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Abstract

Background and Aims Nitrogenous fertilizers pro-
vide a short-lived benefit to crops in agroecosystems,
but stimulate nitrification and denitrification, pro-
cesses that result in nitrate pollution, N,O production,
and reduced soil fertility. Recent advances in plant
microbiome science suggest that genetic variation
in plants can modulate the composition and activ-
ity of rhizosphere N-cycling microorganisms. Here
we attempted to determine whether genetic varia-
tion exists in Zea mays for the ability to influence the
rhizosphere nitrifier and denitrifier microbiome under
“real-world” conventional agricultural conditions.
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Methods To capture an extensive amount of
genetic diversity within maize we grew and sam-
pled the rhizosphere microbiome of a diversity
panel of germplasm that included ex-PVP inbreds
(Z. mays ssp. mays), ex-PVP hybrids (Z. mays ssp.
mays), and teosinte (Z. mays ssp. mexicana and Z.
mays ssp. parviglumis). From these samples, we
characterized the microbiome, a suite of microbial
genes involved in nitrification and denitrification
and carried out N-cycling potential assays.

Results Here we are showing that populations/geno-
types of a single species can vary in their ecological
interaction with denitrifers and nitrifers. Some hybrid
and teosinte genotypes supported microbial commu-
nities with lower potential nitrification and potential
denitrification activity in the rhizosphere, while inbred
genotypes stimulated/did not inhibit these N-cycling
activities. These potential differences translated to
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functional differences in N,O fluxes, with teosinte plots
producing less GHG than maize plots.

Conclusion Taken together, these results suggest
that Zea genetic variation can lead to changes in
N-cycling processes that result in N leaching and N,O
production, and thereby are selectable targets for crop
improvement. Understanding the underlying genetic
variation contributing to belowground microbiome
N-cycling into our conventional agricultural system
could be useful for sustainability.

Keywords Microbiome - Rhizosphere - Maize -
Selection - Nitrogen Cycle - Agro-ecosystem -
Sustainability - Nitrification - Denitrification

Introduction

More than half the world’s population depends on
crops grown with synthetic nitrogen (N) fertiliz-
ers (Bowles et al. 2018). Regrettably, most of these
synthetic N fertilizer inputs escape the agroecosys-
tem, degrade natural areas, and harm human health
(Vitousek et al. 2013; Zhang et al. 2015). Stimula-
tion of soil nitrogen cycling microorganisms (i.e.
nitrifiers and denitrifiers) is a major contribution to
“leaky” agricultural systems (Kuypers et al. 2018).
To improve the sustainability of agricultural sys-
tems, we need to understand how ecological drivers,
such as genetically controlled plant-microbe interac-
tions play out under “real world” conditions to influ-
ence soil’s nitrogen cycling microorganisms and the
movement of nitrogen, and how this can be managed
to reduce nutrient losses (Moreau et al. 2015, 2019;
Favela et al. 2023).

Genetic variation within crop species has been
shown to play a significant role in plant-microbiome
assembly and recruitment (Peiffer et al. 2013b; Bouf-
faud et al. 2016; Walters et al. 2018). Across large-
scale and multi-year field trials, researchers find con-
sistent sets of heritable core microbial taxa associated
with specific plant genotypes (Walters et al. 2018;
Xu et al. 2018). These community composition dif-
ferences are functionally relevant, as microorganisms
contain a diverse biochemical repertoire that allows
plants to escape nutrient, drought, and pathogen
stress (Philippot et al. 2013a, b; Compant et al. 2019;
Trivedi et al. 2020). In the rhizosphere, plants exude
chemical cocktails of metabolites, the production of
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which is directed by the plant genome. These exudate
traits, in tandem with root phenology and physiology,
act as an ecological filter that has direct fitness conse-
quences for the surrounding soil microbial communi-
ties (Huang et al. 2019; Canarini et al. 2019; Favela
et al. 2023; Baggs et al. 2023). Soil microorganisms
that are phytochemically competent to the ecological
filter of the rhizosphere are able to survive and persist
near the plant root (Philippot et al. 2013a, b). It fol-
lows, then, that the ecological filtering for rhizosphere
occupancy that arises from genotypic variation direct-
ing microbiome selection should have consequences
for the biogeochemical cycling activities carried out
by the rhizosphere microbiome.

Rhizosphere nitrifying and denitrifying microor-
ganisms are key contributors to essential ecosystem
functions. Processes such as nitrification and deni-
trification are controlled by microorganisms in the
soil interacting with the abiotic environment and
can result in a considerable loss of nitrogen from
an ecosystem (Philippot et al. 2007; Davidson et al.
2012). An extensive amount of work in nitrifiers
and denitrifiers has shown that edaphic soil history
and agricultural management plays a significant
role in structuring the functions of these communi-
ties (Qian et al. 1997; Hayatsu et al. 2021; Raglin
et al. 2022). Furthermore, it is well known that the
carbon/nitrogen inputs and uptake from plants can
structure the functions of these critical N-cycling
taxa (Haller and Stolp. 1985). In addition to this
we know that the cultivated crop above these soils
contributes to their nitrogen functions (Weier et al.
1993; Lucas et al. 2023). Furthermore, emerging
research is beginning to show that genetic variation
between species and within plant species can have a
considerable role in driving both community com-
position and the activity of biogeochemically-rele-
vant microorganisms (Subbarao et al. 2013; Pérez-
Izquierdo et al. 2019). For example, it has been
shown that historic selection on plant genotype can
drive the assemblage of the nitrogen cycling rhizo-
sphere microbiome, both by changing the taxo-
nomic composition and representation of nitrogen-
cycling functional genes (Bouffaud et al. 2016;
Favela et al. 2021). Yet we lack evidence linking
genotype-driven microbiome changes to altered
nitrogen cycling processes within the complex and
more microbially diverse conventional agricultural
systems. For example, large research efforts have
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focused on showing plant inhibition of nitrifica-
tion under highly-controlled culture conditions with
only a few microbial isolates (Kaur-Bhambra et al.
2022; Otaka et al. 2023; Petroli et al. 2023). While
these results are mechanistically interesting, they
are no guarantee for how diverse soil communities
will behave. Here, we attempted to address this gap
in an agroecological field setting. Specifically, we
sought to determine whether plant genetic variation
involved in root phenotypes is an important explan-
atory variable for understanding changes in the
soil microbiome, particularly microbial functional
groups, and to connect variation in this extended
phenotype back to changes in important nitrogen
cycling processes.

To evaluate the influence of plant genetic
variation in root phenotypes on nitrogen cycling
microbial functional groups, we grew a diverse
panel of Zea mays (including elite inbreds, their
hybrids, and wild teosintes) and measured their
contribution to differences in microbial commu-
nity assembly and nitrogen cycling processes.
By doing this in a single field, we were able to
control for edaphic factors and estimate the plant
genetic contribution driving soil microbiome
function in an agronomically relevant field set-
ting. Previously, our greenhouse research in elite
inbred maize suggested that breeding of maize
has resulted in changes to microbiome recruit-
ment, with more modern cultivars recruiting
fewer N-fixing taxa and more denitrifiers/nitri-
fiers; outcomes that we would predict would
change nutrient retention, and thereby shape sus-
tainability (Favela et al. 2021, 2022). Informed
by this prior research, we included maize hybrids
to estimate if microbiome functions would be
regained through heterosis (Wagner et al. 2021).
In addition to this, within Zea mays, we found
microbiome recruitment and N-cycling functional
groups differed the most between modern inbred
maize and wild teosinte (Favela et al. 2022).
Therefore, wild Zea was included as an outgroup
to evaluate the influence of pre-domestication
genetics and their ecological filtering traits on
microbiome assembly and function (Brisson et al.
2019; Schmidt et al. 2020). These treatments give
us an understanding of how much plant genetic
variation is necessary to induce changes in the
microbiome of soils and provide insight into how

domestication and breeding for performance in
high N environments altered microbiome func-
tions. With this information, we hoped to bet-
ter understand how genetic alterations in maize
can have cascading effects in plant microbiome
recruitment and nitrogen cycling activity in con-
ventional agricultural settings. This work in
maize serves as a model for optimizing sustain-
able N cycling in other modern crops such as sor-
ghum, which is an emerging bioenergy feedstock
crop. Understanding the potential for plant genet-
ics to contribute to these functional processes
in an agroecological field setting is critical for
improving the sustainability of maize production.

Methods
Field design

Field plots were located at the Crop Sciences
Research and Education Center (CSREC)—South
Farms at the University of Illinois, Urbana-Cham-
paign, IL (40°03'30.4"N 88°13'50.4"W). We used a
panel of Zea cultivars that encompassed modern ex-
PVP inbreds, their hybrids, and the wild progenitor
of maize, teosinte (27 genotypes in total: Description
of genotypes in Table S1). Germplasm was obtained
from USDA-ARS Germplasm Resources informa-
tion Network (https://www.ars-grin.gov/). Teosinte
was represented by the subspecies Zea mays spp.
mexicana and Zea mays spp. parviglumis, with three
genotypes per subspecies). Across our field, each
cultivar was replicated four times. The replications
were arranged in a randomized complete block design
(Fig. S1-2). Each maize plot contained four rows
with 15 plants per row. Maize inbreds and hybrids
were machine planted on 4/30/2017 while teosinte
cultivars were hand planted 5/19/2017. Due to seed
limitations teosinte was planted in 2-row plots. Fields
are managed by the CSREC in a Corn-Soy rotation,
tilled yearly, and plant density of 32,000 plants/acre.
Fertilization application was applied homogenously
across all plots and match those on a typical conven-
tional agricultural farm in Illinois (82 N kg/acre, 35
P kg/acre, 23 K kg/acre). CSREC staff carried out
fertilization the week before planting (4/19-4/24).
Urea-ammonium-nitrate (28%) solution was applied
to fields at a rate of 60 gallons/acre.
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Sample collection

Plots were sampled three times. Plants were sam-
pled in approximately in the V4 (Maize and teo-
sinte: 6/5/17), V6 (Maize: 6/20/17, Maize and teo-
sinte:7/20/17), and R2 (Maize:7/12/17, Teosinte:
8/11/17) growth stages across the growing season
(Nielsen et al. 1993). Staggered planting and sam-
pling of teosinte and maize was carried out to con-
trol for differential growth rates among these geno-
types. Staggered sample collection was accounted
for in statistical models for nitrification and deni-
trification by modeling growth stage as a fixed fac-
tor and sampling date as a random factor. We found
minor influence (R>< 1%) of both. At each sampling
event, four individual plants per plot were sampled
and combined into a composite sample. Individual
plants were not resampled. To accommodate the size
of the experiment, true “rhizosphere samples” were
not collected. Instead, root zone soil was collected
as a proxy of the rhizosphere. Root zones soils here
consisting of a mixture of rhizosphere and bulk soil
present in the immediate proximity of the plant. This
method allowed us to sample enough soil for nitrogen
cycling assays and molecular work without having to
carry out time consuming rhizosphere soil extractions
from the roots. Samples consisted of a soil core (10
cm depth) obtained from the root zone of the plant
(2 cm away from base of stem). Four root zone soil
cores were collected from each plot and combined
into a composite sample. Composite samples were
placed on ice until they were transported to the lab.
Processing of soil cores before assays and molecular
work consisted of removal of all root tissue present
in sample and homogenization of soil cores. Homog-
enization was performed by hand, for a minute per
samples. Sieving homogenization was avoided as to
not simulate mineralization and aeration. Once in the
lab, soils were stored at 4 °C awaiting potential nitri-
fication and potential denitrification assays (within 5
h). Aliquots for DNA extraction were frozen imme-
diately. The frozen DNA aliquots were placed into
15 mL centrifuge tubes and lyophilized before DNA
extraction (0.5 g total) using the FastDNA for Soil
DNA extraction kit (MPBio, Solon, OH).

Soil samples were collected at the end of the sea-
son (9/15/17) for soil chemistry analyses carried
out by Waypoint Analytical (Champaign, IL, USA).
Analysis included buffer pH, nitrate, phosphorus,
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potassium, sulfur, manganese, copper, organic mat-
ter, estimated nitrogen release as estimated, cation
exchange capacity, pH, sodium, iron, and boron.
These were selected as they are typical reliable indict-
ors of soil nutrition and would give us insights into
how the soil nutrient profile was by the end of the
season. Buffer pH measures the resistance of the soil
to change pH and is done by adding a 7.5 pH solution
to a soil and measuring the relative change. Estimated
nitrogen release is calculated from the total SOC and
is the amount of N thought to be stored with carbon.
Cation exchange capacity and pH measure the num-
ber of cations in the soil and H+ions in the soil.
Finally, all other measurements constitute macro and
micronutrients important to plant nutrition.

Potential nitrification assay

The potential nitrification assay was developed and
modified from (Schinner et al. 1996). This assay
was performed at substrate saturation and values
presented should be interpreted as the maximum
potential rate of the transformation of ammonium
to nitrite, the first-rate limiting step of nitrifica-
tion. In principle, this assay uses ammonium sul-
fate (0.19 M, pH 8.5) as the substrate for the first
step of nitrification during a 5-h incubation. Nitrite
products released during the incubation period
were extracted with potassium chloride and con-
centration is determined colorimetrically at 520
nm. Sodium chlorate (1.5 M) was added to the
assay to inhibit nitrite oxidation during the incuba-
tion period. Sample tubes were incubated at room
temperature on an orbital shaker for 5 h and control
tubes were stored at -20 °C for 5 h. After incuba-
tion and thawing, KCl was used to extract nitrite
from both samples and controls. Potential nitrifi-
cation rates were arithmetically adjusted by initial
soil moisture, soil weight, % dry matter, and ini-
tial nitrite in the sample. Potential nitrification data
analyses are presented as (log (ng N g d.w soil ' h
~1)) and percent change ((population mean — geno-
type mean) divided by population mean).

Potential denitrification rates by acetylene-inhibition
assay

Potential denitrification enzyme assays (here by
referred to DEA) were carried out using a modified
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version of previously described assays (Schinner et al.
1996; Peralta et al. 2016). Field-moist root-zone soil
samples were incubated under anaerobic conditions
in the presence of 10% acetylene or 100% helium
for 3 h at 25 °C. The assay was performed on 25 g
of root-zone soil in 125-ml glass Wheaton bottles.
Incubations were carried out at substrate saturation
of carbon (dextrose 500 mg/L) and nitrogen (nitrate
720 mg/L). Chloramphenicol (10 mg/L) was added to
the incubation to act as a bacteriostatic agent to pre-
vent further microbial growth and protein synthesis.
The incubation bottles were purged of oxygen with
either helium or acetylene. Helium samples were
used to estimate the amount of incomplete denitrifica-
tion produced during the assay (referred to potential
(N,O) DEA). Acetylene purged samples were used
to measure complete+incomplete denitrification
(referred to as potential (N,O+N,) DEA). Acety-
lene is a commonly known inhibitor of nitrous oxide
reduction. Potential complete DEA (N,) was calcu-
lated by subtracting (N,O) DEA from (N,O+N,)
DEA. These results are present in the supplemental
materials (Table S8.7-9). Initial and final gas samples
were collected at the start and end of the incubation
period. Initial and final nitrous oxide in gas samples
were quantified using a GC-2014 Gas Chromato-
graph (Shimadzu, Kyoto, Japan) with an electron
capture detector (GC-ECD). Potential denitrification
rates were arithmetically adjusted by initial soil mois-
ture, soil weight, % dry matter, sample volume, and
headspace. Potential denitrification data is presented
as (log (ng N g d.w soil =" h 71)) and percent change
((population mean — genotype mean) divided by pop-
ulation mean).

Carbon substrate utilization

Carbon substrate utilization assay was carried out
using Biolog EcoPlates (Biolog Inc., Hayward,
CA, USA). Biolog EcoPlates are a simple method
to characterize the metabolic functions of micro-
bial populations. Plates contain 31 different car-
bon substrates that can be used as the sole source
of carbon. Each substrate is bound to a tetrazolium
dye that changes colors once carbon compound is
degraded. Assays were carried out with soils col-
lected from the 7/20/17 sampling timepoint (rep-
resented by the R2 timepoint). Root zone soils
(0.5 g) were diluted (1:4) in PBS, vortexed and

centrifuged. Soil mixture supernatant (600 puL)
was further diluted (1:25) in PBS. The diluted soil
mixture was then added to the microplates and
incubated for 5 days at room temperature. Absorb-
ance at 590 nm was measured every 24 h using an
Epoch microplate spectrophotometer (Santa Clara,
CA, USA). Microbial metabolism was calculated
as suggested in (Classen et al. 2003). This com-
parison focused on inbred B73, hybrid checkl,
and PIS66677 teosinte (4 replicates per genotype).
Data used in analysis consisted of carbon substrate
usage (average well development) across 4 techni-
cal replicates at end of 5-day incubation. The SIM-
PER procedure in the ‘vegan’ R package was used
to determine differences in substrate utilization
across treatments (Oksanen 2017).

Microbial community amplicon sequencing

For this experiment, we characterized the micro-
biome and diagnostic functional genes related to
transformations that occur in the nitrogen cycle:
nitrification, and denitrification. Amplicon sequenc-
ing was performed on bacterial and archaeal 16S
rRNA genes, fungal ITS2, bacterial amoA, archeal
amoA, nirS, nirK, and nosZ genes. The Fluid-
igm Access Array IFC system was used to prepare
sequencing amplicons. This method allows for the
simultaneous amplification of target functional
genes using multiple primer sets (Fluidigm, San
Francisco, CA). DNA sequencing was performed
for bacterial, archaeal, and fungal amplicons using
an Illumina NovaSeq Sp flowcell with 2x250 bp
reads (Illumina, San Diego, CA). Primer informa-
tion is provided in supplemental Table S2. Fluidigm
amplification and Illumina sequencing were con-
ducted at the Roy J. Carver Biotechnology Center,
University of Illinois (Urbana, IL, USA). Fast
Length Adjustment of Short reads (FLASH) (Mag
and Salzberg 2011) software was used to merge
paired-end sequences from bacterial and archaeal
16S rRNA genes. Due to the amplicon size for some
functional genes, only forward read sequences were
used. Once FLASH merging was performed, files
were filtered by quality using the FASTX-Toolkit
(Hannon 2014). Reads that did not have a minimum
quality score of 30 across 90% of the bases were
removed. Using the FASTX-Toolkit, nirK sequences
were trimmed to the amplicon size of 165-bp (as
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the nirK amplicon size (165 bp) was smaller than
the read length of 250 bp).Once quality preprocess-
ing was performed, FASTQ reads were converted
to FASTA format. Using USEARCH-UPARSE ver-
sion 8.1 (Edgar 2010), sequences were binned into
discrete OTUs based on 97% similarity and single-
ton DNA sequences were removed. Quantitative
Insights into Microbial Ecology (QIIME) was used
to generate OTU tables for downstream statistical
analysis and to assign taxonomic information, this
is done with a combination of the UCLUST algo-
rithm and SILVA 138.1 database (DeSantis et al.
2006; Caporaso et al. 2010; Edgar 2010). Once
taxonomy was assigned, chloroplast and mitochon-
drial OTUs were removed from the dataset. Rar-
efaction was performed to correct for differential
sequencing depth across samples. Singleton OTUs
were filtered prior to statistical analysis. Functional
gene sequences were also assigned using QIIME
(Caporaso et al. 2010) with the BLAST algorithm
(Altschul et al. 1997) and custom gene-specific
databases generated from reference sequences
obtained from the FunGene repository (Fish et al.
2013). All OTU tables used in statistical analyses
were generated in QIIME.

The number of raw reads generated from
sequencing run, reads present after quality fil-
ter, and the rarefaction level are reported in
supplemental Table S3. Rarefaction level was
determined by calculating the rarefaction curve
asymptote. Amplicon sequence data for 16S
rRNA genes, fungal ITS2 region, and N-cycling
functional genes is available for download on
the NCBI SRA database at accession number:
PRINA789877. (https://www.ncbi.nlm.nih.gov/
bioproject/PRINA789877/). Code for sequence
processing and statistical analysis is available
in GitHub (https://github.com/favela3/Maize.N-
cycle.Function).

Quantifying nitrogen cycling functional groups

Quantitative PCR (qPCR) was carried out to deter-
mine the abundance of functional genes in each of
the root zone microbial communities. Specific tar-
get amplification (STA), explained in Ishii et al.
(2014), was carried out on samples and standards
to increase template DNA for amplification. STA
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and qPCR master mix recipes from (Edwards et al.
2018) were used for all samples. STA product and
gPCR master mix were loaded into the Dynamic
Array™ Microfluidics Fluidigm Gene Expres-
sion chip, where amplification and quantification
of functional genes were carried out simultane-
ously (Fluidigm, San Francisco, CA). All samples
and standards were analyzed in 12 technical repli-
cates. Fluidigm Real-Time PCR Analysis software
version 4.1.3 was used to calculate gene threshold
cycles (Cp). Cr values were converted to gene copy
number using gene length and standard curves. All
Fluidigm qPCR was conducted at the Roy J. Carver
Biotechnology Center (Urbana, IL, USA). The final
copy number of each functional gene amplicon
was standardized by the ng of template DNA in the
qPCR reaction.

In situ N,O flux measurements

Net soil-atmosphere N,O fluxes were measured
weekly from 6/20/17 to 8/23/17, samples were col-
lected for a total of 6 weeks. As gas flux measure-
ments are laborious and time consuming, sampling
was targeted during peak primary productivity (plant
growth) and focused on the plant treatments that were
hypothesized to have the largest effect on the micro-
biome function based on previous studies and known
plant nutrient demands (Gentry and Below 1993).
Specifically, the comparison focused on the B73
inbred, checkl hybrid, and PI566677 teosinte. Flux
measurements were measured using static flux cham-
bers as described in USDA-ARS GRACEnet Project
protocol (Parkin and Venterea 2010). Chambers were
installed in the field during the first sampling time-
point and remained in place throughout the maize
growing season. Chambers consisted of two-pieces:
PVC pipe with a 30 cm diameter (base installed 20
cm into soil), and sampling lids (10 cm in height). Gas
sampling events occurred in the mornings between
10 am-noon; during this time 15 mL of gas were col-
lected from chambers every 10 min for 30 min. Sam-
ples were stored in evacuated aluminum crimp-top
glass vials with a chlorobutyl stopper and sealed with
clear silicone to prevent sample leakage. Gas samples
were later quantified using a GC-2014 Gas Chroma-
tograph with an electron capture detector (GC-ECD)
(Shimadzu, Kyoto, Japan). Standard curves were used
to quantify the amount of N,O in gas sample. N,O
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samples were corrected using ambient temperature
and moisture conditions of the collection day. Tem-
perature and moisture data was collected in the field
and validated using Illinois Climate Network (https://
www.isws.illinois.edu/warm/weather/). Four sampling
timepoints were used to determine the rate of N,O
flux (mg m~2 min~'). Linear interpolation was used
to estimate cumulative N,O production (mg L") over
the growing season (Parkin 2008).

Statistical analysis

Statistical analysis was performed in R, with the pack-
ages ‘Vegan’, ‘ASReml’, and ‘WGCNA’. ‘Vegan’ was
used to perform multivariate statistical comparisons
for microbiome data among experimental treatments
(Oksanen et al. 2007; Langfelder and Horvath 2008;
Gilmour et al. 2017). ‘ASRem!’ was used to perform
univariate comparisons among genotypes and cultivar
classes (inbred, hybrid, and teosinte) for potential nitri-
fication, potential denitrification, and copies of nitrogen
cycling genes as assessed by gPCR. Weighted Gene
Correlation Network Analysis (WGCNA) was carried
out to compare multivariate microbiome data to univar-
iate nitrogen cycling function data. Model factors used
in statistical analyses were growth stage, sampling date,
the location of the block, the row of block position,
range of block position, the genotype within the block,
and the interaction between genotype and time (com-
bined growth stage and sample date). A typical model
of analysis is displayed below:

Microbiome = Plant Genotype + Time + Block + Range
+ Row + Range : Row Position + Genotype

X Time Interaction + Residuals

In PerMANOVA models, block factor was con-
strained in permutations. For the PerMANOVA mod-
els, sampling date and growth stage are combined as
a time factor. In the ASReml mixed effect models for
potential nitrification and denitrification, plant geno-
type and the genotype X growth stage interaction were
treated as fixed factors, while all other factors (block,
range, row, sampling date) were treated as random
factors. Furthermore, a simple ASReml mixed effect
model was generated to compare soil chemistry at the
end of the growing season, plant type was treated as a
fixed factor, while all other factors (range, row, block)
were treated as random factors.

Results
Nitrogen cycling microbial functional groups

From our analysis of nitrogen cycling functional
genes, we observed 210 archaeal amoA OTUs, 98
bacterial amoA OTUs, 21,022 nirK OTUs, 2607
nirS OTUs, and 7294 nosZ OTUs (DNA sequenc-
ing quality is described in Table S3). In response to
genotype, the overall microbiome and 4 of 5 nitrogen
cycling genes showed statistically significant changes
in community membership (Fig. 1 and Table S4), 0
of 5 nitrogen cycling genes changed in abundance
(Table S4.1). Conversely, plant classification (i.e.,
inbred, hybrid, teosinte) affected the composition of
4 of 5 nitrogen cycling genes, and the abundance of
1 of 5 nitrogen cycling genes (Table S4.2). Addition-
ally, genotype classification interactions with time
had a significant effect on the composition N-cycling
microbial communities and functional gene abun-
dance (Table S4.1-2; Fig. S5-6).

Nitrification genes and potential function

Bacterial and Archaeal nitrifiers (indicated by gene
sequences for bacterial and archaeal ammonia
monooxygenase — amoA) responded differently to
plant genotype and plant classification. Plant geno-
type explained a small but significant amount of vari-
ation for archaeal amoA (R2:0.08, p<0.001, Figs. 1,
Tables S5.1-3), there was not a significant change in
community composition of bacterial ammonia oxidiz-
ers in response to genotype (perMANOVA p=0.16,
Table S4, S5.4-6). Regarding abundance, neither
archaeal nor bacterial ammonia oxidizers were signif-
icantly influenced by plant genotype (archaeal amoA
p=0.61, bacterial amoA p=0.99, Table S6.1-7).
Plant classification showed the same patterns as geno-
types (Fig. 2d-e, S5, Table S4, S5, S6). Potential nitri-
fication rate (log (ng N g d.w soil ~'h =) of root zone
soils was influenced by both growth stage, genotype,
and plant classification (Fig. 3a, S3a, Table S7.1-2).
Specifically, teosinte genotypes had lower poten-
tial nitrification rate by 9% compared to population
mean, on average, stimulated potential nitrification
rates by 4% (means difference of 13% between inbred
and teosinte, p<0.05, Fig. 2d, S9.1). It should also
be noted that some amount of variation in potential
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Fig. 1 PerMANOVA 1004
results for the overall micro- '
biome (16S rRNA) and
different nitrogen cycling .
functional genes included e
. S c Factors
in this study (nitrification: < 0.754
AamoA — archaeal amoA Q . Time
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Fig.2 The relationship between functional bacterial amoA
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(C-F) display functional gene composition. A. Shannon diver-
sity of bacterial amoA regressed against potential nitrification
function. Note size of point is gene abundance. B. Bacterial
amoA qPCR abundance regressed against potential nitrifica-
tion function. Note size of point is gene diversity. (C-F) Shows
that inbred, hybrid, and teosinte maize lines host different

@ Springer

& Hybrid
@ Inbred
& Teosine.

R=10%, p=0.09

04 oo
NMDS1

microbial taxa in the root zone under the same environmental
conditions within for timepoint 1 (young plants V2-V4). Each
point represents a genotypic mean (within mean n=4) of the
microbial community. C. Bacterial amoA, D. displays archaeal
amoA, E. displays nirK, F. displays nosZ (note: nirS was not
presented here as p>0.10. Statistic presented in the ordination
is the PerMANOVA of the classification model on genotypic
means. For Temporal patterns in N-cycling gene communities
please refer to supplemental materials (Fig S11)
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Fig. 3 Seasonal variation in potential nitrification and deni-
trification rate compared among germplasm group across the
season. LS Means and Standard Error were calculated using
ASReml-R. A. Potential nitrification rate (log (ng N g d.w soil
~1'h 1) across the three sampling time points averaged over
plant classification. B. Potential (N,O) DEA rate(log (ng N
g d.w soil ~' h 7)) across the growing season averaged over
plant classification, no differences in among plant classifica-
tions was observed, but potential denitrification rates increased
slightly across the season. C. Potential (N,O+N,) DEA
(N,O+N,) (log (ng N g d.w soil ~U'h ~1)) across the grow-
ing season averaged over plant classification, no differences in
among plant classifications was observed, but potential deni-
trification rates increased slightly across the season. Lines in
figures (A-C) were added easily track changes in potential rates
across the growing season, and do not represent collected data

nitrification rates could be attributed to plant geno-
type (p<0.05, Fig. 3, Table S7, S9). Furthermore,
it appears that teosinte in the parviglumis compared
to mexicana have greater abilities to lower potential
nitrification. Furthermore, we regressed both nitrifi-
cation and denitrification functional gene abundance,
composition, and diversity against potential function
across all time points and found that only bacterial
amoA Shannon diversity was important in predicting
potential nitrification function (p <0.05), while abun-
dance was not (ANOVA p>0.05, Fig. 2a-b).

Denitrification genes and potential function
All the denitrification gene composition surveyed

were significantly different among genotypes
and plant classification (Fig. 1, S6, Tables S4,
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in the intermediate time points. Plant classification influences
rhizosphere N-cycling activities. D. Average genotypic effect
across all timepoints of hybrid, inbred, and teosintes genotypes
on the potential nitrification (log (n ng N g d.w soil = h 1))
determined across the population. Statistical analysis for both
figures can be found in supplemental tables S7-9. E. Average
genotypic effect across all timepoints of hybrid, inbred, and
teosintes genotypes on the log of potential (N,O) DEA (N,O)
(log (ng N g d.w soil ! h ~1)) determined across the popula-
tion. Statistical analysis for both figures is included in sup-
plemental tables S7-9. F. Average genotypic effect across all
timepoints of hybrid, inbred, and teosintes genotypes on the
log of potential (N,O +N,) DEA (log (ng N g d.w soil ' h 71))
determined across the population. Percent change calculation
described in Methods. Statistical tests associated with figures
are presented in supplemental materials

S$5.7-15). Communities of denitrifiers possessing
the cytochrome cd,-type nitrite reductase (encoded
by nirS) or the copper containing nitrite reductase
(encoded by nirK) both varied significantly among
plant genotypes (nirS: R*=0.09, Fig. 1, Table S5.8;
nirk: R*=0.09, p=0.003, Fig. 1, 3e: Genotype
means, Table S5.11) In addition, nosZ, the gene
that encodes typical nitrous oxide reductase and
crucial for the consumption of N,O, was found to
be affected by plant genotype (R>=0.09, p=0.011,
Fig. 1, 2f: Genotype means Table S5.14). Quanti-
tative PCR of denitrification genes showed no dif-
ference in the abundance of genes in the root zone
across plant genotype and largely for plant classifi-
cation (Fig. S5-6, Table S4). One exception to this
was nosZ, which was observed to be altered by plant
classification (p<0.05, Table S5.13, Fig. 3e, S4e).
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Similar to the observations for bacterial amoA, the
denitrification genes also showed a strong and sig-
nificant interaction between plant classification and
time (Fig. S5-6). The teosinte root zone microbi-
ome contained similar denitrification gene abun-
dance for the first sampling time point (V2-V4), had
greater levels of dentification genes during the final
(R1-R3) sample point, and finally, had lower num-
bers of denitrification genes compared to inbred
and hybrid maize by the end of season (LS means,
p<0.05, Tables S5-6). Full analysis of plant clas-
sification effects and additional genotype models
on denitrification genes is presented in Supplemen-
tal Tables S5-6. Conversely, we found variation in
the potential (N,0) DEA and (N,O+N,) DEA rates
(log (ng N g d.w soil ~' h 7)) of root zone soils to be
consistently influenced by genotype and plant classi-
fication, but not growth stage (Fig. 3b, S3b, poten-
tial (N,O) DEA: p<0.001, potential (N,O+N,)
DEA: p<0.001, Table S8.1-4). Complete DEA
(N,) did not significantly differ across genotypes in
this study (p=0.8, Table S8.7), but did across plant
classification (p<0.001, Table S8.8). For potential
(N,0) DEA (log (ng N g d.w soil ~1'h 1), teosinte
genotypes had lower activity by 75% and inbred
genotypes on average stimulated potential (N,O)
DEA denitrification by 32% (mean difference 102%,
Fig. 3e, Table S9.3). On average, teosinte genotypes
had lower potential (N,O+N,) DEA by 59% com-
pared to inbred maize, which stimulated it by 4%
(mean difference 63%, Fig. 3f, Table S9.2).

Static N,O flux chambers

To estimate whether our potential denitrification and
nitrification rates were reflected in ecosystem fluxes,
we placed static flux chambers in blocks with three
of our genotypes inbred, hybrid, and teosinte. From
these static chambers, we found that over the grow-
ing season, that teosinte genotype plots produced sig-
nificantly less cumulative N,O production (mg L7';
linear interpolation of N,O over the season) (t=2.01,
df=29, p=0.05, Fig. 4a), and had lower N,O flux
rate (mg m~> min~!) (t=2.09, df=33, p=0.04) com-
pared to the inbred genotype. Hybrid plots were not
significantly different in N,O production from inbred
and teosinte (B73: t=1.26, df=29, p=0.22; Teo-
sinte: t=-0.76, df =30, p=0.25) or in N,O flux (B73:
t=1.74, df=30, p=0.09; Teosinte: t=-0.07 df =30,
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p=0.95). In addition to this, we observed a dynamic
pattern in N,O flux (mg m~2 min~!) across the season
— where early season fluxes were similar but diverged
by the end of the growing season (Fig. 4b).

Soil nutrient analysis

We found no significant difference in organic mat-
ter, estimated nitrogen release as estimated by SOM,
cation exchange capacity, pH, sodium, iron, and
boron between maize, hybrid, and teosinte plots. Teo-
sinte plots had significantly higher levels of nitrate,
phosphorus, potassium, sulfur, and manganese com-
pared to inbred and hybrid maize plots (Wald’s test:
p<0.05; Table S11). Increased nitrate in teosinte
plots may be indicative of the suppressed denitrifica-
tion. Inbred maize plots had higher levels of buffer
pH, copper, and calcium compared to teosinte and
hybrid plots (Wald’s test: p<0.05; Table S11).

Carbon substrate utilization

We found that plant classification was not statisti-
cally significant in explaining variation in microbial
carbon substrate utilization (PerMANOVA: DF=2,
R?=0.25, p=0.10). Between inbred B73, hybrid
checkl, and teosinte PI5S66677 genotypes, we found
that teosinte root zone microbiomes had greater over-
all levels of substrate utilization compared to inbred
and hybrid microbial communities (t-test; p<0.05,
Fig. 4c). We found no significant differences in utili-
zation of individual substrates between inbred maize
and teosinte microbial communities, significant dif-
ferences in utilization of 3 substrates between inbred
and hybrid maize, and significant differences in uti-
lization of 2 substrates between hybrid and teosinte
microbiomes (ANOSIM, p <0.05). Inbred-hybrid dif-
ferences include glycogen, D-cellobiose, and L-ser-
ine. Teosinte-hybrid differences include L-phenylala-
nine and tween-80.

Root zone microbiome

In this field experiment, we identified 37,596 different
16S rRNA operational taxonomic units (OTUs, 97%
similarity, (rarefied to 100,000 reads per sample), and
2236 fungal OTUs (rarefied to 10,000) were identi-
fied from the ITS2 region (Table S2).
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tion flux (mg m~2 min~!) comparing teosinte and B73 maize

Within the prokaryotic community (based on
16S rRNA gene sequences), we found that plant
genotype, genotype Xtime interactions, the loca-
tion of the block, and sampling time explained 74%
of the variation within the root zone microbiome;
26% of the variation within the microbial commu-
nity was unexplained ( DF=26, p<0.001; Fig. 1,
S7; Table S10). In total, 34% of the variation in
the prokaryotic microbiome was explained by
plant genetics; 18% of this 34% variation was inde-
pendent of temporal effects while 16% was highly
linked to the time of sampling (genetics X sampling
time). Interestingly, 20% of the variation in the
soil microbial community was explained by block

Z-score

Inbred

Teosinte

displaying all timepoints. C. Carbon substrate usage (AWD) Z
transformed compared among inbred B73, hybrid checkl, and
teosinte PIS66677 (4 replicates per genotype) soil microbiomes
measured using a BIOLOG-Eco microarray plates

location alone. This would mean that across time,
20% of the microbiome was unchanged across the
season. Sampling time (independent of genotype)
explained 12% of the variation within the micro-
biome. Roughly, these results suggest that plant
genetics explained about a third of the variation in
the root zone microbiome. Respectively, spatial and
temporal effects seem to explain a third of the vari-
ation within the microbiome. Finally, an additional
third of variation within the soil microbiome was
unexplained.

Across plant classification (inbred, hybrid, teo-
sinte), the most divergent genotype points showed
the greatest differences in microbiome recruitment
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(Fig. S7-8; Table S10.1-3). Specifically, teosinte and
hybrid maize treatments have the strongest effect on
the composition of the soil microbiome agroecosys-
tem. Teosinte root zone soils contained greater rela-
tive abundance of Actinobacteria and Proteobacteria
(specifically, Actinomycetales, Burkholderiales) and
less Acidobacteria (iiil-15, Solibacteres) compared to
modern maize (Fig. S9-10). Additional analysis was
carried out within plant category (i.e., within inbred,
within hybrid, within teosinte), and inbred maize was
the only category where genotype did not significantly
contribute to differential microbiome recruitment.

Fungal communities showed similar results as the
prokaryotic communities, except for notably weaker
effects of space. This may indicate that fungi are
less dispersal-limited than bacterial communities
(Table S10).

Relationship between the microbial community and
N-cycling function

To further understand the differential contribution of
the root zone microbiome to the potential function
of a soil sample, we used Weighted Gene Correlation
Network Analysis (WGCNA) (Langfelder and Hor-
vath 2008) to identify four unique co-correlated clus-
ters of OTUs (modules) with a significant response to
potential function (3 modules that were correlated to
potential nitrification, and one module that was corre-
lated to potential (N,O) DEA (Fig. 5). WGCNA taxa
Module 2 was positively correlated to potential nitri-
fication (r=0.20, p<0.001), while two modules were
negatively correlated to potential nitrification (Module
4: r=-0.25, p<0.001; Module 7: r=-0.23, p<0.001).
Module 2 contained 129 OTUs and was dominated by
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Fig.5 Weighted Gene Correlation Network Analysis
(WGCNA) results between potential denitrification and
potential nitrification and microbial community composition.
WGCNA starts by clustering microbial OTUs into modules of
highly correlated taxa (based on abundance). These modules
are then regressed against our explanatory factor (here that is
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function. B. Correlations among microbial modules gener-
ated in the clustering process. C. Phylum-level composition of
modules that were significantly correlated to changes in poten-
tial nitrification and denitrification
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the presence of Acidobacteria. Interestingly, the sec-
ond most dominant phylum in this module — Cholor-
flexi — was recently shown to have the ability to carry
out potential nitrification (Spieck et al. 2020). Module 4
contained 290 OTUs and Module 7 contained 38 OTUs,
both modules were dominated by Actinobacteria.

Discussion

Microbial N-cycling processes are modulated by crop
genetics

Across a variety of environmental conditions and
plant species, it has been shown that genetic variation
within a plant population can consistently shape the
rhizosphere microbiome (Peiffer et al. 2013a, b; Xu
et al. 2018; Deng et al. 2021). Additionally, previous
studies have also shown that changes in rhizosphere
microbiome functional groups resulting from host
plant genetics are important to ecosystem processes
(i.e., carbon and nitrogen cycling) (Bulgarelli et al.
2015; Mwafulirwa et al. 2021a, b). Furthermore, for
decades, researchers have known that plant carbon
contributions to soils play a significant role in modu-
lating microbial nitrogen transformations (Haller and
Stolp 1985; Qian et al. 1997). However, there is a lack
of data showing how host genotype-specific changes
in microbiome functional groups influence nitrogen
cycling ecosystem processes. This field study dem-
onstrates that the effect of plant genotype extends
to modulating functions of the root zone microbi-
ome. Specifically, we observed that the plant geno-
type influenced the recruitment of functional groups
related to nitrification and denitrification along with
the potential rates of those ecosystem processes
(Figs. 1, 2 and 3). These findings highlight the fea-
sibility of breeding crops for microbiome-associated
phenotypes (MAPs) to influence N-cycling microbes
and their functions (Oyserman et al. 2018). Ulti-
mately, our results suggest that we can select genetic
haplotypes linked to MAPs within populations of
agricultural cultivars to promote sustainable ecosys-
tem processes within agroecosystems.

Our study demonstrates that genetic variation
within Zea mays plays a significant role in both the
assembly of the microbiome and the nitrogen cycling
capability of the community, even in a stochastic
field setting. Our most genetically heterogeneous

treatments (wild and domesticated hybrid) had the
strongest effects on the composition and function of
the microbiome (Smykal et al. 2018; Favela et al.
2021, 2022; Ren et al. 2022). Our hybrids showed
patterns of microbial community recruitment distinct
from their inbred parents, suggesting that heterosis
plays a role in recruitment and function of the root
zone microbiome. Interestingly, others have found
that the expression of heterosis for root biomass and
germination can be modulated by the presence of a
soil microbiome (Wagner et al. 2020, 2021). Under-
standing the genetic basis of heterosis for MAPs is
critical for designing efficient breeding programs for
optimizing soil microbiome functions. Furthermore,
we found that teosinte genotypes had the strong-
est influence on the activity of soil microbial taxa.
We hypothesize that these differences in the teosinte
microbiome were largely driven by a diverse set of
belowground phenotypes (Gaudin et al. 2011), which
facilitate changes that shape biotic interactions (via,
exudate production, composition of metabolites, and
root morphology) and abiotic characteristics (pH,
moisture, NO;~, NH4+) which we know to shape
nitrogen cycling taxa (Haller and Stolp 1985; Qian
et al. 1997). These results suggest that selective rein-
corporation of traits important to N-cycling would
be key MAPs for “rewilding” modern breeding pro-
grams for sustainability (Perino et al. 2019; Razzaq
et al. 2021). Importantly, this field study confirms that
N-cycling functions, as well as composition of the
rhizosphere microbiome, are responsive to genetic
variation within the plant host.

Potential mechanisms underlying maize genotypes
nitrification and denitrification differences

We observed that teosinte and hybrid maize root
zones had communities with a lower potential to carry
out nitrification compared to inbred maize and shifts
in the residing amoA genes (Fig. 2a, 3d, 3c-d). While
it is clear the function of these nitrifiers is modulated
by variation in genotype, it is unclear whether this
is a direct or indirect process. It is possible that this
alteration to function is caused by an indirect change
to the abiotic environment (i.e., mineralization,
ammonium, soil moisture, carbon) (Mwafulirwa et al.
2021b). Alternatively, these changes in function could
be caused by direct phytochemically mediated biolog-
ical suppression nitrification. Biological nitrification
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inhibition (BNI) has been seen across a variety of
different grass species (particularly in wild varie-
ties) (Coskun et al. 2017a, b) with recent work show-
ing that modern maize does have the phytochemical
capacity for BNI (Otaka et al. 2022). It has already
been shown that teosinte’s metabolome and nutrient
up take differs from modern maize, perhaps some of
these physiological changes are related to changes
in nitrification capacity (Wang et al. 2018; Xu et al.
2019). As nitrification can result in major losses of N
fertilizer, investigating whether teosinte characteris-
tics that confer lowered nitrification can be reincor-
porated into modern maize maybe of interest to future
breeders (Nair et al. 2020; Subbarao et al. 2021).
Evaluating the vast diversity of maize cultivars for the
capacity to alter the nitrogen cycle either directly or
indirectly using genetic information is a valuable first
step toward incorporating and improving these novel
MAPs in agriculturally viable germplasm.
Interactions of plant genotypes with denitrifying
microorganisms followed a similar pattern to nitrifi-
ers, except with considerably more variation. Over the
growing season, genotype and cultivar classification
played a significant role in shaping potential denitri-
fication activity and denitrification gene composition
(Figs. 2b-c, 3e-f, 3e-f). These results were surpris-
ing, as maize is typically grown in aerobic soils and
denitrification is an anaerobic process. These results
suggest that the genotype can interact with the highly
variable hot spots and hot moments typical of denitri-
fication (Krichels and Yang 2019). Interestingly, teo-
sinte appears to support lower potential (N,O) DEA
and (N,O+N,) DEA rates leading to the hypothesis
that teosinte contains some indirect (e.g., soil mois-
ture, nitrate loads) or direct mechanism to shape deni-
trification not previously reported. One possible direct
mechanism could be, biological denitrification inhibi-
tion (BDI), which is hypothesized to have evolved in
plants as a mechanism to compete with denitrifying
microbes for soil nitrates. BDI work is still in early
stages with only a single class of metabolites, pro-
cyanidins, being shown to mediate BDI (Bardon et al.
2014, 2016; Galland et al. 2019). Interestingly, outside
the context of BDI, a considerable amount of work
has focused on a maize depolarized procyanidin (cya-
nidin) and anthocyanin (a glucoside cyanidin), show-
ing that maize genotypes have considerable variation
in cyanidin and anthocyanin production (Sharma et al.
2011; Paulsmeyer et al. 2017). While not quantified in

@ Springer

this study, the BDI differences observed here among
maize genotypes could potentially be related to dif-
ferences in cyanidin and anthocyanin exudation in the
rhizosphere. It is possible that these rhizosphere cyan-
idins and anthocyanin (Tselas et al. 1979; Hawes et al.
1998) are acting as anti-reductants, which is known
to occur at low pH (Becker 2016), and are competi-
tive inhibitors of denitrification or allosteric inhibitors
like procyanidins. Further research needs to be done to
determine the abiotic and biotic drivers of these altera-
tions in population level denitrification differences.

Outcomes of plant modulation of N-cycling
processes

From a sustainability perspective, this study high-
lights a potential avenue to reduce agricultural N
losses and GHG emissions generated by soil micro-
organisms. N,O static chamber results (Fig. 4a-b)
provide support that the potential nitrification and
denitrification assays are representative of more vari-
able ecosystem processes. It should be noted that
these potential assays and N,O chambers, have their
limitations (Nannipieri et al. 2018; Grace et al. 2020).
Potential assays indicate that the maximum func-
tion of these N-cycling communities has changed in
response to plant host in the root zone. While the N,O
chambers shows that changes in microbiome func-
tional potential may be related to differences in N
fluxes at the ecosystem scale. The capability for crop
genotypes to reduce N,O losses is an exciting find-
ing, as agriculture is a major producer of N,O emis-
sions (Vitousek et al. 1997; Reay et al. 2012), and
these results suggest an additional tool to potentially
curb production of this potent GHG. While these N,O
results presented are interesting, a major limitation of
this study is that we only examined these cultivars in
a single field experiment and static flux chambers are
known to be extremely variable (Waldo et al. 2019).
Further support for our potential nitrification and den-
itrification assays translating to actual differences in
field processes can be seen in our end of season soil
nutrient analysis. From this analysis for a single end
of season timepoint we observed that teosinte plots
had higher levels of nitrates (Table S11) compared to
hybrid and inbred plots. These higher nitrate levels
could be driven by the plant, but this claim is difficult
to support with the current dataset, since we only col-
lected a single physiochemical timepoint. Teosinte’s
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enhanced ability to mine nutrients may be facilitated
by changes in root zone pH driven by carbon exuda-
tion, and root density. This conclusion is supported by
our finding showing that teosinte plots have a lower
buffer pH (residual or reactive pH) compared to
hybrid and inbred maize (p <0.05, Table S11). Alter-
ation of soil buffer pH is likely underpinning many
of the functional changes we observed in this study.
In addition, we observed modest differences in micro-
bial community carbon metabolism between plant
classifications (Fig. 4c). Teosinte-derived microbial
communities were better at degrading phytochemi-
cal precursors (e.g., phenylalanine, oleic acid) in the
flavonoid and linoleic acid synthesis pathways (Kaur-
Bhambra et al. 2022), while hybrid-derived microbial
communities were well-equipped to consume carbo-
hydrates. This result is interesting, as microbes differ
in their ability to metabolize different photosynthates
exuded into the rhizosphere (Fan et al. 2022), lend-
ing support to the hypothesis that differences we are
observing across microbiomes may be caused by
altered amount and composition of plant exudates.
This hypothesis is further supported by work in bar-
ley showing that genotypes can vary in rhizodepo-
sition-derived carbon and this variation shapes soil
microbial mineralization (Mwafulirwa et al. 2016).
The next steps toward incorporating potential nitro-
gen conservation MAPs into agricultural practices
would be research to explore whether suppression of
nitrogen transformations is consistent across a wide
range of biogeographic environments.

The effects of seasonal phenology and Zea geno-
type X sampling time interaction over the growing
season played a major role in microbiome recruitment
and function. Maize has different nutrient require-
ments across the growing season, and these nutrients
are extracted from the soil environment (Bender et al.
2013), so, along with genotype-specific biochemistry,
plant growth and development likely influence interac-
tions with the soil microbial community. In addition,
previous studies have shown that the complexity of
the microbiome is built through time (Shi et al. 2016;
Emmett et al. 2020; Ajilogba et al. 2022). These tem-
poral effects are important to consider, as they can
dramatically influence the conclusions drawn about
the interaction between plants and their microbiome.
We observed that potential nitrification and potential
denitrification were dependent on plant growth stage
(Fig. 3). Potential nitrification and denitrification, for

example, seemed to peak in the middle of the season,
coinciding with plant primary productivity (Fig. 3).
Perhaps, during this high productivity phase Zea is
releasing greater quantities of fresh exudate resulting
in the priming of soil organic matter by microorgan-
isms. Furthermore, rhizosphere C exudation has been
shown to enhance the release of N (Phillips et al.
2011; Dijkstra et al. 2013; Emmett et al. 2020), per-
haps explaining the overall increase of nitrification at
this timepoint. Furthermore, these temporal impacts
highlight a limitation in this study, whereby we may
be overestimating our genotype differences because
of differences in growth phenology among the classes
of plants. In addition, temporal growth patterns are
likely interacting with the measurability of effects in
the root zone as root density of the plant is anticipated
to change through plant development (Chaparro et al.
2013; Vetterlein et al. 2020; Tkacz and Poole 2021).

Relationship between microbial diversity and
N-cycling

We found that different microbial taxa were correlated
with functional changes in the microbiome. WGCNA
identified four modules of microbial taxa that were
significantly associated with both changes of potential
nitrification and denitrification (Fig. 5). These results
suggest that specific taxa and their interactions play a
role in driving the function of the microbiome and that,
to some degree, plants can influence the activities of
specific microbial groups. Interestingly, we observed
that modules positively correlated with higher potential
nitrification rates were dominated by gram-negative
bacteria within the phylum Acidobacteria. In contrast,
those that were negatively correlated with nitrification
were dominated by gram-positive bacteria within the
Actinobacteria phylum. Surprisingly, these modules
of correlated OTUs were not dominated by known
nitrifying taxa, suggesting that nitrification processes
may be, in part, dependent on the metabolism of other
microbial community members, that nitrification is
controlled by the level of transcriptional regulation
rather than nitrifier population size, nitrifiers or nitrifier
ideal conditions are facilitating habitat alteration that
is influencing microbiome structure (e.g. altering pH
to enrich for Acidobacteria), or that some other micro-
bial interaction (i.e. predation, competition) is control-
ling nitrification (Baskaran et al. 2020; Spieck et al.
2020; Burian et al. 2021). Determining how ecological
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interactions within the microbiome influence microbial
functions is critical for understanding and predicting
microbially-mediated ecosystem functions (Kuypers
et al. 2018). In addition, we carried out analysis to
determine how functional gene diversity, abundance,
and composition related to potential functions. Among
all functional gene comparisons between bacterial
amoA, and archaeal amoA. We only found bacterial
amoA diversity to be correlated to potential function,
while abundance and composition was not (Fig. 3a-b).
These results suggest that at least for potential nitrifi-
cation the regulation of diversity is important to func-
tion. Overall, it is clear that understanding the relation-
ship between microbial characteristics and functions is
complex and will require further research to determine
the rules of these relationships.

Conclusion

The ability of plants to influence microbial functions
in the rhizosphere likely evolved as a mechanism for
nutrient retention, enhancing plant competition for
available nutrients from the soil matrix (Philippot
et al. 2013b; Delaux and Schornack 2021; Lata et al.
2022). It is becoming increasingly clear that plant
genetic variation (within and among species) modu-
lates the activities of the soil-associated microbiome
and that these alterations can impact soil biogeochem-
ical functions (Falkowski et al. 2008; Morris et al.
2020). Identification of the plant genomic regions that
direct recruitment of N-cycling microorganisms or
modulation of their activities will enable progress on
re-engineering the agroecosystem to reduce its con-
tributions to N pollution (Johnson 2006; Subbarao
and Searchinger 2021). That is not to say we suggest
growing teosinte in the field, but that these wild culti-
vars are reservoirs of critical genetic variation that are
potentially important to enhancing sustainability. This
study thus contributes an important advancement
by showing that maize, an agronomically important
crop, has genetic variation that contributes to altera-
tions in the microbiomes and N-cycling function
— potentially enough variation to breed and incorpo-
rate these extended phenotype ecosystem traits into
modern hybrid cultivars. Furthermore, we have dem-
onstrated that a small subset of hybrids does appear
to have regulation of N-cycling microbiome in a way
similar to teosinte. In addition, it should be noted that

@ Springer

a limitation of the work presented is that we did not
characterize the mechanisms by which we are observ-
ing these effects. A great deal of mechanistic work is
needed in this area of research. Furthermore, it should
be noted that while plant genotypic control of func-
tion plays an active role in the growing season other
historic edaphic and abiotic effects will play a major
role in managing and predicting the agroecosystem N
cycle. Integrating sustainability-related microbiome
associated phenotypes into our agricultural systems is
a way forward to address many agronomic challenges
facing society (York et al. 2022; Favela et al. 2023).
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