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ABSTRACT
The detrimental impact of foodborne pathogens on human health makes food safety a major 
concern at all levels of production. Conventional methods to detect foodborne pathogens, such as 
live culture, high-performance liquid chromatography, and molecular techniques, are relatively 
tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. 
Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple 
technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn 
attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we 
reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, 
giving special attention to how reporters and labels have improved LFA performance. We also 
discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to 
the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we 
summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. 
Finally, we highlighted the main challenges for further development of LFA platforms. In summary, 
with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is 
competitive with laboratory techniques while retaining a rapid format.

Introduction

In the last decade, outbreaks of foodborne diseases from 
various food sources have raised public awareness of food 
safety (Karp et  al. 2015). According to the World Health 
Organization (WHO 2022), around 600 million individuals 
– almost 1 in 10 people worldwide– acquire foodborne 
infections after eating contaminated food each year. In addi-
tion, nearly 420,000 individuals die yearly from diarrheal 
disorders (WHO 2022). A substantial number of these fatal-
ities were avoidable through early detection of pathogens in 
food and water (WHO 2022, 2016). Unfortunately, children 
under five years of age carry 40% of the foodborne disease 
burden, with 125,000 deaths yearly (WHO 2022). The symp-
toms of foodborne diseases range from simple gastroenteritis 
to potentially catastrophic neurologic, hepatic, and renal 
complications (Fung, Wang, and Menon 2018). The majority 

of foodborne diseases are attributed to bacteria (Campylobacter 
spp., Salmonella spp., Staphylococcus aureus (S. aureus), Vibrio 
cholera (V. cholera), Escherichia coli (E.coli) O157:H7, 
Clostridium perfringens, and Listeria monocytogenes (L. 
monocytogenes)), viruses (Norovirus, Hepatitis E, Hepatitis 
A, Rotavirus, Adenoviruses, Sapoviruses, and Astroviruses), 
and protozoa (Cryptosporidium spp., Cyclospora spp., and 
Toxoplasma spp.) (Bintsis 2017; Adley and Ryan 2016).

Foodborne diseases impede socioeconomic development 
by straining healthcare systems and harming national econ-
omies, tourism, and international food trade. Around $110 
billion is lost annually in productivity and medical expens-
esas a result of  contaminated food with foodborne patho-
gens in low-income and middle-income countries (WHO 
2022, 2016). In addition, globalization of trade has increased 
the risk of the transnational spread of foodborne diseases in 
the current scenario. Although they were once limited to 
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small communities, many outbreaks of foodborne diseases 
now have global consequences (Scott 2003).

Implementing effective monitoring systems that include lab-
oratory readiness is one of the most rational and reasonable 
strategies to avoid or minimize the harmful effects of foodborne 
diseases in people. Diagnostic food labs play critical roles in 
identifying and isolating foodborne pathogens using conven-
tional and molecular diagnostic methods, which are the corner-
stone of pathogen detection and identification. However, these 
methods are relatively tedious, time-consuming, laborious, and 
expensive. Therefore, on-site quick diagnostic techniques that 
are robust, efficient, sensitive, and cost-effective are urgently 
needed to speed up the detection of foodborne pathogens.

In the past 25 years, biosensors for rapid pathogen detection 
have been developed based on integrating a sensitive transducer 
and a selective biorecognition element. These biosensors pro-
vide quantitative or semiquantitative analytical measurements 
without requiring other chemicals or processing steps (Cesewski 
and Johnson 2020), enabling on-site pathogen quantification 
and identification that complement laboratory-based methods 
like polymerase chain reaction (PCR) and Enzyme-linked 
immunosorbent assay (ELISA) (Sohrabi et  al. 2021). Biosensors 
have been implemented in various analytical techniques for 
environmental, medical, food safety, industrial processing, 
defence, and security applications (Arora, Chand, and Malhotra 
2006). During the COVID-19 pandemic, lateral flow assays 

(LFAs) attracted wide attention as one of the most important 
biosensing platforms; however, extensive efforts are still being 
made in academia and industry to improve the performance of 
LFA-based testing (Kim and Lee 2022).

In this review, we highlighted the principles and features of 
LFA-based strategies for foodborne pathogens detection in food 
samples, focusing on recent improvements in LFA platforms for 
ultra-sensitive detection of foodborne pathogens. We also dis-
cussed different approaches to improve LFA sensitivity and 
specificity. We also address the utilization of various reporters 
for signal amplification, including; nanoparticles (NPs) 
(Pashazadeh-Panahi et  al. 2021), nanomaterials (Soozanipour 
et  al. 2021) and other labeling materials. Most importantly, due 
to the lack of studies on LFA for the detection of viral food-
borne pathogens in food samples, we summarized our recent 
research on developing LFA for the detection of viral foodborne 
pathogens. In summary, with continuing improvements, LFAs 
may become the fastest (<30 min), ultrasensitive (PCR-level), 
and “sample-to-answer” point of care (POC) diagnostics test.

Current challenges in conventional methods for 
foodborne testing

Current technologies for foodborne pathogen screening 
require labor-intensive sample enrichment steps, pathogen 

Table 1.  Five main types of technologies used to identify foodborne pathogens.

Technology
Laboratory-Based or 

On-Site
Time to 
Results Cost $

Specificity 
(%)

Number of 
Samples/Batches

Special 
instrument 

required

Viral and 
parasatic 

foodborne 
pathogen 
detection Limitations Ref

Culture Laboratory-Based Minimum 
2-3 days up 
to a week

3-6 100 1 sample Yes No Time-consuming, 
laborious, and 
must be followed 
by biochemical 
tests (‘metabolic 
fingerprinting’), 
molecular tests 
(typically PCR), or 
mass 
spectrometry. 
Needs at least a 
BSL2 laboratory.

(Bouguelia 
et  al. 2013)

PCR Laboratory-Based ~ 4 h 20 100 Up to 96 samples Yes Yes Expensive, 
equipment, 
laborious, 
time-consuming, 
and highly 
trained personnel

(Liu, Cao, et  al. 
2019)

LAMP On-Site 2–3 h 10-20 100 1-4 samples Yes Yes High rate of false 
positivity due to 
heavy 
dependence on 
indirect detection 
methods like 
turbidity and 
nonspecific dye

(Buddolla and 
Kim 2021)

ELISA Laboratory-Based ~4-6 h 10 70-90 Up to 96 samples Yes Yes Low sensitivity (Gomaa and 
Boye 2015) 
(Török 
et  al. 2015)

LFA On-Site 15–20 min 1 100 1 sample No Yes Low sensitivity and 
specificity

(Zhao et  al. 
2016a) 
(Tominaga 
and Ishii 
2020)

For sensitivities (%), Please refer to the text in section 2, as it varies significantly depending on the foodborne pathogen.
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isolation and purification, and costly readout machinery. 
Table 1 and Figure 1 summarize the advantages and disad-
vantages of the 5 main types of technologies used to identify 
foodborne pathogens in food samples.

Conventional live culture remains the gold standard for 
foodborne pathogen detection and identification; however, 
this method is tedious, laborious, and time-consuming 
(2–3 days) (Zhao et  al. 2014). Culture methods have also 
been reported to show poor sensitivity for low-level con-
tamination with a high background of indigenous micro-
flora in the samples, rendering the recovery of the target 
organism difficult. Although it is highly specific, conven-
tional culture method sensitivities vary depending on the 
type of pathogen. For example, the limit of detection (LoD)
for the detection of; Salmonella Spp was 1.76 colony form-
ing unites/ ml (CFU/ml) (Sharif and Tayeb 2021), for 
Campylobacter spp was 0.3–5 × 106 CFU/mL (Buss et  al. 
2019), for Shigella spp was 106 CFU/mL (Jiménez, McCoy, 
and Achí 2010), for Listeria spp was ≤104 cells/mL (Gasanov, 
Hughes, and Hansbro 2005), and for Escherichia coli (E. 
coli) was 102 CFU/g (J. O’Sullivan et  al. 2007). Most impor-
tantly, false negative results may occur due to viable but 
non-culturable pathogens. The failure to detect foodborne 
pathogens would increase the transmission risk of 
pathogens.

One of the most commonly used molecular-based meth-
ods for the detection of foodborne bacterial pathogens is 
PCR. PCR is effective clinical procedure for the rapid detec-
tion and recognition of pathogens in the healthcare system 
(Kawasaki et  al. 2009, 2010); however, they are also expen-
sive, requires specialized equipment and highly trained per-
sonnel, and relies on extensive sample pretreatment and 
costly instruments (Buckwalter et  al. 2014). PCR have been 
used in the detection of numerous foodborne pathogens 

like Salmonella spp (LoD:103 CFU/mL (Tang et  al. 2018)), 
Campylobacter jejuni (LoD: 102 CFU/ml (Jelenik et  al. 
2005)), Shigella spp (LoD: 101 CFU/mL (Tang et  al. 2018)), 
Listeria spp (LoD:103–104 CFU/mL (Li, Ye, et  al. 2020)), and 
E. coli O157:H7 (LoD: 103 CFU/mL (Wei et  al. 2018)).

Loop-mediated isothermal amplification (LAMP), has 
been regarded as an innovative gene amplification technol-
ogy and emerged as an alternative to PCR-based methodol-
ogies in both clinical laboratory and food safety testing. Due 
to its rapidity and sensitivity, LAMP has been used to detect 
various foodborne pathogens. LAMP is proven to be more 
specific and sensitive as compared to PCR assays for the 
detection of foodborne pathogens including; Vibrio parahae-
molyticus (V. parahaemolyticus) (LoD:10 CFU/reaction 
(Wang et  al. 2013)), Vibro vulnificus (LoD: 2.5x 103CFU/g 
(Han, Wang, and Ge 2011)), Salmonella (LoD: 101 CFU/mL 
(Techathuvanan, Draughon, and D’Souza 2010)), S. aureus 
(LoD: 3.4 CFU/g (Jiang et  al. 2020)), and Shigella (LoD: 
5CFU/10 mL). Commercial LAMP kits are available for the 
detection of Enterohemorrhagic Escherichia Coli (EHEC), 
Salmonella and L. monocytogenes (Yamazaki et  al. 2018)

Antibody-based immunoassays such as ELISA (Shen et  al. 
2014) are easier to perform than other antibody-based meth-
ods, but it is still difficult to deploy in on-site settings 
because of its requirements for special equipment and oper-
ating expertise (Zhao et  al. 2014). In addition, the relatively 
poor sensitivity of ELISA remains a significant drawback. 
Many studies have been performed using ELISA for rapid 
detection of foodborne pathogens such as Salmonella (LoD: 
104 to 105 CFU/mL (Paniel and Noguer 2019)), Campylobacter 
(LoD: 105 to 106 CFU/mL (Hochel et al. 2007), Listeria 
(LoD: 6.6 × 103 CFU/mL (Portanti et  al. 2011)), E.coli (LoD: 
6.8 × 102 to 6.8 × 103 CFU/mL (Shen et  al. 2014)), and V. par-
ahaemolyticus (LoD: 103 cells (Kumar et  al. 2011)). 
Commercial ELISA test kit such as BIOLINE Salmonella 
ELISA is also available to detect Salmonella in food prod-
ucts. The LoD of this test kit was 1 CFU/25 g sample with 
a minimum of four of the 20 food matrixes tested (Bolton 
et  al. 2000). In addition, high-throughput and automated 
ELISA systems such as VIDAS (BioMerieux) and Assurance 
EIA (BioControl) are available for the detection of food-
borne pathogens (Glynn et  al. 2006). Several studies applied 
VIDAS for the detection of Salmonella in pork samples, 
fruits and vegetables (Vieira-Pinto et  al. 2007; Gomez-Govea 
et  al. 2012), L. monocytogenes in fish samples, beef, pork, 
fruits, and vegetables (Vaz-Velho, Duarte, and Gibbs 2000; 
Meyer et al. 2011; Gomez-Govea et al. 2012), E. coli O157:H7 
in Minas Frescal cheese, fruits, and vegetables (Gomez-Govea 
et  al. 2012; Carvalho et  al. 2014), Campylobacter spp. in 
fruits and vegetables (Gomez-Govea et  al. 2012) and staph-
ylococcal enterotoxin in raw milk cheese (Cremonesi 
et  al. 2007).

The recent progress in multi-gene detection technology 
includes microarray technology (Call, Brockman, and 
Chandler 2001). Microarrays were initially used for the study 
of gene expression, but oligonucleotide DNA microarray has 
been widely studied for the detection of foodborne patho-
gens. Wang et  al. developed a microarray assay that detected 
and identified 22 foodborne pathogens (Wang et  al. 2007) 

Figure 1.  Comparison of the sensitivity, price ($least expensive; $$more expen-
sive; $$$most expensive), and detection time of signal-amplified LFAs com-
pared emerging isothermal nucleic acid amplification diagnostics, PCR, digital 
enzyme- linked immunosorbent assay (dELISA), and commercial diagnostic 
tools. Figure created using BioRender.com and adapted from (Liu et  al. 2021).
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including; S. aureus, L. monocytogenes, V. parahaemolyticus, 
Vibrio cholerae, Campylobacter jejuni, Clostridium perfringens, 
Shigella spp. Salmonella spp., and Bacillus cereus (B. cereus) 
with LoD varying between 101 to 103 CFU/ml (Wang et  al. 
2007). Despite their high sensitivity, microarrays are not 
desirable for microbial food analysis because low to medium 
density array will serve as the ideal microarray platform that 
can provide reliable results without involving the use of com-
plicated equipment’s and data management. The most signif-
icant disadvantages of microarrays include the low accuracy, 
precision, specificity, and high cost of a single experiment.

Chromatographical methods are another standard tech-
nique for food testing (Eugster et  al. 2011). They are sensi-
tive and accurate despite their many drawbacks, such as 
being time-consuming, tedious, laborious, multi-complex, 
and limited for detecting bacterial-borne pathogens. Sun 
et  al. (Sun et  al. 2017) developed a multiplex PCR-based 
procedure followed by high-performance liquid chromatog-
raphy (mPCR-HPLC) assay for high-throughput screening 
foodborne pathogens, including; Salmonella spp., L. monocy-
togenes, Enterobacter sakazakii, S. aureus, Shigella spp., E. coli 
O157:H7, V. parahaemolyticus, Vibrio cholerae, and Vibrio 
vulnificus. The detection limit of mPCR-HPLC was 101 
CFU/mL in pure cultures and less than 102 CFU/g in con-
taminated matrixes (Sun et  al. 2017).

None of those mentioned above methods perfectly fulfill the 
criteria for the urgently required on-site multiplex detection sys-
tem for foodborne pathogens. Recently, LFA has evolved to fill 
this gap and to offer performance at the POC that is competi-
tive with laboratory techniques while retaining a rapid format. 
In the following sections, the principles and features of LFA-based 

strategies for foodborne pathogens detection in food samples 
were highlighted, focusing on recent improvements in LFA plat-
forms for detecting bacterial and viral foodborne pathogens.

LFA: definition and assay formats

The LFA is a paper-based platform for detection and quan-
tification of analytes in complex mixtures, where the sample 
is placed on a test device, and the results are displayed 
within 5–30 min. Atypical LFA has four components: a sam-
ple pad, a conjugate release pad, a nitrocellulose membrane 
(NC), and an absorption pad. All four components are lam-
inated onto a sheet of plastic backing. Sandwich and com-
petitive assays are the two standard formats for LFA, and 
each has distinct characteristics and benefits.

Sandwich LFA

In the sandwich assay format, three different antibodies are 
usually used; (1) conjugate antibodies, immobilized on the 
conjugation pad, which recognize one epitope in the target. 
These antibodies are linked to reporter particles, (2) capture 
antibodies, immobilized at the test line on the NC, which rec-
ognize another epitope of the target, and (3) anti-species anti-
bodies, which are immobilized on the control line. Positive 
results are obtained when the conjugated labeled antibody 
(Ab) antigen (Ag) complex binds to the antibodies on the test 
line, and any extra labeled antibodies are collected at the con-
trol line forming two lines as shown in Figure 2. Negative 
results are obtained when the reaction antibody only reacts 
with the anti-species antibodies on the control line. Hence, 

Figure 2. S chematic design of a sandwich LFA. When the analyte binds to both the capture antibody immobilized at the test line and the detection antibody, a 
colour develops at the test line, indicating a positive result.  Figure created using BioRender.com. NC: Nitrocellulose membrane.
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only one red line will develop at the control line. The quantity 
of analyte present in the sample can be determined by the 
color intensity that is visible at the test line. Typically, this test 
format is used for large analytes with multiple epitopes.

Competitive LFA

There are two different setups that may be used in the com-
petitive immunoassay format. In the first setup (Figure 3), 
the labeled analyte is immobilized on the conjugation pad. 
When the target is absent in the sample, the labeled analyte 
flows and binds to the detection antibody and the secondary 
antibody (anti-species) immobilized on the test and control 
line, respectively (Sajid, Kawde, and Daud 2015). Hence, two 
red lines develop on the test and control lines. When the 
target analyte is present in the sample, the unlabeled analyte 
competes with the labeled analyte immobilized on the conju-
gation pad and binds to the test line. Whereas the labeled 
analyte binds to the secondary antibodies on the control line. 
Hence, only a single red line develops on the control line 
(Pohanka 2021).

In the second setup (Figure 4), the labeled antibodies are 
immobilized on the conjugation pad. When the target is 
absent in the sample, the labeled antibodies flow and bind to 
the target analyte carrier and the secondary antibody on the 
test and control line. Hence, two red lines develop. When the 
target analyte is present in the sample, the target analyte 
binds to the labeled antibodies immobilized on the conjuga-
tion pad. Hence, these labeled antibodies will not be able to 
bind to the target analyte carrier on the test lines. However, 
the labeled antibodies conjugated to the target analyte will 
bind to the secondary antibodies immobilized on the control 
line. Thus, only a single red line develops on the control line.

Reporter agents and reading instruments

An optical signal is generated from reporter particles bound 
at the test line in the LFA. This signal can be read qualita-
tively or semi-quantitatively by the naked eye or using an 
optical reader. To maximize the sensitivity of an LFA, each 
binding event between the target and the reporter should 
produce the strongest possible signal. Large reporters usually 
result in robust signal per binding event; however, reporter 
particles that are too large do not easily flow through the 
NC and have fewer opportunities to bind at the test line. 
Therefore, a small reporter with a diameter ranging between 
20 to 500 nm is typically selected for use in LFA.

In recent years, the utilization of novel nanomaterials as 
reporter molecules has increased dramatically. Gold nanopar-
ticles (AuNPs) are the most commonly used reporters in 
mass-produced tests (Nguyen et  al. 2020; Ge et  al. 2014; 
Quesada-González and Merkoçi 2018), as they permit 
naked-eye detection. This is highly advantageous for quality 
applications or applications seeking cost efficiency, as it does 
not require an external reader. Combining nanoparticle-based 
detection with an external reader may increase reproducibil-
ity and provide quantitative results. The following sections 
highlight what we consider to be the most significant 
nanoparticles in terms of their readout type (see Table 2 for 
a summary of commercially available reporter agents).

Gold nanoparticles (AuNPs)

Since the 1980s, AuNPs have been the most frequently used 
detection labels in LFAs (Verheijen et  al. 2000; Fong et  al. 
2000; Shyu et  al. 2002). The reasons for their popularity 
include (1) production of a robust red color for naked-eye 

Figure 3. S chematic diagram shows the competitive format (First setup). The color intensity developed at the test line is inversely proportional to the amount of 
analyte.  Figure created using BioRender.com.
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Table 2. A dvantages and disadvantages of commercially available reporter agents.

Label Advantages Disadvantages

AuNPs •	 Qualitative naked-eye detection
•	 Easy conjugation protocol
•	 Strong signal
•	 Quantitative detection by external readers (became very 

affordable)

•	 Low sensitivity

Carbon nanoparticles/
carbon nanotubes

•	 Qualitative naked-eye detection
•	 High signal-to-noise ratio
•	 Cheaper than AuNPs
•	 Very Stable

•	 External reader needed for quantitative detection
•	 Nonspecific adsorption
•	 Weaker signal than AuNPs

Latex beads •	 Qualitative naked-eye detection
•	 Resistant to chemical and physical damage
•	 Cheaper than AuNPs
•	 Multiple colors

•	 External reader needed for quantitative detection
•	 Less sensitive
•	 Weaker signal than AuNPs

QDs •	 Strong signal
•	 Multiple colors

•	 UV external light reader needed for quantitative detection
•	 Higher toxicity

UCNPs •	 Strong fluorescent signal
•	 Safer than QDs, as they do not require a UV source
•	 Multiple colors

•	 Near-infrared laser needed for quantitative detection
•	 More expensive than QDs

Liposomes •	 Multiplexing
•	 Easy conjugation

•	 Require extra hardware depending on the loaded label
•	 Sensitive to pH and ionic strength

Magnetic nanoparticles •	 Dual magnetic/colourimetric signal
•	 High signal-to-noise ratio
•	 Very sensitive

•	 Require a non-optical reader for magnetic measurements

Figure 4. S chematic diagram shows the competitive format (Second setup). The color intensity developed at the test line is inversely proportional to the amount 
of analyte. Figure 4 created using BioRender.com.

detection, (2) availability in different sizes and shapes, (3) 
low toxicity, (4) ease of functionalization via covalent bond-
ing (Parolo, de la Escosura-Muñiz, and Merkoçi 2013; Di 
Nardo et  al. 2019; Mao et  al. 2009), and (5) high stability. 
The size and shape of conventional AuNPs can also be mod-
ified to achieve higher sensitivity. In addition, the optical 
signal of AuNPs in colorimetric LFAs can be amplified by 
depositing enzymes and silver ions (Sajid, Kawde, and Daud 
2015). AuNPs produce red bands at the test and control 
lines of the LFA when acting as reporter particles. AuNPs 
can also act as carriers if coupled with an antibody modified 

with horseradish peroxidase (HRP) enzyme. Once substrates 
are added, they produce insoluble chromogens, which can-
not be moved by the flow, concentrating the color at the test 
and control lines. LFAs that utilize the HRP enzyme produce 
two different optical signals: one produced by the red color 
of the AuNPs and the other by the substrate of the HRP, 
which is more sensitive, achieving an ‘on-demand’ tuning of 
the biosensing performance (Parolo, de la Escosura-Muñiz, 
and Merkoçi 2013).

Another method to enhance the sensitivity of AuNPs is 
by using silver ions, which tend to gather around the 
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nano-gold in the form of silver under the action of the 
reducing agent. Silver enhancement technology has been fre-
quently used in immunogold assays to amplify the signal of 
the colloidal gold probe (Rodríguez et  al. 2016). Table 3 
summarize LFA studies in which AuNPs were used for the 
detection of foodborne pathogens.

Magnetic nanoparticles (MNPs)

Recently, iron oxide magnetic nanoparticles (MNPs) have 
received interest as promising materials for rapid and 
high-sensitive diagnosis methods due to their unique prop-
erties (Xu et  al. 2019). When an external magnet is present, 
MNPs can function as "nano-magnets" in the system. They 
move very quickly in the direction of the external magnet, 
but as soon as the magnetic field is removed, they lose all 
of their magnetism (Ha et  al. 2018). In addition, it is a 
well-established fact that MNPs are able to retain their mag-
netic properties while forming stable conjugates with a wide 
range of biomaterials. Due to these properties, MNPs enable 
magnetic pre-concentration of a target from a very diluted 
concentration via two steps: (1) targets interact with biocon-
jugated MNPs, and (2) target-bioconjugated MNPs are col-
lected with an external magnet and re-dispersed into a small 
volume of matrix for the pre-concentration of samples to 
improve the detection sensitivity. Most importantly, MNPs 
offer low background noise since the biological materials 
that do not interact with MNPs are non-magnetic (Gowri, 
Ashwin Kumar, and Suresh Anand 2021). Furthermore, 
MNPs have a high surface area, which enables quick inter-
action between the target and antibodies conjugated to 
MNPs, which in turn reduces the amount of time required 
for detection. Therefore, MNPs have been successfully used 
for the quick and extremely sensitive detection of a wide 
variety of target analytes, ranging from viruses (Castilho 
et  al. 2011; Sánchez-Cano et  al. 2021) and bacteria (Pappert 
et  al. 2010; Mun and Choi 2015) to food allergens (Speroni 
et  al. 2010; Yin et  al. 2022).

Because MNPs are capable of transmitting both an optical 
signal and a magnetic signal, they make excellent labels for 
LFAs. Their dark color allows them to be used as conven-
tional optical labels, and their magnetic field enables easier 
functionalization, sample pretreatment (Nash et  al. 2012), 
and sensitive readout. Although optical readouts rely heavily 
on labels on the NC, magnetic field sensing permits the use 
of all labels collected along the test line (Quesada-González 
and Merkoçi 2018). The major advantage of MNPs is that 
they can be detected and quantified by means of external 
devices, allowing the quantitative detection of the target. 
However, MNPs are more expensive to use compared to 
AuNPs. Table 3 summarize LFA studies in which MNPs 
was used.

Carbon nanoparticles

Since their discovery in 1991, Carbon nanoparticles (CNPs) 
(Mao et  al. 2009; Noguera et  al. 2011a) and carbon nano-
tubes (Qiu et  al. 2015; Yao et  al. 2016) have emerged as one 

of the most promising nanomaterials for the development of 
biosensors (Iijima 1991). In addition to their large surface 
area, carbon nanotubes exhibit superior electrical conductiv-
ity, mechanical strength, and chemical inertness (Ajayan 
1999). Most Importantly, Carbon nanoparticles are preferred 
for their high signal-to-noise ratio (black to a white back-
ground) (Mens et al. 2008;  Amerongen, Barug and Lauwaars 
2005) and their excellent sensitivity, i.e., low picomolar by 
visual inspection (Gordon and Michel 2008). Further, they 
are inexpensive to produce, resistant to aggregation, and 
easy to functionalize. Carbon nanotubes are known to have 
a high surface specificity and allow various alterations with 
functional groups enabling sensitive protein recognition 
based on electron transfer processes. In addition, carbon 
nanotubes have been shown to have excellent chemical sta-
bility. This has led to the development of CNT-based sensor 
systems for biorecognition, diagnostics, and therapeutic pur-
poses such as DNA sensors (Sánchez-Pomales, 
Santiago-Rodríguez, and Cabrera 2009), chemical sensors 
(Kong et  al. 2000), and immunosensors (Okuno et  al. 2007). 
Table 3 summarize LFA studies in which carbon nanoparti-
cles were used.

Fluorescent nanoparticles

Fluorescent nanoparticles (FNs) are frequently recommended 
for the detection of targets at low concentrations and/or 
quantitative applications. This incurs extra costs and neces-
sitates the use of an external reader. Quantum dots (QDs), 
upconverting nanoparticles (UCNPs), and liposomes encap-
sulating fluors are examples of fluorescent LFA reporters. 
QDs, also known as fluorescent semiconductor nanocrystals, 
can be used to develop highly sensitive LFAs because of 
their bright signal, resistance to photobleaching (Yan et  al. 
2016; Bruno 2017), chemical and thermal stability, and ease 
of surface modification (Wang, Meng, et  al. 2019). The size 
of QDs ranges from 1 nm to 10 nm, which enables them to 
disperse well in water and to be combined with biomole-
cules. When activated by UV light, QDs display intense pho-
toluminescence, which can be adjusted by modifying the 
elemental composition and size of the QDs. Therefore, QDs 
are appropriate for multiplexed detection (Medintz et  al. 
2005; Wang, Shen, et  al. 2020). Nevertheless, the formation 
of QD-biomolecule complexes are difficult, resulting in ren-
dering their application compared to AuNPs (Costa-Fernández, 
Pereiro, and Sanz-Medel 2006).

UCNPs have been employed as labels in LFAs since the 
early 2000s (Niedbala et  al. 2001b) (Corstjens et  al. 2001; 
Hampl et  al. 2001). Their near-infrared excitation wave-
lengths do not generate membrane autofluorescence, and 
their strong emission in the visible spectrum makes them 
more sensitive than QDs as detection molecules in LFAs 
(Kim et  al. 2018). However, the need for an expensive and 
bulky near-infrared laser makes the incorporation of UCNPs 
into LFAs impractical for many on-site applications (Kim 
et al. 2018; He et al. 2018; You et al. 2017) (Gong et al. 2019).

Many studies have examined the use of fluorescent dyes 
added to liposomes to increase the sensitivity of LFAs. 
Liposomes can be combined with a wide range of 
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fluorescent dyes capable of producing a strong fluorescence 
signal, and the composition of the lipid bilayer can be 
altered to permit straightforward bioreceptor functionaliza-
tion of the liposome surface (Khreich et  al. 2008; Baeumner 
et  al. 2004; Edwards and Baeumner 2006; Edwards, Korff, 
and Baeumner 2017). The two fundamental disadvantages of 
liposomes as LFA indicators are their complex production 
processes and poor stability. Table 3 summarize LFA studies 
in which fluorescent nanoparticles were used.

Improving the sensitivity and specificity of LFAs

Selection of the best antibody pair

The specificity of LFAs can be increased by reducing non-
specific binding (NSB) and by using antibodies with high 
affinity for the analyte. Several sample processing techniques 
are available to reduce NSB, which leads to false-positive 
findings. For example, when detecting analytes from whole 
blood, blood cells and large proteins are often removed from 
the blood by filtering or centrifugation prior to LFA (Liu 
et  al. 2021). It was also shown that preheating urine 
decreased the activity of thermally unstable biomolecules, 
resulting in fewer false-positive findings when LFA was used 
to detect cryptococcal antigens (Nam, Thaxton, and 
Mirkin 2003).

The LFA efficacy is heavily dependent on the affinity pro-
teins (i.e., antibodies) that recognize the target. Maximum 
specificity can be achieved by molecules with optimal affin-
ity (Bembenek et  al. 2011; Brooks et  al. 2008; Wu, 
Milutinovic, et  al. 2015). Antibodies are a typical option 
because of their sensitivity as well as their specificity when 
it comes to the specific detection of very low concentrations 
of the analyte. While aptamers and various other affinity 
reagents are also options, antibodies are the primary affinity 
reagent used for lateral flow rapid tests.

The selection of the optimal antibodies is a critical aspect 
of LFA design. The ultimate performance of the LFA mainly 
depends on the specificities of the antibodies used to bind a 
target in the specimen. The decision of whether to utilize 
polyclonal or monoclonal antibodies is one of the earliest 
decisions that must be made in the process of LFA develop-
ment. Polyclonal antibodies are derived from the serum of 
animals that have been vaccinated. They are made up of 
complex mixtures of antibodies, each of which was created 
by a unique B cell clone in the animal. There is an inherent 
lack of consistency from one animal to the next, and even 
fluctuation from one bleed of the same animal to the next 
since every host species and even every individual host will 
have a distinct immunological response. On the other hand, 
monoclonal antibodies are produced in the laboratory; thus, 
they are homogenous. Monoclonal antibodies are unique in 
that they are only able to bind to a single epitope of the 
target and were generated by a single B cell clone. Therefore, 
polyclonals may have a stronger recognition ability owing to 
multiple kinds of antibodies targeting different epitopes of 
the target, but monoclonals are more consistent since they 
target just one epitope of the target. This is because 

polyclonals target numerous antigens simultaneously. An 
additional benefit is that the cell clones that are used in the 
production of monoclonal antibodies may be regenerated 
endlessly in the laboratory, but the animal hosts that are uti-
lized in the production of polyclonal antibodies will ulti-
mately perish.

Extensive efforts have been made to enhance the sensitiv-
ity and specificity of LFAs for more precise and effective 
on-site diagnostics. Assay optimization and sample enrich-
ment are two ways to increase sensitivity (Soh, Chan, and 
Ying 2020; Nguyen et  al. 2020; Bishop et  al. 2019). Signal 
amplification can boost LFA sensitivity close to that of 
PCR-based assays. Several other approaches to improve LFA 
sensitivity are promising but require extended testing time 
(Bishop et  al. 2019; Rodríguez et  al. 2016). Hence, balancing 
sensitivity and test duration is a critical challenge for the 
future development of on-site assays. LFA specificity is pri-
marily increased by optimizing the test and applying 
high-affinity antibodies and reagents with high specificity.

Improving sensitivity by assay optimization

Signal amplification
Chemical enhancement of colorimetric signal.  The LFA 
sensitivity can be improved by increasing the colorimetric 
signal of the test. A quick and easy way to boost the 
signal is by chemically increasing the colorimetric contrast 
of the positive test line. This enhanced contrast can be 
achieved using different methods, including; silver 
enhancement, double gold conjugation, and induced gold 
aggregation (Liu et  al. 2021). In the silver enhancement 
method, Ag-reducing reagents are flowed through the 
LFA strip after running the sample, and Ag is nucleated 
on captured AuNPs in the test area. The Ag layer forming 
on the AuNPs reporter particles amplifies the color 
intensity of the test area. This method significantly 
enhances the sensitivity by 10-fold compared to traditional 
LFA (Serebrennikova, Samsonova, and Osipov 2018; 
Anfossi et  al. 2013). For the double gold conjugation, 
secondary AuNPs are used to bind with the primary 
AuNPs that are already captured on the test area leading 
to enhanced color intensity. This binding can be 
accomplished through the utilization of the high biotin-
streptavidin binding affinity (Shen and Shen 2019) or by 
employing primary and secondary antibodies, which is 
similar to the basis of indirect ELISA. It was shown that 
the double gold conjugation method has significantly 
increased the sensitivity of LFA by approximately 30-fold 
for the detection of the Hepatitis B virus (Shen and Shen 
2019). The concept of the induced gold aggregation 
technique is similar to the double gold conjugation 
approach. However, more AuNPs are coated on the 
captured AuNPs, thus better amplifying the color intensity.
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Label design.  The label design plays an essential role in 
amplifying the colorimetric contrast of LFA. Replacing 
the traditional small (20 − 40 nm) nanoparticles employed 
with labels that have stronger colorimetric contrast is the 
easiest way to enhance the signal while maintaining the 
LFA format. Stronger contrast can be achieved by 
modifying the size and structure of the reporter particles 
or by replacing the particles with clusters or particles 
made of another metal, metal oxide, or organic material. 
For instance, gold-nanoparticle-decorated silica nanorods 
(AuNPs -SiNRs), achieved a 50-fold lower LoD in the 
detection of rabbit IgG than traditional LFA with AuNPs 
(Xu et  al. 2014). Similarly, polystyrene microbeads were 
used to enhance the colorimetric contrast of AuNPs. 
Utilizing polystyrene microbeads improved the sensitivity 
of LFA for the detection of influenza virus by 64-fold and 
16-fold over that achieved with 10 nm and 30 nm AuNPs 
-based LFAs, respectively (Liu et  al. 2020).

Enhancing LFA reagents.  Enhancing LFA reagents can be 
used to induce catalytic reactions in the test area to 
amplify the signal contrast. Catalytic amplification is 
usually achieved by utilizing enzymes or nanozymes to 
induce oxidation/reduction reactions in the test area. 
HRP is one of the most commonly used enzymes in LFA 
platforms. In LFA, HRP is linked to detection molecules 
(i.e., antibodies) that are conjugated with reporter particles 
immobilized on the conjugation pad. After the sample 
flow through the LFA is completed, the HRP substrate 
and H2O2 solution are flowed through the LFA after 
washing to induce enzymatic amplification and enhance 
the optical contrast at the test line (He et al. 2011). Parolo 
et  al. reported an increase in sensitivity up to 1 order of 
magnitude compared to traditional AuNPs -LFAs by 
applying enzymatic amplification (Parolo, de la Escosura-
Muñiz, and Merkoçi 2013).

Nanozymes, which are artificial enzymes based on nano-
materials, were rapidly developed as surrogates of natural 
enzymes. Nanozymes have several advantages over natural 
enzymes, including higher catalytic stability, an easier modi-
fication process, and lower manufacturing costs (Jiang et  al. 
2019). For instance, thin platinum (Pt) shells on top of gold 
(Au) nanoparticles (NPs) (Au@PtNPs) was able to produce 
an LoD of 0.8 pg/mL. This finding is significantly more sen-
sitive than commercial ELISA, which has an LoD of >1 pg/
mL (Loynachan et  al. 2018).

External readers.  Amplification of LFA signals may also 
be achieved with the assistance of external readers. When 
labeled particles that change in color intensity are used in 
LFA, a charge-coupled device or a complementary metal-
oxide-semiconductor camera detection device will be 
utilized for assay quantification (Gussenhoven et al. 1997). 
In case of using fluorescent labeled particles, a 
photodetector with an excitation light source is used for 

assay quantification (Ho and Wauchope 2002). The laser 
beam, or electric potential, or magnetic field can be used 
to activate/concentrate captured nanoparticle labels on the 
test line, resulting in an enhanced signal (Draz and 
Shafiee 2018). This amplified signal can then be detected 
by sensitive optical, electrical, or magnetic sensors/
electrodes, respectively, that can distinguish between 
minute signal variations and background noise. Among 
these, LFA readers utilizing image sensors, such as a 
charge-coupled device or metal-oxide-semiconductor 
camera, are most commonly used because of the 
advantages of their simple structure and small size (You, 
Park, and Yoon 2013). An image sensor-based LFA reader 
acquires an image of the test line (aggregated labeled 
particles, antigens, and antibodies). Then, the pixel 
intensity of the test line, which changes according to the 
concentration of the target analyte, is analyzed (Sajid, 
Kawde, and Daud 2015). However, problems such as the 
high possibility of false positives and false negatives and 
limitations for accurate and multiplex quantification have 
been observed in the utilization of optical readers.

Recently, our team have designed and developed an ultra 
high-sensitivity inductive transducer, called the Femtogmag, 
for the detection and quantification of superparamagnetic 
nanoparticle reporters that are immuno-captured on the test 
line (Khodadadi et  al. 2019). As a proof of concept, the fem-
toMag was used to quantify the hCG pregnancy hormone by 
quantifying the number of 200 nm magnetic reporters 
immuno-captured within the test line of the LFA strip. A 
sensitivity of 100 pg/mL has been demonstrated. Upon fur-
ther design and control electronics improvements, the sensi-
tivity is projected to be better than 10 pg/mL. Magnetic 
reporters provide several advantages compared to other opti-
cal reporters (1) Magnetic fields do not interact with biolog-
ical materials, so the signal is stable (2) magnetic fields are 
not affected by LFA media, so every magnetic reporter 
within the test line contributes to detection; and (3) the 
properties of magnetic reporters can be tuned to match the 
biomarkers to optimize trapping efficiency and detection 
(Yoshino, Maeda, and Matsunag 2010; Yu et  al. 2022; Jacinto 
et  al. 2018). The femtoMag also provides a number of tech-
nological advancements over the current state-of-the-art 
magnetic biosensor technologies, including (1) high sensitiv-
ity, (2) Quantitation, (3) simple and easy integration with 
LFA technology, (4) portable electronic controls, and (5) 
low-cost manufacturability. The low-cost easy-to-use fem-
toMag platform offers high-sensitivity/high-precision target 
analyte quantification and promises to bring state-of-the-art 
medical diagnostic tests to the POC.

Optimization of the assay kinetics
Optimization of assay kinetics, such as transport and reac-
tion kinetics, is essential for LFA development and can be 
used to increase sensitivity. The assay kinetics affect the 
selective binding (SB) and NSB of the antibodies and ana-
lytes, which determine the sensitivity and specificity of the 
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assay (55-57). Assay kinetics should be optimized to increase 
SB and reduce NSB, thus, enhancing the assay sensitivity 
(Zhan et  al. 2020).

The sensitivity of LFAs is limited by the reaction rate 
(Zhan et  al. 2017b; Mosley et  al. 2016). Increasing the reac-
tion rate can help in boosting assay sensitivity. Hence, max-
imizing the SB. However, the transport of molecules and 
labels is limited by the diffusion rate, and the surface reac-
tion is limited by the reaction rate. Increasing the reaction 
kinetics is associated with the formation of the sandwich 
ternary; conjugation/target/capture antibody. Liang et  al. 
showed that the sandwich ternary develops more slowly 
when the target binds first with the conjugated label and 
then the capture antibody in a premixing flow compared to 
binding with the capture antibody and then the conjugated 
label in a sequential flow. For instance, the LoD of the LFA 
platform for detecting malarial antigens from a premixing 
flow was reported to be 4- to 10-fold higher than that 
obtained from a sequential flow (Liang et  al. 2016).

Improving sensitivity by sample enrichment

The reaction rate coefficient is relatively constant for most 
immunoreactions between antigens and antibodies. It is pos-
sible to effectively increase the reaction rate and, as a result, 
boost the sensitivity by increasing the number of captured 
labels on the test area by preconcentrating the food sample 
before introducing the sample into the LFA test. Magnetic 
separation is one technique that may be used for 
pre-concentration, which produces a 10-fold increase in sen-
sitivity (Sharma et  al. 2019). Alternatively, Mashayekhi et  al. 
used an aqueous two-phase (Bradbury et  al. 2019) micellar 
system composed of the nonionic surfactant Triton X-114 to 
concentrate a model protein and reported a 10-fold increase 
in sensitivity from 0.5 μg/mL to 0.05 μg/mL (Mashayekhi 
et  al. 2012).

Analytes can also be preconcentrated during the LFA 
flow phase. The comparatively low LoD of LFAs may be 
attributed to the fact that low target concentrations induce 
kinetically limited surface reactions. To overcome this prob-
lem, Moghadam et al. preconcentrated the antigen-conjugation 
complex into a narrow band and transported it to the cap-
ture line using the isotachophoresis technique. This approach 
increased the LoD by 400-fold and 160-fold for 90 s and 
5 min reaction, respectively (Moghadam, Connelly, and 
Posner 2015).

Another way to boost the reaction rate and enhance the 
sensitivity is to increase the number of efficient binding sites 
for the conjugated labels by altering the structure of the 
label or changing the orientation of the detection molecules. 
For instance, the number of binding sites can be increased 
by increasing the size of AuNP labels (Zhan et  al. 2017a) or 
by functionalizing the particle surface with several layers 
(Lou et  al. 2019) to allow for the loading of additional 
detection molecules.

Improved conjugation approaches have the potential to 
offer more effective binding sites than standard physical 
adsorption when the orientation of the detection molecules 

is forced in a specific direction (Trilling, Beekwilder, and 
Zuilhof 2013; Di Nardo et  al. 2019; Welch et  al. 2017). A 
particular orientation can be achieved through covalent 
binding mediated by a chemical layer or through bioaffinity 
binding mediated by a biomolecular layer (Trilling, 
Beekwilder, and Zuilhof 2013; Di Nardo et  al. 2019; Welch 
et  al. 2017). It is also necessary to adjust the coverage of the 
detection molecules in order to maximize the affinity for the 
analyte and get rid of any steric hindrance that may be gen-
erated by a thick layer of detection molecules (Saha, Evers, 
and Prins 2014). Another way to boost the sensitivity of the 
LFA is to add more effective binding sites to the test line. 
For instance, the use of three-dimensional “proteinticle” 
probes with multiple self-assembled and orientated peptides 
was shown to give a 4-fold to 8-fold improvement in sensi-
tivity (Lee et  al. 2015). In a different approach, the addition 
of cellulose nanofibers to the NC enabled more capture mol-
ecules to be loaded and increased the assay sensitivity by 
20-fold (Tang et  al. 2019; Quesada-González et  al. 2019).

Commercially available LFAs for the detection of 
foodborne pathogen

The benefits of LFAs for the detection of food pathogens 
include multiplexing capabilities, dependability, and adher-
ence to the same standards of precision as traditional detec-
tion techniques. In addition, LFAs are user-friendly and 
capable of producing qualitative, semiquantitative, or quanti-
tative results after only a few (10–30) minutes. Most impor-
tantly, LFAs are economical, as their rapid findings save 
operational costs by accelerating product release while main-
taining product dependability. Table 4 summarizes the char-
acteristics of commercially available LFAs for the detection 
of foodborne pathogens.

Recent advances in LFA-based testing for foodborne 
pathogens

Bacterial foodborne pathogens

Bacteria are the most abundant type of foodborne pathogens 
that threaten human health (Mead et  al. 1999; Hariram and 
Labbé 2016). Hence, the detection of foodborne bacterial 
pathogens is of supreme importance to guarantee food qual-
ity. Biochemical characterization and microbiological identi-
fication are used as conventional methods to detect 
foodborne bacteria (Byrne et  al. 2015). Recently, LFA was 
shown to be a quick and sensitive alternative approach to 
identifying foodborne pathogens (Keiser and Utzinger 2005; 
Law et  al. 2014; Hwang et  al. 2016; Zhao et  al. 2016a; Li 
et  al. 2021). Table 3 lists recent studies on LFAs for the 
detection of foodborne bacterial pathogens.

Anthrax is an infectious disease caused by Bacillus 
anthracis (B. anthracis). A combination of immunomagnetic 
separation and LFA has been used to detect B. anthracis in 
milk (Fisher et  al. 2009a; Wang, Tian, et  al. 2015). Fisher 
et  al. (Fisher et  al. 2009a) studied the immunocapture of B. 
anthracis spores using anti-spore antibodies coupled with 
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carboxylated magnetic beads and were able to recover 95% 
of B. anthracis spores when 105–107 spores were inoculated 
in 1 mL milk (Fisher et  al. 2009a).

E.coli is the etiological agent of many waterborne and 
foodborne diseases (Singh, Sharma, and Nara 2015a). Wu 
et  al. used an aptamer-based biosensor to rapidly detect E. 
coli O:157:H7 (Wu, Milutinovic, et  al. 2015). This assay uti-
lized two distinct aptamers, each designed to precisely target 
the outer membrane proteins of the bacterium. The first 
aptamer enriched E. coli O:157:H7 cells on magnetic beads, 
and the other was used as a signal reporter. The signal pro-
duced by the second aptamer was amplified using an iso-
thermal strand displacement amplification technique. Positive 
signals, generated as red bands on the test line, could be 
produced by 10 CFU/mL of E. coli O157:H7 (Wu, 
Milutinovic, et  al. 2015). Bruno et  al. (Bruno 2014) used a 
sandwich-format LFA sensor to detect E. coli. In this system, 
amino end-labeled capture aptamers were immobilized on 
an analytical NC using UV light with a wavelength of 
254 nm. When E. coli cells passed through the capture line, 
they were captured by the amino group on the membrane 
surface. The aptamer-conjugated colloidal gold demonstrated 
a visible LoD between 3 × 103and 6 × 103 E. coli cells in the 
buffer (Bruno 2014).

Liu et  al. developed a simple and ultra-sensitive LFA for 
the rapid recognition of Salmonella in food samples. They 
used AuNPs conjugated with a DNA probe that was comple-
mentary to the 16S ribosomal DNA and RNA of Salmonella. 
The synthesized single-stranded DNA had an LoD of five 
femtomolar. For cultured Salmonella, the nucleic acids of 107 
bacteria were rapidly detected in 30 min. Additionally, with 
silver enhancement, the LoD was improved to detect 104 
bacteria, which is lower than the human infectious dose of 
foodborne Salmonella (105 CFU) mL-1. Because of its low 
cost, high sensitivity, high specificity, and ease of use, the 
LFA developed by Liu et  al. may be a valuable tool for 
microbial detection in large-scale diagnostic or food safety 
applications in impoverished nations (Liu et  al. 2013b).

Wang et  al. developed an LFA strip biosensor that could 
detect Salmonella enteritidis (S. enteritidis) with an LoD of 
102 CFU/mL using positively charged, surface nitrogen-rich, 
carbon nanoparticles (pNPs) made by calcination and etch-
ing procedures (Wang, Yao, et  al. 2019). These nanoparticles 
not only generate a signal but also function as an adsorbent 
to trap bacteria (Wang, Yao, et  al. 2019). Bacterial cells stick 
to the pNCs by electrostatic contact and hydrogen bonding, 
and this complex is then selectively recognized by an 
anti-bacterial antibody coated on the test line, causing the 
color of the test line to progressively darken. The pNPs were 
able to recover 85–100% of Salmonella from various food 
specimens; however, the generalizability of the approach is 
currently limited by the availability of suitable antibodies 
(Wang, Yao, et  al. 2019). Taking advantage of simplicity, 
label-free, convenience, and sensitivity, the pNC-based LFA 
has the application potential for pathogenic microorganisms 
monitoring in food safety and early clinical diagnosis fields 
(Wang, Yao, et  al. 2019).

Viral foodborne pathogens

The LFA research and commercialization for the detection 
of viral foodborne pathogens are more hindered compared 
to those for bacterial foodborne pathogens. The bacterial 
detection techniques cannot be used for viral detection due 
to many factors; (1) viruses are far more complicated to cul-
ture and amplify compared to bacteria, which often cannot 
be enriched (Chhabra and Vinjé 2016), (2) viruses are usu-
ally present in small quantities in food matrices and cannot 
proliferate in host-free environment, (3) the size of viruses 
range from 20 to 400 nm, while the size of bacteria ranges 
from 1 micron to 5 microns. Therefore, the sensing plat-
forms developed for bacterial detection must be significantly 
adjusted in order to identify viral pathogens due to their 
extremely smaller size. (4) the composition of cell surface 
proteins of bacteria is not comparable with the hemaggluti-
nin and neuraminidase compositions of viruses, and this 
necessitates the selection of specific biorecognition elements 
for the detection of viral-specific proteins, and (5) viruses 
are often present with lower copy numbers compared to 
bacteria in food samples matrix, which demands superior 
sensitivity of the virus detection biosensors to be at least 
attomolar or picomolar level (Neethirajan et  al. 2017). 
Therefore, separation, pre-concentration, and purification of 
viral pathogens from food samples are crucial toward sensi-
tive virus detection using LFA. Nevertheless, due to the het-
erogeneity in genome and surface structures among viruses, 
a universal viral extraction technique would be extremely 
difficult for the on-spot rapid and easy foodborne viral 
detection from food samples.

Our team is currently working to develop LFA for the 
detection of viral foodborne pathogens; Norovirus (NoV) 
and Hepatitis E (HEV). Using europium nanoparticles, we 
were able to detect NoV at a concentration as low as 10 ng/
mL (Work in Progress). In addition, using AuNPs, we were 
able to detect HEV at a concentration as low as 5 ng/mL 
(Work in Progress). Currently, we are working to generate a 
novel quantitative magnetic immunoassay for the detection 
of foodborne pathogens, NoV and HEV. Using the fem-
toMag as a reader (Khodadadi et  al. 2019), the LFA will 
have sensitivity rivaling those of central laboratory instru-
ments, which will enable rapid, high-quality quantitation of 
viral levels and can serve as a simple, low-cost, easy-to-use 
point-of-need analytical platform for rapid and reliable early 
infection detection of foodborne pathogens associated with 
acute gastroenteritis from food samples.

Conclusion and future perspectives

Various contaminants threaten food quality and pose threats 
to human health. Most current methods to detect food con-
taminants are difficult to use on-site because they require 
special laboratory equipment and skilled personnel. LFAs 
offer many advantages for the rapid detection of foodborne 
pathogens, including cost-effectiveness, simplicity, rapidity, 
and ease of use in on-site settings. Another important 
advantage of LFAs is that they can analyze different analytes 
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simultaneously, which is of supreme importance. Current 
challenges for LFA platform development for the detection 
of foodborne pathogens include (1) enhancing the signal-to-
noise ratio to reduce background noises and increase detect-
able signals (2) enhancing detection specificity and sensitivity; 
(3) improving storage duration; (4) allowing user-friendly 
and unskilled operation (Mangal et  al. 2016).

With the changing of the global demographic and epide-
miologic structure, as well as food processing and harvesting 
systems, We can expect new foodborne viruses to emerge in 
society through both animal and plant-derived foods. A 
rapid and sensitive detection system can reduce ongoing 
transmission of pathogens as well as play a crucial role in 
preventing pathogen transmission through early detection 
and control of foodborne illness outbreaks.

Various LFAs for food safety monitoring are commercially 
available; however, their widespread acceptance is hindered 
by their lack of sensitivity. The sensitivity, reproducibility, 
and multi-analyte capabilities of LFAs must be improved 
substantially for LFA-based food safety evaluation to be 
adequate.
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