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Abstract

Seagrasses are marine angiosperms that form highly productive and diverse ecosystems.
These ecosystems, however, are declining worldwide. Plant-associated microbes affect crit-
ical functions like nutrient uptake and pathogen resistance, which has led to an interest in
the seagrass microbiome. However, despite their significant role in plant ecology, viruses
have only recently garnered attention in seagrass species. In this study, we produced origi-
nal data and mined publicly available transcriptomes to advance our understanding of RNA
viral diversity in Zostera marina, Zostera muelleri, Zostera japonica, and Cymodocea
nodosa. In Z. marina, we present evidence for additional Zostera marina amalgavirus 1 and
2 genotypes, and a complete genome for an alphaendornavirus previously evidenced by an
RNA-dependent RNA polymerase gene fragment. In Z. muelleri, we present evidence for a
second complete alphaendornavirus and near complete furovirus. Both are novel, and, to
the best of our knowledge, this marks the first report of a furovirus infection naturally occur-
ring outside of cereal grasses. In Z. japonica, we discovered genome fragments that belong
to a novel strain of cucumber mosaic virus, a prolific pathogen that depends largely on aphid
vectoring for host-to-host transmission. Lastly, in C. nodosa, we discovered two contigs that
belong to a novel virus in the family Betaflexiviridae. These findings expand our knowledge
of viral diversity in seagrasses and provide insight into seagrass viral ecology.

Introduction

Seagrasses are an integral part of the marine environment. Their leaves support grazing and
herbivory and their meadows form complex ecosystems that enrich biodiversity [1-4]. These
qualities derive from their high productivity and structural complexity, but seagrasses also pro-
vide a number of functions that are important for ecosystem health. Their roots stabilize sedi-
ments and drive nutrient cycling through radial oxygen loss [5, 6], and their canopies improve
water quality and help sequester carbon through particle baffling in the water column [7, 8].
Seagrass die-offs therefore have a negative effect on marine ecosystems. While some regions
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have seen seagrass populations rebound [9, 10], seagrasses are declining worldwide [11, 12].
Seagrass mortality can occur through natural causes like wasting disease [13, 14], but anthro-
pogenic factors (e.g., light limitation from nutrient contamination and algal growth) account
for the majority of seagrass die-offs [15, 16]. In light of their importance, numerous studies
have sought to characterize the seagrass microbiome [17-19]. Notably, however, the vast
majority of these studies have focused on bacteria, which neglects potential impacts from non-
cellular constituents like viruses.

Viruses have an underappreciated role in plant ecology. The majority of research relies on a
limited number of pathosystems, which biases our understanding of virus-host interactions on
a broad scale [20]. In wild plants, viral infections are frequent but often asymptomatic [21],
and they can produce a variety of effects that range from deleterious to beneficial, conferring
advantages like drought/cold tolerance and pathogen exclusion (i.e., mechanisms that prevent
pathogen entry into cells) [22]. Virus research in marine plants is extremely limited, and study-
ing seagrass virology will help us better understand the effect that viruses have on seagrass
ecology. Furthermore, comparisons between virus-host dynamics in marine and terrestrial
plant systems could advance our understanding of plant viruses generally. Recently, several
papers have begun to address the diversity of the seagrass virome [23-28], but the field of sea-
grass virology is still young with a great deal of diversity undiscovered.

In this study, we aimed to broadly survey RNA viruses in four seagrass species: Zostera
marina, Zostera muelleri, Zostera japonica, and Cymodocea nodosa. We prepared viral tran-
scriptomes from leaf tissue collected in the United States, Japan, and New Zealand, and sur-
veyed publicly available transcriptomes from NCBI. Including both original and public data,
we present new genotypes and novel viruses from the families Amalgaviridae, Endornaviridae,
Betaflexiviridae, Bromoviridae, and Virgaviridae.

Materials and methods

Sample collection

Z. marina and Z. muelleri leaf tissues were collected from three locations: Kochi, Japan; Massa-
chusetts (MA), United States of America (USA); and Whangarei, New Zealand. All tissues
were randomly sampled from ostensibly healthy populations. In Kochi, Japan, leaf tissue from
eight Z. marina plants were collected from the Uranouchi inlet in May 2020. These samples
were stored in RNAlater™ (Invitrogen™, USA) and kept at -20°C before transport to Cornell
University, Ithaca, NY, USA. Ten Z. marina samples from independent plants were also col-
lected from MA, USA, in West Falmouth Harbor. These were collected in July 2021 and flash
frozen in liquid N, before transport to Cornell University. A total of 36 Z. muelleri plants were
sampled in Whangarei, New Zealand-six from each of the following field sites: McDonald
Bank, Munro Bay, One Tree Point, Takahiwai, Snake Bank, and Taurikura. These were col-
lected in November 2020 and also stored in RNAlater' ™ before transport. After arriving at
Cornell University, all samples were stored at -80°C until further processing. In addition to
our survey, transcriptomes (C. nodosa-ERR1211085-93 [29], Z. japonica-SRR8149505-10
[30], and Z. marina—SRR4241949-50, SRR4241952-53 [31]) were mined from the NCBI
Sequence Read Archive (SRA).

Sample processing and library preparation

Seagrass tissues were initially thawed on ice. Samples stored in RNAlater™ were also rinsed
with 0.02 pm filtered phosphate buffered saline (PBS) and combined for library preparation.
The eight samples from Japan were condensed into four libraries, combining tissues from two
plants into each library. Likewise, the libraries from New Zealand (n = 6; one per field site)
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were made using tissue samples from two independent plants. Flash freezing samples allowed
us to collect larger leaf sections, negating the need to combine tissues from the USA. For each
library, approximately 200 mg of tissue was homogenized in 750uL of 0.02 um filtered PBS for
1 min using ZR BashingBead ™ Lysis Tubes (0.1 and 0.5 mm; Zymo Research, USA) and a
Mini BeadBeater-8. Samples were then centrifuged at 5000 x g for 5 min. The resulting super-
natant was pushed through a 0.2 pm polyethersulfone (PES) filter and treated with 50U of
RNase One™ Ribonuclease (PromegaTM, USA) and 5U of TURBO™ DNase (InvitrogenTM,
USA) for two hours at 37°C. Immediately following incubation, viral RNA was extracted using
a Quick-RNA™ Viral Kit (Zymo Research, USA) in accordance with the recommended proto-
col. After RNA extraction, each sample was filtered through a Zymo-Spin™ III-HRC filter
(Zymo Research, USA) to remove PCR inhibitors and stored at -80°C until library preparation.
Transcriptome libraries were prepared using a TransPlex™
Amplification Kit (Sigma-Aldrich™, USA) in accordance with the recommended protocol.
The final PCR products were then cleaned with a Clean and Concentrator™-5 kit (Zymo
Research, USA) and sequenced (2 x 250 paired-end) using an Illumina MiSeq platform at the
Cornell Biotechnology Resource Center, Ithaca, NY. In total, we sequenced four libraries from
Kochi, Japan, five libraries from MA, USA, and six libraries from Whangarei, New Zealand.
These libraries can be found in the NCBI SRA database under BioProject PRINA936818.

Complete Whole Transcriptome

Bioinformatics pipeline

Libraries prepared in-house were processed and assembled in groups based on geography. Reads
derived from the SRA were processed and assembled in groups according to their BioProject
accession. Initial library qualities were first assessed using FastQC (v. 0.11.9) and error corrected
using Reorrector (v. 1.0.4) [32]. Read pairs that were unfixable were discarded. Reads were then
quality controlled and trimmed using Trim Galore (v. 0.6.5) and mapped to an rRNA database
to remove ribosomal sequences. To construct the rRNA database, the SSU and LSU Parc datasets
were downloaded from the SILVA database (132 release) and indexed using Bowtie 2 (v. 2.4.1)
[33]. Lastly, the processed reads were assembled into contigs using Trinity (v. 2.11.0) [34].
Assembled contigs were queried against a custom database of plant viral proteins using Diamond
BLASTX (v. 2.0.4) [35]. To construct the database, viral protein sequences were downloaded
from the NCBI RefSeq database and then indexed using the makeblastdb command in Diamond.
These include proteins from the taxonomic groups Amalgaviridae, Bromoviridae, Caulimoviri-
dae, Closteroviridae, Endornaviridae, Fimoviridae, Geminiviridae, Partitiviridae, Potyviridae,
Rhabdoviridae, Secoviridae, Solemoviridae, Tombusviridae, Tospoviridae, Tymovirales, and Virga-
viridae. Positive hits (E-value < 1e-20) were vetted in a holistic manner based on identifiable
open reading frames (ORFs), protein families, and sequence length. After viral contigs were iden-
tified, their mean depth was calculated using the SAMtools (v. 1.17) coverage command on a
Bowtie 2 generated alignment [36]. Each alignment was generated using the same group of sam-
ples that were used to assemble the contigs. All downstream analyses were performed using Gen-
eious Prime (v. 2021.2.1) and the R programming language (v. 4.2.0) [37].

Contamination control

The viral contigs found in tissues collected for this study were cross-checked based on location
(Japan, USA, and New Zealand) to rule out the possibility of reagent contamination and cross-
contamination between libraries. The ability to control for contamination in publicly available
transcriptomes is limited, unfortunately. However, there is an established precedent for data
mining in virus discovery that includes seagrass viruses [24, 25, 27, 28]. Therefore, viral contigs
with sufficient coverage, identifiable ORFs, and protein coding regions were included.
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Phylogenetics

To construct phylogenies, amino acid or nucleotide sequences were first aligned using the
GUIDANCE2 webserver and MAFFT multiple sequence alignment (MSA) algorithm [38, 39].
With the exception of cucumber mosaic virus (CMV), amino acids were used for each align-
ment. For CMV, nucleotides were used in lieu of amino acids because of the high similarity
between CMV strains. Alignments were exported from the GUIDANCE?2 webserver and
imported into Geneious Prime, where they were trimmed to equal lengths and manually
refined. Regions with low confidence GUIDANCE2 scores were removed. Phylogenies were
constructed in Geneious Prime using the PHYML plugin with default settings—an LG substitu-
tion model with Shimodaira-Hasegawa (SH)-like branch support [40].

Protein identification and transmembrane discovery

Protein coding regions were identified using the InterProScan plugin in Geneious Prime [41].
Putative transmembrane protein domains were identified using the CCTOP webserver [42].

Figures

Phylogenies were exported and remade in R (v. 4.2.0) using the following packages-APE (v.
5.6-2), ggtree (v. 3.4.0), and phytools (v. 1.2-0) [43-45]. Circos plots, MSAs, and synteny plots
were made using the circlize (v. 0.4.15), ggmsa (v. 1.2.3), and gggenomes (v. 0.9.5.9000) pack-
ages, respectively [46-48].

Results and discussion

We assembled contigs from four seagrass species (C. nodosa, Z. marina, Z. muelleri, and Z.
japonica) that belong to five viral families: the Amalgaviridae, Endornaviridae, Betaflexiviridae,
Bromoviridae, and Virgaviridae. Table 1 summarizes the viruses found in this study in addition
to previously discovered seagrass viruses. S1 Table summarizes the mean sequencing depth for
viruses presented in this study. Predictably, fragmented genomes with shorter contigs had a
lower mean depth compared to complete or near complete genomes.

Amalgaviridae

We found two amalgavirus genomes in the seagrass Z. marina. The amalgaviruses are verti-
cally transmitted, persistent viruses with no discernible pathology [49]. They have dsRNA
genomes, a single known protein, RNA-dependent RNA Polymerase (RdRP), and may be cap-
sidless [50-52]. Two amalgavirus genomes have been discovered in seagrass previously, Zos-
tera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV?2) [24]. The
first genome we found is near-complete and most similar to ZmAV1, and it was assembled
from transcriptomes originally published by Lv et al. [31]. The second genome we found is
partially complete and most similar to ZmAV2, and it was detected in sequence libraries pre-
pared from Japan for this study. Here, we differentiate between genotypes by using the desig-
nations ZmAV1-like Shuangdao genotype (ZmAV1-SD; China) and ZmAV2-like Kochi
genotype (ZmAV2-KG; Japan), both named for their geographic origin.

The ZmAV1-SD assembly produced a single 3,313 nt long contig representing a near com-
plete genome (Fig 1B). This contig has two overlapping ORFs and a +1 ribosomal frameshift
motif, consistent with other amalgaviruses [53]. Its RARP region is 99.29% similar to ZmAV1
across 282 amino acids and 98.58% identical across 846 nucleotides. ZmAV2-KG consists of
three contigs that are 378, 427, and 804 nt long. All three contigs mapped to unique regions of
the ZmAV2 genome (Fig 1B) and are greater than 90% identical to ZmAV2 at the nucleotide
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Table 1. A list of known seagrass viruses and their hosts.

Host Species Virus Genome Study Data Country BioProject

Cymodocea nodosa Cymodocea alphaflexivirus 1 + ssRNA [27] PDG N/K PRJNA275569
Cymodocea nodosa foveavirus 1 + ssRNA [27] PDG N/K PRJNA275569
Cymodocea nodosa betaflexivirus + ssRNA TS PUB ES PRJEB12372

Thalassia testudinum Turtlegrass virus X + ssRNA [26] PDG UsS N/A

Zostera marina Zostera associated varicosavirus 1 - ssRNA [28] PDG CN PRJNA609020
Zostera marina alphaendornavirus + ssSRNA TS NEW JP PRJNA936818
Zostera marina alphaendornavirus 1 dsRNA [24] PDG CN PRJNA235360
Zostera marina alphaendornavirus 2 dsRNA [24] PDG CN PRJNA235360
Zostera marina amalgavirus 1-like SD dsRNA TS PUB CN PRJNA342750
Zostera marina amalgavirus 2-like KG dsRNA TS NEW JP PRJNA936818

Zostera muelleri Zostera muelleri associated alphaendornavirus + ssRNA TS NEW NZ PRJNA936818
Zostera muelleri furovirus + ssSRNA TS NEW NZ PRJNA936818
Zostera virus T + ssSRNA [25] PDG AU PRJEB9377

Zostera japonica Cucumber mosaic virus + ssRNA TS PUB CN PRJNA503298

The genome column indicates if the virus genome is positive or negative-sense single-stranded (ss) RNA or double-stranded (ds) RNA. TS in the study column indicates

the virus came from this study. A designation of NEW in the data column means the genome came from original data from this study, whereas PUB indicates the

genome came from public transcriptomes. PDG indicates a previously discovered genome. For country of origin, ES = Spain, US = United States, JP = Japan,

CN = China, and AU = Australia. N/K indicates the country is not known. In the BioProject column, N/A (not applicable) indicates that no BioProject is available.

https://doi.org/10.1371/journal.pone.0302314.t1001

level. A complete RARP domain was found in the 804 nt contig which allowed us to estimate
phylogeny and comply with the ICTV standards for species demarcation (https://ictv.global).
At 93.23% nucleotide identity, ZmAV2-KG falls short of the 25% RdRP divergence criterion to
be considered a new species. Consistent with these results, we found high phylogenetic branch
support for the relationship between ZmAV1/ZmAV1-SD and ZmAV2/ZmAV2-KG (Fig 1A).

The amalgaviruses are known to be persistent viruses, which reside indefinitely within their
host, transmit efficiently by seed, and do not generally cause outward disease symptoms [21,
54]. Amalgaviruses maintain low titers that mitigate host defense systems [55, 56], and with no
recognized movement protein, amalgavirus particles likely spread during mitotic division in
the same way as other persistent viruses [54, 57]. The amalgaviruses are also known to have a
high degree of genetic homogeneity within species, which is consistent with our findings.
Genotypes of southern tomato virus and blueberry latent virus, for example, can share ~ 99%
of their respective genomes within species across a wide geographic area [50, 52]. The geo-
graphic similarity between known ZmAV genotypes and the apparent lack of disease in their
hosts suggests that seagrass amalgaviruses are ecologically similar to their terrestrial counter-
parts, both in transmission and effect on their host.

Endornaviridae

We discovered two alphaendornavirus genomes associated with Z. marina and Z. muelleri.
The Endornaviridae are persistent, capsidless [58], positive-sense ssSRNA viruses with two rec-
ognized genera—Alphaendornavirus and Betaendornavirus [59]. The latter is shorter (< 10.7
kb) and is known to infect ascomycete fungi, whereas the former is longer (> 11.9 kb) and is
known to infect plants, fungi, and oomycetes [59]. The genomes that we discovered belong to
the Alphaendornavirus genus. Both are novel to this study and geographically separate from
each other. We refer to these genomes as Zostera marina alphaendornavirus (ZmAEV) and
Zostera muelleri associated alphaendornavirus (ZmuAEV). We found ZmAEYV in the same
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Fig 1. Phylogeny and contig alignments for new amalgavirus genomes. (A) Phylogenetic placement of Z. marina amalgaviruses using a maximum-likelihood inference.
This phylogeny was constructed with an amino acid alignment of amalgavirus and deltapartitivirus RARP domains. Numeric values indicate the degree of SH-like branch
support (scale 0-100). (B) Circlize plot of ZmAV1-like Shuangdao genotype (ZmAV1-SD) and ZmAV2-like Kochi genotype (ZmAV2-KG) contigs mapped to Zostera
marina amalgavirus 1 and Zostera marina amalgavirus 2 (ZmAV1/2) genomes. Track 1 represents the complete length of ZmAV1 (top) and ZmAV?2 (bottom). Scale
markers on the outside of track 1 are in base pairs. Track 2 represents ZmAV1-SD and ZmAV2-KG contigs and their genomic position relative to ZmAV1 and ZmAV2.
Internal map shows the field site where all Z. marina amalgaviruses were found, and was printed under a CC BY license with permission from Mapbox.

https://doi.org/10.1371/journal.pone.0302314.9001

libraries as ZmAV2-KG (collected in Japan) and assembled ZmuAEV from leaf tissue from
Whangarei Harbor, New Zealand. Both genomes are complete, or near complete, with respec-
tive lengths of 14,767 and 12,947 nucleotides. ZmAEV and ZmuAEV have similar genetic
architectures but differ in two respects. While each encodes a single ORF with helicase and
RdARP domains from the 5" to 3" direction, ZmAEV has viral methyltransferase (MTase) and
UDP-glucosyltransferase domains that are absent in ZmuAEV (Fig 2B). The genomic and geo-
graphic dissimilarity between ZmAEV and ZmuAEYV indicates these viruses are not contami-
nants. Their finding, however, is surprising, given our methodology and their capsidless
nature. Residual RN Alater™ that was used to preserve the original tissues may explain why
these viruses did not degrade.

Our phylogenetic analysis shows that ZmAEV and ZmuAEYV are distinguished by host-
defined clades of known viruses (plant and fungal, respectively; Fig 2A), an observation that
led us to append the designation of ZmuAEV with ‘associated,” signifying its ambiguous origin.
Regarding ZmAEV, our analysis supports the conclusion that it originates from Z. marina tis-
sues and not co-extracted epibionts. Its closest relative is winged bean alphaendornavirus 1,
and both cluster in a larger clade of plant endornaviruses. ZmuAEV, by contrast, is phyloge-
netically more similar to fungal viruses. Its closest relative is a diatom-associated virus, and
both share a common ancestor with Erysiphe cichoracearum endornavirus and grapevine
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sites in Japan where the partial RARP fragment [23] and complete genome (this study) for ZmAEV originated. Each label is accompanied by the year that Z. marina was
sampled. This map was printed from under a CC BY license with permission from Mapbox.

https://doi.org/10.1371/journal.pone.0302314.9002

endophyte endornavirus. This leaves the possibility that ZmuAEV could derive from an epi-
biont; however, a definitive answer is outside the purview of this study. Roossinck et al. [60]
discuss the modular nature of endornavirus evolution, highlighting the convergence of differ-
ent source-derived domains and propose that fungi could be a vector for horizontal transmis-
sion to plants. In the rice sheath blight fungus Rhizoctonia solani, the horizontal transmission
of an endornavirus between fungi has been established [61].

We found a partial RARP sequence in the DNA Data Bank of Japan (accession number
AB185249) that mapped to ZmAEV with 98.5% pairwise similarity. The sequence came from a
study of multiple plant species that included Z. marina in Tokyo Bay (Fig 2C) [23]. The simi-
larity between ZmAEV and the partial sequence suggests that the partial sequence may belong
to the same virus. The time elapsed between sampling in the Fukuhara et al. [23] study and
ours is approximately 15 years, which suggests that ZmAEV is relatively stable in Japanese Z.
marina populations. This is consistent with the consensus view that endornaviruses are mostly
non-pathogenic. While there is evidence that endornavirus infections can elicit physiological
changes at the cellular level that resemble acute infections [62], the only observed phenotype
with deleterious effects is cytoplasmic male sterility in Vicia faba [63]. Furthermore, effects, if
any, may be host dependent, including potential benefits. For example, seeds of black turtle
soup that were coinfected with Phaseolus vulgaris endornavirus 1 and 2 germinated faster than
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non-infected seeds, giving virus positive cultivars a potential selective advantage [64]. How-
ever, in a similar study in bell peppers, endornavirus positive lines were less likely to germinate
than negative lines [65].

Betaflexiviridae

We discovered two contigs in publicly available transcriptomes that belong to a virus in the
Betaflexiviridae. This family has viruses with linear, positive-sense ssSRNA genomes and fila-
mentous, non-enveloped virions [66]. The contigs that we found came from the seagrass C.
nodosa in Cadiz Bay, Spain, and are 5,347 (contig 1) and 2,847 (contig 2) nucleotides long. A
phylogenetic analysis of the RARP (contig 1) and movement protein (contig 2) strongly sug-
gests that both contigs come from the same virus (S1 Fig), which we refer to as Cymodocea
nodosa betaflexivirus (CNBV). S2 Fig shows that CNBV has three ORFs for replication, move-
ment, and coat formation. ORF 1 encodes viral MTase, endopeptidase, viral helicase, and
RdARP domains, while ORFs 2 and 3 encode the movement and coat proteins, respectively.
Phylogenetically, CNBV does not fall into a clear genus. Based on pairwise distances, CNBV is
most closely related to members of the Prunevirus, Citrivirus, and Foveavirus genera (Fig 3).
Organizationally, CNBV most resembles members of the Citrivirus genus (S2 Fig).

As of this paper, families in the order Tymovirales have the greatest number of viruses asso-
ciated with seagrass. Goh et al. [25] discovered three contigs from the genus Tepovirus (Beta-
flexiviridae) by mining Z. muelleri transcriptomes from Sydney, Australia. Van Bogaert et al.
[26] discovered a potexvirus (Alphaflexiviridae) in Thalassia testudinum (turtlegrass) from
Tampa Bay, Florida, USA. More recently, Bejerman and Debat [27] discovered an unclassified
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Fig 3. Betaflexiviridae phylogeny. Maximum-likelihood tree of the family Betaflexiviridae based on RARP amino acids. Numeric values indicate the degree of SH-like
branch support (scale 0-100). Known seagrass viruses are colored red.
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alphaflexivirus and foveavirus (Betaflexiviridae) in C. nodosa through an extensive mining
project. Of those in the Betaflexiviridae, CNBV and the tepovirus Zostera virus T (ZVT) both
have movement proteins from the 30K superfamily but differ with respect to their coat pro-
teins. CNBV’s coat protein belongs to the flexivirus protein family (Pfam: Flexi_CP, PF00286)
while ZVT’s belongs to the trichovirus family (Pfam: Tricho_coat, PF05892). CNBV’s combi-
nation of movement and Flexi_CP domains are atypical. To the best of our knowledge, only
two viruses have a similar configuration, citrus leaf blotch virus and Salvia divinorum RNA
virus 1 (S2 Fig), both of which belong to the Citrivirus genus. Most viruses with the Flexi_CP
domain have triple gene block proteins for cell-to-cell movement. The architecture of the
foveavirus Cymodocea nodosa foveavirus 1 is consistent with this convention (S2 Fig).

Bromoviridae

We assembled nine cucumber mosaic virus (CMV) contigs from publicly available Z. japonica
transcriptomes derived from Pearl Bay, China [30]. CMV is a globally distributed agricultural
pathogen [67, 68]. Furthermore, CMV has an extremely wide host range. As of Yun et al. [69],
CMYV has been documented in 1071 plant species across 521 genera and 100 families. Structur-
ally, CMV strains have tripartite, positive-sense ssRNA genomes, and non-enveloped, icosahe-
dral capsids [70]. The 1A and 2A ORFs on RNA 1 and 2 both participate in replication [71],
and ORF 2B is involved in RNA silencing [72]. RNA 3 has two ORFs. The first ORF, 3A,
encodes a movement protein, whereas the second, CP, encodes a coat protein. The contigs that
we assembled map to all CMV ORFs with complete or partial coverage (Fig 4B). Their respec-
tive lengths are 296, 662, 670, 766, 863, 894, 900, 1148, and 1484 nucleotides, and they range
between 83 and 91% similar to the CMV-Fny strain from the NCBI RefSeq database. A partial
alignment of 182 amino acids from the RARP domain shows that the Z. japonica strain,
CMV-Zja, and CMV-Fny are 95.12% similar.

CMV strains are divided into three subgroups based on serological factors and the phylog-
eny of their coat protein and RNA 3 5" untranslated region (UTR) [73]. Subgroups IA and IB
are phylogenetically very similar. Subgroup II, however, is more distantly related [73]. We
determined that CMV-Zja belongs to the IB subgroup using a nucleotide alignment of its coat
protein with 53 other CMV strains to create a phylogenetic tree (Fig 4A). This result is consis-
tent with the observation that most IB strains originate from Asia [74]. Our assembly did not
include the 5" UTR on RNA 3, which means we were unable to use its phylogeny.

CMV-Zja is notable because CMV strains are frequently aphid vectored. Over 80 aphid spe-
cies are known to play a role in CMV transmission, and this relationship can be highly tuned
between the strain of CMV and aphid species [75]. Based solely on its genome, we cannot vali-
date how CMV-Zja was transmitted. Additionally, it is hard to assess whether CMV-Zja was
introduced through contamination because its genome derives from public transcriptomes.
One possibility is that CMV-Zja was transmitted to Z. japonica by an aphid vector during low
tide. CMV-Zja derives from Z. japonica plants that grow in the intertidal zone, which was con-
firmed through personal correspondence with the lead author of Chen et al. [30]. Furthermore,
aphids can travel long distances and inoculate new hosts rapidly [76, 77], which could provide
CMV-Zja an opportunity to infect Z. japonica during low tide. However, this requires further
investigation. Whether CMV can propagate continuously between Z. japonica plants (e.g.,
through seed transmission [68]) or whether Z. japonica becomes a dead-end host is unknown.

Virgaviridae

We discovered a novel furovirus in a survey of multiple Z. muelleri beds in Whangarei Harbor,
New Zealand (S3 Fig). Furoviruses have bipartite genomes with linear, positive-sense ssRNA
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Subgroup IA

Subgroup 1B

Subgroup Il

Fig 4. Phylogeny and contig alignments for CMV-Zja. (A) Maximum-likelihood tree of CMV strains. This tree shows the phylogenetic placement of CMV-Zja using a
nucleotide alignment of the coat protein, which is the standard for differentiating subgroups. Numeric values indicate the degree of SH-like branch support (scale 0-100).
CMV-Zja belongs to the 1B subgroup and is colored red. (B) Circlize plot of CMV-Zja contigs mapped to the CMV-Fny strain. Track 1 represents the complete length of
RNA 1, 2, and 3. Scale markers outside of track 1 are in nucleotides. Track 2 shows the relative position of each ORF. Track 3 represents CMV-Zja contigs and their
genomic position relative to CMV-Fny.

https://doi.org/10.1371/journal.pone.0302314.9004

and non-enveloped, rod shaped virions with helical symmetry [78, 79]. The contigs that we
assembled represent a nearly complete genome, comprise both RNAs, and contain all univer-
sally conserved proteins in the Furovirus genus (Fig 5). Two sites, Munro Bay and One Tree
Point, contained reads that successfully mapped to the entire consensus genome. We are call-
ing this virus Zostera muelleri furovirus, or ZmuFV, which, to the best of our knowledge, is
the first instance of a furovirus naturally occurring outside of cereal grasses. Members of the
Furovirus genus are limited, comprising only six species (not including ZmuFV), but known
isolates are highly pathogenic and globally distributed.

The ZmuFV RNA 1 contig is 6,608 nucleotides long and contains three ORFs. At the 5" end
of ORF 1, ZmuFV encodes a viral MTase and its associated C terminal domain. Further down-
stream, ORF 1 encodes a viral helicase and leaky stop codon that enables the readthrough
translation of an RARP on ORF 2 [80]. ORF 3 encodes a 30K-like movement protein that facili-
tates cell-to-cell movement post infection (Fig 5A). The RNA 2 contig is 4038 nucleotides long
and encodes three putative coat proteins, one major and two minor [81], and a 19kDa cyste-
ine-rich silencing protein. The first minor coat protein is derived from the initiation of transla-
tion at a non-canonical CUG start codon and terminates at the stop codon following the
major coat protein coding region (Fig 5B). The second is derived from the readthrough of the
same stop codon and initiates at the canonical AUG start codon.
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OGSV, a minor coat protein is predicted to be translated on RNA 2 from the non-canonical start codon CUG. Virus names/abbreviations are as follows-Chinese wheat
mosaic virus (CWMYV), Japanese soil-borne wheat mosaic virus (JSBWMYV), oat golden stripe virus (OGSV), soil-borne cereal mosaic virus (SBCMYV), soil-borne wheat
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https://doi.org/10.1371/journal.pone.0302314.9005

Phylogenetically, ZmuFV diverges from the base node of the furovirus clade in the family
Virgaviridae (Fig 6). Using RARP derived branch length estimates, we predict that ZmuFV
RNA 1 is most similar to Japanese soil-borne wheat mosaic virus and oat golden stripe virus.
Our phylogenetic analysis also predicts that ZmuFV is more closely related to some members
of the Pomovirus genus than more distantly related furoviruses, which suggests that ZmuFV
may be closely related to a common ancestor of the Furovirus and Pomovirus genera. These
predictions are consistent with the topology and branch length estimates from multiple coding
regions (54 Fig).

Regarding transmission, the mechanism by which ZmuFV transmits between plants
remains an open question. From direct and corollary evidence [82-84], terrestrial furoviruses
are believed to be vectored exclusively by Polymyxa graminis, a soil dwelling protist and obli-
gate biotroph that infects root tissue [85]. Virus-vector interactions are highly specific and
strongly conserved, so we speculate that ZmuFV may be vectored by a phylogenetically similar
organism. While a number of plasmodiophorids have been characterized in terrestrial and
freshwater systems, relatively few are known in the marine environment [86]. This is likely
due to sampling bias; however, representatives associated with key marine constituents,
including seagrass, have been documented [87, 88].

One line of evidence supports the potential transmission of ZmuFV by a plasmodiophorid
vector. Plasmodiophorid vectored viruses almost all encode transmembrane proteins in their
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coat readthrough domains that enable viral translocation across membrane barriers [89]. This
is supported by experimental and observational evidence [78, 90-92]. With the exception of
oat golden stripe virus (OGSV), furovirus species have two predicted transmembrane
domains, TM1 and TM2, as shown by Adams et al. [89]. However, evidence exists for a vesti-
gial domain in OGSV (S5 Fig). Our analysis of ZmuFV predicts that two transmembrane pro-
teins are conserved in its coat readthrough domain (S5 Fig), which is consistent with
transmission by a plasmodiophorid. However, the mode of transmission for ZmuFV is
unknown; and, importantly, transmission dynamics remains a significant knowledge gap in
seagrass virology.

Conclusions

The ecological and economic significance of seagrasses have inspired a great deal of interest in
their microbiomes. Relatively little is known, however, about the seagrass virome, despite the
important roles of viruses in plant ecology. In this study, we broadly surveyed RNA viruses in
different seagrass species and uncovered a high degree of viral diversity, doubling the number
of known seagrass viruses. In total, we recovered seven partial and complete RNA viruses
across the species Z. marina, Z. muelleri, Z. japonica, and C. nodosa. There is little known,
however, about the effects of seagrass viruses on their hosts and in the greater environment.
We predict that viruses play important roles in seagrass ecology and encourage further
research that explores questions related to their ecological impacts, geographic distributions,
and transmission pathways.
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Supporting information

S1 Table. The mean sequencing depth for all reported contigs. Contigs are listed in order of
their relative positions ina 5" - 3" configuration.
(TTF)

S1 Fig. Betaflexiviridae co-phylogeny. Maximum-likelihood co-phylogenetic tree comparing
amino acid alignments from the RdRP (left; contig 1) and movement (right; contig 2)
domains. Numeric values indicate the degree of SH-like branch support (scale 1-100).

(TIF)

S2 Fig. Genome maps for a subset of viruses in the family Betaflexiviridae. White arrows
represent ORFs. Colored segments indicate protein coding regions. Known seagrass viruses
are colored red. For simplicity, because CNVB was recovered as two contigs, these contigs
were concatenated by a 10-nucleotide linker between the first and second ORF.

(TIF)

S3 Fig. Field sites where Z. muelleri was collected in New Zealand. ZmuFV reads mapped to
our consensus genome from two out of six sites, Munro Bay and One Tree Point.
(TIF)

S4 Fig. Phylogeny for six universally conserved proteins in the Furovirus genus. Each maxi-
mum-likelihood tree was constructed using amino acid alignments. Viral helicase, RARP, viral
MTase, and movement domains are found on RNA 1. The coat and cysteine-rich domains are
found on RNA 2. Viral helicase, RARP, and coat phylogenies include members of the Pomo-
virus genus. Branch highlights show congruency between protein coding regions within each
RNA. Virus names/abbreviations are as follows—Furovirus—Chinese wheat mosaic virus
(CWMYV), Japanese soil-borne wheat mosaic virus (JSBWMYV), oat golden stripe virus
(OGSV), soil-borne cereal mosaic virus (SBCMV), soil-borne wheat mosaic virus (SBWMYV),
sorghum chlorotic spot virus (SCSV), Zostera muelleri furovirus (ZmuFV)-Pomovirus-beet
soil-borne virus (BSBV), beet virus Q (BVQ), broad bean necrosis virus (BBNV), Columbian
potato soil-borne virus (CPSBV), potato mop-top virus (PMTV).

(TIF)

S5 Fig. Position and MSA of furovirus transmembrane domains. (A) Genome map of the
furovirus ORF 1 readthrough domain on RNA 2. White arrows represent ORFs. Colored
segments indicate protein coding regions. TM 1 (left) and 2 (right) denote transmembrane
proteins. (B) Amino acid alignments of TM1 (top) and TM2 (bottom). Alignments include
transmembrane and flanking regions. Arrows approximate transmembrane boundaries.
Blue colors signify hydrophilic residues, while red colors signify hydrophobic residues. Pur-
ple residues indicate neutral charges. Virus names/abbreviations are as follows—Chinese
wheat mosaic virus (CWMYV), Japanese soil-borne wheat mosaic virus (JSBWMYV), oat
golden stripe virus (OGSV), soil-borne cereal mosaic virus (SBCMV), soil-borne wheat
mosaic virus (SBWMYV), sorghum chlorotic spot virus (SCSV), Zostera muelleri furovirus
(ZmuFV).

(TIF)
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