12].
Out of the 25 issues QrR-HINT should support, 17 are already represented in the 306 STUDENTS
queries. To cover the remaining 8, we handcrafted two queries according to each issue and added
to the dataset; we also handcrafted corresponding reference queries (free from any issue in [12]).
We denote the resulting dataset STUDENTs+, with 322 queries having errors/issues.

Our second test dataset, denoted TPCH, is based on TPC-H [7] schema and queries, with synthetic
errors injected. This dataset allows us to stress-test Qr-HINT with queries that are more complex
than STUDENTS. Also, because errors are synthetic, we have the “ground-truth” repair sites and
fixes, allowing us to easily assess the optimality of Qr-HINT fixes. Most WHERE conditions in TPC-H
queries are conjunctive: we chose 7 TPC-H queries with conjunctions of 4,5,6,7,9,10,11 atomic
predicates (TPC-H Query 4,3,10,9,5,8,21 respectively). Since we did not find a TPC-H query with
exactly 8 predicates, we synthesized one by removing one predicate from TPC-H Query 5. For
each query, we then introduced errors into two atomic predicates to make the wrong query, which
remained conjunctive. Thus, each pair of wrong and reference queries has 6-13 unique atomic
predicates. Furthermore, to test cases beyond conjunctive WHERE conditions, we chose TPC-H Query
7, whose WHERE contains multiple nested AND and OR, and created 5 wrong queries by injecting 1-5
errors by changing atomic predicates or logical operators. For fair comparison, we ensured that the
number of unique atomic predicates is always 10 between the reference query and each wrong

query.

9.1 Results and Discussion

STUDENT+. To test coverage and optimality of Qr-HINT, we ran Qr-HINT for the 322 STUDENT+
queries with errors/issues, along with their reference queries, and examined all Qr-HINT fixes.
For the 25 issues in [12] that Qr-HINT should support, we found that they were handled in three
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ways: 1) 11 of them were indeed errors, and QrR-HINT correctly identified and fixed them all;
2) 3 of them were efficiency/stylistic issues where the queries were semantically still correct (e.g.,
logically correct WHERE containing some tautological conditions, such as A >= B OR A < B), and
Qr-HinT did not flag any error; 3) the remaining 11 of them were also efficiency/stylistic issues
(e.g., unnecessarily joining a primary key with its corresponding foreign key but only projecting
the foreign key column), but Qr-HINT failed to detect query equivalence in this case and suggested
some fixes. This last category is the only case where Qr-HINT showed suboptimal behavior, though
its suggested fixes still lead to correct queries, and with the interesting side effect of resolving
efficiency/stylistic issues. The detailed analysis can be found in [35]. It is worth noting that Qr-HiNT
perfectly handles all of the 10 most common issues in [12].

Qr-HINT’s average running time per query on STUDENT+ is 0.2 seconds, using DeriveFixes. However,
note that most STUDENT+ queries are rather simple, with conjunctive WHERE (which does not need
DeriveFixesOPT for optimality) and at most 5 unique atomic predicates. Therefore, we further stress-
tested Qr-HINT using TPCH.
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TPCH, conjunctive WHERE with varying number of atomic predicates. Here, we study Qr-
HINT’s running time and optimality (as measured by repair cost, the lower the best) as we vary
the number of atomic predicates involved in repairing WHERE. We compare versions of Qr-HINT
using DeriveFixes vs. DeriveFixesOPT, both set to explore up to two repair sites. Figure 2a confirms that for
conjunctive queries, both always return optimal repairs according to the ground truth, regardless of
the size of WHERE. (Note that the repair cost is not proportional to the number of atomic predicates
because it is normalized by the query sizes per Equation (1)). Figure 2b shows that as expected,
both have running times exponential in the number of unique atomic predicates, but DeriveFixes runs
much faster than DeriveFixesOPT. Furthermore, the plot labeled “1st Repair Sites” shows that it takes
less than one second for Qr-HINT to find the first viable (not necessarily optimal) repair site, so
there is additional room to trade optimality for faster running time.

TPCH, WHERE with nested AND/OR and varying number of injected errors. As shown in
Figure 3a, when the optimal repair (according to the ground truth) involves only one repair site
(a single error), both DeriveFixes and DeriveFixesOPT are able to find this optimal repair, confirming
Lemma 5.2. When there are more errors (2-3), DeriveFixes returns suboptimal repairs while DeriveFixesOPT
is still able to find optimal or near-optimal repairs (for the cases of 2 and 3 errors, respectively).
However, with 4-5 errors—which are arguably not the cases Qr-HINT targets—both suffer from
suboptimality because they are set to explore up to two repair sites; in fact, both decided that it was
best to just repair the whole WHERE condition. Figure 3b shows that DeriveFixesOPT’s better optimality
comes at the expense of slower speed than DeriveFixes, however. Interestingly, with 4-5 errors, both
run faster than with 2-3 errors, because the large numbers of errors severely limit the number
of possibilities of single- and 2-site repairs, speaking to the effectiveness of CreateBounds in quickly
spotting and bailing out of difficult situations.

Finally, Figure 4 shows all unpruned viable repairs found during Qr-HINT’s course of execution,
in terms of when they were found and how much they cost; there is one trace for each execution.
Traces for 1 (blue), 4 (red), and 5 (purple) errors degenerate into single dots because QrR-HINT
eventually finds only one solution as viable repair options are limited. Recall that we heuristically
prioritize the viable repairs to consider, but there is no guarantee that a cheaper repair will always
be found earlier. Hence, there are fluctuations in the repair costs over time, although the general
trends are up, confirming the effectiveness of our heuristic. Furthermore, note that the lowest-cost
repairs tend to surface early during execution. In closing, while the total and worst-case running
times of Qr-HINT grow exponentially in query size, in practice the running times are reasonable
considering that Qr-HINT is intended for education settings, where returning hints instantaneously
may not be necessary or desirable for learning. With the observation that Qr-HINT often returns
some low-cost repairs early, we can offer them as preliminary hints to get students thinking, while
QRr-HINT continues to look for better repairs in the meantime.

10 USER STUDY

We conducted a small-scale user study to evaluate Qr-HINT: 1) whether students can understand
what is wrong with the suggested hints, and 2) how the hints generated by Qr-HINT compare with
ones provided by “expert users” (teaching assistants in our study).

Participants. We recruited 38 students who have taken/are taking a graduate or undergraduate
database course. Except for an incentive of receiving a small gift card and practicing SQL, the
participation was voluntary. In the end, we collected 15 complete and valid answers. A possible
explanation for the low completion rate was the significant effort required to debug SQL queries
with subtle mistakes (we observed that some participants took more than an hour to finish). We
considered the possibility of recruiting participants from other sources (e.g., Amazon Mechanical
Turk), but decided against it because they would not represent our targeted population (students).
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Furthermore, given the significant effort required from the participants as observed above, it would
be hard to incentivize participants who are not actively learning SQL: a low reward would turn
them away, while a high reward might encourage undesirable behaviors.

Preparation. To design the survey, we first performed an analysis of the STUDENTs queries to get
a sense of what the common errors were. Overall, most errors came from WHERE and HAVING (130
out of 341 are wrong due to WHERE); students often missed join conditions for queries involving
many tables. Other common errors include incorrect/redundant/missing tables in FROM, incorrect
order and missing/redundant expressions in SELECT, and incorrect expressions in GROUP BY. We
decided not to use the same queries from STUDENTS, as our participants had done the same/similar
homework previously, which might bias the results. Nonetheless, based on these observations, we
designed four SQL questions using a different schema, DBLP (details in [35]). For each question, we
crafted a wrong solution containing one or more mistakes: two WHERE errors for Q;, one GROUP BY
error and one SELECT error for Q,, one WHERE error for Q3, and one each WHERE and HAVING errors
in Q4. Even though the queries are over a different schema, the errors above faithfully reflect real
errors from STUDENTS, and they are consistent with the common errors found by others [2, 12].

Then, we performed a small study with four graduate teaching assistants (TAs) to generate hints
for these queries. Each TA was asked to pinpoint all mistakes in each query and offer hints, as
if they were helping students debug wrong queries. To simulate an office-hour setting, we asked
TAs to finish all four questions in one sitting, with no help from Qr-HinT. We collected all hints
provided by the TAs as “expert” hints.

Next, we ran Qr-HINT on all wrong queries to obtain repair sites and fixes. We removed fixes and
only showed repair sites to the participants as hints. To prevent participants from recognizing the
source of hints (experts vs. Qr-HINT) by their wording, we paraphrased all hints to use a common
template “In [SQL clause], [ hint]” and standard wording.

Tasks. Using the four queries, each participant saw and completed three questions. Students were
required to complete questions on Q1 and Q2, and they completed one of Q3 and Q4 at random. For
each question, students were given the database schema, problem statement in English, and the
wrong SQL query, and were asked to explain what is wrong with the query. For creating treatment
and control groups, students received hints from Qr-HINT for either Q1 or Q2 (not both) at random,
and for the other one they were asked to detect errors without any hints provided; the order of the
two questions with and without hints was also chosen at random. For the last question, participants
received Q3 or Q4 at random, and we showed the union of hints (mixed together) generated by the
TAs as well as by Qr-HINT, and asked participants to categorize each hint as one of the following:
“Unhelpful or incorrect”, “Helpful but require thinking”, and “Obvious and giving away the answer”.
Participants were asked to finish all questions in one sitting. We recorded the time a participant
spent on each questions. In our study, for Q1, 8 students answered it with no hints and 7 with hints
from QR-HINT. For Q2, these numbers are 7 and 8 respectively. For the third question, 7 received
Q3 and 8 received Q4.

Result and Analysis. Our results for Q1 and Q2 show that participants were better at identifying
at least one error in the query given the hints provided by Qr-HINT compared to no hints. As
shown in Figure 5a and Figure 5b, 100% and 87.3% of the participants were able to identify at least
one of the two errors in the wrong query in Q1 and Q2 respectively after receiving hints from
QR-HINT, as opposed to 14.3% and 71.4% who were able to do so without a hint. While there is a
single participant who correctly identified both errors without any hint for Q1, this participant

801 without/with hints took 704s/460s on average; Q2 took 756s/658s. Students completed the survey asynchronously, so
the time recorded may not be accurate.
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spent more than 20 minutes doing so, while most participants spent no more than 10 minutes on
the same question without hints.

Q3 and Q4 are used to evaluate whether Qr-HINT provided hints that are comparable to the
ones given by teaching assistants in terms of their quality. For Q3, there are four TA hints and one
hint from Qr-HINT; and there are four TA hints and two hints generated by Qr-HINT for Q4. For
all responses, we sum up the number of times participants vote for each of the three categories
of hint ranks: “Obvious”, “Unhelpful”, and “Helpful”. The results are shown in Figures 6a, 6b. In
summary, the quality of TAs’ hints varies greatly as perceived by participants. On the other hand,
Qr-HINT is consistently perceived by participants as “helpful but require thinking”, which might
be best suited for classroom settings.

11 CONCLUSION AND FUTURE WORK

We presented Qr-HINT, a framework for automatically generating hints and suggestions for fixes
for a wrong SQL query with respect to a reference query. We developed techniques to fix all clauses
in a query and gave theoretical guarantees. There are multiple intriguing directions of future work,
including the support of more complex constructs such as subqueries, outer-joins (NULL), and
database constraints. In addition, developing techniques to overcome the limitations of the SMT
solver and improve the system’s scalability is also an important next step. In the meantime, we
are implementing a graphical user interface so that QrR-HINT can better assist students/TAs in
database courses. With that, we can then conduct a larger-scale user study to further understand
the effectiveness of Qr-HINT and better prepare for scaled deployment in large database courses.
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