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We describe a system called Q!"H#$% that, given a (correct) target query 𝐿𝐿 and a (wrong) working query
𝐿 , both expressed in SQL, provides actionable hints for the user to !x the working query so that it becomes
semantically equivalent to the target. It is particularly useful in an educational setting, where novices can
receive help from Q!"H#$% without requiring extensive personal tutoring. Since there are many di"erent ways
to write a correct query, we do not want to base our hints completely on how 𝐿𝐿 is written; instead, starting
with the user’s own working query, Q!"H#$% purposefully guides the user through a sequence of steps that
provably lead to a correct query, which will be equivalent to 𝐿𝐿 but may still “look” quite di"erent from it.
Ideally, we would like Q!"H#$%’s hints to lead to the “smallest” possible corrections to 𝐿 . However, optimality
is not always achievable in this case due to some foundational hurdles such as the undecidability of SQL query
equivalence and the complexity of logic minimization. Nonetheless, by carefully decomposing and formulating
the problems and developing principled solutions, we are able to provide provably correct and locally optimal
hints through Q!"H#$%. We show the e"ectiveness of Q!"H#$% through quality and performance experiments
as well as a user study in an educational setting.
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1 INTRODUCTION
In an era of widespread database usage, SQL remains a fundamental skill for those working with
data. Yet, SQL’s rich features and declarative nature can make it challenging to learn and understand.
When students encounter di#culties in debugging their SQL queries, they often turn to instructors
and teaching assistants for guidance. However, this one-on-one approach is limited in scalability.
Syntax errors are easy to !x, but many queries contain subtle semantic errors that may require
careful and time-consuming debugging. To save time, the teaching sta" is often tempted to give
hints based on how the reference solution query is written, ignoring what students have written
themselves, but doing so misses opportunities for learning. A SQL query can be written in many
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ways that are di"erent in syntax but nonetheless equivalent semantically. Seasoned teaching sta"
knows how to guide students through a sequence of steps that, starting with their own queries,
lead them to a corrected version that is equivalent to the solution query but without revealing the
solution query. Our goal is to build a system to help provide this service to students in a more
scalable manner.

E&’()*+ 1. Consider the following database (keys are underlined) about beer drinkers and bars:
Likes(drinker, beer), Frequents(drinker, bar), Serves(bar, beer, price). Suppose we want to write an SQL query for the
following problem: For each beer 𝑀 that Amy likes and each bar 𝑁 frequented by Amy that serves
𝑀, show the rank of 𝑁 among all bars serving 𝑀 according to price (e.g., if 𝑁 serves 𝑀 at the highest
price, 𝑁 ’s rank should be 1). We assume that there are no ties.

The reference solution query 𝐿𝐿 is given as follows:
SELECT L.beer, S1.bar, COUNT(*)
FROM Likes L, Frequents F, Serves S1, Serves S2
WHERE L.drinker = F.drinker AND F.bar = S1.bar
AND L.beer = S1.beer AND S1.beer = S2.beer
AND S1.price <= S2.price

GROUP BY F.drinker, L.beer, S1.bar
HAVING F.drinker = 'Amy';

Now consider a wrong student query 𝐿 :
SELECT s2.beer, s2.bar, COUNT(*)
FROM Likes, Serves s1, Serves s2
WHERE drinker = 'Amy'
AND Likes.beer = s1.beer AND Likes.beer = s2.beer
AND s1.price > s2.price

GROUP BY s2.beer, s2.bar;

Suggesting good hints to help students !x𝐿 is not easy. First, there aremanyways towrite a query
that is equivalent to 𝐿𝐿, and queries that look very di"erent syntactically might be semantically
similar or equivalent, so relying solely on the syntactic di"erence between 𝐿 and 𝐿𝐿 to propose
!xes is ine"ective and potentially misleading. In Example 1, even though𝐿𝐿 has a HAVING clause, it
would be confusing to suggest add HAVING to 𝐿 , because the condition drinker='Amy' in 𝐿 ’s WHERE
serves the same purpose. Also, even though𝐿 has Likes.beer=s2.beer in WHEREwhile𝐿𝐿 has S1.beer=S2.beer,
the di"erence is non-consequential because of the transitivity of equality. Yet another example is
s1.price>s2.price in 𝐿 versus S1.price↑S2.price in 𝐿𝐿. It would be wrong to suggest changing > to ↑ in 𝐿 ,
because an examination of the entire 𝐿 would reveal that the student intends s2 (and s1) in 𝐿 to
serve the role of S1 (and S2) in 𝐿𝐿. The correct !x is actually changing > to ↓.1
Second, it is often impossible to declare a part of 𝐿 as “wrong” since one could instead !x the

remainder of𝐿 to compensate for it. For example, we could argue that s1.price>s2.price in𝐿 is “wrong,”
but there exists a correct query containing precisely this condition, e.g., with (s1.price>s2.price OR
s1.price=s2.price). Hence, it is di#cult to formally de!ne what “wrong” means. Instead of basing our
approach heuristically on calling out “wrong” parts, we formulate the problem as !nding the
“smallest repairs” to 𝐿 that make it correct.

Third, hints are for human users, so for a query with multiple issues—which is often the case in
practice—we must be aware of the cognitive burden on users and not overwhelm them by asking

1Another wrong hint would be to suggest changing COUNT(*) to COUNT(*)+1 in 𝐿 ’s SELECT instead of changing the
inequality because doing so misses the top-ranked bars. Q!"H#$% will not make such a mistake.
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them to make multiple !xes simultaneously. This desideratum introduces the challenge of planning
the sequence of hints and de!ning appropriate intermediate goals.
Finally, e"ective hinting faces several fundamental barriers. Realistically, we cannot hope to

always provide “optimal” hints because doing so entails solving the query equivalence problem for
SQL, which is undecidable [1, 28, 41, 52]; even for decidable query fragments, Boolean expression
minimization is known to be on the second level of the polynomial hierarchy (precisely !𝑀

2 [16]).
To address the challenges, we proposeQ!"H#$%, a system that, given a target query𝐿𝐿 and awork-

ing query 𝐿 , follows the logical execution $ow (i.e., FROM→WHERE→GROUPBY→HAVING→SELECT)
and produces step-by-step hints for the user to edit the working query to eventually achieve 𝐿𝐿.
The sequence of steps is guaranteed to lead the user on a correct path to eventual correctness. The
following example shows Q!"H#$% helps !x the query in Example 1.

E&’()*+ 2. Continuing with Example 1, Q!"H#$% automatically generates the sequence of hints
below. Currently built for the teaching sta!, Q!"H#$% only generates the “repairs” below; using these
repairs, the teaching sta! would then hint to the user in natural language. With the recent advances in
generative AI chatbots, it would not be di"cult to automate the natural language hints as well; the
advantage of using Q!"H#$% in that setting would be to provide provable guarantees on the quality of
hints, which otherwise would be di"cult, if not impossible, for generative AI to achieve by itself.

Stage Q!"H#$% repair Hint in natural language
FROM Frequents needed It looks like you are missing one table—read the problem carefully

and see what other piece of information you need.
WHERE s1.price>s2.price ↔→

s1.price↓s2.price
Your WHERE has a small problem with s1.price>s2.price. Think through
some concrete examples and see how you may !x it.

Note the sequential nature of the hints above; the working query constantly evolves. Q!"H#$% #rst
focuses on FROM and will only proceed to WHERE after FROM is “viable.” After adding Frequents to FROM,
the user will also need to add appropriate join conditions in WHERE; if these were not added correctly,
the second step above would suggest additional repairs. It turns out that for this example, only the
above two hints are needed to #x the query. In particular, Q!"H#$% knows not to suggest spurious hints
such as adding to Frequents.drinker to GROUP BY or changing s2.beer to Likes.beer in SELECT.

We make the following contributions:
• We develop a novel framework that allowsQ!"H#$% to provide step-by-step hints to !x a working
SQL query with the goal of making it equivalent to a target query. This framework formalizes the
notion of “correctness” for a sequence of hints, allowing Q!"H#$% to guarantee that every hint is
actionable and is on the right path to achieve eventual correctness. Further, by formulating the
hinting problem in terms of !nding repair sites in𝐿 with viable !xes, we are able to quantify the
quality of the hints.

• Since the optimality of hints, in general, is impossible to achieve due to the foundational hurdles
discussed earlier, we aim to provide guarantees on the “local” optimality of Q!"H#$% in each
step. We design practical algorithms with sensible trade-o"s between optimality and e#ciency.

• We evaluate the performance and e#cacy of Q!"H#$% experimentally. We further perform a user
study involving students from current/past database courses o"ered at the authors’ institution.
Our !ndings indicate that Q!"H#$% !nds repairs that are optimal or close to optimal in practice
under reasonable time, and they lead to hints that are helpful for students.

2 RELATEDWORK
Debugging Query Semantics. There are two main lines of work toward debugging query seman-
tics (as opposed to syntax or performance). The !rst line helps debug a query but without knowing
the correct (reference) query; in this regard, it di"ers fundamentally from Q!"H#$%. Qex [53] is a
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tool for generating input relations and parameter values for unit-testing parameterized SQL queries.
SQLLint [10–13, 30] detects suspected semantic errors in a query, alerting users to what may be
indicative of e#ciency, logical, or runtime errors. The work highlights a list of common semantic
errors made by students and SQL users [12], but it does not suggest edits, and !xing the suspected
errors will not guarantee that the query is correct. Habitat [25, 31] is a query execution visualizer
that allows users to highlight parts of a query and view their intermediate results. While it helps
users spot possible errors, it gives no edit suggestions if errors exist. More recently, QueryVis [42]
turns queries into intuitive diagrams, helping users better understand the semantics of the queries
and spot potential errors.

The second line of work, more directly related to Q!"H#$%, focuses on checking a query against
a reference query and/or helping to explain their di"erence. However, previous work has not
been able to suggest small !xes that will make the user query equivalent to the reference query.
XData [19] checks the correctness of a query by running the query on self-generated testing datasets
based on a set of pre-de!ned common errors, but it provides no guarantees beyond this pre-de!ned
set. Cosette [21–23] uses constraint solvers and theorem provers to establish the equivalence of
two queries or construct arbitrary instances that di"erentiate them. From a large database instance,
RATest [44] utilizes data provenance to generate a small, illustrative instance to di"erentiate
queries. C-instances [29] aims at constructing small abstract instances based on c-tables [37] that
can di"erentiate two given queries in all possible ways. While Cosette, RATest, and c-instances can
provide examples illustrating how two queries are semantically di"erent, they can only indirectly
help users pinpoint errors in the original query; none of them is able to suggest !xes. Chandra
et al. [18] developed a grading system that canonicalizes queries by applying rewrite rules and
then decides partial credits based on a tree-edit distance between logical plans. However, as query
syntax di"ers sign!ciantly from canonicalized plans after rewrite, edits on a canonicalized plan do
not translate naturally to small !xes on the original query, making it hard for users to use these
edits as hints. Finally, SQLRepair [47] !xes simple errors in an SPJ query using constraint solvers
to synthesize/remove WHERE conditions until the query produces correct outputs over all testing
instances. Its scope of error is much narrower than what we consider, and its tests-driven nature
o"ers no guarantee of query equivalence.

Program Repair and Feedback for GPL. Several approaches have been developed for program
repair in general-purpose programming languages (GPL), but none can be directly applied or easily
transferred to SQL. First, a wrong program is usually aligned with reference program(s) ([3, 32, 54])
and !xes are generated based on the selected reference program using various techniques. Such an
approach is similar to Q!"H#$%, but SQL is essentially di"erent from GPL as SQL is declarative
and GPLs are usually procedural. While it is possible to write programs in GPL to simulate the
execution of a speci!c SQL query, there is no well-de!ned mapping between the syntax of SQL and
any GPL. As a result, it is impossible to apply such program repair techniques to SQL in general.
Another approach is to leverage test cases to synthesize “patches” for the wrong program so that it
returns the same output as the reference program for all test cases ([36, 45, 48, 51, 56]). However,
such an approach heavily relies on the test cases to cover all possible errors and thus usually fails
to guarantee semantic equivalence. Besides the traditional approaches, recent work explores ML
algorithms to provide feedback and correction ([8, 9, 20, 33, 34, 43, 46]). In addition, large language
models such as GPT-3 [15] have shown an ability to explain the semantics of SQL queries, but does
not guarantee the correctness of !xes.
Testing query equivalence.While the query equivalence problem in general is undecidable

[1, 5, 50, 52], tools and algorithms are developed to check the equivalence of various classes of
queries with restrictions and assumptions [4, 17, 21–23, 26, 38–40, 49, 55, 57]. Although they give a
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deterministic answer on equivalence, these tools/algorithms cannot provide any explanation on
which parts of the users’ queries cause semantic di"erences from the reference queries.

3 THE QR"HINT FRAMEWORK
Queries. We consider SQL queries that are select-project-join queries with an optional single level
of grouping and aggregation. For simplicity of presentation, we assume these are single-block SQL
queries with SELECT, FROM (without JOIN operators), and WHERE (with condition defaulting to TRUE
if missing) clauses,2 together with optional GROUP BY and HAVING clauses. We refer to such a query
as an SPJA query if it contains grouping or aggregation or DISTINCT; otherwise, we will call it an
SPJ query.

We assume the default bag (multiset) semantics of SQL. Given query 𝐿 , let F(𝐿) denote the cross
product of 𝐿 ’s FROM tables (including multiple occurrences of the same table, if any); and let FW(𝐿)
denote the query that further !lters F(𝐿) by 𝐿’s WHERE condition (i.e., FW(𝐿) is a SELECT * query
with the same FROM and WHERE clauses as 𝐿). Furthermore, if 𝐿 is SPJA, let FWG(𝐿) denote the
(non-relational) query3 that further groups the result rows of FW(𝐿) according to 𝐿’s GROUP BY
expressions (or ↗ if there are none but 𝐿 contains aggregation nonetheless, in which case all result
rows belong to a single group). Finally, if 𝐿 is SPJA, let FWGH(𝐿) denote the (non-relational) query
that !lters the groups of FWG(𝐿) according to 𝐿’s HAVING conditions (which defaults to TRUE if
missing). When discussing equivalence (denoted ↘) among above queries, we require that they
return the same bag of result rows (ignoring row and column ordering) for any underlying database
instance, and additionally, for queries returning groups, they return the same partitioning of result
rows (ignoring group ordering).
SMT Solvers. As with previous work [21, 44, 57], we leverage satis#ability modulo theory (SMT )
solvers to implement various primitives used by our system. Such a solver can decide whether a
formula, modulo the theories it references, is satis!able, unsatis!able, or unknown (beyond the
solver’s capabilities). Speci!cally, we use the popular SMT solver Z3 [24] to implement the following
three primitives. Given two quanti!er-free expressions, IsEquiv(𝑂1, 𝑂2) tests whether 𝑂1 ≃ 𝑂2 (for
logic formulae such as those in WHERE) or 𝑂1 = 𝑂2 (for value experssions such as those in SELECT or
GROUP BY). Given a logic formula 𝑃 , IsUnSatisfiable(𝑃) and IsSatisfiable(𝑃) return, respectively, whether 𝑃
is satis!able or unsatis!able, respectively. All above primitives may return “unknown” when Z3 is
unsure about its answer. However, when they return true, Z3 guarantees that the answer is not a
false positive. Our algorithms in subsequent sections act only on (true) positive answers from these
primitives. For complex uses, it is often convenient to frame equivalence/satis!ability testing using
a context C, or a set of logical assertions (e.g., types declaration, known constraints, and inference
rules) under which testing is done. We use subscripts to specify the context: e.g., IsUnSatisfiableC (𝑃) is
a shorthand for IsUnSatisfiable

(
(∧𝑁⇐C 𝑄) ⇒ 𝑃

)
.

E&’()*+ 3. Consider a query with a WHERE condition stipulating that 𝑅 > 100 for an INT-typed
column 𝑅, as well as a HAVING condition MAX(𝑅) ↓ 101. We might wonder whether the HAVING
condition is unnecessary. To this end, we call IsUnSatisfiableC (𝑃) with

C :




A has type Array(Z)
⇑𝑆 ⇐ N : A[𝑆] > 100

MAX has type Array(Z) → Z
⇑𝑆 ⇐ N,X of type Array(Z) : MAX(X) ↓ X[𝑆]



, 𝑃 : ¬(MAX(A) ↓ 101) .

2We can handle a query with common table expressions (WITH) and subqueries in FROM that are aggregation-free, as well as
non-outer JOINs in FROM, by rewriting the query into single-block SQL.
3This query is non-relational because it returns, besides the bag of rows from FW(𝐿 ) , a partitioning of them into groups.
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The #rst two assertions in C are derived from the type of 𝑅 and the WHERE conditions; here the array-
typed A refers to a collection of 𝑅 values. The last two specify (some) general inference rules on the
SQL aggregate function MAX. Z3 correctly returns true, meaning that MAX(𝑅) ↓ 101 must be true under
C and is therefore unnecessary.

Our use of Z3 for reasoning with SQL aggregation, such as the example above, goes beyond
the practice in previous work, where aggregation functions are mostly treated as uninterpreted
functions. For example, to test the equality of two aggregates, [57] conservatively checks whether
input value sets or multisets for the aggregate function are equal. In contrast, we encode properties
of SQL aggregation functions in a way that allows Z3 to reasonwith them. As formulae becomemore
complicated, e.g., with quanti!ers and arrays, Z3 no longer o"ers a complete decision procedure
(as there exists no decision procedure for !rst-order logic) and may return “unknown” more often.
Nonetheless, practical heuristics employed by Z3 allow it to handle many cases of practical uses to
Q!"H#$%.

3.1 Approach
Given a (syntactically correct) working query 𝐿 and a target query 𝐿𝐿, Q!"H#$% provides hints in
stages to help the user edit the working query incrementally until it becomes semantically equivalent
to 𝐿𝐿. Each stage focuses on one speci!c syntactic fragment of the working query. Q!"H#$% gives
actionable hints for the user to edit this fragment with the aim of bringing 𝐿 a step “closer” to
being equivalent to𝐿𝐿. Q!"H#$% strives to suggest the smallest edits possible and avoid suggesting
unnecessary edits. Upon passing a viability check, the working query 𝐿 clears the current stage
and moves on to the next. After clearing all stages, Q!"H#$% guarantees that 𝐿 ↘ 𝐿𝐿 (even if
syntactically they are still di"erent).
We now brie$y outline the concrete stages of Q!"H#$%; the details will be presented in the

subsequent sections.
For an SPJ query, there are three stages. (1) We start with 𝐿 ’s FROM clause (Section 4) and make

sure that its list of tables can eventually lead to a correct query; following this stage, F(𝐿) ↘ F(𝐿𝐿).
(2) Next, we provide hints to repair𝐿 ’s WHERE clause (Section 5) such that FW(𝐿) ↘ FW(𝐿𝐿), i.e., the
repaired query returns the same sub-multiset of rows as 𝐿𝐿 that satisfy the WHERE clause, ignoring
SELECT. (3) Finally, we handle 𝐿’s SELECT clause and ensure the working query returns correct
output column values. Importantly, we make inferences of equivalence under the premise that all
rows before SELECT already satisfy WHERE; this use of WHERE allows us to infer more equivalent
cases and avoid spurious hints.
For an SPJA query, there are !ve stages. (1) The #rst stage handles FROM as in the SPJ case. (2)

The second stage handles WHERE, but with a twist. As we have seen from Example 1, some condition
can be either WHERE or HAVING, and it would be misleading to hint its absence from WHERE to be
wrong; hence, Q!"H#$% will look “ahead” at the two queries’ HAVING and GROUP BY clauses to avoid
misleading the user. At the end of this stage, instead of insisting that FW(𝐿) ↘ FW(𝐿𝐿) for the
original𝐿𝐿, we may rewrite𝐿𝐿 (by legally moving some conditions between WHERE and HAVING) as
needed !rst. (3) The third stage is GROUP BY, where we provide hints to edit𝐿 ’s GROUP BY expressions
to achieve equivalent grouping, i.e., FWG(𝐿) ↘ FWG(𝐿𝐿). Here, we infer equivalence under the
premise that the rows to be grouped all satisfy WHERE. (4) The fourth stage is HAVING, where we
provide hints to repair𝐿 ’s HAVING condition in the same vein as WHERE; however, inferences in this
stage would additionally consider both WHERE and GROUP BY, and they are more challenging because
of aggregation functions. After this stage, we have FWGH(𝐿) ↘ FWGH(𝐿𝐿). (5) The #fth and #nal
stage is SELECT, which is similar to the SPJ case, but with the challenge of handling aggregation
functions while simultaneously considering WHERE, GROUP BY, and HAVING.
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Progress and Correctness. Note that to clear a stage, the user only needs to come up with a !x
to pass the viability checks up to this stage. Even though Q!"H#$% may examine the queries in
their entirety, the user does not have to think ahead about how to make the entire query correct.4
Moreover, once a stage is cleared, Q!"H#$% never requires the user to come back to !x the same
fragment again. This stage-by-stage design with “localized” hints helps limit the cognitive burden
on the user.
The following theorem formalizes the intuition that this stage-based approach leads to steady,

forward progress toward the goal of !xing the working query. It follows from the observation that
our solution for each stage ensures the properties asserted below, which we will show stage by
stage in the subsequent sections.

T,+-!+( 3.1. Let 𝐿0 = 𝐿 denote the initial working query and 𝐿𝐿 denote the target query. Let 𝑇𝑂
denote the viability check for stage 𝑆 , and 𝐿𝑂 denote the working query upon clearing stage 𝑆 , where 𝐿𝑂

satis#es𝑇1,𝑇2, . . . ,𝑇𝑂 . We say that two queries are stage-𝑆 consistent if they are identical syntactically
except in the fragments that stage 𝑆 + 1 and beyond focus on. For each stage 𝑆 , the following hold:
(Hint leads to !x) If𝐿𝑂⇓1 fails to satisfy𝑇𝑂 , there exists a query 𝐿̂𝑂 such that 𝐿̂𝑂 satis#es𝑇1,𝑇2, . . . ,𝑇𝑂 ,
𝐿̂𝑂 is stage-(𝑆 ⇓ 1) consistent with 𝐿𝑂⇓1, and 𝐿̂𝑂 follows the stage-𝑆 hint provided by Q!"H#$%.

(Fix leads to eventual correctness) There exists a query 𝐿̂ such that 𝐿̂ ↘ 𝐿𝐿 and 𝐿̂ is stage-𝑆
consistent with 𝐿𝑂 .

We delegate all proofs in this paper to the full technical report [35].
Optimality. Ideally, we would like Q!"H#$% to suggest the “best possible” hints, e.g., those leading
to minimum edits to the working query. Unfortunately, it is impossible for any system to provide
such a guarantee in general, because doing so entails being able to determine the equivalence of
SQL queries: if 𝐿 ↘ 𝐿𝐿 to begin with, the system should not suggest any !x. It is well-known that
the equivalence of !rst-order queries with only equality comparisons is undecidable [1]. Under
bag semantics, even the decidability of equivalence of conjunctive queries has not been completely
resolved [41]. Once we open up to the full power of SQL, which can express integer arithmetic, even
equivalence of selection predicates becomes undecidable via a simple reduction to the satis!ability
of Diophantine equations [28].

Given the foundational hurdles above, Q!"H#$% seeks a pragmatic solution. Instead of o"ering
any global guarantee on the optimality of its hints, which is impossible, Q!"H#$% establishes, for
each stage, guarantees on the necessity or minimality of its hints under certain assumptions. For
example, for the FROM stage, Q!"H#$% guarantees its suggested !xes are optimal for SPJ queries,
but for some SPJA queries, it may suggest a !x that turns out to be unnecessary. As another
example, for the WHERE stage, the optimality of Q!"H#$% depends on, among other things, Z3-based
primitives o"ering complete decision procedures. In each subsequence section, we will state any
such assumption explicitly.

Finally, it is important to note that Q!"H#$%’s progress and correctness properties (Theorem 3.1)
do not rely on these assumptions. In the worst case, the user may be hinted to make some !xes
that are unnecessary or unnecessarily big, but Q!"H#$% will still ensure that the user gets a correct
working query in the end.
Limitations. Following Theorem 3.1, Q!"H#$% is guaranteed to generate correct hints for select-
project-join queries with an optional single level of grouping and aggregation. On the other hand,
Q!"H#$% currently has several limitations. 1) Q!"H#$% may sometimes suggest suboptimal or even

4In some cases, just to maintain syntactic correctness, a !x may necessitate trivial edits to fragments handled in future
stages: e.g., if we remove a table from FROM, we will need to remove references to this table in the rest of the query. However,
the user never needs to worry about making those edits semantically correct—that responsibility falls on future stages.
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unnecessary !xes (even though they still lead to correct queries), as discussed above; the reason
lies in fundamental hurdles due to the undecidability of SQL query equivalence and the use of
heuristics to tame complexity. 2) Q!"H#$% currently does not handle NULL values and assumes
that all database columns are NOT NULL. With some additional e"ort and complexity, Q!"H#$% can
be extended to handle NULL using the technique in [57] of encoding each column with a pair of
variables in Z3 (one for its value and the other a Boolean representing whether it is NULL). The
same applies to OUTER JOIN. 3) Except the case of aggregation-free subqueries in FROMmentioned in
Footnote 2, Q!"H#$% does not support subqueries in general. Subqueries involving aggregation, in
general, cannot be folded into the outer query block. Subquery constructs such as NOT EXISTS and
NOT IN entail supporting queries involving the di"erence operator, which we have not yet studied.
If we do not care about the number of duplicates in the result, positive subqueries with EXISTS and
IN could be rewritten as part of the join in the outer select-project-join query and supported as such.
However, this approach is unsatisfactory, especially since our handling of FROM (Section 4) does
assume that duplicates matter. In general, more work is needed to develop a comprehensive solution
for subqueries. 4) Finally, Q!"H#$% does not consider database constraints such as keys and foreign
keys. While we can, in theory, encode some constraints as logical assertions and include them as
part of the context when calling Z3, these assertions (with quanti!ers) can signi!cantly hamper
Z3’s performance. Future work is needed to develop more robust algorithms for incorporating
constraints.

4 FROM STAGE
This stage aims to ensure F(𝐿) ↘ F(𝐿𝐿). Recall that a FROM clause may reference a table 𝑈 multiple
times, and each reference is associated with a distinct alias (which defaults to the name of 𝑈 ). Each
column reference must resolve to exactly one of these aliases. Let Tables(𝐿) denote the multiset of
tables in the FROM clause of 𝐿 , and let Aliases(𝐿) denote the set of aliases they are associated with
in 𝐿 . With a slight abuse of notation, given table 𝑈 , let Aliases(𝐿,𝑈 ) denote the subset of Aliases(𝐿)
associated with 𝑈 (a non-singleton Aliases(𝐿,𝑈 ) implies a self-join involving 𝑈 ). Given an alias
𝑉 ⇐ Aliases(𝐿), let Table(𝐿, 𝑉) denote the table that 𝑉 is associated with in 𝐿 .

The viability check (Theorem 3.1, stage 1) for FROM is simple:

𝑇1 : Check if Tables(𝐿) ↭= Tables(𝐿𝐿)

where ↭= denotes multiset equality. If the working query𝐿 fails the viability check, Q!"H#$% simply
hints, for each table𝑈 whose counts in Tables(𝐿) and Tables(𝐿𝐿) di"er (including cases where𝑈 is used
in one query but not the other), that the user should consider using𝑈 more or less to make the counts
the same. It is straightforward to see that this hint leads to a !x that makes Tables(𝐿) ↭= Tables(𝐿𝐿),
which enables the user to further edit 𝐿 into some 𝐿̂ ↘ 𝐿𝐿 without retouching FROM: at the very
least, one can make 𝐿̂ isomorphic to 𝐿𝐿 up to the substitution of table references with those in
Aliases(𝐿). This observation establishes the progress and correctness properties (see Theorem 3.1) of
FROM-stage hints, which we state below along with the remark that F(𝐿) ↘ F(𝐿𝐿) after this stage.

L+((’ 4.1. Q!"H#$%’s FROM-stage hint leads to a #xed working query𝐿1 that (1) passes the viability
check 𝑇1 Tables(𝐿1) ↭= Tables(𝐿𝐿); (2) satis#es F(𝐿1) ↘ F(𝐿𝐿); and (3) leads to eventual correctness.

While the correctness of the FROM-stage hint is straightforward, its optimality is surprisingly
strong. The following lemma states that the viability check is, in fact, necessary—regardless of what
could be done in WHERE and SELECT—under reasonable assumptions.
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L+((’ 4.2. Two SPJ queries 𝐿𝐿 and 𝐿 cannot be equivalent under bag semantics if Tables(𝐿𝐿) ⇔ ↭=
Tables(𝐿) assuming no database constraints are present, and there exists some database instance for
which either 𝐿𝐿 or 𝐿 returns a non-empty result. 5

Table Mappings. To facilitate analysis in subsequent stages, Q!"H#$% needs a way to “unify” table
and column references in 𝐿 and 𝐿𝐿 so that all of them use the same set of table aliases.

D+.#$#%#-$ 1. Given queries 𝐿𝐿 and 𝐿 over the same schema where Tables(𝐿𝐿) ↭= Tables(𝐿), a table
mapping from 𝐿𝐿 to 𝐿 is a bijective function ω : Aliases(𝐿𝐿) → Aliases(𝐿) with the property that two
corresponding aliases are always associated with the same table, i.e., ⇑𝑉 ⇐ Aliases(𝐿𝐿) : Table(𝐿𝐿, 𝑉) =
Table(𝐿,ω(𝑉)).
If the queries have no self-joins, it is straightforward to establish this mapping by table names.

With self-joins, however, it can be tricky because we must match multiple roles played by the
same table across queries. The information contained in FROM alone would be insu#cient for
matching. One approach is to explore every possible table mapping and select the one that leads
to the minimum !x. Doing so would blow up complexity by a factor exponential in the number
of self-joined tables. Q!"H#$% instead opts for a heuristic that picks the single most promising
table mapping. Here we describe the heuristic brie$y. For each alias, we build a “signature” that
captures how its columns are used by various parts of the query in a canonical fashion. We de!ne
a distance (cost) metric for the signatures. Then, for each table involved in self-joins, to determine
the mapping between its aliases in 𝐿 and 𝐿𝐿, we construct a bipartite graph consisting of these
aliases and solve the minimum-cost bipartite matching problem. We illustrate the high-level idea
using the example below.

E&’()*+ 4. Continuing with Example 1, the following are signatures (one per column) for S1 and S2
in 𝐿𝐿 and s1 and s2 in 𝐿 .

S1 in 𝐿𝐿 S2 in 𝐿𝐿 s1 in 𝐿 s2 in 𝐿
WHERE & bar: ={F.bar} ={F.bar} None None
HAVING beer: ={L.beer, S2.beer} ={L.beer, S2.beer} ={Likes.beer, s2.beer} ={Likes.beer, s2.beer}

price: ↑{S2.price} ↓{S2.price} >{s2.price} <{s1.price}
GROUP BY {bar, beer} {beer} {beer} {beer}
SELECT bar: {2} ↗ ↗ {2}

beer: {1} {1} {1} {1}
price: ↗ ↗ ↗ ↗

For example, S1.beer’s WHERE/HAVING signature says that it is involved in an equality comparison
with both L.beer and S2.beer; the latter is inferred—Q!"H#$% automatically adds column references and
constants that obviously belong to the same equivalence class. Likewise, S1’s GROUP BY signature includes
both bar and beer, with the latter added because of its equivalence to the GROUP BY column L.beer. When
comparing signatures, all aliases are replaced by table names (which is a heuristic simpli#cation);
therefore, all four WHERE/HAVING signatures above for beer are considered the same. In this case, what
makes the di!erence in bipartite matching turns out to be the SELECT signatures for bar, which clearly
favors the mapping with S1 ↔→ s2 and S2 ↔→ s1.

Once we have selected the table mapping ω, we can then “unify” 𝐿𝐿 and 𝐿 . For convenience,
we simply rename each alias 𝑊 in 𝐿𝐿 to ω(𝑊); in subsequent sections, we shall assume that 𝐿𝐿 and
𝐿 have consistent column references.
5The assumption of a not-always-empty result may seem out of the blue, but it is necessary. For example, queries SELECT 1
FROM R WHERE FALSE and SELECT 1 FROM R,R WHERE FALSE are equivalent—both always return empty results. However, if at
least one of𝐿𝐿 and𝐿 can return non-empty results, Tables(𝐿𝐿) ↭= Tables(𝐿 ) becomes necessary for equivalence. Our proof
of Lemma 4.2, in fact, builds on such a non-empty result.
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→
↑

→
𝜴>𝜶𝜴𝛚𝜷

𝜸=𝜹

↑
→

𝜴<7𝜴>10𝜷<5

𝜸=𝝐

(a) 𝑋𝐿

→
𝑌1

↑
𝑌3

→
𝑌7

𝜷↓5
𝑌12

𝜴<7
𝑌11

𝜴>11
𝑌10

𝜸=𝝐

𝑌6↑
𝑌2

→
𝑌5

𝜴>𝜶
𝑌9

𝜴𝛚𝜷
𝑌8

𝜸=𝝐

𝑌4

(b) 𝑋
Fig. 1. Syntax trees for 𝑋𝐿 and 𝑋 in Example 5.

5 WHERE STAGE
WHERE is our most involved stage, aimed at making small edits to the WHERE condition of 𝐿 so
that it becomes logically equivalent to that of 𝐿𝐿, thereby ensuring FW(𝐿𝐿) ↘ FW(𝐿) (recall from
Section 3.1). Let 𝑋 and 𝑋𝐿 denote the WHERE predicates in 𝐿 and 𝐿𝐿, respectively. We assume that
they have already been uni!ed by the selected table mapping to have the same set of column
references, as discussed in Section 4. The viability check for the WHERE stage (Theorem 3.1, stage 2)
is simply that 𝑋 is logically equivalent to 𝑋𝐿:

𝑇2 : Check if 𝑋 ≃ 𝑋𝐿

As discussed in Section 1, if 𝑋 ⊋ 𝑋𝐿, there are many di"erent ways to modify 𝑋 so that becomes
logically equivalent to 𝑋𝐿, and it is impossible to declare any part of 𝑋 as de!nitively “wrong.”
Therefore, we suggest the smallest possible edits on 𝑋 to reduce the cognitive burden on the user.
We formalize the notion of “small edits” below. We represent 𝑋 and 𝑋𝐿 using syntax trees, where:

• Internal (non-leaf) nodes represent logical operators ⇒, ↖, and ¬. Let op(𝑌) denote the operator
associated with node 𝑌 , and Children(𝑌) denote the 𝑌 ’s child nodes. If op(𝑌) is ¬, |Children(𝑌) | = 1. If
op(𝑌) ⇐ {⇒,↖}, |Children(𝑌) | ↓ 2.

• Leaf nodes are atomic predicates involving column references and/or literals. We treat each
unique column reference as a free variable over the domain of the referenced column. We support
basic SQL types as well as standard comparison, arithmetic, and string operators to the extent
supported by Z3, e.g.: 𝑅>5, 𝑍↑2𝑎⇓10, 𝑏 LIKE ’Eve%’.

E&’()*+ 5. Consider the following logical formulae 𝑋𝐿 and 𝑋 where 𝑅,𝑍,𝑎,𝑏, 𝑐 are integers:
𝑋𝐿: (𝑅=𝑎 ⇒ (𝑐<5 ↖ 𝑏>10 ↖ 𝑏<7) ↖ (𝑅=𝑍 ⇒ (𝑏ε𝑐 ↖ 𝑏>𝑑 ))
𝑋 : (𝑅=𝑎 ⇒ (𝑏ε𝑐 ↖ 𝑏>𝑑 )) ↖ (𝑅=𝑎 ⇒ (𝑏>11 ↖ 𝑏<7 ↖ 𝑐↑5))
The syntax trees of 𝑋𝐿 and 𝑋 are shown in Figure 1.

D+.#$#%#-$ 2 (R+)’#! .-! SQL P!+/#0’%+). Given a quanti#er-free logical formulae 𝑋 represented
as a tree, a repair of 𝑋 is a pair (S, F ) where S is a set of disjoint subtrees of 𝑋 called the repair sites,
and F is function that maps each site 𝑌 ⇐ S to a new formulae F (𝑌) called the !x for 𝑌 . Given a
target predicate 𝑋𝐿, a repair (S, F ) for 𝑋 is correct if applying it to 𝑋—i.e., replacing each 𝑌 ⇐ S with
F (𝑌)—results in a formulae 𝑋 ↙ such that 𝑋 ↙ ≃ 𝑋𝐿.
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Algorithm 1: RepairWhere(𝑌, 𝑌𝐿,𝑒)
Input :a wrong predicate 𝑌 , a correct predicate 𝑌𝐿, and a cap 𝑒 on the number of repair sites
Output :a repair (S, F ) with minimum cost

1 let S∝ = ↗, F∝ = ↗;
2 let 𝑄∝ denote the minimum cost so far, and′ initially;
3 foreach set S of ↑𝑒 disjoint subtrees in 𝑌 , in ascending |S| order do
4 if Cost(S, ·) ↓ 𝑄∝ then // cost due to # sites alone is already too big
5 return (S∝, F∝); // safe to stop now

6 if 𝑌𝐿 ⇐ CreateBounds(𝑌,S) then
7 let _, F = DeriveFixes(𝑌,S, 𝑌𝐿, 𝑌𝐿);
8 if 𝑄∝ > Cost(S, F ) then
9 let S∝ = S, F∝ = F ;

10 return (S∝, F∝);

D+.#$#%#-$ 3 (C-1% -. ’ !+)’#!). Given target predicate 𝑋𝐿, the cost of a repair (S, F ) for 𝑋 is:

Cost(S, F ) = 𝑓 · |S| +
∑
𝑃⇐S

dist(𝑔, F (𝑔))
|𝑋 | + |𝑋𝐿 | ,where (1)

dist(𝑔, F (𝑔)) = |𝑔 | + |F (𝑔) |, and (2)
𝑓 ⇐ R+ controls the relative weights of the cost components.

Here, we simply de!ne dist(·, ·) to be the number of nodes deleted and inserted by the repair; other
notions of edit distance could be used too. The denominator under dist(·, ·) serves to normalize the
measure relative to the sizes of the queries. Also, note that the𝑓 · |S| term adds a !xed penalty for
each additional repair site. Intuitively, Q!"H#$% will present all repair sites (without the associated
!xes) to the user as a hint. Even a moderate number of repair sites will pose a signi!cant cognitive
challenge—if there were so many issues with 𝑋 , we might as well ask the user to rethink the whole
predicate (which would be a single repair site at the root). In our experiments (Section 9), we set
𝑓 = 1/6, and the number of repair sites per WHERE rarely goes above two or three.

E&’()*+ 6. Consider Figure 1. One correct repair for 𝑋 consists of three sites (𝑌4, 𝑌10, 𝑌12) and the
corresponding #xes (𝑅=𝑍,𝑏>10, 𝑐<5). The cost for this repair is 3𝑓 + 3∞ (1+1)

12+12 = 1
2 + 1

4 = 0.75.
Another correct repair for 𝑋 consists of two sites (𝑌5, 𝑌3) and the corresponding #xes 𝑐<5 ↖𝑏>10 ↖

𝑏<7 and 𝑅=𝑍 ⇒ (𝑏ε𝑐 ↖ 𝑏>𝑑 ). The cost for this repair is 2𝑓 + (4+3)+(5+6)
12+12 = 1

3 + 3
4 ∈ 1.08.

A trivial single-site repair that replaces the entire 𝑋 with 𝑋𝐿 would have cost 1𝑓 + (12+12)
12+12 ∈ 1.16.

Algorithm 1 is our overall procedure for computing a minimum-cost repair for a predicate. It
considers all possible sets of repair sites, prioritizing smaller ones because the number of repair
sites heavily in$uences the repair cost, and stopping once the lowest cost found so far is no greater
than a conservative lower bound on the cost of the repairs to be considered. In the worst case,
the number of repairs to be considered is exponential in the size of 𝑋 , but in practice, the early
stopping condition usually kicks in when the number of repair sites is 2 or 3, so the number of
repairs considered is usually quadratic or cubic in |𝑋 |.
The two key building blocks of Algorithm 1 are CreateBounds and DeriveFixes, which we describe in

more detail in the remainder of this section. Intuitively, CreateBounds (Section 5.1) provides a quick
and “exact” test to determine whether a given set of repair sites could ever lead to a correct repair. If
yes, DeriveFixes (Section 5.2) then !nds the “optimal” !xes for these repair sites. Our algorithms use Z3,
so their exactness and optimality depend on Z3’s completeness for the types of predicates they are
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Algorithm 2: CreateBounds(𝑌,S)
Input :a predicate 𝑌 , and a set S of disjoint subtrees (repair sites) of 𝑌
Output : lower and upper bounds for 𝑌 achievable by !xing S

1 if 𝑌 ⇐ S then return [false, true] ;
2 else if 𝑌 is atomic then return [𝑌, 𝑌] ;
3 else if op(𝑌) ⇐ {⇒,↖} then
4 foreach 𝑄 ⇐ Children(𝑌) do
5 let [𝑕𝑁 ,𝑖𝑁 ] = CreateBounds(𝑄,S[𝑄]);6

6 return [ω𝑁⇐Children(𝑄 )𝑕𝑁 , ω𝑁⇐Children(𝑄 )𝑖𝑁 ] where ω = op(𝑌);
7 else // op(𝑄 ) is ¬
8 let 𝑄 = Children(𝑌) [0]; // the only child of 𝑄
9 let [𝑕𝑁 ,𝑖𝑁 ] = CreateBounds(𝑄,S[𝑄]);

10 return [¬𝑖𝑁 , ¬𝑕𝑁 ];

given. DeriveFixes’s optimality further hinges on a Boolean minimization procedure (MinBoolExp) that it
also uses. On the other hand, since Z3 inferences are sound, progress and correctness (Section 3.1)
are guaranteed.

L+((’ 5.1. WHERE-stage hint leads to a #xed working query𝐿2 with WHERE condition that 1) passes
the viability check 𝑋 ≃ 𝑋𝐿; 2) satis#es FW(𝐿2) ↘ FW(𝐿𝐿); and 3) leads to eventual correctness.
L+((’ 5.2. Given 𝑋 and 𝑋𝐿, assuming that Z3 inference is complete with respect to the logic

exercised by 𝑋 and 𝑋𝐿, and that MinBoolExp #nds a minimum-size Boolean formula equivalent to its
given input, the repair returned by RepairWhere(𝑋, 𝑋𝐿, |𝑋 |) is optimal (i.e., has the lowest possible cost)
if there exists an optimal repair that either contains a single site or has all its sites sharing the same
parent in 𝑋 .

Note that Lemma 5.2 provides optimality for two important cases that commonly arise in practice:
1) 𝑋 makes a single (presumably small) mistake; 2) 𝑋 is either conjunctive or disjunctive (because
all atomic-predicate nodes share the same ⇒ or ↖ parent node).

5.1 Viability of Repair Sites
The key idea is that, given a set of repair sites in 𝑋 , we can quickly compute a “bound” that precisely
de!nes what can be accomplished by any !xes at these sites (and only at these sites). We !rst give
the de!nition of bounds and introduce some notations. Give quanti!er-free logical formulae 𝑋∋, 𝑋 ,
and 𝑋△ such that 𝑋∋ ▽ 𝑋 ▽ 𝑋△, we say that [𝑋∋, 𝑋△] is a bound for 𝑋 , denoted 𝑋 ⇐ [𝑋∋, 𝑋△]. We
call 𝑋△ an upper bound of 𝑋 and 𝑋∋ a lower bound of 𝑋 .

CreateBounds(𝑋,S) (Algorithm 2) computes a precise bound for any predicate that can be obtained
by !xing 𝑋 at the given set S of repair sites. It works by computing a bound for each node in 𝑋
in a bottom-up fashion, starting from the repair sites or leaves of 𝑋 . We call these bounds repair
bounds. Intuitively, the repair bound at a repair site would be [false, true], because a !x can change
it to any logical formula. If a subtree contains no repair sites underneath, it would have a very
tight repair bound of [𝑃, 𝑃], where 𝑃 denotes the formulae corresponding to the subtree, which is
unchangeable by the given repair. The internal logical nodes combine and transform these bounds
in expected ways in Algorithm 2.

E&’()*+ 7. Given repair sites {𝑌4, 𝑌10, 𝑌12} for 𝑋 in Figure 1, CreateBounds computes the repairs bounds
shown below.
6For node 𝑄 in 𝑅 , S[𝑄 ] denotes the subset of S that belong to the subtree rooted at 𝑄 .
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Node(s) repair lower bound repair upper bound
𝑌4 false true

𝑌8, 𝑌9, 𝑌5 original predicate in 𝑋
𝑌2 false 𝑏ε𝑐 ↖ 𝑏>𝑑
𝑌6 original predicate in 𝑋
𝑌10 false true
𝑌11 original predicate in 𝑋
𝑌12 false true
𝑌7 𝑏<7 true
𝑌3 𝑅=𝑎 ⇒ 𝑏<7 𝑅=𝑎

𝑌1 (𝑋 ) 𝑅=𝑎 ⇒ 𝑏<7 𝑏ε𝑐 ↖ 𝑏>𝑑 ↖𝑅=𝑎

The following shows that repair bounds computed by CreateBounds are valid. The proof uses an
induction on the structure of 𝑋 .

L+((’ 5.3 (V’*#/#%2 -. R+)’#! B-3$/1). Given a predicate 𝑋 and a set S of repair sites,
CreateBounds(𝑋,S) outputs two predicates 𝑋∋ and 𝑋△, such that applying any repair (S, F ) (with the
given S) will result in a predicate 𝑋 ↙ ⇐ [𝑋∋, 𝑋△].

Lemma 5.3 immediately yields a method for deciding whether a candidate set S of repair sites is
viable: if the target formula 𝑋𝐿 ϑ [𝑋∋, 𝑋△] given S, then there does not exist a set of correct !xes F
for S. The next natural question to ask is: if the target formula 𝑋𝐿 ⇐ [𝑋∋, 𝑋△] given S, is it always
possible to !nd some correct !xes? The answer to this question is yes—and Section 5.2 will provide
constructive proof. Hence, repair bounds provide a precise test of whether a set S of repair sites is
viable.

For example, continuing from Example 7, using Z3, it is easy to verify that 𝑋𝐿 ⇐ [𝑅=𝑎 ⇒
𝑏<7, 𝑏ε𝑐 ↖ 𝑏>𝑑 ↖𝑅=𝑎]; therefore, {𝑌4, 𝑌10, 𝑌12} is a viable set of repair sites for 𝑋 with respect
to 𝑋𝐿.

5.2 Derivation of Fixes
Suppose the target formula 𝑋𝐿 falls within the repair bound [𝑋∋, 𝑋△] computed by CreateBounds(𝑋,S).
We now introduce DeriveFixes (Algorithm 3) that computes correct !xes F forS. The idea is to traverse
𝑋 ’s syntax tree top-down and derive a target bound for each node 𝑌 . As long as we repair subtrees
rooted at 𝑌 ’s children such that the resulting predicates fall within their respective target bounds,
we will have a repair for 𝑌 that makes its result predicate fall within 𝑌 ’s target bound. We start
from 𝑋 ’s root with the desired target bound [𝑋𝐿, 𝑋𝐿] and “push it down”; whenever we reach a
repair site, its !x would simply be the smallest formula (found by MinFix) that falls within the target
bound we have derived for the repair site.

The intuition behind how to “push down” the target bound at node 𝑌 to its children is as follows.
First, the repair bound on a child 𝑄 of 𝑌 dictates what repairs are possible—the target bound we set
for 𝑄 must be bound by its repair bound. However, we want to tighten the repair bound as little as
possible because a looser target bound gives MinFix more freedom in !nding a small formula. As a
simple example, consider the target bound [𝑊1⇒𝑊2, (𝑊1⇒𝑊2)↖𝑊3], where 𝑊1,𝑊2,𝑊3 are independent
atomic predicates. The smallest formula within this bound is 𝑊1 ⇒ 𝑊2. However, if the target bound
were looser, e.g., [𝑊1 ⇒ 𝑊2 ⇒ 𝑊3, (𝑊1 ⇒ 𝑊2) ↖ 𝑊3], the smallest formula within this new bound would
be just 𝑊3, smaller than before.

Lines 15–22 of Algorithm 3 spells out our strategy. We will illustrate the key ideas with Example 7
and Figure 1. Consider pushing down the target bound of [𝑋𝐿, 𝑋𝐿] at 𝑌1 to 𝑌2 and 𝑌3. Note that our
choices of target bounds for 𝑌2 and 𝑌3 are constrained by their respective repair bounds in the table
of Example 7; in general, we will need to raise these lower bounds and/or lower these upper bounds
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Algorithm 3: DeriveFixes(𝑌,S, 𝑕𝐿,𝑖𝐿)
Input :a predicate 𝑌 , a set S of disjoint subtrees (repair sites) of 𝑌 , and a target bound [𝑕𝐿,𝑖𝐿] for 𝑌

to achieve by !xes
Output :a repair represented as a set of (𝑔, 𝑗 ) pairs, one for each 𝑔 ⇐ S

1 if 𝑌 ⇐ S then return {(𝑌,MinFix(𝑕𝐿,𝑖𝐿))} ;
2 else if 𝑌 is atomic then return ↗ ;
3 else if op(𝑌) is ¬ then
4 let 𝑄 = Children(𝑌) [0]; // the only child of 𝑄
5 return DeriveFixes(𝑄,S[𝑄],¬𝑖𝐿0 ,¬𝑕𝐿0 );
6 let ω = op(𝑌) ; // either ⇒ or ↖ at this point
7 foreach 𝑄 ⇐ Children(𝑌) do
8 let [𝑕𝑁 ,𝑖𝑁 ] = CreateBounds(𝑄,S[𝑄]);
9 let R = Children(𝑌) ̸ S ; // children of 𝑄 being repaired

10 if R = ↗ then let 𝑁 = ↗ and C = Children(𝑌);
11 else // treat all children being repaired as one
12 let 𝑁 = ω𝑁⇐R𝑄 and [𝑕𝑆 ,𝑖𝑆 ] = [false, true];
13 let C = Children(𝑌) \ R ↦ {𝑁 };
14 let F = ↗ ; // result set of (𝑃, 𝑇 ) pairs to be computed
15 foreach 𝑄 ⇐ C do

// Combine bounds from all other children:
16 let [𝑕 ↙,𝑖↙] = [ω𝑁↙ ⇐C\{𝑁 }𝑕𝑁↙ , ω𝑁↙ ⇐C\{𝑁 }𝑖𝑁↙ ];
17 if ω is ⇒ then
18 let 𝑕𝐿𝑁 = 𝑕𝐿; let 𝑖𝐿𝑁 = 𝑖𝑁 ⇒ (𝑖𝐿 ↖ ¬𝑖↙);
19 else // ω is ↖
20 let 𝑕𝐿𝑁 = 𝑕𝑁 ↖ (𝑕𝐿 ⇒ ¬𝑕 ↙); let 𝑖𝐿𝑁 = 𝑖𝐿;

21 if 𝑄 is not 𝑁 then let F = F ↦ DeriveFixes(𝑄,S[𝑄], 𝑕𝐿𝑁 ,𝑖𝐿𝑁 );
22 else let F = F ↦ DistributeFixes(MinFix(𝑕𝐿𝑁 ,𝑖𝐿𝑁 ), C) ;
23 return F ;

in a way such that any repairs on 𝑌2 and 𝑌3 within these bounds ensure that 𝑌1’s target bound is
met. Let us focus on setting the target bound for 𝑌2. As argued above, we would like it to be as loose
as possible. Thankfully, because 𝑌1 ≃ 𝑌2↖𝑌3, 𝑌3 can help “cover” some of 𝑌1. Speci!cally, no matter
how we end up repairing 𝑌3, we know it is lower-bounded by 𝑅=𝑎 ⇒ 𝑏<7 (denote this formula by
𝑕 ↙). Hence, 𝑌3 will certainly cover the 𝑋𝐿⇒𝑕 ↙ part of 𝑋𝐿, leaving 𝑌2 responsible to cover only 𝑋𝐿⇒¬𝑕 ↙.
This observation motivates us to set the lower target bound for 𝑌2 by raising its lower repair bound
(denote it by 𝑕𝑁 ) to 𝑕𝑁 ↖ (𝑋𝐿 ⇒ ¬𝑕 ↙) (Line 20) instead of all the way up to 𝑕𝑁 ↖ 𝑋𝐿. On the other hand,
𝑌3 does not help with setting the upper target bound for 𝑌2. We have to set 𝑌2’s upper target bound
to 𝑋𝐿, because if 𝑌2 “overshoots” 𝑋𝐿, ↖-ing it with any 𝑌3 formula will not bring it down. In sum,
we set the target bound for 𝑌2 as [𝑕𝑁 ↖ (𝑋𝐿 ⇒ ¬𝑕 ↙), 𝑋𝐿] = [𝑋𝐿¬(𝑅=𝑎 ⇒ 𝑏<7), 𝑋𝐿]. A symmetric
argument leads to setting the target bound for 𝑌3 as [(𝑅=𝑎 ⇒𝑏<7) ↖ 𝑋𝐿, 𝑋𝐿] (in this case 𝑌2 o"ers
no help to 𝑌3 because it is lower-bounded only by false). The intuition behind pushing the target
bound through ⇒ is analogous to that described above for ↖ but instead boils down to lowering
upper bounds as little as possible (as opposed to raising lower bounds). Completing the rest of
Example 7, we show the target bounds derived by DeriveFixes for 𝑋 given repair sites {𝑌4, 𝑌10, 𝑌12} in
Table 1.

Another aspect of DeriveFixesworth mentioning is its handling of the case when multiple repair sites
have the same ⇒ or ↖ parent (which is common because many queries in practice are conjunctive;
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Node(s) target lower bound target upper bound
𝑌1 (𝑋 ) 𝑋𝐿 𝑋𝐿

𝑌2 𝑋𝐿 ⇒ ¬(𝑅=𝑎 ⇒ 𝑏<7) 𝑋𝐿

𝑌4 𝑋𝐿 ⇒ ¬(𝑅=𝑎 ⇒ 𝑏<7) 𝑋𝐿 ↖ ¬(𝑏ε𝑐 ↖ 𝑏>𝑑 )
𝑌5, 𝑌8, 𝑌9 same as in original predicate

𝑌3 𝑋𝐿 ↖ (𝑅=𝑎 ⇒ 𝑏<7) 𝑋𝐿

𝑌6 same as in original predicate
𝑌7 𝑋𝐿 ↖ (𝑅=𝑎 ⇒ 𝑏<7) 𝑋𝐿 ↖ ¬(𝑅=𝑎)

𝑌10 ⇒ 𝑌12 𝑋𝐿 ⇒ ¬(𝑏<7) 𝑋𝐿 ↖ ¬(𝑅=𝑎)
𝑌11 same as in original predicate
Table 1. Target lower and upper bounds in Example 5

therefore, their trees have only two levels- the root and the leaves). Since ⇒ and ↖ are commutative,
all such sites can be combined into e"ectively one site (𝑁 in Algorithm 3) to be !xed. In Example 5
above, 𝑌10 and 𝑌12 are handled in this manner. Once we obtain a !x for 𝑁 using MinFix (in conjunctive
normal form for ⇒ or disjunctive normal form for ↖), DistributeFixes distributes the 𝑁 ’s clauses to the
repair sites (Line 22) based on syntactic similarities between them.

The following is the main result of this section, which a#rms that so long as a candidate set S
of repair sets passes the repair bound check in Section 5.1, there must exist a correct repair for F
and DeriveFixes will !nd it. This lemma and Lemma 5.3 together imply that our repair bound check is
exact.

L+((’ 5.4 (E&#1%+$0+ -.C-!!+0%R+)’#!). Suppose 𝑋𝐿 ⇐ CreateBounds(𝑋,S). DeriveFixes(𝑋,S, 𝑋𝐿, 𝑋𝐿)
returns F such that applying (S, F ) to 𝑋 yields a formula equivalent to 𝑋𝐿.

In the remainder of this section, we !rst focus on MinFix, which DeriveFixes uses to !nd the smallest
formula within a target bound. We end with a discussion of complexity, optimality, and, when we
cannot guarantee optimality, techniques to mitigate suboptimality.
Finding Smallest Formula with a Bound. Given a target bound [𝑕𝐿,𝑖𝐿] for a repair site, MinFix
needs to !nd a formula𝑘with the smallest size possible such that𝑘 ⇐ [𝑕𝐿,𝑖𝐿]. This goal is intimately
related to the Boolean minimization problem, which has been well studied and known to be hard [16].
Many practically e"ective tools have been developed over the years, so our strategy is to leverage
these tools for Q!"H#$%. There are two technical challenges: 1) Boolean minimization is formulated
in terms of expressions involving independent Boolean variables, while our formulae involve atomic
predicates whose truth values are not independent. 2) Our minimization problem is given a bound
as opposed to a single expression that Boolean minimization typically expects.
To address (1), we run a heuristic procedure using Z3 to identify a set A of “unique” atomic

predicates that appear in 𝑕𝐿 and 𝑖𝐿; those that are logically equivalent to others or can be expressed
easily in terms of others (e.g., with a negation) are excluded. This procedure does not need to
detect or remove intricate dependencies (such that 𝑅>𝑎 follows from 𝑅>𝑍 and 𝑎↑𝑍); any such
dependencies will still be caught later. Then, we map each predicate in A to a unique Boolean
variable and convert 𝑕𝐿 and 𝑖𝐿 into Boolean expressions involving these variables.

To address (2), we note that many practical Boolean minimization tools accept the speci!cation
of Boolean expressions as truth tables with possible don’t-care output entries. Our idea is to use
don’t-cares to encode the constraint implied by the target bound. Speci!cally, we generate a truth
table whose rows correspond to truth assignments of the Boolean variables for A. If a particular
assignment is not feasible (which is testable in Z3) due to interacting atomic predicates, we mark
the output for the row as don’t-care. For each feasible assignment, if 𝑕𝐿 and 𝑖𝐿 evaluate to the same
truth value, we designate the output for that row to be this value. If 𝑕𝐿 evaluates to false and 𝑖𝐿
evaluates to true, we mark the output as don’t-care—re$ecting the $exibility o"ered by the bound.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 164. Publication date: June 2024.



164:16 Yihao Hu, et al.

(Note that because 𝑕𝐿 ▽ 𝑖𝐿, the case where 𝑕𝐿 and 𝑖𝐿 evaluate to true and false respectively cannot
occur.)
The current implementation of Q!"H#$% uses ESPRESSO [14] as the primitive MinBoolExp for

!nding a minimum-size Boolean expression given a truth table with don’t-cares.
Complexity and Optimality. In our analysis below, let 𝑙 denote the combined size of formulae

𝑋 and 𝑋𝐿. DeriveFixes’s main cost comes from calls to MinFix and Z3. The number of times that MinFix
is invoked is |S|, which is O(𝑙) but is usually a small constant in practice. MinFix runs in time
exponential in the number of Boolean variables, which is capped at 𝑙 . To construct the input truth
table for MinBoolExp, MinFix will also call Z3 𝑚 (2𝑈) times. Each Z3 call may take time exponential
in the length of its input, though in practice, we time out with an inconclusive answer. Finally,
as discussed at the beginning of Section 5, the number of calls to DeriveFixes by RepairWhere can be
worst-case exponential in 𝑙, but in practice it will be O(𝑙3). Regardless, the overall complexity
of RepairWhere is exponential in the complexity of the WHERE predicates. Although this worst-case
complexity seems daunting, we have found that Q!"H#$% delivers acceptable performance in
practice: thankfully, 𝑙 is often small, and the structures of 𝑋 and 𝑋𝐿 and the interdependencies
among their atomic predicates tend to be much simpler than, e.g., our Example 5.
The optimality result is presented earlier as Lemma 5.2. Intuitively, the guarantees (which still

depend on the primitives Z3 and MinBoolExp) stem from two observations: 1) if repair is limited to a
single site, the target bound computed by DeriveFixes is indeed the best one can do; and 2) if all sites
share the same parent, DeriveFixes would e"ectively process them as a single site. However, target
bounds for non-combinable repair sites cannot be set optimally in an independent manner; the
approach taken by DeriveFixes, which essentially assumes that siblings receive the least amount of help
possible from each other when pushing down target bounds, cannot guarantee a minimum-size
repair. Indeed, our running example Example 5 with repair sites {𝑌4, 𝑌10, 𝑌12} is an instance where
DeriveFixes fails to set target bounds optimally, because 𝑌4 has a di"erent parent from 𝑌10 and 𝑌12.
To mitigate this problem, we have developed a more sophisticated algorithm (called DeriveFixesOPT)
for !nding !xes for multiple sites holistically. A full discussion of DeriveFixesOPT is beyond the scope
of this paper (details in [35]). DeriveFixesOPT increases the complexity by another factor of 2 |S | . It is
heuristic in nature (as it prioritizes repair sites by how constrained they are) and cannot guarantee
optimality beyond Lemma 5.2. However, it does well in practice and better than DeriveFixes. Since |S|
is small in practice, the complexity overhead is a good price to pay.

E&’()*+ 8. In Example 5, for repair sites {𝑌4, 𝑌10, 𝑌12}, DeriveFixes returns #xes 𝑌4 ↔→ 𝑅=𝑍 ↖ (𝑅=𝑎 ⇒
𝑏>10)↖ (𝑅=𝑎⇒𝑏<7); 𝑌10 ↔→ (𝑅=𝑍⇒𝑏ε𝑐)↖ (𝑅=𝑍⇒𝑏>𝑑 ); 𝑌12 ↔→ (𝑅=𝑎⇒𝑏>10)↖ (𝑅=𝑎⇒𝑐<5).

On the other hand, DeriveFixesOPT #nds the optimal #xes 𝑌4 ↔→ 𝑅=𝑍; 𝑌10 ↔→ 𝑏>10; 𝑌12 ↔→ 𝑐<5.

6 GROUP BY STAGE
We check the GROUP BY equivalence assuming 𝐿𝐿, 𝐿 have equivalent FROM and WHERE clauses.
We focus on ensuring FWG(𝐿) ↘ FWG(𝐿), regardless of the order and the number of expressions
involved in their GROUP BY clauses.

In the following, we consider the case where both 𝐿 and 𝐿𝐿 have grouping and/or aggregation.
Suppose we have uni!ed the WHERE conditions and GROUP BY expressions in the two queries
according to the table mapping ω. Let 𝑋 denote the resulting formula for 𝐿𝐿’s WHERE condition
(which at this point is logically equivalent to 𝐿’s), and let ∀𝑛 and ∀𝑛𝐿 denote the resulting lists of
GROUP BY expressions for𝐿 and𝐿𝐿, respectively. Note that the ordering of the GROUP BY expressions
is unimportant. Also, if a query involves aggregation but has no GROUP BY, we consider the list of
GROUP BY expressions to be an empty list. Same column references across 𝑋 , ∀𝑛 , and ∀𝑛𝐿 are treated as
same variables. Our goal is to compute a subset ε⇓ of GROUP BY expressions to be removed from 𝐿 ,
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as well as a set ε+ of additional GROUP BY expressions to be added to𝐿 , such that the resulting query
will always produce the same grouping of intermediate result tuples (produced by FROM-WHERE) as
𝐿𝐿. In practice, we may not want to reveal ε+, but instead simply hint that 𝐿 misses some GROUP
BY expressions. We may repeat the hinting process several times until GROUP BY is completely !xed.

Repairing grouping is trickier than it seems because seemingly very di"erent GROUP BY lists can
produce equivalent grouping, as illustrated by the following example.

Example 6.1. Consider two queries over tables R(A, B) and S(C, D):
SELECT B FROM R, S WHERE B=C GROUP BY B, D; -- 𝐿𝐿

SELECT C FROM R, S WHERE B=C GROUP BY C+D, C; -- 𝐿

The two queries are equivalent, even though none of the pairs of GROUP BY expressions are equivalent
when examined in isolation.

To address this challenge, instead of comparing pairs from ∀𝑛𝐿 and ∀𝑛 in isolation, we holistically
consider these lists as well as the WHERE condition, and go back to the de!nition of GROUP BY as
computing a partitioning of intermediate result tuples. Formally, the viability check for this stage
is that ∀𝑛 and ∀𝑛𝐿 achieve the same partitioning, or more precisely:

𝑇3 : Check if ⇑𝑉1, 𝑉2 ⇐ FW(𝐿𝐿) : ∧𝑂 (𝑛𝑂 [𝑉1]=𝑛𝑂 [𝑉2]) ≃
∧

𝑂 (𝑛𝐿
𝑂 [𝑉1]=𝑛𝐿

𝑂 [𝑉2])
Here, 𝑉1 and 𝑉2 denote intermediate result tuples, which are known to satisfy 𝑋 ; we use 𝑛 [𝑉] to
denote evaluating 𝑂 over 𝑉 .7 This approach underlines our algorithm FixGrouping (Algorithm 4).

E&’()*+ 9. Consider the two queries in Example 6.1. The table mapping is trivial and we simply
use column names to name variables. We have: 𝑋 is 𝑍 = 𝑎 , ∀𝑛𝐿 = [𝑍,𝑏], and ∀𝑛 = [𝑎 + 𝑏,𝑎]. The
logical statement that establishes the equivalence of grouping is

⇑(𝑅1,𝑍1,𝑎1,𝑏1), (𝑅2,𝑍2,𝑎2,𝑏2) :
(𝑍1=𝑎1 ⇒ 𝑍2=𝑎2) // both (𝑉1,𝑊1,𝑋1,𝑌1 ) and (𝑉2,𝑊2,𝑋2,𝑌2 ) satisfy 𝑅

▽
(

(𝑍1=𝑍2 ⇒ 𝑏1=𝑏2) //𝐿𝐿’s grouping criterion
≃ (𝑎1+𝑏1=𝑎2+𝑏2 ⇒𝑎1=𝑎2) //𝐿 ’s grouping criterion

)
.

Note that instead of referring to tuples 𝑉1 and 𝑉2, we simply refer to variables representing their column
values in the above.

In FixGrouping, to !nd ε⇓ , which are “wrong” expressions in ∀𝑛 , we check, for each 𝑛𝑂 , whether it is
possible that given 𝑋 [𝑉1] ⇒ 𝑋 [𝑉2], we can have

∧
𝑂 (𝑛𝐿

𝑂 [𝑉1]=𝑛𝐿
𝑂 [𝑉2]) but not 𝑛𝑂 [𝑉1]=𝑛𝑂 [𝑉2]. If yes, that

means 𝑛𝑂 is wrong with respect to 𝑛𝐿, because while 𝑉1 and 𝑉2 should belong to the same group per
𝑛𝐿, grouping by 𝑛𝑂 alone would have forced them into separate groups instead. After identifying all
wrong expressions in ∀𝑛 and removing them, we are left with a partitioning potentially coarser than
𝑛𝐿 but otherwise consistent with 𝑛𝐿. We then !nd ε+ to be further added in a similar fashion.

L+((’ 6.2. We say that two lists of GROUP BY expressions are equivalent if they produce the
same partitioning for the above query over any database instance. Let (ε⇓,ε+) = FixGrouping(𝑋, ∀𝑛, ∀𝑛𝐿).
Assuming that subroutine IsSatisfiable returns no false positives, we have:
Correctness: GROUP BY-stage hint leads to a #xed working query 𝐿3 that 1) passes the viability

check (∀𝑛, ∀𝑛𝐿 are equivalent), 2) satis#es FWG(𝐿3) ↘ FWG(𝐿𝐿); and 3) leads to eventual correctness.
Further assuming that IsSatisfiable returns no false negatives, we have:
Strong Minimality of ε⇓ : Let (ε⇓

∝ ,ε
+
∝) denote the minimal ε⇓ and ε+ respectively, then for any

(ε⇓
∝ ,ε

+
∝) such that ∀𝑛 \ ε⇓

∝ ↦ ε+
∝ is equivalent to ∀𝑛𝐿, ε⇓ ∃ ε⇓

∝ .
Weak Minimality of ε+: If ε+ ε ↗, then there exists no ε⇓

∝ such that ∀𝑛 \ ε⇓
∝ is equivalent to ∀𝑛𝐿.

7Formally, we treat 𝑍 as an assignment of variables (column references) in 𝑎 to variables representing corresponding column
values in 𝑍 . Hence, 𝑎 [𝑍 ] is an expression obtained from 𝑎 by replacing each variable (column reference) 𝑏 with variable 𝑍 (𝑏) .
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Algorithm 4: FixGrouping(𝑋, ∀𝑛, ∀𝑛𝐿)
Input :a formula 𝑋 and two expression lists ∀𝑛 and ∀𝑛𝐿
Output :a pair (ε⇓,ε+), where ε⇓ ∃ [1.. dim(∀𝑛)] is a subset of indices of ∀𝑛 and ε+ ∃ [1.. dim( ∀𝑛𝐿)]

is a subset of indices of ∀𝑛𝐿
1 let ∀𝑜 denote the set of variables in 𝑋 , ∀𝑛 , and ∀𝑛𝐿;
2 let 𝑉1, 𝑉2 be two assignments of ∀𝑜 to new sets of variables ∀𝑜1 and ∀𝑜2;
3 let 𝑝𝐿 denote the formula

∧
𝑂 (𝑛𝐿𝑂 [𝑉1]=𝑛𝐿𝑂 [𝑉2]);

4 let ε⇓ = ↗;
5 foreach 𝑛𝑂 ⇐ ∀𝑛 do
6 if IsSatisfiable(𝑋 [𝑉1] ⇒ 𝑋 [𝑉2] ⇒𝑝𝐿 ⇒ 𝑛𝑂 [𝑉1]ε𝑛𝑂 [𝑉2]) then
7 let ε⇓ = ε⇓ ↦ {𝑆};

8 let 𝑝 denote the formula
∧

𝑂ϑε⇓ (𝑛𝑂 [𝑉1]=𝑛𝑂 [𝑉2]);
9 let ε+ = ↗;

10 foreach 𝑛𝐿𝑂 ⇐ ∀𝑛𝐿 do
11 if IsSatisfiable(𝑋 [𝑉1] ⇒ 𝑋 [𝑉2] ⇒𝑝 ⇒ 𝑛𝐿𝑂 [𝑉1]ε𝑛𝐿𝑂 [𝑉2]) then
12 let ε+ = ε+ ↦ {𝑆};
13 let 𝑝 = 𝑝 ⇒ 𝑛𝐿𝑂 [𝑉1]ε𝑛𝐿𝑂 [𝑉2];

14 return (ε⇓,ε+);

The strong minimality of ε⇓ means that we can hint each expression therein as a “must-!x.”
The weak minimality of ε+ works perfectly as we simply hint that the wrong query needs some
additional GROUP BY expressions.

7 HAVING STAGE
At HAVING stage, we aim at further ensuring that FWGH(𝑝) ↘ FWGH(𝑝𝐿) assuming that 𝐿𝐿 and 𝐿
uni!ed by a table mapping and have equivalent FROM, WHERE, and GROUP BY. While HAVING can
also be modeled as a logical formula, there are new challenges: 1) unlike WHERE, inputs to HAVING
formulae are arrays of tuples [𝑉1, ..., 𝑉𝑐] instead of single tuples, 2) we need to consider aggregate
functions, and 3) we cannot test HAVING alone without considering WHERE’s e"ect.

E&’()*+ 10. Consider two queries over R(A, B) and S(C, D):
SELECT A FROM R, S WHERE A=C AND A>4 GROUP BY A, B
HAVING A > B + 3 AND 2*SUM(D) > 10; -- 𝐿𝐿

SELECT A FROM R, S WHERE A=C GROUP BY A, B, C
HAVING C > B + 3 AND SUM(D * 2) > 10 AND A>4; -- 𝐿

The two queries are equivalent because A=C in WHERE, because 2* distributes over SUM, and because
A>4 can be either in WHERE or HAVING.

Our strategy is to construct two formulae 𝑞𝐿,𝑞 for the HAVING conditions of 𝐿𝐿,𝐿 respectively,
such that equivalence of 𝑞𝐿 and 𝑞 implies FWGH(𝑝) ↘ FWGH(𝑝𝐿). To this end, for each reference to
a GROUP BY column in HAVING, we replace it with a variable from the same domain, and we translate
HAVING expressions outside aggregate function calls in the sameway as we handle WHERE: e.g., A>B+3
becomes𝑅>𝑍+3. For each reference to a column not in GROUP BY, we introduce an array variable to
capture the fact that it refers to a collection of values from rows in the same group. Moreover, for
each aggregate function call, we introduce a new array variable to represent the collection of input
values if they are computed from an expression, and we use a universally quanti!ed assertion to
relate this variable to the source column values: e.g., for SUM(D*2) we introduce array-valued D2
to represent D*2 values, and we related it to the array-valued D representing D values by asserting
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⇑𝑆 ⇐ N : D2 [𝑆] = D[𝑆] ∞ 2. Such assertions, along with the WHERE condition and additional inference
rules for aggregate functions, go into a context as discussed in Section 3 and illustrated in Example 3.

E&’()*+ 11. For Example 10, HAVING formulae for 𝐿𝐿,𝐿 are:
(𝑞𝐿) 𝑅>𝑍+3 ⇒ (2∞SUM(D)>10)
(𝑞 ) 𝑎>𝑍+3 ⇒ SUM(D2)>10 ⇒𝑅>4

We test their equivalence under the following context:

C :




D,D2 have type Array(Z)
𝑅 = 𝑎 ⇒𝑅 > 4

⇑𝑆 ⇐ N : D2 [𝑆] = D[𝑆] ∞ 2

SUM has type Array(Z) → Z
⇑𝑄 ⇐ Z,X and Y of type Array(Z) :

(⇑𝑆 ⇐ N : X[𝑆] ∞ 𝑄 = Y[𝑆]) ▽ SUM(X) ∞ 𝑄 = SUM(Y)




,

In the above, the assertions underneath the horizontal line are generic assertions encoding properties
of aggregate functions useful for inferring equivalences. Only those relevant to Example 10 are listed
here; for a complete list see [35].
The viability check for HAVING (Theorem 3.1, stage 4) is that 𝑞 is logically equivalent to 𝑞𝐿

under HAVING base context C, i.e.:
𝑇4 : Check if 𝑞 ≃ 𝑞𝐿under C

Note that this check implicitly applies to all groups. If a constraint solver fails to establish equiva-
lence, we invoke the exact same procedures as for WHERE to !nd a repair.
L+((’ 7.1. HAVING-stage hint leads to a #xed working query 𝐿4 with HAVING condition that

1) passes the viability check; 2) satis#es FWGH(𝐿4) ↘ FWGH(𝐿𝐿); and 3) leads to eventual correctness.
As with WHERE, the correctness of the above lemma relies only on the fact that Z3 inference

is sound with respect to the logic exercised by 𝑞 , 𝑞𝐿, and C and that MinBoolExp always !nds a
Boolean formula equivalent to its given input. We could additionally guarantee optimality similar to
Lemma 5.2 by making the same assumptions therein (completeness of Z3 inference and optimality
of MinBoolExp) plus the additional assumption that the context C encodes all properties of aggregate
functions relevant to inference.

8 SELECT STAGE
This stage aims at !xing SELECT as needed to ensure 𝐿 ↘ 𝐿𝐿, assuming that they already have
equivalent FROM, WHERE, GROUP BY and HAVING. We test the equivalence between SELECT expressions
with a context C dependent on the type of the query: if the queries are SPJ, we simply assert the
WHERE condition in C; if the queries are SPJA, we use the same C de!ned by the HAVING-stage.

Let ∀𝑛 and ∀𝑛𝐿 denote the resulting ordered lists of SELECT expressions for𝐿,𝐿𝐿, respectively. The
viability check (𝑇5) is that dim(∀𝑛) = dim( ∀𝑛𝐿) and ∀𝑛 [𝑆] is equivalent to ∀𝑛𝐿[𝑆] for 1 ↑ 𝑆 ↑ dim( ∀𝑛𝐿), i.e.
both SELECTs have the same number of expressions and expressions on the same index position
are equivalent. If SELECT clauses are not equivalent between 𝐿𝐿,𝐿 , our goal becomes to compute
ε⇓ of SELECT expression to be removed from 𝐿 at the corresponding index position and ε+ of
expressions to be added to 𝐿 at the corresponding index position.
The algorithm checks the equivalence between (∀𝑛 [𝑆], ∀𝑛𝐿[𝑆]) and add ε⇓ and ε+ respectively if

they are inequivalent. Finally, excessive expressions in 𝐿 or 𝐿𝐿 will also be added to ε⇓ and ε+

respectively. After !xing SELECT, we guarantee 𝐿𝐿 ↘ 𝐿 .
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9 EXPERIMENTS
We test three aspects of Q!"H#$%: coverage, accuracy, and running time. For coverage, we test the
ability of Q!"H#$% to !x wrong queries that arise in real-world classroom settings. For accuracy and
running time, we focus on Algorithm 1, which is the bottleneck of Q!"H#$% due to calls to DeriveFixes
or DeriveFixesOPT. As !x minimization incurs exponential time, we examine 1) how the number of
unique predicates a"ects running time, 2) how close the generated repairs are to the optimal if
queries are not conjunctive, 3) a comparison between the running time and optimality of DeriveFixes
and DeriveFixesOPT. In general, DeriveFixesOPT strives for smaller !xes and hence incurs longer running
time than DeriveFixes.
Implementation/Test Environment. We implemented Q!"H#$% in Python 3.10 using Apache
Calcite [6] to parse SQL queries and Z3 SMT Solver [24] to test constraint satis!ability. We used
ESPRESSO in PyEDA [27] for !x minimization. We ran the experiments locally on a 64-bit Ubuntu
20.04 LTS server with 3.20GHz Intel Core i7-8700 CPU and 32GB 2666MHz DDR4.
Test Data Preparation. To prepare the !rst test dataset, denoted S%3/+$%1, we examined 2,000+
real student queries from an undergraduate database course in one semester at the !rst author’s
institution. These queries came from 4 introductory-level SQL questions (with 4 reference queries),
and altogether they included 341 wrong queries. Out of these, 35 (11%) used SQL features not
supported byQ!"H#$% (see limitations at the end of Section 3). Hence, we end up with 306 supported
wrong queries in S%3/+$%1. (At the time of writing, we are still exploring with the institutional
review board the possibility of making this dataset publicly available.)
To further expand coverage of errors, we cross-checked S%3/+$%1 queries with the list of SQL

issues indicative of semantic errors categorized by Brass et al. [12] (which did not publish a query
dataset). Out of the 43 issues in [12], 18 involve SQL features not currently supported by Q!"H#$%,
but they only make up for a small minority (11.4%) of the observed instances as reported by [12].
Out of the 25 issues Q!"H#$% should support, 17 are already represented in the 306 S%3/+$%1
queries. To cover the remaining 8, we handcrafted two queries according to each issue and added
to the dataset; we also handcrafted corresponding reference queries (free from any issue in [12]).
We denote the resulting dataset S%3/+$%1+, with 322 queries having errors/issues.

Our second test dataset, denoted TPCH, is based on TPC-H [7] schema and queries, with synthetic
errors injected. This dataset allows us to stress-test Q!"H#$% with queries that are more complex
than S%3/+$%1. Also, because errors are synthetic, we have the “ground-truth” repair sites and
!xes, allowing us to easily assess the optimality of Q!"H#$% !xes. Most WHERE conditions in TPC-H
queries are conjunctive: we chose 7 TPC-H queries with conjunctions of 4,5,6,7,9,10,11 atomic
predicates (TPC-H Query 4,3,10,9,5,8,21 respectively). Since we did not !nd a TPC-H query with
exactly 8 predicates, we synthesized one by removing one predicate from TPC-H Query 5. For
each query, we then introduced errors into two atomic predicates to make the wrong query, which
remained conjunctive. Thus, each pair of wrong and reference queries has 6-13 unique atomic
predicates. Furthermore, to test cases beyond conjunctive WHERE conditions, we chose TPC-H Query
7, whose WHERE contains multiple nested AND and OR, and created 5 wrong queries by injecting 1-5
errors by changing atomic predicates or logical operators. For fair comparison, we ensured that the
number of unique atomic predicates is always 10 between the reference query and each wrong
query.

9.1 Results and Discussion
S!"#$%!+. To test coverage and optimality of Q!"H#$%, we ran Q!"H#$% for the 322 S%3/+$%+
queries with errors/issues, along with their reference queries, and examined all Q!"H#$% !xes.
For the 25 issues in [12] that Q!"H#$% should support, we found that they were handled in three
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(a) Repair cost (b) Running time
Fig. 2. DeriveFixes vs. DeriveFixesOPT (Optimized) for conjunctive WHERE (TPCH)

(a) Repair cost (b) Running time
Fig. 3. DeriveFixes vs. DeriveFixesOPT (Optimized) for nested AND/OR (TPCH)

(a) DeriveFixes (b) DeriveFixesOPT
Fig. 4. Cost of repairs found during course of execution

ways: 1) 11 of them were indeed errors, and Q!"H#$% correctly identi!ed and !xed them all;
2) 3 of them were e#ciency/stylistic issues where the queries were semantically still correct (e.g.,
logically correct WHERE containing some tautological conditions, such as A >= B OR A < B), and
Q!"H#$% did not $ag any error; 3) the remaining 11 of them were also e#ciency/stylistic issues
(e.g., unnecessarily joining a primary key with its corresponding foreign key but only projecting
the foreign key column), but Q!"H#$% failed to detect query equivalence in this case and suggested
some !xes. This last category is the only case where Q!"H#$% showed suboptimal behavior, though
its suggested !xes still lead to correct queries, and with the interesting side e"ect of resolving
e#ciency/stylistic issues. The detailed analysis can be found in [35]. It is worth noting thatQ!"H#$%
perfectly handles all of the 10 most common issues in [12].

Q!"H#$%’s average running time per query on S%3/+$%+ is 0.2 seconds, using DeriveFixes. However,
note that most S%3/+$%+ queries are rather simple, with conjunctive WHERE (which does not need
DeriveFixesOPT for optimality) and at most 5 unique atomic predicates. Therefore, we further stress-
tested Q!"H#$% using TPCH.
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TPCH, conjunctive WHERE with varying number of atomic predicates. Here, we study Q!"
H#$%’s running time and optimality (as measured by repair cost, the lower the best) as we vary
the number of atomic predicates involved in repairing WHERE. We compare versions of Q!"H#$%
using DeriveFixes vs. DeriveFixesOPT, both set to explore up to two repair sites. Figure 2a con!rms that for
conjunctive queries, both always return optimal repairs according to the ground truth, regardless of
the size of WHERE. (Note that the repair cost is not proportional to the number of atomic predicates
because it is normalized by the query sizes per Equation (1)). Figure 2b shows that as expected,
both have running times exponential in the number of unique atomic predicates, but DeriveFixes runs
much faster than DeriveFixesOPT. Furthermore, the plot labeled “1st Repair Sites” shows that it takes
less than one second for Q!"H#$% to !nd the !rst viable (not necessarily optimal) repair site, so
there is additional room to trade optimality for faster running time.
TPCH, WHERE with nested AND/OR and varying number of injected errors. As shown in
Figure 3a, when the optimal repair (according to the ground truth) involves only one repair site
(a single error), both DeriveFixes and DeriveFixesOPT are able to !nd this optimal repair, con!rming
Lemma 5.2. When there are more errors (2-3), DeriveFixes returns suboptimal repairs while DeriveFixesOPT
is still able to !nd optimal or near-optimal repairs (for the cases of 2 and 3 errors, respectively).
However, with 4-5 errors—which are arguably not the cases Q!"H#$% targets—both su"er from
suboptimality because they are set to explore up to two repair sites; in fact, both decided that it was
best to just repair the whole WHERE condition. Figure 3b shows that DeriveFixesOPT’s better optimality
comes at the expense of slower speed than DeriveFixes, however. Interestingly, with 4-5 errors, both
run faster than with 2-3 errors, because the large numbers of errors severely limit the number
of possibilities of single- and 2-site repairs, speaking to the e"ectiveness of CreateBounds in quickly
spotting and bailing out of di#cult situations.

Finally, Figure 4 shows all unpruned viable repairs found during Q!"H#$%’s course of execution,
in terms of when they were found and how much they cost; there is one trace for each execution.
Traces for 1 (blue), 4 (red), and 5 (purple) errors degenerate into single dots because Q!"H#$%
eventually !nds only one solution as viable repair options are limited. Recall that we heuristically
prioritize the viable repairs to consider, but there is no guarantee that a cheaper repair will always
be found earlier. Hence, there are $uctuations in the repair costs over time, although the general
trends are up, con!rming the e"ectiveness of our heuristic. Furthermore, note that the lowest-cost
repairs tend to surface early during execution. In closing, while the total and worst-case running
times of Q!"H#$% grow exponentially in query size, in practice the running times are reasonable
considering that Q!"H#$% is intended for education settings, where returning hints instantaneously
may not be necessary or desirable for learning. With the observation that Q!"H#$% often returns
some low-cost repairs early, we can o"er them as preliminary hints to get students thinking, while
Q!"H#$% continues to look for better repairs in the meantime.

10 USER STUDY
We conducted a small-scale user study to evaluate Q!"H#$%: 1) whether students can understand
what is wrong with the suggested hints, and 2) how the hints generated by Q!"H#$% compare with
ones provided by “expert users” (teaching assistants in our study).
Participants. We recruited 38 students who have taken/are taking a graduate or undergraduate
database course. Except for an incentive of receiving a small gift card and practicing SQL, the
participation was voluntary. In the end, we collected 15 complete and valid answers. A possible
explanation for the low completion rate was the signi!cant e"ort required to debug SQL queries
with subtle mistakes (we observed that some participants took more than an hour to !nish). We
considered the possibility of recruiting participants from other sources (e.g., Amazon Mechanical
Turk), but decided against it because they would not represent our targeted population (students).
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Furthermore, given the signi!cant e"ort required from the participants as observed above, it would
be hard to incentivize participants who are not actively learning SQL: a low reward would turn
them away, while a high reward might encourage undesirable behaviors.
Preparation. To design the survey, we !rst performed an analysis of the S%3/+$%1 queries to get
a sense of what the common errors were. Overall, most errors came from WHERE and HAVING (130
out of 341 are wrong due to WHERE); students often missed join conditions for queries involving
many tables. Other common errors include incorrect/redundant/missing tables in FROM, incorrect
order and missing/redundant expressions in SELECT, and incorrect expressions in GROUP BY. We
decided not to use the same queries from S%3/+$%1, as our participants had done the same/similar
homework previously, which might bias the results. Nonetheless, based on these observations, we
designed four SQL questions using a di"erent schema, DBLP (details in [35]). For each question, we
crafted a wrong solution containing one or more mistakes: two WHERE errors for 𝐿1, one GROUP BY
error and one SELECT error for 𝐿2, one WHERE error for 𝐿3, and one each WHERE and HAVING errors
in 𝐿4. Even though the queries are over a di"erent schema, the errors above faithfully re$ect real
errors from S%3/+$%1, and they are consistent with the common errors found by others [2, 12].

Then, we performed a small study with four graduate teaching assistants (TAs) to generate hints
for these queries. Each TA was asked to pinpoint all mistakes in each query and o"er hints, as
if they were helping students debug wrong queries. To simulate an o#ce-hour setting, we asked
TAs to !nish all four questions in one sitting, with no help from Q!"H#$%. We collected all hints
provided by the TAs as “expert” hints.

Next, we ran Q!"H#$% on all wrong queries to obtain repair sites and !xes. We removed !xes and
only showed repair sites to the participants as hints. To prevent participants from recognizing the
source of hints (experts vs. Q!"H#$%) by their wording, we paraphrased all hints to use a common
template “In [SQL clause], [hint]” and standard wording.
Tasks. Using the four queries, each participant saw and completed three questions. Students were
required to complete questions on Q1 and Q2, and they completed one of Q3 and Q4 at random. For
each question, students were given the database schema, problem statement in English, and the
wrong SQL query, and were asked to explain what is wrong with the query. For creating treatment
and control groups, students received hints from Q!"H#$% for either Q1 or Q2 (not both) at random,
and for the other one they were asked to detect errors without any hints provided; the order of the
two questions with and without hints was also chosen at random. For the last question, participants
received Q3 or Q4 at random, and we showed the union of hints (mixed together) generated by the
TAs as well as by Q!"H#$%, and asked participants to categorize each hint as one of the following:
“Unhelpful or incorrect”, “Helpful but require thinking”, and “Obvious and giving away the answer”.
Participants were asked to !nish all questions in one sitting. We recorded the time a participant
spent on each question8. In our study, for Q1, 8 students answered it with no hints and 7 with hints
from Q!"H#$%. For Q2, these numbers are 7 and 8 respectively. For the third question, 7 received
Q3 and 8 received Q4.
Result and Analysis. Our results for Q1 and Q2 show that participants were better at identifying
at least one error in the query given the hints provided by Q!"H#$% compared to no hints. As
shown in Figure 5a and Figure 5b, 100% and 87.3% of the participants were able to identify at least
one of the two errors in the wrong query in Q1 and Q2 respectively after receiving hints from
Q!"H#$%, as opposed to 14.3% and 71.4% who were able to do so without a hint. While there is a
single participant who correctly identi!ed both errors without any hint for Q1, this participant

8𝐿1 without/with hints took 704s/460s on average;𝐿2 took 756s/658s. Students completed the survey asynchronously, so
the time recorded may not be accurate.
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(a) Q1: No Hints vs. Q!"H#$% (b) Q2: No Hints vs. Q!"H#$%
Fig. 5. User performance with/without Q!"H#$%

(a) Q3 Vote Cast (b) Q4: Vote Cast
Fig. 6. Hint categorization from participants for Q3, Q4

spent more than 20 minutes doing so, while most participants spent no more than 10 minutes on
the same question without hints.
Q3 and Q4 are used to evaluate whether Q!"H#$% provided hints that are comparable to the

ones given by teaching assistants in terms of their quality. For Q3, there are four TA hints and one
hint from Q!"H#$%; and there are four TA hints and two hints generated by Q!"H#$% for Q4. For
all responses, we sum up the number of times participants vote for each of the three categories
of hint ranks: “Obvious”, “Unhelpful”, and “Helpful”. The results are shown in Figures 6a, 6b. In
summary, the quality of TAs’ hints varies greatly as perceived by participants. On the other hand,
Q!"H#$% is consistently perceived by participants as “helpful but require thinking”, which might
be best suited for classroom settings.

11 CONCLUSION AND FUTUREWORK
We presented Q!"H#$%, a framework for automatically generating hints and suggestions for !xes
for a wrong SQL query with respect to a reference query. We developed techniques to !x all clauses
in a query and gave theoretical guarantees. There are multiple intriguing directions of future work,
including the support of more complex constructs such as subqueries, outer-joins (NULL), and
database constraints. In addition, developing techniques to overcome the limitations of the SMT
solver and improve the system’s scalability is also an important next step. In the meantime, we
are implementing a graphical user interface so that Q!"H#$% can better assist students/TAs in
database courses. With that, we can then conduct a larger-scale user study to further understand
the e"ectiveness of Q!"H#$% and better prepare for scaled deployment in large database courses.
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