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Abstract

This paper studies in-context learning by de-
composing the output of large language models
into the individual contributions of attention
heads and MLPs (components). We observe
curious components: good-performing ones
that individually do well on a classification
task, even when the full model performs poorly;
bad-performing ones that do much worse than
chance; and label-biased components that al-
ways predict the same label. We find that com-
ponent accuracies are well-correlated across
different demonstration sets and perturbations
of prompt templates. Based on our findings, we
propose component reweighting, which learns
to linearly re-scale the component activations
from a few labeled examples. Given 24 labeled
examples, our method improves by an aver-
age of 6.0% accuracy points over 24-shot ICL
across 8 tasks on Llama-2-7B. Overall, this pa-
per both enriches our understanding of ICL and
provides a practical method for improvement
by examining model internals.

1 Introduction

The rapid progress in large language models
(LLMs) has popularized prompting, which guides
LLMs to perform tasks with instructions or exam-
ples. Notably, in-context learning (ICL; Brown
et al., 2020) adapts LLMs to a new task using only
a few labeled examples without parameter updates.
However, how LLMs react to the in-context exam-
ples is sometimes unintuitive (Min et al., 2022b).
Recently, Sclar et al. (2024) and Voronov et al.
(2024) find that even for instruction-tuned (Ouyang
et al., 2022) or very large models, adding a space
or newline in prompts can greatly affect accuracy.

We look into the LLM internals to understand
what causes the surprising behavior across vari-
ous ICL settings. Our work stands in contrast
to prior studies, which often treat LLMs as black
boxes and alter either the input (Chen et al., 2023;
Bertsch et al., 2024) or output (Zhao et al., 2021;
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Figure 1: Each dot represents a component (attention
head or MLP) under 4-shot ICL on Llama-2-7B. The
x-axis shows how often a component predicts “posi-
tive” on the test set. Up: We discover good-performing
(blue), bad-performing (red), and label-biased (green)
components. Down: Most components identified on
SST?2 show similar characteristics on Yelp-polarity.

Holtzman et al., 2021). We introduce a new view
of ICL by decomposing the output of an LLM
into the sum of individual contributions of MLPs
and attention heads, denoted “components.” Fig-
ure 1 reveals three types of curious components:
good-performing ones (blue) that individually per-
form well or even outperform the full model, bad-
performing ones (red) that perform below chance,
and label-biased ones (green) that predict the same
label on the entire test set. We observe these three
classes of components on Llama-2-7B, Llama-2-
13B (Touvron et al., 2023), Llama-3-8B (Dubey
et al., 2024), and Mistral-Instruct-7B (Jiang et al.,
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2023) across 8 classification tasks.

We study the sensitivity of LLM components to
multiple prompts formed by different demonstra-
tions and templates. We also construct contrast sets
of templates—pairs of similar templates that yield
large differences in ICL accuracy. Despite large
variance in full-model accuracy, we find that com-
ponent accuracies correlate well across different
demonstrations ( = 0.80 on average) and contrast
set templates (r = 0.57). The top-performing com-
ponents in contrast set pairs overlap and achieve
decent accuracy even when the full model performs
near random (Figure 2). Nonetheless, the compo-
nent accuracies of two sampled templates are less
correlated (r = 0.34). Further, good-performing
components generalize well to out-of-distribution
test sets. For instance, the top-1 component for
MNLI outperforms the full Llama-2-13B model by
9.1% on MedNLI; Figure 1 also shows that com-
ponents are transferrable from SST2 to Yelp. We
conclude that components are relatively consistent
in their behavior across prompts and datasets.

Inspired by our findings, we propose compo-
nent reweighting. Compared to prior work that
selects prompts from a large pool of labeled data
to improve ICL accuracy (Liu et al., 2022b), com-
ponent reweighting softly selects components by
learning weights from few-shot examples to scale
component activations. Training these weights
only involves learning a linear layer, which takes
less than a minute on one CPU. Overall, com-
ponent reweighting better utilizes the same la-
beled examples, improving over 24-shot ICL by
6.0%,2.2%, 5.1%, 1.6% on Llama-2-7B, Llama-2-
13B, Mistral-Instruct-7B, and Llama-3-8B, respec-
tively. At the same time, it enjoys similar inference
speed as 4-shot ICL.

Finally, we study the training dynamics of com-
ponents using the Pythia pretraining checkpoints
(Biderman et al., 2023). During pretraining, good-
performing components emerge well before the full
model performs well. These findings suggest that
LLMs acquire the internal ability to perform ICL
early in training, but this ability only surfaces in
the full model’s behavior later on.

Overall, our work conducts extensive analysis of
LLM internals, which motivates a practical method
to improve ICL. We hope to inspire future work
that further sheds light on LLM internals in order
to improve performance. Our implementation is
available at https://github.com/terarachang/
LLMDecomp.

2 Decomposing the Transformer in ICL

We introduce a new view of in-context learn-
ing by decomposing the Transformer architecture
(Vaswani et al., 2017). Our decomposition is
exact—a mathematically equivalent formula for
the model’s outputs—and enables us to analyze
model internals without training additional param-
eters (unlike, e.g., probing). We first discuss what
our new view offers over the standard view of ICL,
and then walk through the mathematical details.

2.1 A New View of In-Context Learning

Standard view. An LLM performs in-context
learning (ICL) on a task based on a few demon-
strations without training, where each demonstra-
tion is a templated example (z,y) consisting of
an input = and a label word y. We refer to a se-
quence of K demonstrations [z1,y1, ..., Tk, YK]
as a prompt. The LLLM makes predictions on a test
input xs conditioned on the prompt, denoted by
arg max, ¢y, P(y|prompt, Tiest), where ) is the set
of possible label words in a classification task.

Our view. The residual stream of an LLM di-
rectly carries the information of the initial hidden
state, every attention head, and every MLP, col-
lectively named “components,” towards the output
layer. We view this information as the direct con-
tributions' of components to the output logits, and
derive a formula for logits, >, g;, where g; is
the direct contribution of the component indexed
by j. We can obtain the predictions of compo-
nent j with arg max,cy g;, and then calculate its
individual ICL accuracy. Specifically, we derive
g; = U - C; in Eq. 8 below, where U is the output
embedding matrix and C; is the post-layernorm
activations of component j. We name the opera-
tion (C; — U - C};) as early decode, sharing the
same spirit as nostalgebraist (2020) and Geva et al.
(2022), which interpret hidden representations by
decoding through U. Compared to the standard
view, we can directly study the behavior of indi-
vidual components (Figure 2), characterizing them
and scaling their contributions to the model output.

2.2 A Walkthrough of the Decomposition

A Transformer of L layers consists of a multi-
headed attention (MHA) and MLP in every layer.
Let ) € R and m®) € R? be the output of the

'In comparison, a component has indirect contributions to
the output by affecting other components in later layers (Wang
et al., 2023a). This paper focuses on direction contributions.
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Figure 2: Left: Transformer decomposition. The components—MLPs and attention heads—are filled with blue, and
the blue lines show the flow of early decoding. Right: We can calculate the individual accuracy of every component
after decomposition. Although a pair of templates that only differ slightly yield very different accuracies (0.39
vs. 0.89 on AGNews with Llama-2-7B), the accuracies of their internal components are highly correlated. The
top components for Template 1 overlap with the ones for Template 2 and achieve > 0.7 accuracy despite the poor

full-model accuracy.

MHA and MLP at layer [, respectively. Due to
residual connections, the hidden state z®) e RY is:

20 = 20D 4 0 4 @ 0
L

0 4 Z < D 1l ) (2)
=1

Note that GPT2-like LLMs apply layernorm before
MHA and MLP (Radford et al., 2019); thus, lay-
ernorm is already taken into account as part of the
formula for computing a® and m® (see A.3).
An MHA «¥ is composed of n attention heads:
o =wib -Concat([hgl), N AOI N G))
for hf;l) € Rénead 3 head and Wo(l) € R4Xndhead the
output projection in MHA aggregating all heads.
Elhage et al. (2021) rewrite Eq. 3 by segmenting
W(Sl) into 1 matrices W(Sf) € R4 dnead;

=3 (W) =370, @
i=1 i=1
where W), . Wil =W (5)

Thus, we can treat each head as a single component
adding h(l) Wéf) hl(l) to the residual stream.
Finally, through the output embedding matrix

U € RIVocablxd the output logits are:

logits = U - LN(z"))
L n
=U- LN(J: —1—2 h(l —i—Zm >
=1 =1
1+Lxn+L
=U-LN[ Y ], (©)
j=1
where z = [z(0) h(l) B;,,L),m(l),...,m(”]

in Eq. 6 and we index every term in the sum-
mation with j. LN(-) denotes the final layer-
norm, specifically, RMSNorm (Zhang and Sen-
nrich, 2019) for LLMs in our paper (see A.3). In

denotes root mean square, © denotes element-wise

multiplication, and v € R is the affine parameters.

By pre-computing ¥ = RMS&:] ) We have:

logits = U - ZZj OXel (7
J
:ZU-C]-, where C; = z; ©%  (8)
J

We refer to all C; € R? as the component acti-
vations, which include the activations of attention
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SST2 BoolQ QQp WiC RTE MNLI AGNews ARC-Easy Avg.

(c\ls FuLL 75.8181 69.2120 61.399 52.430 68935 34417 70.0199 575144 61.2
Eq E ORACLE-T1 91.7 0.9 69.7 77 67.84,3 57.81.1 64.62.7 46.33'3 80.8 5.2 54.510.1 66.6
- ORACLE-B1 12.1 2.7 34.1 7.3 32.53_9 42.919 34-72.8 24.19.4 3.0 11 12.7 49 24.5
té FuLL 89.05.3 77.668 71.068 55.038 7b.193 45.779 70.820.6 732137 69.7
= g ORACLE-T1 92.5056 77560 73529 60.4,5 75723 56.4,7 84.6 34 73.1 79 74.2
- ORACLE-B1 8219 27197 31.834 39516 27.925 18.6495 1.8 g9 5.4 35 20.0
7‘3 s FULL 90.109 81357 70975 58540 80517 56.15¢9 83.057 79.81 4 75.0
E 2 ORACLE-T1 91.907 80.820 75.62(,‘ 60.62_2 81.3()‘8 61.53‘3 83.74_3 78.52(2 76.7
E 'E' ORACLE-B1 8109 19.595 25.841 39.328 20.017 14.629 1.80.7 4.613 16.7
eg FuLL 91.417 79.275 74.0g80 58747 76555 59437 84.04¢ 8745 5 76.3
Eq % ORACLE-T1 92.3 1.0 77473 77.4 3.7 64.5 27 76329 60.71'5 81.457 86.05.9 77.0
- ORACLE-B1 9.00.,() 22.574 23559 36.733 23421 10042 1.4[)1,‘ 1909 16.0
RANDOM 50.0 50.0 50.0 50.0 50.0 33.3 25.0 25.0 41.7

Table 1: {3, 4}-shot ICL accuracy of 8 tasks and the average accuracy (Avg.). We run 15 prompts for each task (see
§3) and report the mean accuracy and standard deviation. We show the existence of good components (ORACLE-T1)
inside LLMs that individually perform on par with the full model (FULL) on diverse tasks. Similarly, there exist bad
components (ORACLE-B1) that perform substantially below chance (RANDOM).

heads and MLPs after the final layernorm.”> Now
that we have broken down the Transformer output
into simple additions in Eq. 8, we can easily ana-
lyze the direct contribution of each component to
the logits through the residual stream, g; = U - Cj.

In ICL, we only need to do the decomposition
when LLMs start to generate, i.e, when processing
the last token of the input. The computations on
the other tokens are the same as the standard ICL.
In all our experiments, we use single-token label
words. We use multiple templates from Bach et al.
(2022) that cover diverse label words for each task.

3 Characterizing Components for ICL

We conduct in-context learning across 8 classifica-
tion tasks on 4 LLMs: Llama-2-7B, Llama-2-13B,
Mistral-Instruct-7B, and Llama-3-8B. ICL is sensi-
tive to prompts, so we randomly sample 5 disjoint
sets of demonstrations formatted with 3 templates
and report the standard deviation across the 15 runs.
To avoid majority and recency biases (Zhao et al.,
2021), each prompt consists of the same number of
demonstrations from every class in shuffled order.
We use K = 3 demonstrations for 3-way classifi-
cation tasks and K = 4 for the other tasks. Except
for §5.1, we refer to K = {3, 4} without further
notice. We sample 2000 examples with balanced
labels as the test set for every task. Please see A.1
for details about the tasks and templates.

*Empirically, we find that 29 has near-random ICL accu-
racy on all the tasks, so we omit it in the rest of the paper.

3.1 Good and Bad-Performing Components

Across all the tasks and LLLMs, we observe good-
performing components that perform well or even
outperform the full model, and bad-performing
components that individually perform much worse
than chance (blue and red dots in Figure 1, re-
spectively). Table 1 compares the full model
(FuLL) with the top-1 (ORACLE-T1) and bottom-1
(ORACLE-B1) components selected on the test set.
On average, ORACLE-T1 outperforms FULL by
5.4%,4.5%,1.7%,0.7% on Llama-2-7B, Llama-2-
13B, Mistral-Instruct-7B, and Llama-3-8B, respec-
tively; ORACLE-B 1 underperforms random guess-
ing (RANDOM) by 17.2%, 20.7%, 25.0%, 25.7%.

3.2 Label-Biased Components

Besides good and bad-performing components,
we also observe label-biased components, which
predict a certain label on the entire test set (the
green dots in Figure 1). These components exist
in all the tasks and LLMs we study, accounting
for 29.1%, 26.4%, 22.8%, 29.7% of components
on average in Llama-2-7B, Llama-2-13B, Mistral-
Instruct-7B, and Llama-3-8B, respectively (Table
5). In A.2, we show that even when we prompt the
model with all demonstrations of positive labels,
the most biased component still insists on predict-
ing “negative” on the entire test set, and vice versa.

3.3 Mechanistic Understanding of
Bad-Performing Heads

Prior work studies the mechanism of certain com-
ponents in LL.Ms, showing that there are negative
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mover attention heads that write in the opposite di-
rection of the expected answer (Wang et al., 2023a)
and copy suppression heads that suppress the pre-
diction of a prior token in the context (McDougall
et al., 2023). Inspired by them, we investigate the
mechanism behind bad-performing heads identified
by our decomposition. We focus on label tokens in
the context, as Wang et al. (2023b) show that label
words serve as anchors in ICL.

We conduct a case study on Llama-2-7B with
4-shot balanced in-context examples from SST2.
We examine the bottom-5 attention heads that have
the worst ICL accuracy on SST2. We find that three
of these heads, L19H15, L15H14, and L18H9, as-
sign top attention probabilities to all 4 label tokens
of the 4-shot in-context examples when predicting
test examples. Furthermore, despite their poor ICL
accuracy, these heads actually assign higher atten-
tion to the correct in-context label tokens than the
incorrect ones most of the time (> 70% of the test
examples). In other words, when a test example
has a positive label, these heads assign higher atten-
tion? to the tokens “positive” in the context than the
tokens “negative”. We also observe that the more
the heads attend to “positive” in the context, the
lower the inner product between the head and the
output embedding of the token “positive”, with the
correlation r = —0.97, —0.96, —0.89 for L19H15,
L15H14, and L18H9, respectively.

In summary, we show that some bad-performing
heads attend highly to prior label tokens and de-
crease the output probability of the correct one,
which shares similarities with the copy suppression
heads and negative mover heads (McDougall et al.,
2023; Wang et al., 2023a). However, we do not
observe similar behavior in other tasks, where the
bad-performing heads usually attend to “<s>", “7”,
or “\n”. We invite future work to further analyze
how bad-performing heads function in general.

4 Transferability of Components

We observe moderate to high component trans-
ferability across demonstrations, minimally con-
trastive templates, and data distributions, whereas
there is little transferability across randomly sam-
pled templates. Our decomposition uncovers hid-
den abilities of individual components when the
full model performs poorly.

3We average the attention probabilities of the same label
tokens and then compare the average ones of the two labels.

SST2 BoolQ QQP AGNews ARC

. (DDemo 081 084 060 089 088
E (2Temp 040 0.16 003 068 044
© @3)CstT 072 063 023 08 046
()Demo 036 074 027 063  0.70

2 (2)Temp 0.2 001 001 020 020

(3)CstT  0.40 023  0.02 0.36 0.45

Table 2: The average correlation and IoU between (1)
two random sets of demonstrations, (2) two random
templates, and (3) two minimally contrastive templates.

4.1 Transfer across Prompt Variants

We first measure the agreement in component ac-
curacies between (1) two disjoint sets of demon-
strations with a fixed template, (2) two randomly
sampled templates with fixed demonstrations, and
(3) two minimally-contrastive templates with fixed
demonstrations. Recall that we have 5 sets of
demonstrations and 3 templates in total (§3); here,
we calculate the average agreement between every
pair. For (3), we construct contrast sets (Gard-
ner et al., 2020) by minimally editing the worst-
performing template out of the 3 templates into
a good template, which yields at least 10% im-
provement in average accuracy. Our edits include
adding a space, removing a newline, or changing
label words (see Table 10). We use two metrics to
measure the agreement between each pair: Pear-
son correlation of the accuracies of all components
and the intersection over union (IoU) on the sets
of top-5 components, which measures whether the
top-performing components of the pair overlap.

Table 2 summarizes the results on Llama-2-7B;
A.6 shows similar findings on other models. (1)
The accuracies of the internal components are
highly consistent across different choices of demon-
strations, having strong correlations and an aver-
age of 0.54 IoU. (2) The components have much
weaker agreement across randomly sampled tem-
plates, having a near 0 IoU on BoolQ and QQP.
(3) Nevertheless, there is agreement between mini-
mally contrastive templates (Cst T), with an aver-
age correlation of 0.57 across tasks, despite con-
trasting full-model accuracy. For example, Figure
2 demonstrates that full-model accuracy changes
dramatically (39% vs 89%) in a minimal pair of
templates, but internal components have a high cor-
relation of 0.81 and the pair shares top-performing
components. Combining (2) and (3) suggests com-
ponents behave similarly on similar templates, but
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this similarity decreases as the templates diverge.

4.2 Transfer to Out-of-Distribution Test Sets

We further study whether the best component se-
lected on the test set can still perform well on
an out-of-distribution (OOD) test set. We name
this method, which uses a single component to
make predictions, as TRANSFER-1. Specifically,
we study component transferability from SST2 to
Yelp-polarity, MNLI to MedNLI, and BoolQ to
BoolQ Contrast Set. We compare TRANSFER-1
with using the full model (FULL) on the OOD test
sets. To understand the best possible TRANSFER-1
accuracy, we also report the best component accu-
racy directly selected on the OOD set, ORACLE-1.

Table 3 shows that TRANSFER-1 closely
matches ORACLE-1 overall, suggesting that the
top-performing components are transferable across
data distribution. Moreover, TRANSFER-1 some-
times outperforms FULL, especially on Llama2
models, showing the hidden abilities of the internal
components.

4.3 Transfer between Two Opposite Tasks

We conduct a case study of component transferabil-
ity across instructions using Task069 and Task070
of Super-Naturallnstructions (Wang et al., 2022b),
both of which are binary abductive NLI tasks (Bha-
gavatula et al., 2020). The instruction for Task069
asks for correct answers, while Task070 asks for
incorrect ones (“pick the one that makes less sense;”
see Figure 7 for the full instructions). Examples in
the two tasks are not parallel.

We find that Mistral-Instruct-7B achieves good
accuracy across 15 runs on Task069 (76.8 + 2.4),
but below chance on Task070 (40.6 + 5.4). We ob-
serve a strong negative correlation, r = —0.60
on average, between the component accuracies
of the two tasks. The worst-performing compo-
nents in Task069 become the top-performing in
Task070 and vice versa. The correlation suggests
that the model has the ability to solve Task070,
but misunderstands negation. Thus, we apply
the TRANSFER-1 method (§4.2) but select the
worst-performing component from Task069 and
then calculate its individual accuracy on Task(070.
TRANSFER-1 achieves 58.7 4 4.8 accuracy across
the 15 runs, an improvement of 18.1% over the
full model. These results suggest that components
behave consistently even across tasks with opposite
instructions, as the active components in Task069
are also active in Task(070.

Yelp-polarity MedNLI BoolQ Cst

9  FuLL 84.7154 34317 64993
E E TRANSFER-1 949 5, 42.6 4.7 64.37.9
- ORACLE-1 96.9 o7 48.893 66.257
(:é FuLL 95.91.4 46.89.¢ 72.076
BB TranseER-l 9605 559, 72365
- ORACLE-1 97.10.4 57.037 73.06.1
T'E ==} FuLL 97.00_5 57.35_7 74.63_5
2 % TRANSFER-1 95.61.6 61.9,¢ 73757
E E‘ ORACLE-1 97‘1().4 62.74‘1 74.531,'
e FuLL 97.80.4 61.000 77375
E a TRANSFER-1 95.94.4 61.30_8 73.98.4
- ORACLE-1 97905 61.60¢ T4.88.9

Table 3: The average ICL accuracy and standard devi-
ation on OOD test sets. The components selected on
the in-distribution test sets (TRANSFER-1) can transfer
to OOD sets, performing similarly to the oracle compo-
nents (ORACLE-1) directly selected on the OOD sets.

S Component Reweighting
5.1 Proposed Method

Our findings in §4 show the promising direction
of selecting internal components to improve ICL.
Therefore, we propose a method that reweights
components by learning a weight w; € R on every
component activation C';. Reweighting is a soft ver-
sion of selection, which can be learned by gradient
descent on very few examples.

Given K labeled examples, instead of using all
of them as ICL demonstrations, we divide them
into a demonstration set Dgemo and a training set
Dirain- We first randomly sample K’ = {3,4} ex-
amples with balanced labels as demonstrations and
use the remaining examples as Dy, to train the
component weights. Specifically, we can rewrite
Eq. 8 as logits = >, w;(U - Cj), where w; = 1
for all 5. Because of the existence of good and
bad-performing components, weighing all compo-
nents equally may not be optimal. Therefore, we
tune the weights w € RY of N components on
Dirain With cross-entropy loss and L regulariza-
tion, while keeping the LLM frozen:

>

(ac,y) €Dhrain

—log Pry(ylz) + Allwll1,  (9)

N
P, (y|x) = softmax ij Uy -Cj) |
=1 y
where Uy € RYI*4 is a submatrix of U that com-
prises the output embeddings of label words, Py,
is the probability distribution of the LLM after
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Algorithm 1 Component Reweighting

1: Input: K labeled examples, a test set Dy, a set of label
words ), an LLM M, the number of components N

: Output: Z, the predictions of M on Dieyt

: Split K examples into a prompt consists of K’ demon-
strations and a training set Dygin of K — K’ examples

4: Uy < concatenate the output embeddings of ) in M

5: Initialize ™" + &

6: for (z,vy) € Dyain do

7.

8

W N

{C;}L < M(prompt, x) > K'-shot ICL
for j < 1to N do

9 glrain — glrain U (Uy . Cg)

> early decode
10: end for
11: end for
12: Initialize w « [1,...,1] € RY

13: Train the weights w on G™" with Eq. 9
14: Initialize Z + @

15: for (z,y) € Dist do

16: {C;}iL, + M(prompt, x)

17 Initialize g < [0, ...,0] € RYI
18: for j < 1to N do > Test-Time Overhead

> Start Inference

> K’-shot ICL

19: g+ g+w;(Uy-Cy) > early decode
20: end for

21: § < argmax,cy g

22: Z +— Z Uy

23: end for

24: return Z

reweighting, and A is the hyperparameter of the
L loss to encourage sparsity on the component
weights. We obtain the activations {C} }é\le of
all components in one K’-shot forward pass, com-
puted on the prompt derived from Dy, followed
by z. Our method scales each component’s direct
contributions to the logits (Uy, - C; € RM by w.
In practice, we cache these contributions on the en-
tire training set as input features to the linear layer
w, which allows us to discard the entire LLM while
training w (line 9 and 13 in Algorithm 1), saving
tremendous training time and GPU memory. The
cache only requires O(|Y| x N X |Dyain|) space.
At inference time, the overhead of our method over
K’-shot ICL is to early decode N components and
apply the learned weights, i.e., Eévzl w; (Uy-Cj).
As both | Y| and N are small (N < 2000 for all
LLMs in this paper), the overhead is negligible
compared to the computation of the LLM itself.

5.2 Baselines

Standard ICL. The simplest baseline is to use all
the K labeled examples as demonstrations. Since
the other methods use K’ examples as demonstra-
tions, we report the accuracy of standard K’-shot
ICL using the same Dy, for reference.

Prompt Selection. Liu et al. (2022b) improve
ICL accuracy by selecting demonstrations from a
pool of labeled data for each test example. Here, we

select from the given K labeled examples. Follow-
ing Rubin et al. (2022), we use SBERT (Reimers
and Gurevych, 2019) to encode examples into sen-
tence embeddings and select the K’ = {3, 4} near-
est neighbors under cosine similarity as the demon-
strations for each test example.

Calibration. As LLM:s tend to predict a certain
class over others, Zhao et al. (2021) reweight the
output class probabilities. They use context-free
inputs, such as “N/A”, to calibrate the probability
distribution. However, Fei et al. (2023) and Zhou
et al. (2023) find context-free inputs sometimes in-
effective, because in-domain context is important
for calibration. Thus, we introduce CALIB+, which
calibrates the original probabilities p € RI¥! with
a training set of in-distribution labeled examples,
Diain. We train the calibration weights v € RV
on Dyin with cross-entropy loss and obtain the
calibrated probabilities p = softmax(v - p). For di-
rect comparisons, we split the K examples into the
same Dyemo and Dy sets as component reweight-
ing for CALIB+, where |Dgemo| = K’. We include
the training details of both methods in A.8.

5.3 Results

We set K = {12, 24}. Table 4 compares our com-
ponent reweighting (COMPRW) with standard ICL
(STANDARD), prompt selection (PROMPTS), and
calibration (CALIB+). First, we find that simply in-
creasing the number of demonstrations from 4 to 24
has limited improvements in ICL accuracy, while
the longer prompt greatly increases the inference
time. For example, on Llama-2-7B, STANDARD 24
only improves the average accuracy by 2.6% over
STANDARD 3,4 and the accuracy even decreases
on Mistral-Instruct. Second, PROMPTS performs
the worst in most setups, likely because it is hard
to find similar examples from a small pool of K ex-
amples, and a bad selection induces majority label
biases. Third, both calibration (CALIB+) and com-
ponent reweighting (COMPRW) achieve substan-
tially better accuracy than STANDARD 3, 4 with lit-
tle test-time overhead. Overall, COMPRW achieves
the best average accuracy in all setups, outper-
forming STANDARD 12 by 6.0%, 1.8%, 2.6%, 1.4
on Llama-2-7B, Llama-2-13B, Mistral-Instruct-
7B, and Llama-3-8B, respectively, and outperform-
ing STANDARD 24 by 6.0%, 2.2%, 5.1%, 1.6%, re-
spectively. We run one-tailed paired t-tests compar-
ing COMPRW with CALIB+ and find that p-values
< 0.05 in all 8 setups (see Table 6), showing that
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SST2 BoolQ QQp WiC RTE MNLI AGNews ARC-Easy Avg.
STANDARD 3,4 75.8181 69.2129 61.399 524309 689392 34417 70.0199 57.514.4 61.2
STANDARD 12 778196 71.6 g9 63.673 52594 71157 37.09g 69.090.8 59.6 139 62.8

E PROMPTS 12 73.8192 69.4105 62.261 53.127 65518 35516 59.1287 58.711.9 59.7

(‘:l CALIB+ 12 85.1 g0 69.213¢ 73.66_] 55.151 70.397 45.57¢ 77.812.2 58.614.6 66.9

g COMPRW 12 88.5 o5 70.4112 71454 56334 70.005 483,38 874 53 58.3136 68.8

2]

: STANDARD 24 77.8 19.5 71.6 7.3 66.45_0 53.23_3 71.9 1.5 3993(, 71.120_0 58.3 16.2 63.8
PROMPTS 24 74.2 20.4 68.910.2 62.14,9 53.61,9 64.809 36.41,5 57.5 30.2 58.0 12.5 59.4
CALIB+ 24 87.6 50 70.3119 73455 55849 70497 46.4¢7 78.4118 59.2144 67.7
COMPRW 24 90.6 17 717 94 71944 57130 70.0417 49849 88.1 51 58.813.6 69.8
STANDARD 3,4 89.0 5.3 77.66_3 71-06.8 55.03_3 75.12_3 45.77_9 70.820_6 73.2 13.7 69.7
STANDARD 12 91.3 1.9 78.1 7.4 70.5 7.3 59.6 04 T74.4 3.5 55.1 6.2 84.7 7.8 71.2 16.4 73.1

a PROMPTS 12 83.810_2 74~96.6 64.6 5.7 57.02_1 69.5 3.5 48.1 5.4 64.429_6 74.2 9.3 67.1

(\:] CALIB+ 12 89.4 3.2 78.46_1 72.14,1 58.1 5.1 75.3 1.9 57.34,5 81.5 8.7 4.7 9.3 73.3

E COMPRW 12 89.1 39 T7.T¢7 72733 58740 76250 60.257 88.1 17 76.2 ¢35 74.9

5 STANDARD 24 91.9 0.6 77.73_2 69.5 8.5 60.6 1.6 74.73_3 58.2 7.0 85.8 4.4 69.1 17.7 73.5
PROMPTS 24 81.9132 75157 64.948 57318 69.517 4985 65.298.9 T4.2 94 67.2
CALIB+ 24 90.7 21 78.66.2 73.143 59530 75919 58.4sg 82.0 g4 75.2 91 74.2
COMPRW 24 91.0 18 78264 74231 58541 77115 62.037; 888 14 76.1 75 75.7
STANDARD 3,4 90.1 2.9 81.32,1 70.9 7.9 58.54,2 80.5 1.7 56.15,0 83.05,7 79.8 1.4 75.0

Ei STANDARD 12 91499 81.299 67.9g37 57.798 79.116 57.23¢ 8b.4d3g 777 56 74.7

g PROMPTS 12 90.3 2.5 81.1 1.9 68.7 5.8 57.1 2.7 79.1 1.6 56.73_2 84.9 3.0 79.0 3.0 74.6

*E CALIB+ 12 91.5 1.6 81.3 1.8 75.82.6 58-36.6 81.0 1.3 61.94,7 85.44,0 79.6 1.6 76.9

i-i? COMPRW 12 89.949 7 80.79.7 75.129 60049 811,35 647,44 87.651 79.2 19 77.3

g STANDARD 24 91.2 1.0 80.82,3 65.3 8.4 57.44,0 75.6 1.7 56.66,5 85.84,3 68.8 16.9 72.7

E PROMPTS 24 90.59¢ 81.35 68956 57.191 79.117 57431 86.09.1 78.7 33 74.9
CALIB+ 24 91.6 1.5 80.9 2.0 76.1 24 99.5 5.4 81.2 0.9 62.743 85.9 3.7 80.1 1.2 77.2
COMPRW 24 90.818 80.62.1 76417 60.7,, 81.6,7 65334 88.013 79.0 16 77.8
STANDARD 374 91.41.7 79.2 7.9 74-08.0 58.74,7 76.5 2.2 59.43,7 84.06,5 87.4 5.5 76.3

% STANDARD 12 92206 79.669 73.15¢9 633254 T7.5995 062738 87.720 82.118.1 77.3

":7 CALIB+ 12 91.1 1.5 79.25'3 77.93,3 60593 77.32_1 65.23,2 86.44,7 87.7 4.0 78.2

g COMPRW 12 90.729 78.3¢6.7 77299 61864 78.018 6695, 89.1, 87.4 3¢ 78.7

2]

: STANDARD 24 92-20.8 78.2 7.2 78.02_0 63.81_8 76.2 3.0 66.42_3 87.91_9 80.6]8_9 77.9
CALIB+ 24 91.71.4 80.0641 78.3 3.4 63.8249 78.1 1.7 66.0 2.4 86.74,9 87.7 3.8 79.0
COMPRW 24 91.6 1.7 79.1 6.9 78.8 2.7 63733 78.5 1.4 674 2.6 89.5 1.1 87.4 3.2 79.5

Table 4: ICL accuracy of 8 classification tasks and the average accuracy (Avg.). The number after a method denotes
the number of labeled data used. We run 15 prompts for each task (5 disjoint sets of K labeled data and 3 templates)
and report the mean accuracy and standard deviation. COMPRW achieves the best average accuracy in all setups.

CoOMPRW performs significantly better CALIB+.

6 When Do Good Components Emerge?

We study the dynamics of components during pre-
training by monitoring their accuracies on 32 check-
points of Pythia-6.9B, uniformly spaced from the
first to the last checkpoint. For each checkpoint,
we run 4-shot ICL on AGNews with 3 templates x
3 sets of demonstrations. The demonstrations are
balanced in labels with randomly shuffled orders.
Figure 3 shows the average accuracy of the 9 runs
shaded by the standard deviation.

While the full model (green) fluctuates and has
a large variance across prompts, the top-1 com-
ponents (solid blue) achieve good accuracy at an

early step and plateau quickly. We also backtrack
the top-1 components of different prompts at the
last checkpoint (dashed blue), monitoring how they
perform on average during pretraining. We observe
that they are not the top components at the early
stage (there are gaps between the two blue lines
before the 75k steps), but start to perform steadily
well from the middle stage. Our findings also hold
on SST2 and Pythia-1.4B (see Figure 6 in the ap-
pendix), suggesting that the model’s ability to do
a task emerges before it is apparent from the full
model on these tasks.*

*On the other hand, Pythia models perform poorly on the
other tasks over all checkpoints; thus, the training dynamics
of the model components on challenging tasks remain unclear.
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Figure 3: The ICL accuracy of the full model (green)
fluctuates greatly during pretraining. However, good-
performing components (T1) emerge in the early steps.

7 Related Work and Discussion

Improving ICL. Prior work shows that ICL per-
formance varies greatly across different choices of
demonstrations and templates (Zhao et al., 2021;
Lu et al., 2022). Specifically, Sclar et al. (2024)
and Voronov et al. (2024) find no universally bet-
ter prompt template that can transfer across tasks
and models, implying that it is not easy to ex-
plain ICL through prompt engineering. While
several approaches, such as prompt selection (Liu
et al., 2022b; Chang and Jia, 2023; Fu et al., 2023),
prompt ensemble (Min et al., 2022a; Arora et al.,
2023; Voronov et al., 2024), and many-shot ICL
(Agarwal et al., 2024), substantially improve ac-
curacy, they treat LLMs like black boxes without
understanding the internals. Besides, they greatly
increase inference time or require a large set of
labeled data, which deviates from true few-shot
learning (Perez et al., 2021). In comparison, our
paper studies this problem by looking inside the
LLMs. Rather than selecting prompts, we select
components in a soft, learnable way. Our method
only requires {12, 24} examples and has negligible
computation overhead over 4-shot ICL at inference.

Components Interpretation. Components inter-
pretation studies the function of different compo-
nents in a trained model (Elhage et al., 2021; Shah
et al., 2024), where components could be neurons
(Radford et al., 2017; Wang et al., 2022a; Gurnee
et al., 2023), attention heads (Olsson et al., 2022),
and MLPs (Geva et al., 2021). To analyze the com-
ponents, probing (Alain and Bengio, 2017), knock-
out (Geva et al., 2023; Chang et al., 2024; Li et al.,
2023), patching (Wang et al., 2023a; Goldowsky-
Dill et al., 2023), and early decoding (nostalge-

braist, 2020; Geva et al., 2022) are widely used
techniques. For example, Li et al. (2024) train a
linear probe on every attention head to discover the
truthful heads inside LLLMs. Michel et al. (2019)
and Voita et al. (2019) prune away a large percent-
age of attention heads and show that only a few are
critical to the performance. Hendel et al. (2023),
Liu et al. (2023), Merullo et al. (2024a), and Todd
et al. (2024) view ICL as compressing demonstra-
tions into function vectors, where they remove the
demonstrations and modify (patch) the LLM acti-
vations at certain layers with the function vectors at
test time. Early decoding interprets the investigated
components in the textual space by projecting them
through the output embedding matrix (Geva et al.,
2022). Our model decomposition is based on early
decoding and we share some similarities with prior
work (Yu et al., 2023; Wang et al., 2023c), espe-
cially in discovering individual components that
perform well on a task. Our contributions lie in
providing a new view of ICL by decomposition,
which reveals the transferability of components
across diverse ICL settings.

Our Method vs. Pruning. Our method caches
the direct contributions of components to the out-
puts through the residual stream, i.e., logits =
> ; 8j- Thus, removing g;, the direct contribu-
tion of the component j, does not alter the con-
tributions of the other components. In compari-
son, pruning a component changes the activations
of the other components in later layers. In A.7,
we show that pruning the good-performing com-
ponents identified by our method greatly hurts the
accuracy, meaning that pruning also defines these
components as important (Michel et al., 2019).

8 Conclusion

We introduce a new perspective of ICL via decom-
posing the model output into the sum of individ-
ual contributions of components. We then identify
three types of component characteristics across 3
LLMs and 8 classification tasks. Our extensive
analyses reveal consistency in component accuracy
across prompts and suggest the promising direction
of improving ICL by selecting components. To this
end, we propose component reweighting, which
learns to scale components differently on few-shot
examples. Our method achieves the best average
accuracy compared to prior methods. We hope this
work can deepen our grasp of LLMs while motivat-
ing more methods for practical use.

10288



9 Limitations

Our component reweighting method requires a
small set of labeled data Dy, to train the com-
ponent weights w. However, we believe it is not
unreasonable to have at least K’ = 12 labeled exam-
ples in total and we compare with baselines using
the same K examples. On the other hand, we do
not compare with fine-tuning-based baselines, such
as LM-BFF (Gao et al., 2021), T-few (Liu et al.,
2022a), and LoRA (Hu et al., 2021), because they
usually require a larger GPU memory for training
and more sophisticated early stopping criteria to
prevent overfitting on few-shot examples. Another
limitation is that we only experiment with classifi-
cation tasks for ease of evaluation. We leave it for
future work to generalize our method to generation
tasks by doing decomposition and reweighting at
every token during generation.

Despite similarities in model decomposition, the
focus of this paper is not circuits in LLMs (Wang
et al., 2023a). Thus, we only have limited exper-
iments towards mechanistic understanding of the
curious components in §3.3 and A.7. Unlike prior
work that uses synthetic tasks to testify whether a
head attends to certain tokens (Dutta et al., 2024,
Merullo et al., 2024b), we work on standard NLP
benchmark datasets without obviously correct or
incorrect tokens to collect answers, making mecha-
nistic interpretation more challenging.
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A Appendix
A.1 Tasks and Templates

Table 11 summarizes the 13 datasets we use in the
paper, where we construct balanced test sets by
randomly sampling 2000 examples in each task.
We form the prompts by concatenating demonstra-
tions in a randomly shuffled order. To avoid the
recency bias (Zhao et al., 2021), we keep shuf-
fling the demonstrations until the last two have
different labels. For minimally conservative tem-
plates (§4.1), Table 10 compares the contrast sets
we construct on Llama-2-7B. For our case study on
Task069 and Task070, we sample 3 templates from
Sclar et al. (2024). Figure 7 compare the prompts
of Task069 and Task070, which consist of an in-
struction followed by K templated demonstrations.
Originally, the two tasks have ~ 4% of parallel
examples. To make our task transfer challenging,
we discard these overlapped examples.

A.2 Label-Biased Components

We say a component is label-biased when it al-
ways predicts a certain label on the entire test set
§3.2. In this section, we focus on the most bi-
ased components in binary classification tasks, i.e.,
the two components that have the largest value of
(logit, — logit; ) and (logit; — logit,), respectively,
where logit, € R and logit; € R are the LLM
output logits on the two classes. We name these
two components as Biased Component-0 and Bi-
ased Component-1, respectively. To understand
how biased these two components are, we alter
the choices of demonstrations and observe their
behavior. Specifically, we consider three settings:
demonstrations balanced in labels (green in Figure
5), demonstrations of all negative labels ([0, 0, 0, 0];
red), and demonstrations of all positive labels
([1,1,1,1]; blue). We fix the template and sample
5 disjoint sets of demonstrations for each setting.
Each dot in Figure 5 shows the components’ pre-
diction on an example, and the x-axis and y-axis
correspond to logity and logit;, respectively. A dot
below the dashed diagonal line means the predic-
tion on the example is class 0. We find that both
Biased Component-0 and Biased Component-1 still
insist on predicting a certain label on all examples,
regardless of the labels in the prompts.

A.3 LayerNorms

Figure 4 shows the transformer architecture in
GPT2-like models. Because the layernorms inside

logits

LN

20 4= m [ €——

0 1= 4

P

MHA

Lnl

N0)
Embed

Figure 4: Transformer architecture in GPT2.

[RTE] Llama-2-7B

balanced demos ~ ,
[0,0,0,0] demos
[1,1,1,1] demos ;

Biased
Component-1

Logit(class1)

Biased
Component-0

-4 -2 0 2 4 6
Logit(class0)

Figure 5: Each dot represents an example in the test
set. The two most biased components still insist on
predicting the same label on the entire test set regardless
of the labels of the demonstrations.

each block are before MHA and MLP, known as
Pre-LN, Eq. 1 has already taken Ln1 and Ln2 into
account, and Eq. 6 only has the term for the final
layernorm, LN(+).

Both Llama-2 and Mistral model families use
RMSNorm (Zhang and Sennrich, 2019), a layer
normalization variant without centering and adding
bias terms. Formally, let € R? be the input, the
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SST2 BoolQ QQP WiC RTE MNLI AGNews ARC-Easy
Llama-2-7B 37.8 18.9 434 442 354 28.2 13.4 11.5
Llama-2-13B 32.6 18.7 372 39.3 321 26.0 12.4 13.1
Mistral-Instruct-7B  31.9 14.0 32.3 324 276 20.9 14.5 8.4
Llama-3-8B 38.3 214 42.4 40.0 36.9 28.1 15.8 15.0

Table 5: We report the average percentage of label-biased components across 15 prompts for each task. A
label-biased component always predicts the same label on the entire test set.

root mean square norm LN(z) is:

LN(2) = g SO

(10)

1D

where v € R? is the affine transform parameters
and © denotes element-wise multiplication.

A.4 Tests of Significance

We run one-tailed paired t-tests to test whether
COMPRW outperforms CALIB+ significantly. In
Table 4, we have the results of 15 prompts for
each task and 8 tasks in total. For each model,
we aggregate the 120 accuracy scores of COMPRW
and CALIB+, respectively, and then calculate the
p-values. Table 6 shows that p-values < 0.05 in
8/8 setups, suggesting that COMPRW performs sig-
nificantly better than CALIB+.

Llama2-7B Llama2-13B  Mistral-Ins-7B  Llama3-8B

0.0010 0.0002 0.0470 0.0198
0.0003 0.0001 0.0027 0.0245

K =12
K =24

Table 6: The p-values < 0.05 in all 8 setups (4 LLMs,
with K = {12,24} labeled examples), showing that
COMPRW performs significantly better than CALIB+.

A.5 Do Good-Performing Components Exist
in Randomly Initialized Models?

Ramanujan et al. (2020) find that untrained sub-
networks can perform on par with a ResNet-34
trained on ImageNet. Similarly, Zhang and Bow-
man (2018); Hewitt and Liang (2019) show that
representations of randomly initialized language
models yield a strong baseline for probing tasks.
In this section, we investigate (1) whether good-
performing components still exist in a randomly
initialized LLM, and (2) how COMPRW method
performs using component activations extracted
from the randomly initialized LLM.

SST2  ARC-Easy
"8 FULL 75.818.1 57.514.4
2 ORACLE-T1 91.7 g9  54.510.1
& COMPRW 90.8 1.8 79.0 16
g FuLL 49.797 25.00.5
B ORACLE-T1 55.2¢5 26.7¢.2
& COMPRW 51417 25007
Table 7: Comparing the ICL accuracy between pre-

trained (Up) and randomly initialized (Down) Llama-2-
7B. The top-1 component (ORACLE-T1) and COMPRW
perform near random on the untrained model.

We run 4-shot ICL with 15 prompts and report
the average accuracy and standard deviation. For
CoMPRW, we use the same 4 demonstrations and
20 more examples for reweighting. Table 7 shows
that the best-performing component (ORACLE-T1)
in a randomly initialized Llama-2-7B still performs
poorly on SST2 and ARC-Easy. While COMPRW
has substantial improvement over FULL on the pre-
trained model, it has no effect on the randomly ini-
tialized model. We conclude that good-performing
components do not exist in a randomly initialized
LLM and our COMPRW method relies on the pre-
trained component activations to perform well.

A.6 More Results on Transferability

In §4, we study the transferability of components
across different choices of demonstrations and tem-
plates. Here, Table 9 shows the full results on all
LLMs and tasks. We observe the same findings as
Table 2: component accuracies agree well across
randomly sampled demonstrations, but have much
weaker agreements across randomly sampled tem-
plates. Because constructing minimally-contrastive
templates requires non-trivial manual efforts, we
only build contrast sets for 5 tasks on Llama-2-
7B (shown in Table 2), where these tasks have the
largest variances across templates.
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A.7 Pruning Good and Bad Components

Our method studies a component using its cached
direct contribution to the output, whereas Michel
et al. (2019) (pruning) zeroes out the activations
of a component in the forward pass and thus indi-
rectly changes the activations of other components
in the upper layers. They consider a component
important if pruning it causes large drops in task
performance. In this section, we investigate the
intersection between our method and pruning.

First, we apply our decomposition to identify
good and bad-performing components based on
their ICL accuracy (3-shot for MNLI, 4-shot for
other tasks). Second, we run ICL with pruning
on Llama-2-7B, using the same 15 prompts in our
main experiments for every task. We prune the top-
50 components® and the bottom-50 components,
respectively. Table 8 compares the results with the
full model without pruning. We find that pruning
the top components (T50) greatly hurts the accu-
racy. On the contrary, pruning the bottom compo-
nents (B50) only decreases the average accuracy
on SST2 and RTE by 3.5%, and even slightly im-
proves the ones on MNLI and AGNews. These
findings may imply that our method and pruning
interpret components in similar fashion.

SST2 RTE MNLI AGNews
Full Model 75.8 18.1 68.9 3.2 34.4 1.7 70.0 19.9
Prune-T50 534 gg 57.864 34.332 26.8 o5
Prune-B50 72.3 14.8 65.4 58 35.7 4.0 72.6 15.7

Table 8: Comparing the accuracies of the full Llama-2-
7B model and pruning the top/bottom 50 components.
We run 15 prompts for each task and report the average
accuracy and standard deviation. We color the numbers
red when there is a large drop in accuracy.

A.8 Training Details and Hyperparameters

For both COMPRW and CALIB+ methods, we train
a linear layer on Dy, with stochastic gradient de-
scent. Because we do not have an additional dev
set to tune the hyperparameters, we use the same
hyperparameters on all the tasks and models and
do early stopping based on the loss and accuracy
on Dy,in. Specifically, we set learning rate = 0.05
for both methods and A = 0.1 for the L1 regu-
larization term in COMPRW. We run all our ICL
experiments on a single RTX A6000 GPU (48G).
Both the component reweighting and calibration

3~ 5% of the total components

training processes can be run on a single i7 CPU
within a minute.

A9 Models

We use the model checkpoints on Hugging Face,
meta-1llama/Llama-2-7b-hf, Llama-2-13b-hf,
mistralai/Mistral-7B-Instruct-v@.1, and
meta-1lama/Meta-L1lama-3-8B.
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SST2 BoolQ QQP WiC RTE MNLI AGNews ARC

Correlation Llama-2-7B
(1) Demo 0.81 0.84 060 0.65 0.75 0.65 0.89 0.88
(2) Temp 0.40 0.16 0.03 0.15 0.19 0.09 0.68 0.44

IoU
(1) Demo 0.36 0.74 027 021 0.53 0.24 0.63 0.70
(2) Temp 0.12 0.01 0.01 0.03 0.05 0.01 0.20 0.20

Correlation Llama-2-13B
(1) Demo 0.83 0.84 063 0.67 0.78 0.73 0.91 091
(2) Temp 0.57 0.30 0.09 0.19 028 0.16 0.76 0.55

IoU
(1) Demo 0.26 0.71 031 0.18 0.46 0.39 0.55 0.65
(2) Temp 0.21 0.11 0.07 0.01 0.21 0.07 0.25 0.30

Correlation Mistral-Instruct-7B
(1) Demo 0.88 0.91 072 0.75 0.87 0.82 0.92 0.97
(2) Temp 0.58 0.44 0.19 0.26 0.40 0.30 0.77 0.60

IoU
(1) Demo 0.39 0.59 027 029 050 045 0.68 0.80
(2) Temp 0.10 0.17 0.06 0.05 0.17 0.09 0.29 0.22

Correlation Llama-3-8B
(1) Demo 0.85 0.88 070 0.73 0.80 0.81 0.89 0.95
(2) Temp 0.55 0.39 026 0.25 0.31 0.23 0.67 0.52

ToU
(1) Demo 0.42 0.56 028 025 046 0.52 0.65 0.68
(2) Temp 0.15 0.12 0.09 0.07 0.08 0.05 0.34 0.27

Table 9: Full results of the average correlation and IoU between (1) two random sets of demonstrations and (2) two
randomly sampled templates.

Task Templates Labels Accuracy
SST-2 T1 Review: {text}\nDo you think the review is positive or negative? {label} negative/positive 50.6 £ 0.7
T2 Review: {text}{space}\nDo you think the review is positive or negative? {label} negative/positive 72.7+6.1
BoolQ T1 Based on the following passage, {question}? {passage}\nAnswer: {label} No/Yes 52.5+2.0
T2 Based on the following passage, {question}? {passage} Answer: {label} No/Yes 66.7 + 2.1
QQpP T1 Are the questions "{sentl}" and "{sent2}" asking the same thing? {label} nolyes 54.3+1.1
T2 Are the questions "{sentl}" and "{sent2}" asking the same thing? {label} No/Yes 68.7£4.1

AGNews T1 {text}\nls this a piece of news regarding World, Sports, Business, or Technology? {label} =~ World/Sports/Business/Technology 43.9 £ 8.7
T2 {text} Is this a piece of news regarding World, Sports, Business, or Technology? {label} ~ World/Sports/Business/Technology ~ 88.5 + 0.8

Table 10: We construct minimally contrastive templates that only differ slightly (colored in red) but yield large
differences in 4-shot ICL accuracy on Llama-2-7B. We report the average accuracy and standard deviation across 5
ICL runs with different demonstrations under the same template.
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Dataset Task # Classes

SST-2 (Socher et al., 2013) Sentiment Analysis 2
Yelp-polarity (Zhang et al., 2015) Sentiment Analysis 2
BoolQ (Clark et al., 2019) Yes/No QA 2
BoolQ Contrast Set (Gardner et al., 2020) Yes/No QA 2
QQP (Wang et al., 2018) Paraphrase Identification 2
WiC (Pilehvar and Camacho-Collados, 2019) Word Sense Disambiguation 2
RTE (Wang et al., 2018) Natural Language Inference 2
MNLI (Williams et al., 2018) Natural Language Inference 3
MedNLI (Romanov and Shivade, 2018) NLI in Medical Domain 3
AGNews (Zhang et al., 2015) Topic Classification 4
ARC-Easy (Clark et al., 2018) Multiple-Choice QA 4
Task069 (Mishra et al., 2022; Wang et al., 2022b) Abductive NLI 2
Task070 (Mishra et al., 2022; Wang et al., 2022b) Abductive NLI 2

Table 11: Summary of all the datasets.

[SST-2] Pythia-6.9B [AGNews] Pythia-1.4B

~~-"
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Figure 6: 4-shot ICL accuracy on different pretraining checkpoints. We compare the full model (green) with the
top-1 (solid blue) and bottom-1 (red) components. The dashed blue line tracks how the top-1 components of the last
checkpoint (Last-T1) perform across time.
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Task069
In this task, you will be shown a short story with a beginning, two potential middles, and an ending.
Your job is to choose the middle statement that makes the story coherent / plausible by writing "1" or
"2" in the output. If both sentences are plausible, pick the one that makes most sense.

§Beginning: The clown was blowing several bubbles to the kids. Middle 1: Isaiah kept on popping the !
‘bubbles. Middle 2: Isaiah kept eating the bubbles. Ending: He said that Isaiah is currently sick from
‘ingesting too much soap. Answer: 2 :

K demonstrations

Task070
In this task, you will be shown a short story with a beginning, two potential middles, and an ending.
Your job is to choose the middle statement that makes the story incoherent / implausible by indicating
"1" or "2" in the output. If both sentences are plausible, pick the one that makes less sense.

: Beginning: Killy was 9 months pregnant and almost ready to pop. Middle 1: Luckily Killy's water !
i broke when she was in hospital. Middle 2: Killy's water broke when she was on a walk. Ending: Five
' minutes later, she delivered her baby with the help of passersby. Answer: 1 :

K demonstrations

Figure 7: Comparing the prompts of Task069 and Task070. We apply the templates of Sclar et al. (2024) and
prepend the task instructions before K demonstrations. We ensure that the two tasks do not have parallel examples
to make the transfer experiment (§4.3) challenging.
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Figure 8: Each dot represents a component (attention head: blue; MLP: orange) under 4-shot ICL on Mistral-
Instruct-7B. The x-axis shows how often a component predicts label 1 across the test data of a binary task.
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