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Abstract—As fraudulent activities have shot up manifolds,
fraud detection has emerged as a pivotal process in different
fields (e.g., e-commerce, online reviews, and social networks).
Since interactions among entities provide valuable insights into
fraudulent activities, such behaviors can be naturally represented
as graph structures, where graph neural networks (GNNs)
have been developed as prominent models to boost the efficacy
of fraud detection. In graph-based fraud detection, handling
imbalanced datasets poses a significant challenge, as the minority
class often gets overshadowed, diminishing the performance
of conventional GNNs. While oversampling has recently been
adapted for imbalanced graphs, it contends with issues such as
graph heterophily and noisy edge synthesis. To address these
limitations, this paper introduces DOS-GNN, incorporating Dual-
feature aggregation with Over-Sampling to advance GNNs for
class-imbalanced fraud detection on graphs. This model exploits
feature separation and dual-feature aggregation to mitigate the
impact of heterophily and acquire refined node embeddings that
facilitate fraud oversampling to balance class distribution without
the need for edge synthesis. Extensive experiments on four large
and real-world fraud datasets demonstrate that DOS-GNN can
significantly improve fraud detection performance on graphs with
different imbalance ratios and homophily ratios, outperforming
state-of-the-art GNN models.

Index Terms—Fraud Detection, Graph Neural Networks, Class
Imbalance, Heterophily.

I. INTRODUCTION

Increased connectivity of devices and individuals to the
Internet has continuously transformed our daily lives in various
aspects, such as socializing, online banking, and healthcare.
Despite apparent benefits, they also create an ever-expanding
surface for fraudsters to exploit these networks for their eco-
nomic, social, or political intents intentions [1]. As fraudulent
activities have shot up manifolds, fraud detection has emerged
as a pivotal process in the fields of e-commerce [2], [3],
healthcare [4], online reviews [5], [6], and social networks [7].
Fraudulent entities (e.g., accounts, reviews, and transactions)
often disguise their malicious nature by incorporating genuine
information, making it challenging to directly identify them
based on individual attributes, while their interactions with
other entities offer valuable clues that can expose themselves
[8]. As such, fraudulent activities can be naturally abstracted
into graph structures, enabling a more intuitive analysis to
reveal the suspicious entities at the graph level [9].
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Fig. 1: Imbalance ratio and homophilly ratio of minority class
for Yelp, Amazon, T-finance, and Elliptic datasets.

Due to their remarkable learning capabilities [10], [11],
graph neural networks (GNNs) [12], [13] have been developed
as prominent models to boost the efficacy of fraud detection
[5], [6], [14], [15]. In this line of work, fraud detection is
cast as a node classification problem, where GNN models are
designed to follow the message-passing paradigm, enabling the
propagation of information from labeled nodes to unlabeled
ones through the graph structure. Nevertheless, graphs used in
fraud detection commonly exhibit a natural imbalance among
labeled nodes due to the typical rarity of frauds. To put it into
perspective, we calculate and present the imbalance ratios (as
defined in Sec. II) of four real-world fraud detection datasets
(detailed in Sec. IV-A) in Fig. 1, where most of these ratios are
below 0.1, indicating that frauds are far less than legitimate
instances. Class imbalance is prevalent in fraud detection,
which, however, has rarely been considered by conventional
GNN models. When the GNN model is trained on imbalanced
labeled data, it is difficult to classify the instances in the
minority class as fraud, leading to biased predictions [16].

To mitigate the impact of class imbalance on GNN models,
many oversampling techniques have been tailored for imbal-
anced graphs, such as GraphSMOTE [17] and GraphENS [18].
These methods involve synthesizing nodes in the embedding
space and subsequently generating edges to connect them
with existing nodes [16]. Unfortunately, node embedding is
intricately linked with its neighborhood, while fraudsters tend
to establish relationships between fraudulent and legitimate



entities for camouflage and evasion [14]. This results in a
high degree of heterophily [19] for fraud nodes (illustrated in
Fig. 1 where most fraud detection datasets exhibit extremely
low homophily ratios), and their embeddings are significantly
smoothed by neighborhood aggregation using GNNs designed
for homophily [20]-[22], rendering the synthesized nodes
ineffective. Furthermore, synthesized edges may not accurately
represent real relationships between nodes due to constraints.
For example, on social networks, an account can only be
connected to others when the following request gets approved.
The addition of synthesized edges may inadvertently introduce
noise, potentially undermining the intended enhancement of
neighborhood information and diminishing the efficacy of
message passing and the resulting node embeddings.

To address these limitations, this paper introduces DOS-
GNN, which implements Dual-feature aggregation with Over-
Sampling to advance GNNs for class-imbalanced fraud detec-
tion on graphs. DOS-GNN proceeds by acquiring informative
and distinguishable node embeddings through homophilic and
heterophilic feature aggregation, and then employing an over-
sampling algorithm on these refined embeddings to exclusively
synthesize fraud nodes, achieving a balanced class distribution
for fraud detection. The leveraged node embeddings encode
both node features and graph structure, which eliminates the
necessity for edge synthesis.

Recent methods used to handle graph heterophily primarily
focus on adaptive message aggregation [19], which extracts
various signals from neighbors by training separate filters to
manipulate homophily and heterophily, and mixes the results
from these filters into a single vector as node embedding
at each neighborhood aggregation step [23]-[25]. This easily
leads to dissimilar features being overshadowed by similarities
and subsequently becoming too insignificant for further prop-
agation to higher orders. In contrast, DOS-GNN elaborates
a simpler yet more effective neighborhood aggregation to
avoid over-smoothing on minority node embeddings resulting
from heterophily. More specifically, each node preserves its
similar and dissimilar features as two separate vectors, and
enables dual-feature aggregation to absorb the corresponding
signals from neighbors through connection property (i.e., if the
edge connecting the target node and its neighboring node is
homophilic or heterophilic). By maintaining each node’s simi-
larities and dissimilarities locally without excessive smoothing
or compromise, these features can be effectively propagated to
other nodes with long-range associations. This mitigates the
impact of heterophily on graph learning, amplifies node em-
beddings and the subsequent oversampling, thereby improving
class-imbalanced fraud detection performance. In summary,
our major contributions are listed as follows:

e A novel oversampling paradigm is proposed for im-
balanced graphs in fraud detection, which exclusively
synthesizes fraud nodes on node embeddings without the
necessity for edge synthesis.

« A simple yet effective dual-feature aggregation is elabo-
rated to mitigate heterophily and enhance node embed-
dings that facilitate oversampling.

« Extensive experiments are conducted on four real-world
datasets, which demonstrate that DOS-GNN can achieve
state-of-the-art fraud detection performance on graphs
with different imbalance and homophily ratios.

II. PRELIMINARIES

Notations. A given fraud graph is denoted as G = (V, E, X),
where V(n = |V]) is the set of entities (e.g., accounts,
reviews, and transactions), E is the set of edges indicating
reciprocal links between entities, and X € R™*4 s the feature
matrix. Edges E can be further encoded as an adjacency matrix
A € R™ ™, The neighbors for v; is represented as N (v;) =
{v;|(vi,v;) € E)}. Each labeled node is associated with a
ground truth y € Y = {0 : legitimage, 1 : fraudulent}.

Graph Neural Networks. In this paper, fraud detection is
cast as node classification, which aims to learn a GNN model
fw : (A, X) — y where W is the model parameters and y is
the set of labels. Generally, GNN models enforce each node to
aggregate information from its neighbors and generate higher-
level node embedding [26]. This graph aggregation layer can
be defined in a form as follows:

HO = aggregate (H(lfl), A,W(l)) (1)

where H(=D and H® are the input and output for layer [
(I >1), WO is a learnable weight matrix, and HO = X.
The final output Z of GNNs with L layers can be computed
using a softmax function.

While GNNs can be applied under inductive and trans-
ductive settings, we focus on transductive inferences in this
paper where all node connections and features are accessible
during training. Also, different variants of GNN, such as GCN
[13], GAT [27], or others [12], [28], have different aggregation
mechanisms. In this respect, we use a GCN as the base model
fw(A,X) to facilitate the evaluation of DOS-GNN, which
aggregates neighborhood information by performing:

HO = o (AH”‘”W(”) )

where o is an activation function, A = ]f)_%A]f)_%, 1:& =
A +1, and D is the diagonal degree matrix defined on A.

Class Imbalance on Graphs. Fraud graphs exhibit a nature of
class imbalance due to the fact that fraudulent entities are often
rare. We define the imbalance ratio to quantify such nature to
better understand the data challenge for fraud detection on
graphs. Specifically, this imbalance ratio r; can be specified
on the labeled nodes as follows:

Definition 1 (Imbalance Ratio). Given a fraud graph G
where N,,inor represents the number of fraudulent entities
and Ny,qjor signifies the number of legitimate entities, the
imbalance ratio can be written as

N. minor

. _lmanor 3
" N, major ( )
Homophily and Heterophily. When generalizing to graphs,
homophily suggests that nodes tend to connect with others
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Fig. 2: Overview of our proposed model DOS-GNN for class-imbalanced fraud detection on graphs: the model proceeds with
feature separation to maintain each node’s similarities and dissimilarities locally without excessive smoothing or compromise,
which facilitates dual-feature aggregation to address heterophily and acquire fraud-specific embeddings; these embeddings are
used to perform oversampling to generate a balanced class distribution for fraud detection.

sharing similar features [21]. This paper focuses on homophily
in class labels [22], where a graph with good homophily
indicates that connected nodes share the same label with a
high probability. Accordingly, homophily ratio can be defined
as follows to quantify the degree of graph homophily:

Definition 2 (Homophily Ratio). Given a graph G, the
homophily ratio is the proportion of edges in G that connect
nodes sharing the same labels, which can be calculated as

o i) = (i, 5) € ENyw, = yo, }|
" [E]

In fraud graphs, we are more interested in homophily ratio
for minority (fraudulent) class to better understand the impact
of heterophily on fraud node oversampling. 7, can be further
constrained by

ry, = ‘{(Ui?vj):(vi’vj)EE/\yvi:yvj :1}| (5)

[{(vivy) : (01,0) € EA (g, = 1V g, = D]
Heterophily is the opposite of homophily to describe the
status of connected nodes belonging to different labels. Graphs
with high homophily have r;, — 1, while graphs with high
heterophily exhibit low homophily with r;, — 0.

“4)

III. PROPOSED MODEL: DOS-GNN

In this section, we present our proposed fraud detection
model DOS-GNN for technical details. Its overview is il-
lustrated in Fig. 2. DOS-GNN proceeds with dual-feature
aggregation to address heterophily and acquire fraud-specific
embedding, and oversampling in node embedding space to
generate a balanced class distribution for fraud detection.

A. Feature Separation

When a graph has low homophily ratio, conventional GNN
models that solely apply low-pass filters [29], [30] to aggre-
gate neighborhood features tend to smooth the outputs from
different classes and thus misclassify these nodes [24]. To
restore the discrimination capability in such graphs, GNN

models need to harness nodes’ surrounding dissimilarities,
which prompts the utilization of high-pass filters [31] to extract
the information of neighborhood differences and address het-
erophily [25]. Following this idea, different adaptive message
aggregation methods [23]-[25], [32] have been deployed to
train separate filters to extract similar and dissimilar signals
from neighbors to mitigate the impact of heterophily on
graph learning. Though these approaches extract dissimilarities
from neighbors, they are still mixed with similarities to be
compromised as a single feature vector; such straightforward
preservation may not be helpful for propagating dissimilarities
to higher-order nodes [33].

Since separating the similar and dissimilar signals from
node features provides a feasible way to deal with graphs
with different homophily ratios [23], we propose to preserve
these similarities and dissimilarities separately. Specifically,
we elaborate two distinct feature vectors for each node v € V'
to facilitate feature aggregation: similar feature vector hl,
and dissimilar feature vector h2. h} is used to aggregate and
preserve similar signals from neighborhood features, while h?
is used to preserve dissimilar signals extracted from neighbors.
In this respect, the representation for each node v € V' during
aggregation can be formalized as

For a given graph G, considering that dissimilarities are
not existing prior to feature aggregation, we initialize h,, as
h, = {X,, 0}, where h! = X, h?2 = 0, and X,, denotes the
original feature vector of node v. The feature aggregations on
h! and h? are performed separately as well, where either h}
or h? aggregates the corresponding features from neighboring
nodes based on their connection properties, which is detailed
in the subsequent section. Such a bi-vector feature setting
can address the aforementioned limitation to collaboratively
preserve local neighborhood similarities and dissimilarities,
and promote long-range information propagation, which, in



turn, boosts node representation expressiveness and model
discrimination power.

B. Dual-Feature Aggregation

1) Edge Identification: Dual-feature aggregations rely on
edge property specified by the labels of connected nodes,
which requires a priori knowledge across the whole graph.
However, this knowledge is not always available in real-world
fraud graphs, as most of nodes are not annotated. Therefore,
we need to introduce an edge identifier to discriminate if an
edge is homophilic or heterophilic. A traditional way is to
apply multi-layer perceptron (MLP) on the representations of
its connected nodes to learn edge identification probability.
Considering that node representations vary at each aggregation
layer, such a learning process would significantly increase
model complexity. Here we offer a simplified implementation
to reduce training effort. The edge identifier «;; for the edge
€v,v; reveals the association between nodes v; and v;, which
can be interpreted, in a simpler way, as a similarity measure
between them. In other words, ay;; at aggregation layer [ can
be calculated using a similarity metric:

a;; = sim(h{{"" h{~V) (7)

where a;; (0 < o5 < 1) is equivalent to a prediction score,
indicating how possible an edge e,,,, is homophilic.

To exclude large weight matrix updates and multiplications,
we borrow the idea of residual framework [34] to assemble all
weights into a single linear layer gw (-) with weight matrix W
that maps the original feature matrix X to a low-dimensional

feature matrix, which can be formulated as follows:

XO = gw(X) e R* k< d (8)
such that h, (v € V) is initialized as h, = {Xq, ,0}, where
h! = xO h? = 0. Afterwards, graph layers attend to
edge identification and feature aggregation without adding any
weighted operations.

2) Neighborhood Aggregation: The normalized adjacency
matrix A is generally considered a low-lass filter in GNNs
to retain the commonality of neighboring features [23], [30],
while T — A provides diversification operation that is con-
sidered as high-pass filter to extract neighborhood differences
[25]. This inspires us to directly employ the soft prediction of
edge identifier «;;; (0 < o3 < 1) instead of hard prediction
to perform dual-feature aggregation, which enables «;; and
1 — oy; to act like advanced dual filters that control the
number of similarities and dissimilarities from each neighbor
to be aggregated and accordingly refine node representations.
Formally, for a given node v;, the dual-feature aggregations
are implemented as follows:

hl® =o(hl (D4

1
Ly anttngq
|N(Uz)‘ v; EN(v;) ’

a)h2(-1y )

For node v; at layer [, h,, ’( ) aggregates neighboring features
and produces its new 51m11ar1ty feature vector, while h \
produces its new dissimilarity feature vector, both of Wthh
contribute to the new hidden representation. More specifically,
such a dual-feature aggregation absorbs the corresponding
signals from neighbors through connection property (i.e., if
the edge connecting the target node and its neighboring node
is homophilic or heterophilic):

e When o;; — 1, the edge is homophilic; thus more

similarities from hy’ (l b and less dissimilarities from
@

h12, J(l b would flow 1nt0 hv; and less similarities from
hl;(l_l) and more dissimilarities from hg;(l_l) would
flow into h ( )

e When «;; —> O, the edge is heterophilic; then the dual
aggregations would be proceeded in the opposite manner.

In other words, less similarities from h (=1) and more

dissimilarities from h (l b would ﬂow into hy; ’(l) and

(=1 and less dlss1m11ar1t1es

2,(1)

more similarities from h

2(z 1)

from hj would flow into h;;

By leveraglng dual-feature aggregations, features contributing
to the node’s ground truth can be effectively preserved in hl,
while features correlated to other classes can be explicitly
saved in h? to support higher-order information enhancement,
where heterophily can barely impact on the outputs from
different classes.

C. Oversampling in Node Embedding Space using SMOTE

After L-layer dual-feature aggregations on the initial graph,
H"(5) and H*(") are further concatenated to form the refined
node embeddings H, which is then utilized to synthesize new
fraudulent entities to balance class distribution. As the refined
node embeddings H encode both node features and graph
structure, edge synthesis becomes unnecessary. This not only
simplifies the oversampling operation but also prevents the
introduction of noisy node connection information. Due to
its popularity and performance in oversampling, we deploy
SMOTE as our oversampling algorithm [35]. Given node
embeddings H, for a fraud node v; and a randomly selected
fraud node v; from v;’s nearest neighbors, their embeddings
are specified as h,, and h,;. Accordingly, a new fraudulent
entity can be synthesized as follows:

s=h, +dt, —h,) (11)
where s is a synthesized node embedding and ¢ is a random
variable ranging from O to 1. Since both h,, and hq,j are
fraud nodes, s equalizes the same class distribution. In this
way, we can oversample m fraud nodes S € R™*F that are
integrated with initial labeled nodes H € R™** for fraud
detector training.



Algorithm 1: DOS-GNN: Dual-feature aggregations
with over-sampling for class-imbalanced fraud detec-
tion on graphs.

Input: G = (V, E,X): a fraud graph with feature
matrix X and adjacency matrix A; L: number
of layers in the GNN model; Tonn, Tinip:
training epochs for GNN and MLP models.

Output: f: class-imbalanced fraud detection model.

// GNN model training:

for each epoch t < Tg,, do

Initialize H"(®) = X and H>(©) = 0;

for each layer 0 <1 < L do
Calculate H>(®) using Eq. (9);
Calculate H>(®) using Eq. (10);

end

Calculate H = HL() ||H2(1);

Calculate Z on H using linear layer;

Calculate Ly, from Z using Eq. (13);

Update model parameters by minimizing Lgns;

end
// MLP model training:
Extract H from the trained GNN model,;
Synthesize fraud samples S from H using Eq. (11);
Construct X’ by concatenating S and H;
for each epoch t < T, do

Calculate Ly, using Eq. (14);

Update model parameters by minimizing Lpp;
end

D. Loss Optimization

DOS-GNN first trains a GNN model on the provided
fraud graph G for dual-feature aggregation to acquire node
embeddings facilitating oversampling, and subsequently trains
a MLP model on the integrated embeddings X’ for fraud
detection, which can be derived by concatenating the initial
labeled nodes H and the synthesized fraud nodes S:

X' =S||H, X' e R(mtmxk (12)

where || represents the concatenation operation. The former
training formulates a cross-entropy loss L, between predic-
tions and ground truth of initially labeled nodes, which can be
formulated as follows:
1 n

Lom = —— ;y log Z; (13)
where Z is the final output of the GNN model with L layers
that can be calculated as Z = softmax(H()), and n is the
number of initially labeled nodes with the label vector y.
The latter training leads to another cross-entropy loss Ly,
between predictions and labels of both initial annotated nodes
and synthesized nodes, which is formulated as:

n+m

1 , ,
Loy = . ; y}log Z! (14)

TABLE I: Statistics of the datasets (Hom. Ratio reports 7, for
minority class)

Dataset  #Nodes  #Edges #Features Imb. Ratio Hom. Ratio
Amazon 11,944 4,398,392 25 0.07 0.04
YelpChi 45,954 3,846,979 32 0.17 0.10
T-finance 39,357 42,445,086 10 0.05 0.30
Elliptic 203,769 234,355 166 0.02 0.12

where Z' is the final output of the MLP model and y’
is the label vector for both the initial labeled nodes and
the synthesized fraud nodes. The respective model weights
can be updated by minimizing Len, and Ly, using Adam.
Algorithm 1 illustrates the full steps of DOS-GNN for class-
imbalanced fraud detection.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the performance of DOS-GNN
on four real-world fraud detection datasets to answer the
following research questions:

« RQ1: How does DOS-GNN perform compared with
state-of-the-art GNN models in fraud detection tasks?

« RQ2: How do different model parameters impact on the
performance of DOS-GNN?

« RQ3: How do different components contribute to the
performance of DOS-GNN?

A. Experiment Setup

Datasets. We evaluate DOS-GNN on four real-world fraud
detection datasets with extremely low imbalance ratios and
low homophily ratios for the minority class:

o YelpChi [36]: This dataset identifies anomalous reviews
on Yelp.com that promote or demote products or busi-
nesses. It features a graph with three types of edges: R-
U-R, R-S-R, and R-T-R.

« Amazon [37]: This dataset detects users who are compen-
sated to write counterfeit reviews for musical instruments
on Amazon.com. It includes three types of relations: U-
P-U, U-S-U, and U-V-U.

o T-finance [38]: This dataset identifies anomalous user
accounts within transaction networks. Node features in-
clude registration duration, login activities, and inter-
action rates, while edges signify transactional account
interactions.

« Elliptic [39]: The dataset categorizes Bitcoin transactions
into legal entities (e.g., wallet providers and miners) and
illegal entities (e.g., scams, malware, and terrorists). It is
structured as a graph where nodes are transactions and
edges represent the flow of Bitcoin.

We use 40%-30%-30% data-split across all four datasets to
train, validate, and test models, respectively. The data statistics
are summarized in Table I. In the experiments, all relationships
in YelpChi and Amazon datasets are considered the same to
align with homogeneous GNNs. The timestamp in the Elliptic
dataset is excluded from data splitting and removed before
being fed into the model.



TABLE II: Comparison of different Fraud Detection methods (%) on benchmark datasets. Some GNN models are highlighted:
bold statistics denote the best results. OOM indicates that the machine runs out of memory before the algorithm terminates.

Dataset Amazon YelpChi T-Finance Elliptic
AUC F1 AUC F1 AUC F1 AUC F1
GCN 74.34 67.47 52.47 54.31 64.43 70.74 90.47 83.13
GAT 75.16 83.18 56.24 54.64 73.00 53.86 63.87 47.43
GIN 80.56 69.26 74.09 62.85 80.02 65.23 93.71 88.78
GraphSAGE 75.27 74.17 54.00 65.49 67.12 52.71 94.35 89.04
JKGCN 89.63 72.52 80.74 59.75 93.92 85.39 93.60 85.98
GPRGNN 92.79 85.47 81.03 65.46 94.25 87.73 94.49 89.71
GraphENS 80.01 52.81 60.12 47.63 OOM OOM 83.43 51.35
GraphSMOTE 90.79 88.36 76.74 65.22 OOM OOM 91.46 86.81
Graph-Consis 87.41 75.12 69.83 58.70 91.42 73.46 93.93 89.28
PC-GNN 95.86 89.56 79.87 63.00 91.23 63.18 94.39 91.02
Care-GNN 89.73 86.39 75.70 63.32 92.16 77.55 94.12 90.55
DOS-GNN 96.55 92.10 81.15 70.46 96.01 88.53 96.32 92.75
Baselines. We select 11 different models as our baselines, . R 95.0% fp/zx
which include four conventional GNNSs, two heterophily-wise ) s0.0%
GNNs, and five advanced models for imbalanced graphs or oo — o e
fraud detection, which are briefly introduced as follows: 85.0% T 85.0% e
o GCN [13]: The vanilla GCN model applies convolution  890% - Ellptic 80.0% ~8- Eliptic
operation to graph data. 75.0% 75.0%
10 20 30 40 50 60 70 0.2 0.4 0.6 0.8 1.0

e GAT [27]: GAT introduces the attention mechanism to
GNN for feature aggregation.

o GIN [40]: GIN uses a more complicated aggregation
method to make GNN more powerful.

o GraphSAGE [12]: GraphSAGE samples from node
neighbors and aggregates their embeddings.

o« JKGCN [41]: JKGCN combines learned embeddings at
each model layer to generate the final node embeddings.

« GPRGNN [42]: GPRGNN combines generalized PageR-
ank techniques with GNNs to overcome heterophily.

o GraphENS [18]: GraphENS is an augmentation method
that synthesizes ego networks for generated minor nodes.

o GraphSMOTE [17]: GraphSMOTE synthesizes more
nodes and related edges for minority class nodes.

¢ Graph-Consis [43]: Graph-Consis utilizes context em-
bedding, neighbor sampling, and relation attention for
fraud detection tasks.

o PC-GNN [44]: PC-GNN uses samplers to construct sub-
graphs and sample from neighborhood for aggregation.
¢ Care-GNN [14]: Care-GNN uses a special mechanism to

select informative neighbors for aggregation.

Some of the reported results in this paper are taken from
their original papers.

Implementation Details. The number of aggregation layers
L for the feature extraction model is set to 2 for DOS-GNN.
All models are trained for 2,000 epochs with a patience of
200 using Adam optimizer with learning rate {r = 0.01 and
5e — 4 L2 regularization. sim(-) used in edge identification is
cosine similarity and the size of hidden units is explored within
k € {16,32,64}. AUC (Area Under the Receiver Operating
Characteristic Curve) and F1-Macro are the primary evaluation
metrics to provide insight into a model’s effectiveness on class-
imbalanced fraud detection. The MLP model consists of 2

Hidden Layer Size Sampling Ratio
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Fig. 3: Impact of parameters on DOS-GNN: (a) AUC of DOS-
GNN using different hidden layer sizes; (b) AUC of DOS-
GNN using different oversampling ratios.

layers, and the oversampling ratio is searched within the range
of {0.25,0.5,0.75,1.0}.

B. Comparison with State-of-the-Art Baselines

In this section, we would like to answer RQ1 to evaluate
the effectiveness of DOS-GNN for class-imbalanced fraud
detection on graphs by comparing our model with 11 se-
lected baselines over four different public fraud datasets. The
comparative results are reported in Table II. From Table II,
traditional GNN models exhibit poor performance in class-
imbalanced fraud graphs. In contrast, advanced models de-
signed for addressing heterophily, imbalanced data, or fraud
detection show significant improvement in detection perfor-
mance, due to their enhancement in handling heterophilic
neighborhood and class imbalance, preventing fraud nodes
from being overshadowed by a large number of legitimate
nodes. Even so, our proposed DOS-GNN still manages to
advance the state-of-the-art performance to a higher level.
Compared to the best results of traditional GNN models, DOS-
GNN improves the AUC and F1 by 15.99% and 9.08% for
Amazon, 4.95% and 3.94% for YelpChi, 15.99% and 17.79%
for T-Finance, and 1.97% and 3.71% for Elliptic. Compared
to the best results of models for heterophily, imbalanced data,
or fraud detection, DOS-GNN further improves the AUC and
F1 by 1.37% and 2.83% for Amazon, 0.14% and 7.63% for
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Fig. 4: Visualization of node embeddings: (a) Amazon processed by GCN, (b) Amazon processed by DOS-GNN, (c) T-finance

processed by GCN, (d) T-finance processed by DOS-GNN.

YelpChi, 1.86% and 0.91% for T-Finance, and 2.04% and
1.90% for Elliptic.

In summary, DOS-GNN achieves state-of-the-art perfor-
mance across all four public benchmarks and outperforms the
leading GNN models. This comparative study confirms that
the combination of local feature separation and dual feature
aggregation can extract, preserve, and propagate similar and
dissimilar features effectively, which thus boosts node embed-
dings and model discrimination capability. The refined node
embeddings can further facilitate oversampling of fraudulent
entities to create a balanced class distribution, which, in turn,
enables the training of an unbiased detector to effectively
identify frauds across various types of networks.

C. Parameter Evaluation

In this section, we further analyze the impacts of parameters
to answer RQ2. The performance of DOS-GNN can be
potentially affected by the hidden layer size and oversampling
ratios. The experimental results are reported in Fig. 3. It can
be observed that different parameters contribute to slightly
different results. More specifically, DOS-GNN achieves the
best performance with hidden layer sizes 32, 16, 32, and
64 on Amazon, YelpChi, T-finance, and Elliptic, respectively.
This is not surprising given that the initial feature vector
sizes for YelpChi, T-finance and Amazon are 32, 10, and
25 respectively. Providing a hidden layer size larger than the
initial feature length is not likely to generate more informa-
tive node embeddings, but might have increased the chance
of overfitting. The best sampling ratios for DOS-GNN are
1.0, 0.5, 0.75, and 1.0 for Amazon, YelpChi, T-finance, and
Elliptic. Overall, these fluctuations are relatively small, which
implies that our model exhibits a high degree of stability across
various parameter settings.

D. Ablation Study

In response to RQ3, we set up the ablation study to investi-
gate how different components contribute to the performance
of our model. We investigate the two components in our
model design: due-feature aggregation and oversampling. As
illustrated in Table III, both components contribute to the
performance of DOS-GNN. Among these two components, the
dual-feature aggregation contributes the most to DOS-GNN.
Even without oversampling on the learned node embeddings,
the performance of standalone dual-feature aggregation model

TABLE III: Evaluation on model components in terms of AUC
(%): Dual-Feature Aggregation (DFA) and Oversampling (OS)

GCN | DFA | OS || Amazon YelpChi T-Finance Elliptic
v 74.34 52.47 64.43 90.47
v v 83.28 77.25 87.61 91.56

v 91.59 71.89 94.13 93.35
v v 96.55 81.15 96.01 95.43

achieves a performance boost of over 20% on Amazon,
YelpChi, and T-finance from GCN. Utilizing oversampling
provides further improvements for both GCN and DFA-based
GNN, while the improvement range of [2%, 7%] on all datasets
for DOS-GNN is more significant. This outcome aligns with
our expectations. The core functionality of DOS-GNN relies
on the collaboration of dual-feature aggregation and oversam-
pling to alleviate the impact of class imbalance on graphs.

E. Case Study

To validate our claim that DOS-GNN provides more dis-
tinguishable node embeddings in graphs on fraud datasets,
we present a brief case study to showcase the difference
between embeddings generated by GCN and DOS-GNN. Due
to page limit, here we only present results on two datasets,
Amazon and T-finance. We map node embeddings into a two-
dimensional space using t-SNE, and the resulting embeddings
are visualized in Fig. 4. For Amazon, GCN fails to generate
clear clusters between fraud and non-fraud points and suffers
from fuzzy boundaries (Fig. 4(a)); in contrast, DOS-GNN
exhibits better-distinguished boundaries with higher cohesion
(Fig. 4(b)). For T-finance, GCN again fails to generate any
associations with fraud points being scattered among legiti-
mate points (Fig. 4(c)), while DOS-GNN forms clear bound-
aries and redistributes the nodes, making them further apart
(Fig. 4(d)). These observations reaffirm the effectiveness of
DOS-GNN in learning more distinct node embeddings for
synthesized node generation and fraud detection.

V. CONCLUSION

In this paper, we introduce a new model DOS-GNN for
fraud detection. DOS-GNN employs feature separation and
dual feature aggregation guided by edge identification to better
preserve and propagate both similarities and dissimilarities for
each node and refine node embeddings, and oversampling on



the refined node embeddings to further mitigate the effect
of data imbalance. Evaluation through extensive experiments
demonstrates that our model achieves state-of-the-art perfor-
mance, which affirms its effectiveness in class-imbalanced
node classification, superiority over baselines, and practical
significance in handling fraud detection tasks on graphs.
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