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Abstract 
Background and Aims  Nitrogenous fertilizers pro-
vide a short-lived benefit to crops in agroecosystems, 
but stimulate nitrification and denitrification, pro-
cesses that result in nitrate pollution, N2O production, 
and reduced soil fertility. Recent advances in plant 
microbiome science suggest that genetic variation 
in plants can modulate the composition and activ-
ity of rhizosphere N-cycling microorganisms. Here 
we attempted to determine whether genetic varia-
tion exists in Zea mays for the ability to influence the 
rhizosphere nitrifier and denitrifier microbiome under 
“real-world” conventional agricultural conditions.

Methods  To capture an extensive amount of 
genetic diversity within maize we grew and sam-
pled the rhizosphere microbiome of a diversity 
panel of germplasm that included ex-PVP inbreds 
(Z. mays ssp. mays), ex-PVP hybrids (Z. mays ssp. 
mays), and teosinte (Z. mays ssp. mexicana and Z. 
mays ssp. parviglumis). From these samples, we 
characterized the microbiome, a suite of microbial 
genes involved in nitrification and denitrification 
and carried out N-cycling potential assays.
Results  Here we are showing that populations/geno-
types of a single species can vary in their ecological 
interaction with denitrifers and nitrifers. Some hybrid 
and teosinte genotypes supported microbial commu-
nities with lower potential nitrification and potential 
denitrification activity in the rhizosphere, while inbred 
genotypes stimulated/did not inhibit these N-cycling 
activities. These potential differences translated to 
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functional differences in N2O fluxes, with teosinte plots 
producing less GHG than maize plots.
Conclusion  Taken together, these results suggest 
that Zea genetic variation can lead to changes in 
N-cycling processes that result in N leaching and N2O 
production, and thereby are selectable targets for crop 
improvement. Understanding the underlying genetic 
variation contributing to belowground microbiome 
N-cycling into our conventional agricultural system 
could be useful for sustainability.

Keywords  Microbiome · Rhizosphere · Maize · 
Selection · Nitrogen Cycle · Agro-ecosystem · 
Sustainability · Nitrification · Denitrification

Introduction

More than half the world’s population depends on 
crops grown with synthetic nitrogen (N) fertiliz-
ers (Bowles et  al. 2018). Regrettably, most of these 
synthetic N fertilizer inputs escape the agroecosys-
tem, degrade natural areas, and harm human health 
(Vitousek et  al. 2013; Zhang et  al. 2015). Stimula-
tion of soil nitrogen cycling microorganisms (i.e. 
nitrifiers and denitrifiers) is a major contribution to 
“leaky” agricultural systems (Kuypers et  al. 2018). 
To improve the sustainability of agricultural sys-
tems, we need to understand how ecological drivers, 
such as genetically controlled plant–microbe interac-
tions play out under “real world” conditions to influ-
ence soil’s nitrogen cycling microorganisms and the 
movement of nitrogen, and how this can be managed 
to reduce nutrient losses (Moreau et  al. 2015, 2019; 
Favela et al. 2023).

Genetic variation within crop species has been 
shown to play a significant role in plant-microbiome 
assembly and recruitment (Peiffer et al. 2013b; Bouf-
faud et  al. 2016; Walters et  al. 2018). Across large-
scale and multi-year field trials, researchers find con-
sistent sets of heritable core microbial taxa associated 
with specific plant genotypes (Walters et  al. 2018; 
Xu et  al. 2018). These community composition dif-
ferences are functionally relevant, as microorganisms 
contain a diverse biochemical repertoire that allows 
plants to escape nutrient, drought, and pathogen 
stress (Philippot et al. 2013a, b; Compant et al. 2019; 
Trivedi et al. 2020). In the rhizosphere, plants exude 
chemical cocktails of metabolites, the production of 

which is directed by the plant genome. These exudate 
traits, in tandem with root phenology and physiology, 
act as an ecological filter that has direct fitness conse-
quences for the surrounding soil microbial communi-
ties (Huang et al. 2019; Canarini et al. 2019; Favela 
et al. 2023; Baggs et al. 2023). Soil microorganisms 
that are phytochemically competent to the ecological 
filter of the rhizosphere are able to survive and persist 
near the plant root (Philippot et al. 2013a, b). It fol-
lows, then, that the ecological filtering for rhizosphere 
occupancy that arises from genotypic variation direct-
ing microbiome selection should have consequences 
for the biogeochemical cycling activities carried out 
by the rhizosphere microbiome.

Rhizosphere nitrifying and denitrifying microor-
ganisms are key contributors to essential ecosystem 
functions. Processes such as nitrification and deni-
trification are controlled by microorganisms in the 
soil interacting with the abiotic environment and 
can result in a considerable loss of nitrogen from 
an ecosystem (Philippot et al. 2007; Davidson et al. 
2012). An extensive amount of work in nitrifiers 
and denitrifiers has shown that edaphic soil history 
and agricultural management plays a significant 
role in structuring the functions of these communi-
ties (Qian et  al. 1997; Hayatsu et  al. 2021; Raglin 
et al. 2022). Furthermore, it is well known that the 
carbon/nitrogen inputs and uptake from plants can 
structure the functions of these critical N-cycling 
taxa (Haller and Stolp. 1985). In addition to this 
we know that the cultivated crop above these soils 
contributes to their nitrogen functions (Weier et al. 
1993; Lucas et  al. 2023). Furthermore, emerging 
research is beginning to show that genetic variation 
between species and within plant species can have a 
considerable role in driving both community com-
position and the activity of biogeochemically-rele-
vant microorganisms (Subbarao et  al. 2013; Pérez-
Izquierdo et  al. 2019). For example, it has been 
shown that historic selection on plant genotype can 
drive the assemblage of the nitrogen cycling rhizo-
sphere microbiome, both by changing the taxo-
nomic composition and representation of nitrogen-
cycling functional genes (Bouffaud et  al. 2016; 
Favela et  al. 2021). Yet we lack evidence linking 
genotype-driven microbiome changes to altered 
nitrogen cycling processes within the complex and 
more microbially diverse conventional agricultural 
systems. For example, large research efforts have 
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focused on showing plant inhibition of nitrifica-
tion under highly-controlled culture conditions with 
only a few microbial isolates (Kaur-Bhambra et al. 
2022; Otaka et al. 2023; Petroli et al. 2023). While 
these results are mechanistically interesting, they 
are no guarantee for how diverse soil communities 
will behave. Here, we attempted to address this gap 
in an agroecological field setting. Specifically, we 
sought to determine whether plant genetic variation 
involved in root phenotypes is an important explan-
atory variable for understanding changes in the 
soil microbiome, particularly microbial functional 
groups, and to connect variation in this extended 
phenotype back to changes in important nitrogen 
cycling processes.

To evaluate the influence of plant genetic 
variation in root phenotypes on nitrogen cycling 
microbial functional groups, we grew a diverse 
panel of Zea mays (including elite inbreds, their 
hybrids, and wild teosintes) and measured their 
contribution to differences in microbial commu-
nity assembly and nitrogen cycling processes. 
By doing this in a single field, we were able to 
control for edaphic factors and estimate the plant 
genetic contribution driving soil microbiome 
function in an agronomically relevant field set-
ting. Previously, our greenhouse research in elite 
inbred maize suggested that breeding of maize 
has resulted in changes to microbiome recruit-
ment, with more modern cultivars recruiting 
fewer N-fixing taxa and more denitrifiers/nitri-
fiers; outcomes that we would predict would 
change nutrient retention, and thereby shape sus-
tainability (Favela et  al. 2021, 2022). Informed 
by this prior research, we included maize hybrids 
to estimate if microbiome functions would be 
regained through heterosis (Wagner et  al. 2021). 
In addition to this, within Zea mays, we found 
microbiome recruitment and N-cycling functional 
groups differed the most between modern inbred 
maize and wild teosinte (Favela et  al. 2022). 
Therefore, wild Zea was included as an outgroup 
to evaluate the influence of pre-domestication 
genetics and their ecological filtering traits on 
microbiome assembly and function (Brisson et al. 
2019; Schmidt et al. 2020). These treatments give 
us an understanding of how much plant genetic 
variation is necessary to induce changes in the 
microbiome of soils and provide insight into how 

domestication and breeding for performance in 
high N environments altered microbiome func-
tions. With this information, we hoped to bet-
ter understand how genetic alterations in maize 
can have cascading effects in plant microbiome 
recruitment and nitrogen cycling activity in con-
ventional agricultural settings. This work in 
maize serves as a model for optimizing sustain-
able N cycling in other modern crops such as sor-
ghum, which is an emerging bioenergy feedstock 
crop. Understanding the potential for plant genet-
ics to contribute to these functional processes 
in an agroecological field setting is critical for 
improving the sustainability of maize production.

Methods

Field design

Field plots were located at the Crop Sciences 
Research and Education Center (CSREC)—South 
Farms at the University of Illinois, Urbana-Cham-
paign, IL (40°03′30.4"N 88°13′50.4"W). We used a 
panel of Zea cultivars that encompassed modern ex-
PVP inbreds, their hybrids, and the wild progenitor 
of maize, teosinte (27 genotypes in total: Description 
of genotypes in Table S1). Germplasm was obtained 
from USDA-ARS Germplasm Resources informa-
tion Network (https://​www.​ars-​grin.​gov/). Teosinte 
was represented by the subspecies Zea mays spp. 
mexicana and Zea mays spp. parviglumis, with three 
genotypes per subspecies). Across our field, each 
cultivar was replicated four times. The replications 
were arranged in a randomized complete block design 
(Fig.  S1-2). Each maize plot contained four rows 
with 15 plants per row. Maize inbreds and hybrids 
were machine planted on 4/30/2017 while teosinte 
cultivars were hand planted 5/19/2017. Due to seed 
limitations teosinte was planted in 2-row plots. Fields 
are managed by the CSREC in a Corn-Soy rotation, 
tilled yearly, and plant density of 32,000 plants/acre. 
Fertilization application was applied homogenously 
across all plots and match those on a typical conven-
tional agricultural farm in Illinois (82 N kg/acre, 35 
P kg/acre, 23 K kg/acre). CSREC staff carried out 
fertilization the week before planting (4/19–4/24). 
Urea-ammonium-nitrate (28%) solution was applied 
to fields at a rate of 60 gallons/acre.

https://www.ars-grin.gov/
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Sample collection

Plots were sampled three times. Plants were sam-
pled in approximately in the V4 (Maize and teo-
sinte: 6/5/17), V6 (Maize: 6/20/17, Maize and teo-
sinte:7/20/17), and R2 (Maize:7/12/17, Teosinte: 
8/11/17) growth stages across the growing season 
(Nielsen et  al. 1993). Staggered planting and sam-
pling of teosinte and maize was carried out to con-
trol for differential growth rates among these geno-
types. Staggered sample collection was accounted 
for in statistical models for nitrification and deni-
trification by modeling growth stage as a fixed fac-
tor and sampling date as a random factor. We found 
minor influence (R2 < 1%) of both. At each sampling 
event, four individual plants per plot were sampled 
and combined into a composite sample. Individual 
plants were not resampled. To accommodate the size 
of the experiment, true “rhizosphere samples” were 
not collected. Instead, root zone soil was collected 
as a proxy of the rhizosphere. Root zones soils here 
consisting of a mixture of rhizosphere and bulk soil 
present in the immediate proximity of the plant. This 
method allowed us to sample enough soil for nitrogen 
cycling assays and molecular work without having to 
carry out time consuming rhizosphere soil extractions 
from the roots. Samples consisted of a soil core (10 
cm depth) obtained from the root zone of the plant 
(2 cm away from base of stem). Four root zone soil 
cores were collected from each plot and combined 
into a composite sample. Composite samples were 
placed on ice until they were transported to the lab. 
Processing of soil cores before assays and molecular 
work consisted of removal of all root tissue present 
in sample and homogenization of soil cores. Homog-
enization was performed by hand, for a minute per 
samples. Sieving homogenization was avoided as to 
not simulate mineralization and aeration. Once in the 
lab, soils were stored at 4 °C awaiting potential nitri-
fication and potential denitrification assays (within 5 
h). Aliquots for DNA extraction were frozen imme-
diately. The frozen DNA aliquots were placed into 
15 mL centrifuge tubes and lyophilized before DNA 
extraction (0.5 g total) using the FastDNA for Soil 
DNA extraction kit (MPBio, Solon, OH).

Soil samples were collected at the end of the sea-
son (9/15/17) for soil chemistry analyses carried 
out by Waypoint Analytical (Champaign, IL, USA). 
Analysis included buffer pH, nitrate, phosphorus, 

potassium, sulfur, manganese, copper, organic mat-
ter, estimated nitrogen release as estimated, cation 
exchange capacity, pH, sodium, iron, and boron. 
These were selected as they are typical reliable indict-
ors of soil nutrition and would give us insights into 
how the soil nutrient profile was by the end of the 
season. Buffer pH measures the resistance of the soil 
to change pH and is done by adding a 7.5 pH solution 
to a soil and measuring the relative change. Estimated 
nitrogen release is calculated from the total SOC and 
is the amount of N thought to be stored with carbon. 
Cation exchange capacity and pH measure the num-
ber of cations in the soil and H + ions in the soil. 
Finally, all other measurements constitute macro and 
micronutrients important to plant nutrition.

Potential nitrification assay

The potential nitrification assay was developed and 
modified from (Schinner et  al. 1996). This assay 
was performed at substrate saturation and values 
presented should be interpreted as the maximum 
potential rate of the transformation of ammonium 
to nitrite, the first-rate limiting step of nitrifica-
tion. In principle, this assay uses ammonium sul-
fate (0.19 M, pH 8.5) as the substrate for the first 
step of nitrification during a 5-h incubation. Nitrite 
products released during the incubation period 
were extracted with potassium chloride and con-
centration is determined colorimetrically at 520 
nm. Sodium chlorate (1.5 M) was added to the 
assay to inhibit nitrite oxidation during the incuba-
tion period. Sample tubes were incubated at room 
temperature on an orbital shaker for 5 h and control 
tubes were stored at -20 °C for 5 h. After incuba-
tion and thawing, KCl was used to extract nitrite 
from both samples and controls. Potential nitrifi-
cation rates were arithmetically adjusted by initial 
soil moisture, soil weight, % dry matter, and ini-
tial nitrite in the sample. Potential nitrification data 
analyses are presented as (log (ng N g d.w soil −1 h 
−1)) and percent change ((population mean – geno-
type mean) divided by population mean).

Potential denitrification rates by acetylene‑inhibition 
assay

Potential denitrification enzyme assays (here by 
referred to DEA) were carried out using a modified 
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version of previously described assays (Schinner et al. 
1996; Peralta et al. 2016). Field-moist root-zone soil 
samples were incubated under anaerobic conditions 
in the presence of 10% acetylene or 100% helium 
for 3 h at 25 °C. The assay was performed on 25 g 
of root-zone soil in 125-ml glass Wheaton bottles. 
Incubations were carried out at substrate saturation 
of carbon (dextrose 500 mg/L) and nitrogen (nitrate 
720 mg/L). Chloramphenicol (10 mg/L) was added to 
the incubation to act as a bacteriostatic agent to pre-
vent further microbial growth and protein synthesis. 
The incubation bottles were purged of oxygen with 
either helium or acetylene. Helium samples were 
used to estimate the amount of incomplete denitrifica-
tion produced during the assay (referred to potential 
(N2O) DEA). Acetylene purged samples were used 
to measure complete + incomplete denitrification 
(referred to as potential (N2O + N2) DEA). Acety-
lene is a commonly known inhibitor of nitrous oxide 
reduction. Potential complete DEA (N2) was calcu-
lated by subtracting (N2O) DEA from (N2O + N2) 
DEA. These results are present in the supplemental 
materials (Table S8.7–9). Initial and final gas samples 
were collected at the start and end of the incubation 
period. Initial and final nitrous oxide in gas samples 
were quantified using a GC-2014 Gas Chromato-
graph (Shimadzu, Kyoto, Japan) with an electron 
capture detector (GC-ECD). Potential denitrification 
rates were arithmetically adjusted by initial soil mois-
ture, soil weight, % dry matter, sample volume, and 
headspace. Potential denitrification data is presented 
as (log (ng N g d.w soil −1 h −1)) and percent change 
((population mean – genotype mean) divided by pop-
ulation mean).

Carbon substrate utilization

Carbon substrate utilization assay was carried out 
using Biolog EcoPlates (Biolog Inc., Hayward, 
CA, USA). Biolog EcoPlates are a simple method 
to characterize the metabolic functions of micro-
bial populations. Plates contain 31 different car-
bon substrates that can be used as the sole source 
of carbon. Each substrate is bound to a tetrazolium 
dye that changes colors once carbon compound is 
degraded. Assays were carried out with soils col-
lected from the 7/20/17 sampling timepoint (rep-
resented by the R2 timepoint). Root zone soils 
(0.5 g) were diluted (1:4) in PBS, vortexed and 

centrifuged. Soil mixture supernatant (600 µL) 
was further diluted (1:25) in PBS. The diluted soil 
mixture was then added to the microplates and 
incubated for 5 days at room temperature. Absorb-
ance at 590 nm was measured every 24 h using an 
Epoch microplate spectrophotometer (Santa Clara, 
CA, USA). Microbial metabolism was calculated 
as suggested in (Classen et  al. 2003). This com-
parison focused on inbred B73, hybrid check1, 
and PI566677 teosinte (4 replicates per genotype). 
Data used in analysis consisted of carbon substrate 
usage (average well development) across 4 techni-
cal replicates at end of 5-day incubation. The SIM-
PER procedure in the ‘vegan’ R package was used 
to determine differences in substrate utilization 
across treatments (Oksanen 2017).

Microbial community amplicon sequencing

For this experiment, we characterized the micro-
biome and diagnostic functional genes related to 
transformations that occur in the nitrogen cycle: 
nitrification, and denitrification. Amplicon sequenc-
ing was performed on bacterial and archaeal 16S 
rRNA genes, fungal ITS2, bacterial amoA, archeal 
amoA, nirS, nirK, and nosZ genes. The Fluid-
igm Access Array IFC system was used to prepare 
sequencing amplicons. This method allows for the 
simultaneous amplification of target functional 
genes using multiple primer sets (Fluidigm, San 
Francisco, CA). DNA sequencing was performed 
for bacterial, archaeal, and fungal amplicons using 
an Illumina NovaSeq Sp flowcell with 2 × 250 bp 
reads (Illumina, San Diego, CA). Primer informa-
tion is provided in supplemental Table S2. Fluidigm 
amplification and Illumina sequencing were con-
ducted at the Roy J. Carver Biotechnology Center, 
University of Illinois (Urbana, IL, USA). Fast 
Length Adjustment of Short reads (FLASH) (Mag 
and Salzberg 2011) software was used to merge 
paired-end sequences from bacterial and archaeal 
16S rRNA genes. Due to the amplicon size for some 
functional genes, only forward read sequences were 
used. Once FLASH merging was performed, files 
were filtered by quality using the FASTX-Toolkit 
(Hannon 2014). Reads that did not have a minimum 
quality score of 30 across 90% of the bases were 
removed. Using the FASTX-Toolkit, nirK sequences 
were trimmed to the amplicon size of 165-bp (as 
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the nirK amplicon size (165 bp) was smaller than 
the read length of 250 bp).Once quality preprocess-
ing was performed, FASTQ reads were converted 
to FASTA format. Using USEARCH-UPARSE ver-
sion 8.1 (Edgar 2010), sequences were binned into 
discrete OTUs based on 97% similarity and single-
ton DNA sequences were removed. Quantitative 
Insights into Microbial Ecology (QIIME) was used 
to generate OTU tables for downstream statistical 
analysis and to assign taxonomic information, this 
is done with a combination of the UCLUST algo-
rithm and SILVA 138.1 database (DeSantis et  al. 
2006; Caporaso et  al. 2010; Edgar 2010). Once 
taxonomy was assigned, chloroplast and mitochon-
drial OTUs were removed from the dataset. Rar-
efaction was performed to correct for differential 
sequencing depth across samples. Singleton OTUs 
were filtered prior to statistical analysis. Functional 
gene sequences were also assigned using QIIME 
(Caporaso et  al. 2010) with the BLAST algorithm 
(Altschul et  al. 1997) and custom gene-specific 
databases generated from reference sequences 
obtained from the FunGene repository (Fish et  al. 
2013). All OTU tables used in statistical analyses 
were generated in QIIME.

The number of raw reads generated from 
sequencing run, reads present after quality fil-
ter, and the rarefaction level are reported in 
supplemental Table  S3. Rarefaction level was 
determined by calculating the rarefaction curve 
asymptote. Amplicon sequence data for 16S 
rRNA genes, fungal ITS2 region, and N-cycling 
functional genes is available for download on 
the NCBI SRA database at accession number: 
PRJNA789877. (https://​www.​ncbi.​nlm.​nih.​gov/​
biopr​oject/​PRJNA​789877/). Code for sequence 
processing and statistical analysis is available 
in GitHub (https://​github.​com/​favel​a3/​Maize.N-​
cycle.​Funct​ion).

Quantifying nitrogen cycling functional groups

Quantitative PCR (qPCR) was carried out to deter-
mine the abundance of functional genes in each of 
the root zone microbial communities. Specific tar-
get amplification (STA), explained in Ishii et  al. 
(2014), was carried out on samples and standards 
to increase template DNA for amplification. STA 

and qPCR master mix recipes from (Edwards et al. 
2018) were used for all samples. STA product and 
qPCR master mix were loaded into the Dynamic 
Array™ Microfluidics Fluidigm Gene Expres-
sion chip, where amplification and quantification 
of functional genes were carried out simultane-
ously (Fluidigm, San Francisco, CA). All samples 
and standards were analyzed in 12 technical repli-
cates. Fluidigm Real-Time PCR Analysis software 
version 4.1.3 was used to calculate gene threshold 
cycles (CT). CT values were converted to gene copy 
number using gene length and standard curves. All 
Fluidigm qPCR was conducted at the Roy J. Carver 
Biotechnology Center (Urbana, IL, USA). The final 
copy number of each functional gene amplicon 
was standardized by the ng of template DNA in the 
qPCR reaction.

In situ N2O flux measurements

Net soil-atmosphere N2O fluxes were measured 
weekly from 6/20/17 to 8/23/17, samples were col-
lected for a total of 6 weeks. As gas flux measure-
ments are laborious and time consuming, sampling 
was targeted during peak primary productivity (plant 
growth) and focused on the plant treatments that were 
hypothesized to have the largest effect on the micro-
biome function based on previous studies and known 
plant nutrient demands (Gentry and Below 1993). 
Specifically, the comparison focused on the B73 
inbred, check1 hybrid, and PI566677 teosinte. Flux 
measurements were measured using static flux cham-
bers as described in USDA-ARS GRACEnet Project 
protocol (Parkin and Venterea 2010). Chambers were 
installed in the field during the first sampling time-
point and remained in place throughout the maize 
growing season. Chambers consisted of two-pieces: 
PVC pipe with a 30 cm diameter (base installed 20 
cm into soil), and sampling lids (10 cm in height). Gas 
sampling events occurred in the mornings between 
10 am-noon; during this time 15 mL of gas were col-
lected from chambers every 10 min for 30 min. Sam-
ples were stored in evacuated aluminum crimp-top 
glass vials with a chlorobutyl stopper and sealed with 
clear silicone to prevent sample leakage. Gas samples 
were later quantified using a GC-2014 Gas Chroma-
tograph with an electron capture detector (GC-ECD) 
(Shimadzu, Kyoto, Japan). Standard curves were used 
to quantify the amount of N2O in gas sample. N2O 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA789877/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA789877/
https://github.com/favela3/Maize.N-cycle.Function
https://github.com/favela3/Maize.N-cycle.Function
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samples were corrected using ambient temperature 
and moisture conditions of the collection day. Tem-
perature and moisture data was collected in the field 
and validated using Illinois Climate Network (https://​
www.​isws.​illin​ois.​edu/​warm/​weath​er/). Four sampling 
timepoints were used to determine the rate of N2O 
flux (mg m−2 min−1). Linear interpolation was used 
to estimate cumulative N2O production (mg L−1) over 
the growing season (Parkin 2008).

Statistical analysis

Statistical analysis was performed in R, with the pack-
ages ‘Vegan’, ‘ASReml’, and ‘WGCNA’. ‘Vegan’ was 
used to perform multivariate statistical comparisons 
for microbiome data among experimental treatments 
(Oksanen et  al. 2007; Langfelder and Horvath 2008; 
Gilmour et  al. 2017). ‘ASReml’ was used to perform 
univariate comparisons among genotypes and cultivar 
classes (inbred, hybrid, and teosinte) for potential nitri-
fication, potential denitrification, and copies of nitrogen 
cycling genes as assessed by qPCR. Weighted Gene 
Correlation Network Analysis (WGCNA) was carried 
out to compare multivariate microbiome data to univar-
iate nitrogen cycling function data. Model factors used 
in statistical analyses were growth stage, sampling date, 
the location of the block, the row of block position, 
range of block position, the genotype within the block, 
and the interaction between genotype and time (com-
bined growth stage and sample date). A typical model 
of analysis is displayed below:

In PerMANOVA models, block factor was con-
strained in permutations. For the PerMANOVA mod-
els, sampling date and growth stage are combined as 
a time factor. In the ASReml mixed effect models for 
potential nitrification and denitrification, plant geno-
type and the genotype × growth stage interaction were 
treated as fixed factors, while all other factors (block, 
range, row, sampling date) were treated as random 
factors. Furthermore, a simple ASReml mixed effect 
model was generated to compare soil chemistry at the 
end of the growing season, plant type was treated as a 
fixed factor, while all other factors (range, row, block) 
were treated as random factors.

Microbiome = Plant Genotype + Time + Block + Range

+ Row + Range ∶ Row Position + Genotype

× Time Interaction + Residuals

Results

Nitrogen cycling microbial functional groups

From our analysis of nitrogen cycling functional 
genes, we observed 210 archaeal amoA OTUs, 98 
bacterial amoA OTUs, 21,022 nirK OTUs, 2607 
nirS OTUs, and 7294 nosZ OTUs (DNA sequenc-
ing quality is described in Table S3). In response to 
genotype, the overall microbiome and 4 of 5 nitrogen 
cycling genes showed statistically significant changes 
in community membership (Fig.  1 and Table  S4), 0 
of 5 nitrogen cycling genes changed in abundance 
(Table  S4.1). Conversely, plant classification (i.e., 
inbred, hybrid, teosinte) affected the composition of 
4 of 5 nitrogen cycling genes, and the abundance of 
1 of 5 nitrogen cycling genes (Table S4.2). Addition-
ally, genotype classification interactions with time 
had a significant effect on the composition N-cycling 
microbial communities and functional gene abun-
dance (Table S4.1–2; Fig. S5-6).

Nitrification genes and potential function

Bacterial and Archaeal nitrifiers (indicated by gene 
sequences for bacterial and archaeal ammonia 
monooxygenase – amoA) responded differently to 
plant genotype and plant classification. Plant geno-
type explained a small but significant amount of vari-
ation for archaeal amoA (R2 = 0.08, p < 0.001, Figs. 1, 
Tables S5.1–3), there was not a significant change in 
community composition of bacterial ammonia oxidiz-
ers in response to genotype (perMANOVA p = 0.16, 
Table  S4, S5.4–6). Regarding abundance, neither 
archaeal nor bacterial ammonia oxidizers were signif-
icantly influenced by plant genotype (archaeal amoA 
p = 0.61, bacterial amoA p = 0.99, Table  S6.1–7). 
Plant classification showed the same patterns as geno-
types (Fig. 2d-e, S5, Table S4, S5, S6). Potential nitri-
fication rate (log (ng N g d.w soil −1 h −1)) of root zone 
soils was influenced by both growth stage, genotype, 
and plant classification (Fig. 3a, S3a, Table S7.1–2). 
Specifically, teosinte genotypes had lower poten-
tial nitrification rate by 9% compared to population 
mean, on average, stimulated potential nitrification 
rates by 4% (means difference of 13% between inbred 
and teosinte, p < 0.05, Fig.  2d, S9.1). It should also 
be noted that some amount of variation in potential 
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Fig. 2   The relationship between functional bacterial amoA 
diversity, abundance, and potential nitrification function (A-B) 
and NMDS ordinations based on Bray–Curtis dissimilarity 
(C-F) display functional gene composition. A. Shannon diver-
sity of bacterial amoA regressed against potential nitrification 
function. Note size of point is gene abundance. B. Bacterial 
amoA qPCR abundance regressed against potential nitrifica-
tion function. Note size of point is gene diversity. (C-F) Shows 
that inbred, hybrid, and teosinte maize lines host different 

microbial taxa in the root zone under the same environmental 
conditions within for timepoint 1 (young plants V2-V4). Each 
point represents a genotypic mean (within mean n = 4) of the 
microbial community. C. Bacterial amoA, D. displays archaeal 
amoA, E. displays nirK, F. displays nosZ (note: nirS was not 
presented here as p > 0.10. Statistic presented in the ordination 
is the PerMANOVA of the classification model on genotypic 
means. For Temporal patterns in N-cycling gene communities 
please refer to supplemental materials (Fig S11)

Fig. 1   PerMANOVA 
results for the overall micro-
biome (16S rRNA) and 
different nitrogen cycling 
functional genes included 
in this study (nitrification: 
AamoA – archaeal amoA 
[ammonia monooxyge-
nase], BamoA – bacterial 
amoA; denitrification: nirS 
and nirK – nitrite reduc-
tase, nosZ – nitrous oxide 
reductase). The y-axis 
shows R.2, percent variance 
explained by the treatment 
factor, and the x-axis shows 
the functional genes tested. 
(* – P < 0.05, ** – P < 0.01, 
*** – P < 0.001)
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nitrification rates could be attributed to plant geno-
type (p < 0.05, Fig.  3, Table  S7, S9). Furthermore, 
it appears that teosinte in the parviglumis compared 
to mexicana have greater abilities to lower potential 
nitrification. Furthermore, we regressed both nitrifi-
cation and denitrification functional gene abundance, 
composition, and diversity against potential function 
across all time points and found that only bacterial 
amoA Shannon diversity was important in predicting 
potential nitrification function (p < 0.05), while abun-
dance was not (ANOVA p > 0.05, Fig. 2a-b).

Denitrification genes and potential function

All the denitrification gene composition surveyed 
were significantly different among genotypes 
and plant classification (Fig.  1, S6, Tables  S4, 

S5.7–15). Communities of denitrifiers possessing 
the cytochrome cd1-type nitrite reductase (encoded 
by nirS) or the copper containing nitrite reductase 
(encoded by nirK) both varied significantly among 
plant genotypes (nirS: R2 = 0.09, Fig. 1, Table S5.8; 
nirK: R2 = 0.09, p = 0.003, Fig.  1, 3e: Genotype 
means, Table  S5.11) In addition, nosZ, the gene 
that encodes typical nitrous oxide reductase and 
crucial for the consumption of N2O, was found to 
be affected by plant genotype (R2 = 0.09, p = 0.011, 
Fig.  1, 2f: Genotype means Table  S5.14). Quanti-
tative PCR of denitrification genes showed no dif-
ference in the abundance of genes in the root zone 
across plant genotype and largely for plant classifi-
cation (Fig.  S5-6, Table  S4). One exception to this 
was nosZ, which was observed to be altered by plant 
classification (p < 0.05, Table  S5.13, Fig.  3e, S4e). 
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Fig. 3   Seasonal variation in potential nitrification and deni-
trification rate compared among germplasm group across the 
season. LS Means and Standard Error were calculated using 
ASReml-R. A. Potential nitrification rate (log (ng N g d.w soil 
−1 h −1)) across the three sampling time points averaged over 
plant classification. B. Potential (N2O) DEA rate(log (ng N 
g d.w soil −1 h −1)) across the growing season averaged over 
plant classification, no differences in among plant classifica-
tions was observed, but potential denitrification rates increased 
slightly across the season. C. Potential (N2O + N2) DEA 
(N2O + N2) (log (ng N g d.w soil −1 h −1)) across the grow-
ing season averaged over plant classification, no differences in 
among plant classifications was observed, but potential deni-
trification rates increased slightly across the season. Lines in 
figures (A-C) were added easily track changes in potential rates 
across the growing season, and do not represent collected data 

in the intermediate time points. Plant classification influences 
rhizosphere N-cycling activities. D. Average genotypic effect 
across all timepoints of hybrid, inbred, and teosintes genotypes 
on the potential nitrification (log (n ng N g d.w soil −1 h −1)) 
determined across the population. Statistical analysis for both 
figures can be found in supplemental tables S7-9. E. Average 
genotypic effect across all timepoints of hybrid, inbred, and 
teosintes genotypes on the log of potential (N2O) DEA (N2O) 
(log (ng N g d.w soil −1 h −1)) determined across the popula-
tion. Statistical analysis for both figures is included in sup-
plemental tables S7-9. F. Average genotypic effect across all 
timepoints of hybrid, inbred, and teosintes genotypes on the 
log of potential (N2O + N2) DEA (log (ng N g d.w soil −1 h −1)) 
determined across the population. Percent change calculation 
described in Methods. Statistical tests associated with figures 
are presented in supplemental materials
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Similar to the observations for bacterial amoA, the 
denitrification genes also showed a strong and sig-
nificant interaction between plant classification and 
time (Fig.  S5-6). The teosinte root zone microbi-
ome contained similar denitrification gene abun-
dance for the first sampling time point (V2-V4), had 
greater levels of dentification genes during the final 
(R1-R3) sample point, and finally, had lower num-
bers of denitrification genes compared to inbred 
and hybrid maize by the end of season (LS means, 
p < 0.05, Tables  S5-6). Full analysis of plant clas-
sification effects and additional genotype models 
on denitrification genes is presented in Supplemen-
tal Tables  S5-6. Conversely, we found variation in 
the potential (N2O) DEA and (N2O + N2) DEA rates 
(log (ng N g d.w soil −1 h −1)) of root zone soils to be 
consistently influenced by genotype and plant classi-
fication, but not growth stage (Fig. 3b, S3b, poten-
tial (N2O) DEA: p < 0.001, potential (N2O + N2) 
DEA: p < 0.001, Table  S8.1–4). Complete DEA 
(N2) did not significantly differ across genotypes in 
this study (p = 0.8, Table S8.7), but did across plant 
classification (p < 0.001, Table  S8.8). For potential 
(N2O) DEA (log (ng N g d.w soil −1 h −1)), teosinte 
genotypes had lower activity by 75% and inbred 
genotypes on average stimulated potential (N2O) 
DEA denitrification by 32% (mean difference 102%, 
Fig. 3e, Table S9.3). On average, teosinte genotypes 
had lower potential (N2O + N2) DEA by 59% com-
pared to inbred maize, which stimulated it by 4% 
(mean difference 63%, Fig. 3f, Table S9.2).

Static N2O flux chambers

To estimate whether our potential denitrification and 
nitrification rates were reflected in ecosystem fluxes, 
we placed static flux chambers in blocks with three 
of our genotypes inbred, hybrid, and teosinte. From 
these static chambers, we found that over the grow-
ing season, that teosinte genotype plots produced sig-
nificantly less cumulative N2O production (mg L−1; 
linear interpolation of N2O over the season) (t = 2.01, 
df = 29, p = 0.05, Fig.  4a), and had lower N2O flux 
rate (mg m−2 min−1) (t = 2.09, df = 33, p = 0.04) com-
pared to the inbred genotype. Hybrid plots were not 
significantly different in N2O production from inbred 
and teosinte (B73: t = 1.26, df = 29, p = 0.22; Teo-
sinte: t = -0.76, df = 30, p = 0.25) or in N2O flux (B73: 
t = 1.74, df = 30, p = 0.09; Teosinte: t = -0.07 df = 30, 

p = 0.95). In addition to this, we observed a dynamic 
pattern in N2O flux (mg m−2 min−1) across the season 
– where early season fluxes were similar but diverged 
by the end of the growing season (Fig. 4b).

Soil nutrient analysis

We found no significant difference in organic mat-
ter, estimated nitrogen release as estimated by SOM, 
cation exchange capacity, pH, sodium, iron, and 
boron between maize, hybrid, and teosinte plots. Teo-
sinte plots had significantly higher levels of nitrate, 
phosphorus, potassium, sulfur, and manganese com-
pared to inbred and hybrid maize plots (Wald’s test: 
p < 0.05; Table  S11). Increased nitrate in teosinte 
plots may be indicative of the suppressed denitrifica-
tion. Inbred maize plots had higher levels of buffer 
pH, copper, and calcium compared to teosinte and 
hybrid plots (Wald’s test: p < 0.05; Table S11).

Carbon substrate utilization

We found that plant classification was not statisti-
cally significant in explaining variation in microbial 
carbon substrate utilization (PerMANOVA: DF = 2, 
R2 = 0.25, p = 0.10). Between inbred B73, hybrid 
check1, and teosinte PI566677 genotypes, we found 
that teosinte root zone microbiomes had greater over-
all levels of substrate utilization compared to inbred 
and hybrid microbial communities (t-test; p < 0.05, 
Fig. 4c). We found no significant differences in utili-
zation of individual substrates between inbred maize 
and teosinte microbial communities, significant dif-
ferences in utilization of 3 substrates between inbred 
and hybrid maize, and significant differences in uti-
lization of 2 substrates between hybrid and teosinte 
microbiomes (ANOSIM, p < 0.05). Inbred-hybrid dif-
ferences include glycogen, D-cellobiose, and L-ser-
ine. Teosinte-hybrid differences include L-phenylala-
nine and tween-80.

Root zone microbiome

In this field experiment, we identified 37,596 different 
16S rRNA operational taxonomic units (OTUs, 97% 
similarity, (rarefied to 100,000 reads per sample), and 
2236 fungal OTUs (rarefied to 10,000) were identi-
fied from the ITS2 region (Table S2).
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Within the prokaryotic community (based on 
16S rRNA gene sequences), we found that plant 
genotype, genotype × time interactions, the loca-
tion of the block, and sampling time explained 74% 
of the variation within the root zone microbiome; 
26% of the variation within the microbial commu-
nity was unexplained ( DF = 26, p < 0.001; Fig.  1, 
S7; Table  S10). In total, 34% of the variation in 
the prokaryotic microbiome was explained by 
plant genetics; 18% of this 34% variation was inde-
pendent of temporal effects while 16% was highly 
linked to the time of sampling (genetics × sampling 
time). Interestingly, 20% of the variation in the 
soil microbial community was explained by block 

location alone. This would mean that across time, 
20% of the microbiome was unchanged across the 
season. Sampling time (independent of genotype) 
explained 12% of the variation within the micro-
biome. Roughly, these results suggest that plant 
genetics explained about a third of the variation in 
the root zone microbiome. Respectively, spatial and 
temporal effects seem to explain a third of the vari-
ation within the microbiome. Finally, an additional 
third of variation within the soil microbiome was 
unexplained.

Across plant classification (inbred, hybrid, teo-
sinte), the most divergent genotype points showed 
the greatest differences in microbiome recruitment 
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Fig. 4   Cumulative N2O static flux chamber results over the 
growing season. A. LS means + 95% CI of cumulative N2O 
produced (mg L−1) averaged over the season comparing teo-
sinte and B73 maize. B. LS means + 95% CI of N2O produc-
tion flux (mg m−2 min−1) comparing teosinte and B73 maize 

displaying all timepoints. C. Carbon substrate usage (AWD) Z 
transformed compared among inbred B73, hybrid check1, and 
teosinte PI566677 (4 replicates per genotype) soil microbiomes 
measured using a BIOLOG-Eco microarray plates
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(Fig. S7-8; Table S10.1–3). Specifically, teosinte and 
hybrid maize treatments have the strongest effect on 
the composition of the soil microbiome agroecosys-
tem. Teosinte root zone soils contained greater rela-
tive abundance of Actinobacteria and Proteobacteria 
(specifically, Actinomycetales, Burkholderiales) and 
less Acidobacteria (iii1-15, Solibacteres) compared to 
modern maize (Fig.  S9-10). Additional analysis was 
carried out within plant category (i.e., within inbred, 
within hybrid, within teosinte), and inbred maize was 
the only category where genotype did not significantly 
contribute to differential microbiome recruitment.

Fungal communities showed similar results as the 
prokaryotic communities, except for notably weaker 
effects of space. This may indicate that fungi are 
less dispersal-limited than bacterial communities 
(Table S10).

Relationship between the microbial community and 
N‑cycling function

To further understand the differential contribution of 
the root zone microbiome to the potential function 
of a soil sample, we used Weighted Gene Correlation 
Network Analysis (WGCNA) (Langfelder and Hor-
vath 2008) to identify four unique co-correlated clus-
ters of OTUs (modules) with a significant response to 
potential function (3 modules that were correlated to 
potential nitrification, and one module that was corre-
lated to potential (N2O) DEA (Fig.  5). WGCNA taxa 
Module 2 was positively correlated to potential nitri-
fication (r = 0.20, p < 0.001), while two modules were 
negatively correlated to potential nitrification (Module 
4: r = -0.25, p < 0.001; Module 7: r = -0.23, p < 0.001). 
Module 2 contained 129 OTUs and was dominated by 

Fig. 5   Weighted Gene Correlation Network Analysis 
(WGCNA) results between potential denitrification and 
potential nitrification and microbial community composition. 
WGCNA starts by clustering microbial OTUs into modules of 
highly correlated taxa (based on abundance). These modules 
are then regressed against our explanatory factor (here that is 

denitrification and nitrification. A. Strength and significance 
of correlation between microbial modules and nitrogen cycling 
function. B. Correlations among microbial modules gener-
ated in the clustering process. C. Phylum-level composition of 
modules that were significantly correlated to changes in poten-
tial nitrification and denitrification
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the presence of Acidobacteria. Interestingly, the sec-
ond most dominant phylum in this module – Cholor-
flexi – was recently shown to have the ability to carry 
out potential nitrification (Spieck et al. 2020). Module 4 
contained 290 OTUs and Module 7 contained 38 OTUs, 
both modules were dominated by Actinobacteria.

Discussion

Microbial N‑cycling processes are modulated by crop 
genetics

Across a variety of environmental conditions and 
plant species, it has been shown that genetic variation 
within a plant population can consistently shape the 
rhizosphere microbiome (Peiffer et  al. 2013a, b; Xu 
et al. 2018; Deng et al. 2021). Additionally, previous 
studies have also shown that changes in rhizosphere 
microbiome functional groups resulting from host 
plant genetics are important to ecosystem processes 
(i.e., carbon and nitrogen cycling) (Bulgarelli et  al. 
2015; Mwafulirwa et al. 2021a, b). Furthermore, for 
decades, researchers have known that plant carbon 
contributions to soils play a significant role in modu-
lating microbial nitrogen transformations (Haller and 
Stolp 1985; Qian et al. 1997). However, there is a lack 
of data showing how host genotype-specific changes 
in microbiome functional groups influence nitrogen 
cycling ecosystem processes. This field study dem-
onstrates that the effect of plant genotype extends 
to modulating functions of the root zone microbi-
ome. Specifically, we observed that the plant geno-
type influenced the recruitment of functional groups 
related to nitrification and denitrification along with 
the potential rates of those ecosystem processes 
(Figs.  1, 2 and 3). These findings highlight the fea-
sibility of breeding crops for microbiome-associated 
phenotypes (MAPs) to influence N-cycling microbes 
and their functions (Oyserman et  al. 2018). Ulti-
mately, our results suggest that we can select genetic 
haplotypes linked to MAPs within populations of 
agricultural cultivars to promote sustainable ecosys-
tem processes within agroecosystems.

Our study demonstrates that genetic variation 
within Zea mays plays a significant role in both the 
assembly of the microbiome and the nitrogen cycling 
capability of the community, even in a stochastic 
field setting. Our most genetically heterogeneous 

treatments (wild and domesticated hybrid) had the 
strongest effects on the composition and function of 
the microbiome (Smýkal et  al. 2018; Favela et  al. 
2021, 2022; Ren et  al. 2022). Our hybrids showed 
patterns of microbial community recruitment distinct 
from their inbred parents, suggesting that heterosis 
plays a role in recruitment and function of the root 
zone microbiome. Interestingly, others have found 
that the expression of heterosis for root biomass and 
germination can be modulated by the presence of a 
soil microbiome (Wagner et  al. 2020, 2021). Under-
standing the genetic basis of heterosis for MAPs is 
critical for designing efficient breeding programs for 
optimizing soil microbiome functions. Furthermore, 
we found that teosinte genotypes had the strong-
est influence on the activity of soil microbial taxa. 
We hypothesize that these differences in the teosinte 
microbiome were largely driven by a diverse set of 
belowground phenotypes (Gaudin et al. 2011), which 
facilitate changes that shape biotic interactions (via, 
exudate production, composition of metabolites, and 
root morphology) and abiotic characteristics (pH, 
moisture, NO3

−, NH4
+) which we know to shape 

nitrogen cycling taxa (Haller and Stolp 1985; Qian 
et al. 1997). These results suggest that selective rein-
corporation of traits important to N-cycling would 
be key MAPs for “rewilding” modern breeding pro-
grams for sustainability (Perino et  al. 2019; Razzaq 
et al. 2021). Importantly, this field study confirms that 
N-cycling functions, as well as composition of the 
rhizosphere microbiome, are responsive to genetic 
variation within the plant host.

Potential mechanisms underlying maize genotypes 
nitrification and denitrification differences

We observed that teosinte and hybrid maize root 
zones had communities with a lower potential to carry 
out nitrification compared to inbred maize and shifts 
in the residing amoA genes (Fig. 2a, 3d, 3c-d). While 
it is clear the function of these nitrifiers is modulated 
by variation in genotype, it is unclear whether this 
is a direct or indirect process. It is possible that this 
alteration to function is caused by an indirect change 
to the abiotic environment (i.e., mineralization, 
ammonium, soil moisture, carbon) (Mwafulirwa et al. 
2021b). Alternatively, these changes in function could 
be caused by direct phytochemically mediated biolog-
ical suppression nitrification. Biological nitrification 
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inhibition (BNI) has been seen across a variety of 
different grass species (particularly in wild varie-
ties) (Coskun et al. 2017a, b) with recent work show-
ing that modern maize does have the phytochemical 
capacity for BNI (Otaka et  al. 2022). It has already 
been shown that teosinte’s metabolome and nutrient 
up take differs from modern maize, perhaps some of 
these physiological changes are related to changes 
in nitrification capacity (Wang et al. 2018; Xu et al. 
2019). As nitrification can result in major losses of N 
fertilizer, investigating whether teosinte characteris-
tics that confer lowered nitrification can be reincor-
porated into modern maize maybe of interest to future 
breeders (Nair et  al. 2020; Subbarao et  al. 2021). 
Evaluating the vast diversity of maize cultivars for the 
capacity to alter the nitrogen cycle either directly or 
indirectly using genetic information is a valuable first 
step toward incorporating and improving these novel 
MAPs in agriculturally viable germplasm.

Interactions of plant genotypes with denitrifying 
microorganisms followed a similar pattern to nitrifi-
ers, except with considerably more variation. Over the 
growing season, genotype and cultivar classification 
played a significant role in shaping potential denitri-
fication activity and denitrification gene composition 
(Figs.  2b-c, 3e-f, 3e-f). These results were surpris-
ing, as maize is typically grown in aerobic soils and 
denitrification is an anaerobic process. These results 
suggest that the genotype can interact with the highly 
variable hot spots and hot moments typical of denitri-
fication (Krichels and Yang 2019). Interestingly, teo-
sinte appears to support lower potential (N2O) DEA 
and (N2O + N2) DEA rates leading to the hypothesis 
that teosinte contains some indirect (e.g., soil mois-
ture, nitrate loads) or direct mechanism to shape deni-
trification not previously reported. One possible direct 
mechanism could be, biological denitrification inhibi-
tion (BDI), which is hypothesized to have evolved in 
plants as a mechanism to compete with denitrifying 
microbes for soil nitrates. BDI work is still in early 
stages with only a single class of metabolites, pro-
cyanidins, being shown to mediate BDI (Bardon et al. 
2014, 2016; Galland et al. 2019). Interestingly, outside 
the context of BDI, a considerable amount of work 
has focused on a maize depolarized procyanidin (cya-
nidin) and anthocyanin (a glucoside cyanidin), show-
ing that maize genotypes have considerable variation 
in cyanidin and anthocyanin production (Sharma et al. 
2011; Paulsmeyer et al. 2017). While not quantified in 

this study, the BDI differences observed here among 
maize genotypes could potentially be related to dif-
ferences in cyanidin and anthocyanin exudation in the 
rhizosphere. It is possible that these rhizosphere cyan-
idins and anthocyanin (Tselas et al. 1979; Hawes et al. 
1998) are acting as anti-reductants, which is known 
to occur at low pH (Becker 2016), and are competi-
tive inhibitors of denitrification or allosteric inhibitors 
like procyanidins. Further research needs to be done to 
determine the abiotic and biotic drivers of these altera-
tions in population level denitrification differences.

Outcomes of plant modulation of N‑cycling 
processes

From a sustainability perspective, this study high-
lights a potential avenue to reduce agricultural N 
losses and GHG emissions generated by soil micro-
organisms. N2O static chamber results (Fig.  4a-b) 
provide support that the potential nitrification and 
denitrification assays are representative of more vari-
able ecosystem processes. It should be noted that 
these potential assays and N2O chambers, have their 
limitations (Nannipieri et al. 2018; Grace et al. 2020). 
Potential assays indicate that the maximum func-
tion of these N-cycling communities has changed in 
response to plant host in the root zone. While the N2O 
chambers shows that changes in microbiome func-
tional potential may be related to differences in N 
fluxes at the ecosystem scale. The capability for crop 
genotypes to reduce N2O losses is an exciting find-
ing, as agriculture is a major producer of N2O emis-
sions (Vitousek et  al. 1997; Reay et  al. 2012), and 
these results suggest an additional tool to potentially 
curb production of this potent GHG. While these N2O 
results presented are interesting, a major limitation of 
this study is that we only examined these cultivars in 
a single field experiment and static flux chambers are 
known to be extremely variable (Waldo et al. 2019). 
Further support for our potential nitrification and den-
itrification assays translating to actual differences in 
field processes can be seen in our end of season soil 
nutrient analysis. From this analysis for a single end 
of season timepoint we observed that teosinte plots 
had higher levels of nitrates (Table S11) compared to 
hybrid and inbred plots. These higher nitrate levels 
could be driven by the plant, but this claim is difficult 
to support with the current dataset, since we only col-
lected a single physiochemical timepoint. Teosinte’s 
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enhanced ability to mine nutrients may be facilitated 
by changes in root zone pH driven by carbon exuda-
tion, and root density. This conclusion is supported by 
our finding showing that teosinte plots have a lower 
buffer pH (residual or reactive pH) compared to 
hybrid and inbred maize (p < 0.05, Table S11). Alter-
ation of soil buffer pH is likely underpinning many 
of the functional changes we observed in this study. 
In addition, we observed modest differences in micro-
bial community carbon metabolism between plant 
classifications (Fig.  4c). Teosinte-derived microbial 
communities were better at degrading phytochemi-
cal precursors (e.g., phenylalanine, oleic acid) in the 
flavonoid and linoleic acid synthesis pathways (Kaur-
Bhambra et al. 2022), while hybrid-derived microbial 
communities were well-equipped to consume carbo-
hydrates. This result is interesting, as microbes differ 
in their ability to metabolize different photosynthates 
exuded into the rhizosphere (Fan et  al. 2022), lend-
ing support to the hypothesis that differences we are 
observing across microbiomes may be caused by 
altered amount and composition of plant exudates. 
This hypothesis is further supported by work in bar-
ley showing that genotypes can vary in rhizodepo-
sition-derived carbon and this variation shapes soil 
microbial mineralization (Mwafulirwa et  al. 2016). 
The next steps toward incorporating potential nitro-
gen conservation MAPs into agricultural practices 
would be research to explore whether suppression of 
nitrogen transformations is consistent across a wide 
range of biogeographic environments.

The effects of seasonal phenology and Zea geno-
type × sampling time interaction over the growing 
season played a major role in microbiome recruitment 
and function. Maize has different nutrient require-
ments across the growing season, and these nutrients 
are extracted from the soil environment (Bender et al. 
2013), so, along with genotype-specific biochemistry, 
plant growth and development likely influence interac-
tions with the soil microbial community. In addition, 
previous studies have shown that the complexity of 
the microbiome is built through time (Shi et al. 2016; 
Emmett et al. 2020; Ajilogba et al. 2022). These tem-
poral effects are important to consider, as they can 
dramatically influence the conclusions drawn about 
the interaction between plants and their microbiome. 
We observed that potential nitrification and potential 
denitrification were dependent on plant growth stage 
(Fig. 3). Potential nitrification and denitrification, for 

example, seemed to peak in the middle of the season, 
coinciding with plant primary productivity (Fig.  3). 
Perhaps, during this high productivity phase Zea is 
releasing greater quantities of fresh exudate resulting 
in the priming of soil organic matter by microorgan-
isms. Furthermore, rhizosphere C exudation has been 
shown to enhance the release of N (Phillips et  al. 
2011; Dijkstra et  al. 2013; Emmett et  al. 2020), per-
haps explaining the overall increase of nitrification at 
this timepoint. Furthermore, these temporal impacts 
highlight a limitation in this study, whereby we may 
be overestimating our genotype differences because 
of differences in growth phenology among the classes 
of plants. In addition, temporal growth patterns are 
likely interacting with the measurability of effects in 
the root zone as root density of the plant is anticipated 
to change through plant development (Chaparro et al. 
2013; Vetterlein et al. 2020; Tkacz and Poole 2021).

Relationship between microbial diversity and 
N‑cycling

We found that different microbial taxa were correlated 
with functional changes in the microbiome. WGCNA 
identified four modules of microbial taxa that were 
significantly associated with both changes of potential 
nitrification and denitrification (Fig.  5). These results 
suggest that specific taxa and their interactions play a 
role in driving the function of the microbiome and that, 
to some degree, plants can influence the activities of 
specific microbial groups. Interestingly, we observed 
that modules positively correlated with higher potential 
nitrification rates were dominated by gram-negative 
bacteria within the phylum Acidobacteria. In contrast, 
those that were negatively correlated with nitrification 
were dominated by gram-positive bacteria within the 
Actinobacteria phylum. Surprisingly, these modules 
of correlated OTUs were not dominated by known 
nitrifying taxa, suggesting that nitrification processes 
may be, in part, dependent on the metabolism of other 
microbial community members, that nitrification is 
controlled by the level of transcriptional regulation 
rather than nitrifier population size, nitrifiers or nitrifier 
ideal conditions are facilitating habitat alteration that 
is influencing microbiome structure (e.g. altering pH 
to enrich for Acidobacteria), or that some other micro-
bial interaction (i.e. predation, competition) is control-
ling nitrification (Baskaran et  al. 2020; Spieck et  al. 
2020; Burian et al. 2021). Determining how ecological 
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interactions within the microbiome influence microbial 
functions is critical for understanding and predicting 
microbially-mediated ecosystem functions (Kuypers 
et  al. 2018). In addition, we carried out analysis to 
determine how functional gene diversity, abundance, 
and composition related to potential functions. Among 
all functional gene comparisons between bacterial 
amoA, and archaeal amoA. We only found bacterial 
amoA diversity to be correlated to potential function, 
while abundance and composition was not (Fig. 3a-b). 
These results suggest that at least for potential nitrifi-
cation the regulation of diversity is important to func-
tion. Overall, it is clear that understanding the relation-
ship between microbial characteristics and functions is 
complex and will require further research to determine 
the rules of these relationships.

Conclusion

The ability of plants to influence microbial functions 
in the rhizosphere likely evolved as a mechanism for 
nutrient retention, enhancing plant competition for 
available nutrients from the soil matrix (Philippot 
et al. 2013b; Delaux and Schornack 2021; Lata et al. 
2022). It is becoming increasingly clear that plant 
genetic variation (within and among species) modu-
lates the activities of the soil-associated microbiome 
and that these alterations can impact soil biogeochem-
ical functions (Falkowski et  al. 2008; Morris et  al. 
2020). Identification of the plant genomic regions that 
direct recruitment of N-cycling microorganisms or 
modulation of their activities will enable progress on 
re-engineering the agroecosystem to reduce its con-
tributions to N pollution (Johnson 2006; Subbarao 
and Searchinger 2021). That is not to say we suggest 
growing teosinte in the field, but that these wild culti-
vars are reservoirs of critical genetic variation that are 
potentially important to enhancing sustainability. This 
study thus contributes an important advancement 
by showing that maize, an agronomically important 
crop, has genetic variation that contributes to altera-
tions in the microbiomes and N-cycling function 
– potentially enough variation to breed and incorpo-
rate these extended phenotype ecosystem traits into 
modern hybrid cultivars. Furthermore, we have dem-
onstrated that a small subset of hybrids does appear 
to have regulation of N-cycling microbiome in a way 
similar to teosinte. In addition, it should be noted that 

a limitation of the work presented is that we did not 
characterize the mechanisms by which we are observ-
ing these effects. A great deal of mechanistic work is 
needed in this area of research. Furthermore, it should 
be noted that while plant genotypic control of func-
tion plays an active role in the growing season other 
historic edaphic and abiotic effects will play a major 
role in managing and predicting the agroecosystem N 
cycle. Integrating sustainability-related microbiome 
associated phenotypes into our agricultural systems is 
a way forward to address many agronomic challenges 
facing society (York et al. 2022; Favela et al. 2023).
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