

1 **Hornworts reveal a spatial model for pyrenoid-based CO₂-concentrating mechanisms**
2 **in land plants**

3
4 Tanner A. Robison^{1,2}, Zhen Guo Oh², Declan Lafferty¹, Xia Xu¹, Juan Carlos A. Villarreal³,
5 Laura H. Gunn^{2*}, Fay-Wei Li^{1,2*}

6
7 ¹ Boyce Thompson Institute, Ithaca, NY 14853, USA

8 ² Plant Biology Section, Cornell University, Ithaca, NY 14853, USA

9 ³ Department of Biology, Laval University, Quebec City, QC, Canada

10 *Corresponding authors

11
12 **ABSTRACT**

13
14 Pyrenoid-based CO₂-concentrating mechanisms (pCCMs) turbocharge photosynthesis by
15 saturating CO₂ around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their
16 closer relationship to crops, hornworts could offer greater translational potential compared to the
17 green alga *Chlamydomonas*, the traditional model for studying pCCM. Here we report the first
18 thorough investigation of a hornwort pCCM using the emerging model *Anthoceros agrestis*. The
19 pyrenoids in *A. agrestis* exhibit liquid-like properties similar to *Chlamydomonas*, but differ by
20 lacking starch sheaths and being enclosed by multiple thylakoids. We found that the core pCCM
21 components in *Chlamydomonas*, including BST, LCIB, and CAH3, are conserved in *A. agrestis*
22 and likely have similar functions based on their subcellular localizations. Therefore, the
23 underlying chassis for concentrating CO₂ might be shared between hornworts and
24 *Chlamydomonas*, and ancestral to land plants. Our study presents the first spatial model for
25 pCCM in a land plant, paving the way for future biochemical and genetic investigations.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43 **MAIN**

44 Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the carbon-fixing enzyme, is the
45 gatekeeper for virtually all biologically available carbon. Despite its central importance in global
46 primary productivity, Rubisco is considered to have two major limitations: a low rate of activity
47 and poor specificity for carbon dioxide (CO_2) ¹. Photosynthetic organisms have largely
48 overcome the first of these limitations by simply making more of the enzyme, so much so that
49 Rubisco is considered to be the most abundant enzyme in the biosphere ². Rubisco's poor
50 specificity means that it can also react with oxygen (O_2), resulting in photorespiration which
51 costs energy and leads to the net loss of fixed CO_2 ^{3,4}.

52 To reduce photorespiration, some plants have evolved systems to concentrate inorganic
53 carbon (Ci) around Rubisco (called CO_2 -concentrating mechanisms; CCM), either through
54 biophysical or biochemical means ⁵. Biochemical CCMs (C_4 or CAM photosynthesis) use
55 enzymatic pathways to concentrate carbon, either in vacuoles or in bundle sheath cells.
56 Biophysical CCMs, seen in cyanobacteria, algae, and hornworts, concentrate Ci in subcellular
57 compartments (pyrenoids or carboxysomes) where Rubisco is highly abundant ⁶.

58 The model organism for studying pyrenoid-based CCM (pCCM) is the green alga
59 *Chlamydomonas reinhardtii*. *Chlamydomonas* pyrenoids are a liquid-like proteinaceous
60 compartment whose phase separation is mediated by the interaction of Rubisco and the linker
61 protein EPYC1 ⁷⁻⁹. In the algal pCCM, a series of Ci channels, such as LCI1, LCIA, and
62 bestrophin channels (BST), facilitate Ci transport from the extracellular space into specialized
63 thylakoid tubules ¹⁰. These tubules traverse pyrenoids and contain a specific carbonic
64 anhydrase (CA), CAH3. This CA catalyzes the conversion of bicarbonate (HCO_3^-) into CO_2 ,
65 which can freely diffuse out of the thylakoid tubules and into the pyrenoid. A starch sheath
66 surrounds pyrenoids and might function as a CO_2 diffusion barrier to enhance the efficiency of
67 the CCM ^{11,12}. Another CA, LCIB, localizes around the gaps of the starch sheath to recapture
68 leaked CO_2 by converting it back to HCO_3^- . Recent modeling work suggests that a minimally
69 functional pCCM requires the joint operation of BST, LCIB, and CAH3 (or the equivalent
70 thereof), in addition to a pyrenoid enclosed by diffusion barriers ¹³.

71 Installing a pCCM into crop plants may boost CO_2 fixation by as much as 60% ^{4,14,15}.
72 However, transplanting an algal CCM into land plants is complicated by the fact that around one
73 billion years of evolution separate these lineages ¹⁶, over which time significant differences have
74 accumulated in chloroplast structure and protein sequences. On the other hand, hornworts, a
75 group of bryophytes (Fig. 1A,B), are the only known land plants with a pyrenoid or biophysical
76 CCM of any kind ¹⁷⁻¹⁹. Hornwort pyrenoids are functionally analogous to algal pyrenoids, acting
77 as a locus of Rubisco accumulation, and the focal point of the pCCM ^{17,18,20}. Characterizing the
78 land plant pCCM may provide significant translational advantages. However, virtually nothing is
79 known about the functional components enabling a pCCM in hornworts.

80 In this study, we characterized the morphology and physical properties of hornwort
81 pyrenoids, as well as proteins involved in the pCCM, using the emerging model hornwort
82 *Anthoceros agrestis* ²¹⁻²³. Diffusion properties of fluorescently tagged proteins and live-cell
83 imaging indicate that *A. agrestis* pyrenoids are liquid-like, similar to the *Chlamydomonas*
84 pyrenoid. Putative CCM components for protein subcellular localization studies were selected
85 by leveraging both Rubisco co-immunoprecipitation (co-IP) and 41 genomes spanning plant and
86 algal diversity. We found that hornworts possess orthologs of several core pCCM components

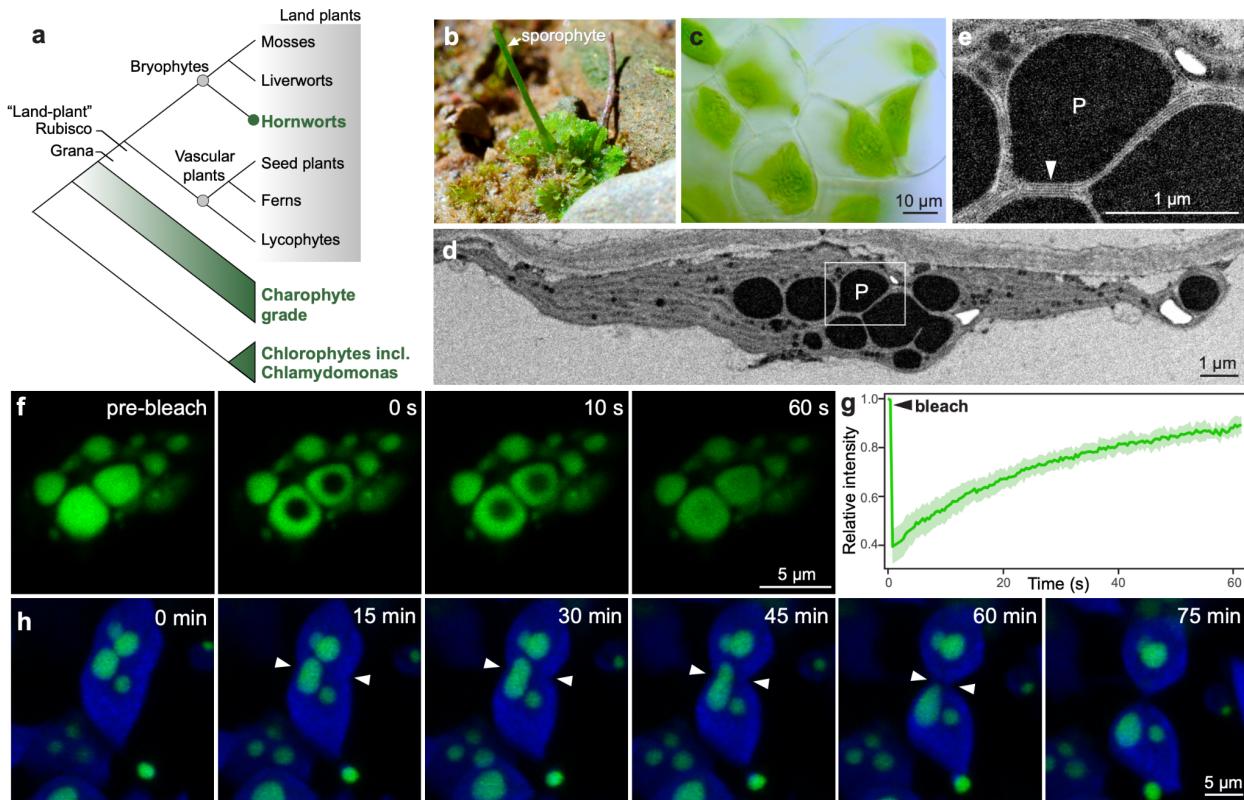
87 from Chlamydomonas, and provide evidence for shared functional roles. We thus infer that the
88 chassis for pCCM was present in the last common ancestor of land plants. Comparative
89 genomics and co-IP did not reveal any clear EPYC1 homolog or analog, implying that hornworts
90 might have adopted a different strategy for pyrenoid formation. Based on our findings, we
91 propose the first spatial model for a land plant pCCM, which is consistent with reaction-diffusion
92 modeling for a functional pCCM, and set the stage for future biochemical and genetic
93 investigation.

94

95

96 RESULTS

97 **A. agrestis contains multiple pyrenoids that are not enclosed by starch sheaths**


98 We first characterized the morphology of *A. agrestis* pyrenoids using transmission electron
99 microscopy (TEM). Compared to other hornwort species^{17,20}, *A. agrestis* pyrenoids are slightly
100 larger in size, with a diameter ranging from 500 nm to 5 μ m (Fig. 1c-e; Supplementary Fig. 1). *A.*
101 *agrestis* (and hornworts in general) have multiple pyrenoids per chloroplast, though the number
102 of which appears to be highly variable (Fig. 1c,d; Supplementary Fig. 1). This pattern differs
103 from the singular pyrenoid found in most algal species including Chlamydomonas²⁴. Further, we
104 found a clear lack of any kind of starch sheath surrounding the pyrenoids of *A. agrestis* (Fig.
105 1d,e), which in Chlamydomonas is believed to act as a critical diffusion barrier to prevent CO₂
106 leakage^{11,12}. While no starch sheath is present, *A. agrestis* has many layers of stacked
107 thylakoids wrapping around the pyrenoids (Fig. 1e; white arrowhead). Such stacked thylakoids
108 might be sufficient to prevent CO₂ leakage, as suggested by recent modeling of the
109 Chlamydomonas pCCM¹³.

110

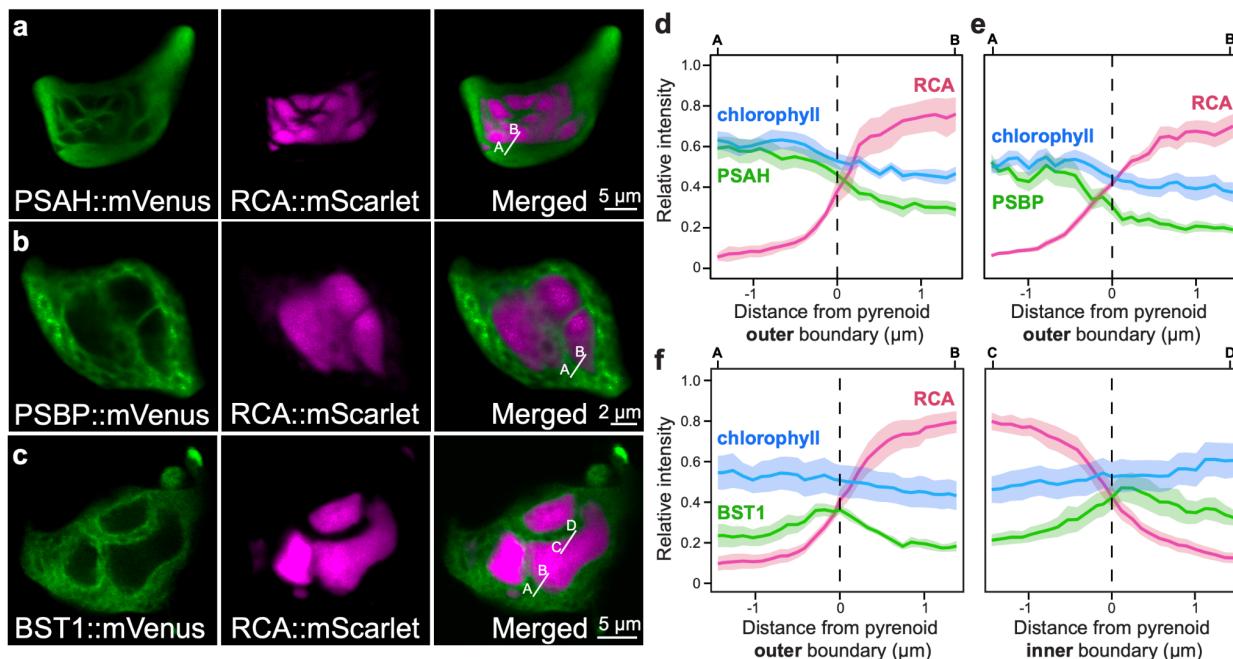
111 **A. agrestis pyrenoids are liquid-like**

112 While we have previously demonstrated that the pyrenoids of *A. agrestis* are the sites of
113 Rubisco accumulation²³, the physical properties of these organelles have not been
114 investigated. Chlamydomonas pyrenoids are known to be liquid-like in nature, whereas the
115 pyrenoids of the diatom *Phaeodactylum tricornutum* exhibit much less internal mixing²⁵. To infer
116 the physical properties of *A. agrestis* pyrenoids, we applied the fluorescence recovery after
117 photobleaching (FRAP) technique on our stable transgenic line expressing Rubisco activase
118 (RCA) tagged with mVenus. RCA was previously shown to co-localize with Rubisco in *A.*
119 *agrestis*²³, and can thus be used as a pyrenoid marker. We found that the mVenus signal
120 exhibited a rapid recovery ($t_{1/2} = 16.2$ s) post photobleaching (Fig 1f,g). The unbleached region
121 equilibrates with the bleached region of the same pyrenoid within 60 s (Fig. 1f,g), suggesting
122 high levels of internal mixing. Furthermore, live cell imaging of dividing chloroplasts in the same
123 RCA::mVenus line demonstrated elongation of a pyrenoid as it is being pulled to one of the
124 daughter cells, again suggesting that *A. agrestis* pyrenoids are liquid-like (Fig. 1h, Movie S1).

125

126
127 Figure 1. **Morphology and physical property of pyrenoids in *Anthoceros agrestis*.** (a) Hornworts are
128 the only land plants that have a pCCM. Compared to Chlamydomonas, hornworts and crop plants share
129 more common features in their chloroplast and Rubisco structures. (b) The model hornwort *Anthoceros*
130 *agrestis* in native habitat. (c) *A. agrestis*, like many other hornwort species, has a single chloroplast per cell.
131 (d) TEM image of an *A. agrestis* chloroplast with multiple pyrenoids, P. (e) A close-up view of a pyrenoid
132 from (D). The arrowhead points to a stack of thylakoid membranes encasing the pyrenoid. (f) FRAP of
133 hornwort pyrenoids labeled with RCA::mVenus. Photobleaching was targeted at the center of two selected
134 pyrenoids. (scale bar, 5 μ m.) (g) FRAP recovery curve. Error bars represent standard error of the mean
135 (SEM) and are shown as the green shaded area (n=6). (h) Time-lapse images during cell division, showing
136 signals of chlorophyll autofluorescence (blue) and RCA::mVenus fluorescence (green) over 75 mins. The
137 cell division plane is demarcated with white arrowheads. (scale bar, 5 μ m.)

138


139

140 **Photosystems I and II are both in close proximity to pyrenoids**

141 Given the tight association between thylakoids and pyrenoids in hornworts (Fig. 1d,e), we next
142 examined how thylakoids are distributed across the chloroplasts of *A. agrestis*, especially
143 whether there was differential localization of Photosystem I (PSI) and Photosystem II (PSII)
144 relative to the pyrenoids. It is thought that in hornworts PSII localizes mainly to the grana, while
145 PSI has a more ubiquitous distribution including in the channel thylakoids^{20,26}. The evidence
146 supporting this claim is, however, limited. To visualize PSI and PSII distribution, we transiently
147 expressed fluorescently tagged Photosystem I reaction center subunit VI (PSAH) and Oxygen-
148 evolving enhancer protein 2 (PSBP), respectively, in *A. agrestis* using a biolistics transformation
149 approach²³.

150 In agreement with TEM images (Fig. 1d,e), confocal imaging of tagged PSAH and PSBP
 151 showed a tight association between thylakoids and pyrenoids (Fig. 2a,b; Supplementary Fig. 2).
 152 Pyrenoids are almost entirely enveloped by thylakoids (Fig. 2a,b), and both PSI and PSII
 153 localize in the membranes directly adjacent to the pyrenoids (Fig. 2a,b, d,e). Consistent with
 154 previous reports²⁰, PSI is uniformly distributed across the thylakoid network in hornworts, so
 155 much so that the signal is only absent in pyrenoid bodies (Fig. 2a; Supplementary Fig. 2).
 156 Localization of PSII appears to be less uniform than PSI, with gaps as well as smaller regions of
 157 much higher intensity, likely grana, scattered throughout the chloroplast (Fig. 2b; Supplementary
 158 Fig. 2).

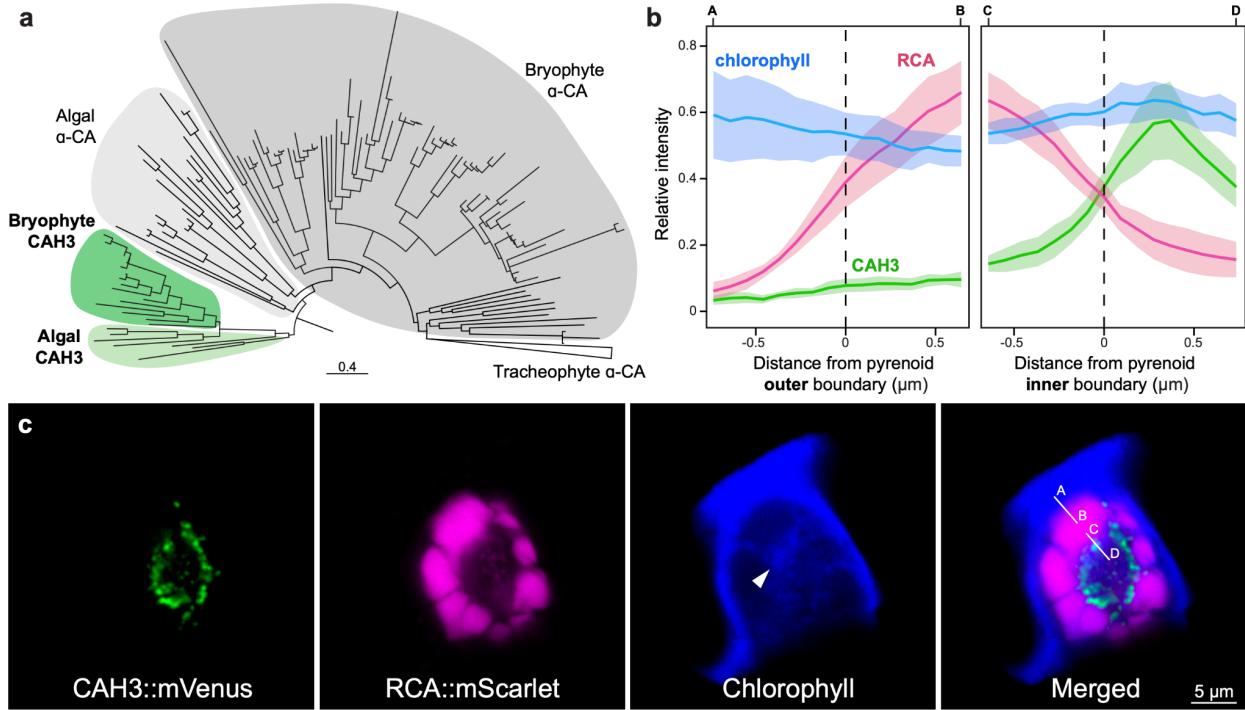
159
 160

161
 162 **Figure 2. Distribution of photosystems and BST channels on thylakoids of *A. agrestis*.** (a)
 163 Photosystem I (marked by PSAH::mVenus) and (b) photosystem II (marked by PSBP::mVenus) are
 164 distributed throughout the thylakoid network. (scale bar, 2 μ m.) (c) BST1::mVenus has elevated fluorescent
 165 signals on the thylakoids immediately adjacent to pyrenoids. (scale bar, 5 μ m). The fluorescent intensities
 166 of (d) PSAH::mVenus and (e) PSAH::mVenus decline along the transects going into pyrenoids (white lines
 167 in a and b). (f) Quantification of elevated BST1::mVenus fluorescent signals around pyrenoids (white lines
 168 in c). RCA::mScarlet was used as a pyrenoid marker. Error bars represent SEMs and are shown as shaded
 169 areas in each curve (n = 10, 11, and 7 for BST, PSII, and PSI, respectively).

170
 171

172 Bestrophin channels localize to thylakoids adjacent to pyrenoids

173 A biophysical CCM in eukaryotes requires the presence of thylakoid membrane channels to
 174 allow HCO_3^- to enter the thylakoid lumen. In Chlamydomonas, a number of bestrophin channels
 175 (BST) fill this role²⁷. There are four Chlamydomonas BST orthologs in the *A. agrestis* genome,
 176 but only one, BST1, is expressed abundantly (Supplementary Table 1). Fluorescent protein
 177 tagging indicated that BST1 in *A. agrestis* was distributed throughout the thylakoid network, but


178 exhibited elevated fluorescence intensity immediately adjacent to the pyrenoids (Fig. 2c,f;
179 Supplementary Fig. 3). This pattern is in contrast to that of PSAH and PSBP, where the
180 fluorescence intensities continuously decline going into pyrenoids (Fig. 2d,e). The localization of
181 *A. agrestis* BST1 is similar to what was reported in *Chlamydomonas*²⁷, and implies that BST1
182 likely has the same function in hornworts, transporting HCO_3^- to thylakoid lumen.
183

184 **β -CA1 localizes to the cytoplasm**

185 We next examined the localization of several carbonic anhydrases (CA) in *A. agrestis*. There
186 are three known CA families in land plants (α , β , and γ), which catalyze the reversible hydration
187 of CO_2 to HCO_3^- ²⁸. While hornworts possess multiple CAs, we focused on three— β -CA1,
188 CAH3, and LCIB—that have high potential to influence pCCM. β -CA1 is the second most
189 abundant protein in plants after Rubisco and is typically located in the chloroplast stroma²⁹.
190 However, the presence of a CA in the stroma, and specifically the pyrenoid matrix, in hornwort
191 chloroplasts would likely convert CO_2 into HCO_3^- , thus decreasing the availability of CO_2 for
192 Rubisco and short circuiting the pCCM. The β -CA1 in *A. agrestis*, unlike the orthologs in C₃
193 plants, lacks a predicted chloroplast transit peptide. Fluorescently tagged *A. agrestis* β -CA1
194 confirmed the cytoplasmic localization (Supplementary Fig. 4). This absence of a diffuse stromal
195 β -CA in *A. agrestis* is consistent with models of a pCCM¹³ and reinforces that the relocalization
196 of stromal CAs to cytoplasm is a key step toward engineering CCMs in crop plants³⁰.
197

198 **CAH3 localizes to the space between pyrenoids**

199 While a stroma-localized CA would prohibit pCCM function, treatment with a CA inhibitor
200 (ethoxzolamide) greatly decreased the rate of photosynthesis and significantly increased the
201 CO_2 compensation point of hornworts, but not liverworts³¹, demonstrating that a CA is required
202 for hornwort pCCM. In *Chlamydomonas*, CAH3 is located in thylakoid tubules, which form a knot
203 in the center of the pyrenoid^{32–34}. *Chlamydomonas* CAH3 converts luminal HCO_3^- to CO_2 ,
204 allowing for diffusion of CO_2 across the thylakoids and into the pyrenoid space. We discovered
205 that the genomes of hornworts and some other bryophytes possess orthologs of the
206 *Chlamydomonas* CAH3 gene, while vascular plants appear to have lost it (Fig. 3A;
207 Supplementary Fig. 5). *A. agrestis* CAH3 is abundantly expressed, and retained not only the
208 three critical histidine residues at the active site³⁵, but also the luminal transit peptide
209 (Supplementary Fig. 6, Supplementary Table 1). Importantly, we found that fluorescently tagged
210 *A. agrestis* CAH3 formed puncta localized to the periphery of pyrenoids, concentrated adjacent
211 (<500 nm) to the most interior side of the pyrenoids (Fig. 3b,c; Supplementary Fig. 6; see Movie
212 S2 for Z-stack). CAH3 thus appears to be at the center of the chloroplast and in the space
213 between pyrenoids. This localization pattern supports CAH3's role in supplying CO_2 to the
214 surrounding pyrenoids in the hornwort pCCM.
215

216
217 **Figure 3. Pyrenoids are organized around CAH3 in *Anthoceros agrestis*.** (a) Phylogeny of α-CA
218 including CAH3. Orthologs of Chlamydomonas CAH3 can be found in hornworts and other bryophytes
219 (shaded in green), but were lost in vascular plants. (b) CAH3::mVenus fluorescence intensity spikes at the
220 interior side of pyrenoids (white lines in c). Error bars represent SEMs and are shown as shaded areas in
221 each curve (n=10). (c) Example images of a cell co-transformed with CAH3::mVenus (green) and
222 RCA::mScarlet (magenta). Chlorophyll autofluorescence is shown in blue. White arrowhead points to the
223 central thylakoid knot. The Z-stack series can be found in Movie S2. (scale bar, 5 μm.)
224
225

226 **LCIB localizes to the chloroplast membrane**

227 Another CA crucial to Chlamydomonas pCCM is LCIB^{36,37}, which localizes to the periphery of
228 Chlamydomonas pyrenoids under low CO₂ conditions to recapture leaked CO₂ from pyrenoids
229³⁸. LCIB orthologs are present in hornworts with conserved residues for coordination of Zn²⁺ ion
230 and catalysis²¹. Apart from hornworts, no LCIB homolog has been identified in other land plant
231 genomes²¹. This exclusive presence of LCIB in pyrenoid-bearing algae and hornworts suggests
232 that LCIB may have a role in hornwort pCCMs. We discovered that, unlike LCIB in
233 Chlamydomonas, fluorescently tagged *A. agrestis* LCIB did not localize to the immediate
234 pyrenoid periphery, but instead to the edge of the chloroplast (Supplementary Fig. 7). To
235 interrogate this pattern further, we co-localized LCIB::mVenus with mScarlet tagged TIC40,
236 which is a known component of the inner chloroplast membrane³⁹. The fluorescence of
237 LCIB::mVenus and TIC40::mScarlet clearly overlapped (Fig. 4), thus supporting that LCIB is
238 indeed membrane-bound.

239 There are several reasons why the membrane-localized LCIB in *A. agrestis* is logical. In
240 Chlamydomonas, LCIB localization to the starch sheath is likely mediated by its homolog LCIC
241³⁸. Hornworts neither have starch sheaths nor LCIC, thus we would not expect to see a similar
242 localization of LCIB. Furthermore, if LCIB were to surround each pyrenoid in hornworts, it would

243 likely rehydrate any CO_2 that had just been released by CAH3 (which are placed outside of
244 pyrenoids; Fig. 3c), thus short-circuiting the pCCM. This scenario would be impossible in
245 Chlamydomonas because CAH3 is localized in the thylakoid tubules embedded within a
246 pyrenoid. Indeed, previous reaction-diffusion modeling of a pCCM showed that when thylakoid
247 stacks are used as a diffusion barrier (as is the case of hornworts), LCIB localization to the
248 chloroplast envelope would be optimal. This is because localizing LCIB as far from pyrenoids as
249 possible minimizes “stealing” of CO_2 from the pyrenoid matrix and can still serve as the last line
250 of defense for CO_2 leakage ¹³. Furthermore, for any passively diffused CO_2 coming into the
251 chloroplast, membrane-localized LCIB would quickly convert it into HCO_3^- before it can escape
252 back to the cytoplasm.

253

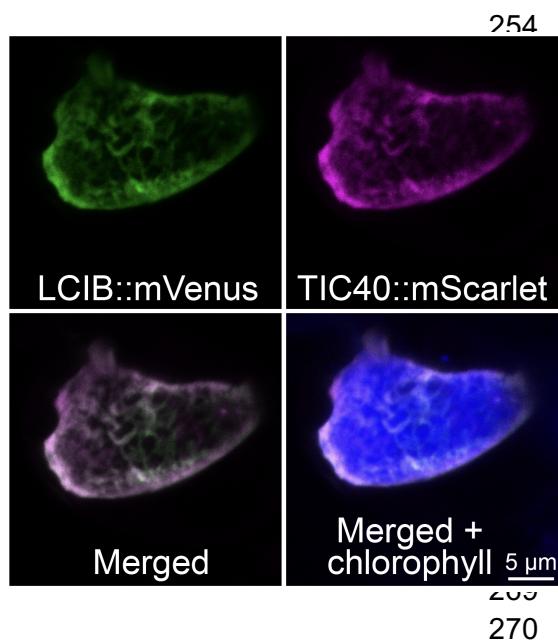


Figure 4. *A. agrestis* LCIB localizes to the chloroplast membrane. Maximum intensity projection of *A. agrestis* co-transformed with LCIB::mVenus (green) and TIC40::mScarlet (magenta). Chlorophyll autofluorescence is shown in blue. (scale bar, 5 μm .)

271 **Co-immunoprecipitation and genome-scanning did not reveal putative linker proteins**
272 Pyrenoids, which house Rubisco, are central to pCCM. Rubisco linker proteins that mediate
273 pyrenoid formation have been identified in the green algae Chlamydomonas (EPYC1) ⁷ and
274 *Chlorella sorokiniana* (CsLinker) ⁴⁰, as well as in the diatom *Phaeodactylum tricornutum*
275 (PYCO1) ²⁵. A putative linker was also proposed in the chlorarachniophyte alga *Amorphochlora*
276 *amoebiformis* ⁴¹. While there is little sequence similarity between these linker proteins, they
277 share certain physicochemical properties, and importantly, can all be pulled down using co-
278 immunoprecipitation (co-IP) with an anti-Rubisco antibody. To identify the possible Rubisco
279 linker in *A. agrestis*, we optimized the lysis of *A. agrestis* tissue and conducted co-IP using a
280 custom anti-Rubisco antibody with soluble proteins clarified from hornwort lysate
281 (Supplementary Fig. 8). From our proteomic analysis we found that both Rubisco large and
282 small subunits, as well as RCA were highly enriched in the immunoprecipitated fraction relative
283 to the control where no antibodies were applied (Supplementary Fig. 9). Gene ontology terms
284 relating to chloroplast, photosynthesis, and thylakoid membranes were significantly
285 overrepresented in the immunoprecipitated sample, likely reflecting the tight association
286 between pyrenoids and thylakoids (Supplementary Fig. 10). Together, these data suggest that

287 our co-IP approach was successful in enriching the bait (i.e. Rubisco) and its prey proteins (i.e.
288 potential interactors).

289 Of the proteins significantly enriched by Rubisco co-IP, we searched for ones with
290 similar physicochemical properties to other known Rubisco linker proteins. Namely, the
291 candidate protein needs to: (1) be highly expressed, (2) be rich in repeat motif sequences, (3)
292 be highly disordered, and (4) have a high isoelectric point (see Methods for detail). Only one
293 protein was found (AnagrOXF.S1G403800.t1) possessing promising characteristics as a linker
294 protein, which we named Putative Pyrenoid Protein 1 (PPP1). In addition to having an oscillating
295 disorder profile, a chloroplast transit peptide, and high enrichment in the co-IP fraction, PPP1
296 has similarity to Structural Maintenance of Chromosomes (SMC) proteins (Supplementary Fig.
297 11). We found that fluorescently tagged PPP1 did not localize to the pyrenoid, but instead to the
298 stroma (Supplementary Fig. 11). Interestingly, in some instances its localization became more
299 concentrated in a region central to the chloroplast (Supplementary Fig. 11), reminiscent of the
300 CAH3 localization pattern (Fig. 3). In any case, it is clear that PPP1 is not a Rubisco linker
301 protein. Despite that our co-IP experiment found no evidence for a canonical linker in *A.*
302 *agrestis*, we cannot rule out the possibility that one exists which has evaded our notice.
303 Therefore, we broadened our search to include the entire predicted proteome of *A. agrestis*,
304 using the same screening criteria as before. Only one candidate protein, PPP2
305 (AnagrOXF.S4G428300.t2), was found meeting these criteria. Compared to the known Rubisco
306 linkers (EPYC1, CsLinker, and PYCO1), the repeats of PPP2 were much more irregular and
307 spaced erratically across the protein sequence (Supplementary Fig. 12). Using fluorescent
308 protein tagging, we showed that PPP2 did not localize to the pyrenoid, but instead to the spaces
309 between pyrenoid subunits (Supplementary Fig. 12). Similar to PPP1, no evidence supports
310 PPP2 being a linker protein for *A. agrestis* Rubisco. Our results thus point to a possibility that *A.*
311 *agrestis* might employ a different mode of pyrenoid condensation from what has been reported
312 from algae.

313

314 ***A. agrestis* pyrenoids contain proteins involved in Rubisco assembly and Calvin-Benson- 315 Bassham cycle**

316 While the Rubisco linker in *A. agrestis* remains elusive, we found other proteins of interest that
317 were enriched by immunoprecipitation. For example, Rubisco assembly factors (Raf1, Cpn60 α ,
318 Cpn60 β) showed significant enrichment by co-IP (Supplementary Fig. 9). We tested the
319 localization of Cpn60 β , a chaperonin required for Rubisco folding^{42,43} by fluorescent protein-
320 tagging, and found Cpn60 β ::mVenus to be clearly pyrenoid-localized (Fig. 5a, Supplementary
321 Fig 13). To further explore if Rubisco biogenesis might occur within pyrenoids, we tagged
322 another Rubisco assembly factor, RbcX2⁴⁴. While RbcX2 was not co-immunoprecipitated, it is
323 also localized to the pyrenoids (Fig. 5b, Supplementary Fig 13).

324 Another protein enriched by co-IP was glyceraldehyde-3-phosphate dehydrogenase
325 (GAPDH). Chloroplastic GAPDH catalyzes the reductive step of the Calvin-Benson-Bassham
326 (CBB) cycle and is composed of A and B subunits, both of which were significantly enriched in
327 the immunoprecipitated fraction (Supplementary Fig. 9). To examine if GAPDH is a pyrenoid
328 component, we fluorescently tagged the B subunit (GapB) and confirmed its pyrenoid
329 localization (Fig. 5C, Supplementary Fig 14). It is possible that the CBB cycle (or part of it) takes

330 place in pyrenoids to limit the diffusion time of CBB cycle intermediates. Contrastingly, in
 331 Chlamydomonas, CBB enzymes are localized to the periphery of the pyrenoid⁴⁵.
 332 Based on our results, it is plausible that *A. agrestis* pyrenoids are an inclusive
 333 compartment, where multiple cellular processes revolving around Rubisco take place. Future
 334 studies systematically tagging Rubisco assembly and CBB cycle proteins are needed to further
 335 test this hypothesis.

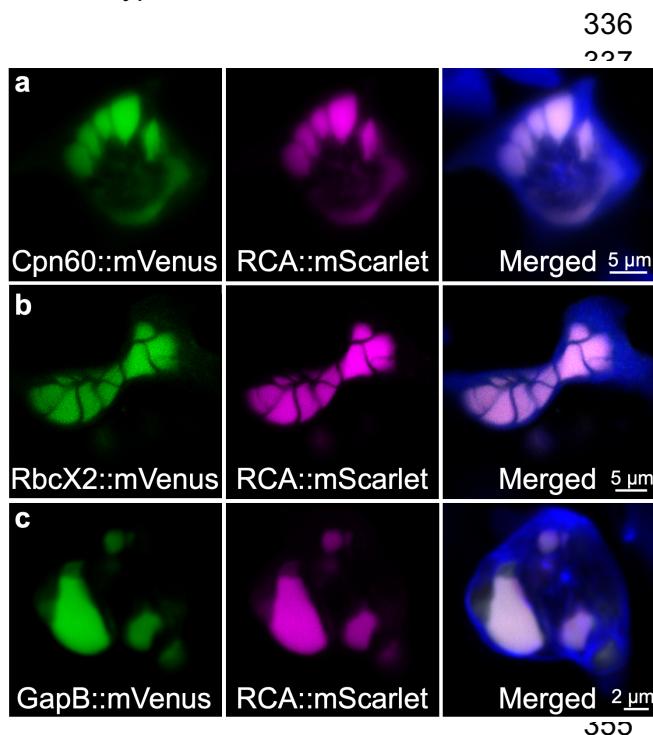


Figure 5. *A. agrestis* Rubisco assembly and CCB cycle proteins localize to pyrenoids. Example images of cells expressing either (a) Cpn60::mVenus, (b) RbcX2::mVenus, or (c) GapB::mVenus tagged with mVenus (green). RCA::mScarlet was co-transformed to mark pyrenoids (magenta). The merged images also included chlorophyll autofluorescence (blue). (scale bar, 2 or 5 μ m.)

374 localizations of LCIB, BST, and CAH3, thylakoid-enclosed pyrenoids, as well as the reaction-
375 diffusion model by Fei et al ¹³.

376 The spatial model we presented here provides a framework for future hypothesis-driven
377 research. Although protein localization alone does not provide the full proof for a protein's
378 function, currently no reverse genetics method has been successfully developed in *A. agrestis*.
379 Future work investigating carbon assimilation efficiency of selective gene knockdown or
380 knockout mutants, as well as biochemical *in vitro* characterizations will be crucial to confirm or
381 revise our model.

382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

Figure 6. The spatial model of *A. agrestis* pCCM and (top) comparison with that of *Chlamydomonas* (bottom). The hornwort illustration was done by Rebecca Key.

The first land plants likely had the chassis for a biophysical CCM

406 Operating an effective biophysical CCM requires the strategic placement of Ci channels and
407 CAs. It is striking that some of these key components (LCIB, BST, and CAH3) characterized in
408 Chlamydomonas have orthologs in hornworts and likely play similar roles in their respective
409 pCCM. It is difficult, if not impossible, to determine whether hornwort pCCMs represent an
410 ancestral trait or an independent origin. In either case, however, the presence of the LCIB-BST-
411 CAH3 chassis in hornworts suggests that the underlying chassis to concentrate CO₂ was
412 present in the last common ancestor of land plants. Considering that various algae possess
413 biophysical CCMs even in the absence of pyrenoids ⁴⁶⁻⁴⁹, it is not impossible that the earliest
414 land plants could have operated a functional CCM.

415 We propose two scenarios that could result in hornworts being the only land plants
416 having a pCCM. In one, pyrenoids were *de novo* evolved in hornworts on top of the LCIB-BST-
417 CAH3 chassis already in place. The loss of LCIB and CAH3 in other plant lineages rendered the
418 evolution of pyrenoids less advantageous. The supposed absence of a canonical Rubisco linker

419 for pyrenoid formation in *A. agrestis* lends support for the separate origins of pyrenoids.
420 Alternatively, pyrenoids could be ancestral to land plants, but were subsequently lost once in
421 setaphytes (mosses and liverworts) and another time in vascular plants. In this scenario
422 hornworts did not independently evolve pyrenoids, but rather retained them as a plesiomorphic
423 trait.

424

425 **Implications for the repeated evolution of pyrenoids within hornworts**

426 Within hornworts, pyrenoids have been lost and gained multiple times across the phylogeny ⁵⁰.
427 Interestingly, LCIB, BST, and CAH3 are present in all the sequenced hornwort species, even in
428 those lacking pyrenoids ⁵¹. Considering that pyrenoid-absent species have CO₂ compensation
429 points which are intermediate between liverworts and pyrenoid-containing hornworts ⁵², a
430 baseline biophysical CCM probably exists among most hornworts and the strength of this CCM
431 could be accentuated by the presence of a pyrenoid. The universal presence of this LCIB-BST-
432 CAH3 chassis could explain the repeated gains of pyrenoids as it might have predisposed the
433 evolution of pyrenoids. The specific localization of CAs and Ci channels is also likely the first
434 step to the evolution of a fully functional pCCM, rather than pyrenoid formation itself.

435

436 **Hornworts provide a blueprint for engineering a biophysical CCM in land plants**

437 Significant strides have been made in transplanting parts of the algal CCM to *Arabidopsis* in
438 recent years. For example, by introducing EPYC1, SAGA1, and SAGA2 proto-pyrenoids with
439 starch sheaths have been successfully built in *Arabidopsis* ^{53,54}. However, the entire algal CCM
440 module has yet to be integrated into flowering plants. Our investigation into the hornwort system
441 demonstrates that some components of the algal pCCM may not be required in land plants.
442 First, a starch sheath around pyrenoids may not be necessary as thylakoid stacks could provide
443 a sufficient CO₂ diffusion barrier (Fig. 1). Second, if hornworts indeed operate a “passive”
444 pCCM, then our work provides the first empirical evidence for its feasibility ¹³. In a passive
445 pCCM, the proper localization of a minimal set of carbonic anhydrases (e.g. LCIB and CAH3)
446 and thylakoid localized Ci channels (e.g. BST) may be sufficient to concentrate CO₂ without the
447 need for active Ci transport to the chloroplast ¹³. Importantly, recent modeling suggested that
448 introducing active HCO₃⁻ transporters to build pCCMs in land plants is only viable if chloroplast
449 membrane permeability to CO₂ is low ⁵⁵. The passive pCCM of hornworts would not encounter
450 this challenge and could be potentially simpler to engineer. Taken together, hornworts provide
451 an alternative blueprint to design a future pCCM.

452

453

454

455

456

457

458

459

460

461

462

463 **METHODS**

464 ***Anthoceros agrestis* cultures**

465 *Anthoceros agrestis* axenic cultures were maintained on *A. agrestis* gametophyte growth
466 medium (AG medium⁵⁶) supplemented with 0.2% sucrose following the protocol described in
467 Lafferty et al²³. The growth conditions included a temperature of 22°C, a 16/8 h light/dark cycle,
468 and light intensity ranging from 6 to 25 µmol/m²/s. Warm white and cool white light was emitted
469 by Ecolux XL Starcoat F32T8 XL SP30 ECO fluorescent bulbs and F32T8 XL SP41 ECO bulbs,
470 respectively (General Electric, USA). A total of 3-6 g of fresh thallus tissue was homogenized
471 and prepared for transformation as described in Lafferty et al²³. The homogenate was filtered
472 using a 100 µM cell strainer (MTC Bio, USA), and the thallus tissue was washed with sterile
473 deionized water and plated on AG medium supplemented with 2% sucrose.

474

475 **Transmission electron microscopy**

476 Plant materials were processed for transmission electron microscopy following the published
477 protocol⁵⁷, with some modifications. Pure cultures were fixed in 3% glutaraldehyde, 1%
478 formaldehyde, and 0.75% tannic acid in 0.05 M Na-cacodylate buffer, pH 7, for 3-4 h at room
479 temperature. After several rinses in Sorensen's 0.1 M buffer, the samples were post-fixed in 2%
480 osmium tetroxide, dehydrated in an ethanol series and embedded in Spurr's resin for 24 h. Thin
481 sections were cut with a diamond knife, stained with methanolic uranyl acetate for 15 min
482 followed by Reynolds' lead citrate for 10 min, and observed with a Hitachi H-7100 transmission
483 electron microscope at the Imaging-Microscopy Platform of the IBIS, Université Laval.

484

485 **Construction of fluorescently tagged protein expression cassettes**

486 Constructs were designed and built using the OpenPlant toolkit⁵⁸. All genes of interest were
487 driven by the same constitutive promoter (*A. agrestis* native *Elongation factor 1 alpha* (*Ef1a*)
488 promoter) and *Nos* terminator (OP-053). Coding sequences of target genes were synthesized
489 by Twist Biosciences with synonymous substitutions made where necessary to remove internal
490 *Bsal* or *Sapl* Type II restriction cut sites or to reduce repetitive nucleotide sequences if required
491 for synthesis. Assembly reactions were performed by a one-pot mixture that consists of Type II
492 restriction enzymes with T4 DNA ligase (NEB, USA) as described in Sauret-Gueto et al.⁵⁸. Heat
493 shock transformation with NEB® 5-alpha Competent *Escherichia coli* was used to regenerate
494 ligated products on the respective Luria Broth agar plates with either kanamycin or
495 streptomycin. Colony PCR was performed with KOD One™ PCR Master Mix (Toyobo) to screen
496 colonies before recovering plasmids with a 5 mL overnight culture and miniprep (QIAgen).
497 Whole plasmid sequencing (Eurofin Genomics, USA) was performed as a final validation. To
498 prepare plasmids for biolistic mediated transformation, a total of 50 ml *E. coli* culture was grown
499 overnight at 37 °C. The plasmid DNA was extracted using the PureYield™ Plasmid Midiprep
500 system (Promega, USA), followed by vacuum concentration in a SpeedVac Concentrator
501 (Thermofisher Scientific, USA) to obtain DNA concentrations of 1 µg/µL.

502

503 **Transient expression of fluorescently tagged proteins in *A. agrestis***

504 To obtain transient expression of fluorescently tagged proteins in *A. agrestis*, we performed
505 biolistic mediated transformation using DNA/gold particle mixture preparations and the particle
506 Delivery system PDS-1000/He (Bio-Rad, USA) as described in Lafferty et al²³, with a target

507 distance of 14 cm and a burst pressure of 450 psi, under a vacuum of 28 inHg. The bombarded
508 tissue was left to recover for 3-10 days, under standard culturing conditions as described above,
509 before imaging.

510

511 **Confocal imaging**

512 Imaging was performed using Zeiss LSM710, Leica TCS SP5 Laser Scanning Confocal
513 Microscope, or Leica Stellaris 5 confocal microscope. Proteins tagged with mVenus were
514 excited with a 514 nm laser line with an emission band of 524/551 nm. Chlorophyll
515 autofluorescence and proteins tagged with mScarlet were excited with a 561 nm laser line, with
516 emission bands of 658/699 and 579/609 nm, respectively. Each FRAP experiment started with
517 four initial scans before bleaching the region of interest (ROI). Circular ROIs with a 1.3 μ m
518 diameter were exposed eight times at 20% intensity of the 514 nm laser, before allowing
519 recovery for 160 cycles (66 seconds) with laser power attenuated at 0.5% intensity. Replicates
520 were collected by photobleaching individual pyrenoids within a cell. Subsequent analysis was
521 conducted using the FRAP wizard in Leica Application Suite Advanced Fluorescence and data
522 was plotted in R. Intensity profiles for all tagged proteins were collected by using the line tool to
523 transect regions of interest (e.g. pyrenoid boundaries, chloroplast boundaries) and then plotting
524 the intensity profile in Fiji ⁵⁹. These intensity profiles were then exported for subsequent
525 analyses and plot generation in R.

526

527 **Homology-based approach to identify candidate CCM proteins**

528 To identify candidate CCM genes in hornworts we used Orthofinder v2.5.4 on a broad sampling
529 of plant and algal genomes (Supplemental Table 2), including 11 species of hornworts ⁵¹, to
530 generate orthogroups. We then selected orthogroups containing key *Chlamydomonas* CCM
531 genes (Supplemental Table 1). Because orthogroups can sometimes represent large gene
532 families, to infer the direct orthologues in hornworts, phylogenetic reconstruction using IQ-TREE
533 ⁶⁰ was performed to identify the hornwort sequences in the same subfamily as the
534 *Chlamydomonas* genes of interest. From these, we selected *A. agrestis* genes which showed
535 high expression levels using the RNA-seq data from Li et al ²¹. In cases where there were
536 multiple orthologues present in *A. agrestis*, we selected the gene with the highest expression. In
537 addition to CCM genes, we choose Photosystem I reaction center subunit VI (PSAH) and
538 Oxygen-evolving enhancer protein 2 (PSBP) as Photosystem I and Photosystem II markers,
539 respectively, to compare the distribution of photosystems and to visualize thylakoids.

540

541 **Targeted bioinformatic search for a Rubisco linker protein**

542 A targeted search for potential linker proteins was conducted in a manner similar to, but less
543 stringent than described in Mackinder et al ⁷. Genomic sequences of two *A. agrestis* strains ²¹
544 were first screened for tandem repeats using Xstream ⁶¹. Default parameters were used with the
545 following exceptions: Minimum Period: 20; Maximum Period: 100; Minimum Copy # 2; and
546 Minimum tandem repeat Domain: 40. Proteins which passed this screen were then analyzed for:
547 1) a high isoelectric point (>8) using Expasy ⁶², 2) a high proportion of disordered sequence
548 using the PONDR server (>50%) ⁶³. From this screen, lowly expressed genes were filtered
549 based upon their corresponding RNA transcript abundance (transcript per million <10) ²¹.

550

551 **Optimizing lysis of *A. agrestis* thallus**

552 To derive soluble proteins from *A. agrestis* thallus, we experimented the lysis of *A. agrestis* by
 553 testing four different buffers: buffer A (20 mM HEPES pH 7.0, 50 mM NaCl, 12.5% v/v glycerol),
 554 buffer B (Buffer A with 2% v/v Triton X-100), buffer C (20 mM CAPS pH 11.0, 50 mM NaCl,
 555 12.5% v/v glycerol), and buffer D (Buffer C supplemented with 2% v/v Triton X-100). For each
 556 lysis, 5 g of *A. agrestis* tissue were harvested from liquid cultures in the AG medium⁵⁶. The
 557 biomass was frozen with liquid N₂ and crushed to find powder with a mortar and pestle. A total
 558 of 5 mL of either test buffer supplemented with 1 mM phenylmethylsulfonyl fluoride and one
 559 protease inhibitor tablet (Roche) was then to resuspend the fine powder. The suspension was
 560 lysed with a French pressure cell press (American Instrument Company, USA) at 1000 PSI.
 561 Polyvinylpolypyrrolidone (PVPP, 2%) was added to the French pressed lysate and the mixture
 562 was sieved through four layers of Miracloth, pre-wetted with the respective test buffer. The
 563 filtrate was centrifuged (21,000 g for 45 min at 4 °C) to separate pellet and supernatant
 564 fractions. The supernatant fraction was further filtered through a 0.22 µm syringe filter. Both
 565 fractions were analyzed on SDS-PAGE and western blot using 8–16% Mini-PROTEAN® TGX™
 566 Precast Protein Gels (Bio-Rad). For immunoblotting of Rubisco, a polyclonal antibody was
 567 raised in rabbits against the *A. agrestis* Rubisco large subunit C-terminus peptide
 568 EVWKEIKVFETIDTL and affinity purified (Life Technologies, USA).

569

570 **Co-immunoprecipitation of Rubisco**

571 A total of 100 µL Protein A resin (Dynabeads, Invitrogen) was aliquoted into 1.5 mL
 572 microcentrifuge tubes and washed thrice with buffer C (20 mM CAPS pH 11.0, 50 mM NaCl,
 573 12.5% v/v glycerol) with a magnetic rack. Next, the resin was incubated with 7.5 µg/mL anti-
 574 Rubisco on a rotator (2 h/4 °C) and washed twice with buffer C. Controls were performed by not
 575 priming the resin with anti-Rubisco antibodies. A total of 750 µL soluble lysate was then added
 576 to anti-Rubisco bound resin and incubated on a rotator overnight (~18 h/4 °C) and washed
 577 thrice with buffer C. Protein elution was carried out by adding 80 µL of 2.5X SDS loading buffer,
 578 without 2-Mercaptoethanol. Eluted proteins were separated from the Dynabeads and 2-
 579 Mercaptoethanol was added to a final concentration of 100 mM, proteins were then boiled (95
 580 °C/5 min) and shipped for LC-MS/MS analysis. The co-IP and control experiments each had five
 581 technical replicates.

582

583 **Proteomic analysis**

584 LC-MS/MS analysis was performed at the Environmental Molecular Sciences Laboratory in
 585 Pacific Northwest National Laboratory. Samples were processed using Filter Aided Sample
 586 Preparation (FASP)⁶⁴ by adding 400 µL of 8 M urea to 30K molecular weight cut off (MWCO)
 587 FASP spin columns along with 40 µL of the sample in SDS BME buffer and centrifuged at 14,000
 588 g for 20 min. Urea washes were repeated three additional times followed by the addition 400 µL
 589 of 50 mM ammonium bicarbonate, pH 8.0 and two repeated centrifugation for 20 min. The
 590 columns were then placed into clean and labeled collection tubes. The digestion solution was
 591 made by dissolving 5 µg trypsin in 75 µL 50 mM ammonium bicarbonate solution which was
 592 added to each sample. The samples were then incubated for 3 h at 37 °C with 600 rpm shaking
 593 on a thermomixer with a ThermoTop (Eppendorf, Hamburg, Germany) to reduce condensation

594 into the caps of collection tubes. The resultant peptides were then centrifuged through the filter
595 and into the collection tube by centrifuging at 14,000 g for 15 mins. The peptides were
596 concentrated to ~30 μ L using a vacuum concentrator. Final peptide concentrations were
597 determined using a bicinchoninic acid (BCA) assay (Thermo Scientific, Waltham, MA USA) and
598 each sample was prepared at 0.1 μ g/ μ l for MS analysis

599 Digested protein samples were analyzed using an Orbitrap Eclipse Tribrid MS (Thermo
600 Scientific) outfitted with a high field asymmetric waveform ion mobility spectrometry (FAIMS)
601 interface, using data-dependent acquisition mode. Peptides were ionized using a voltage of 2.4
602 kV and with an ion transfer tube temperature at 300 °C. Data acquisition time was 2 hr following
603 a 20 min delay to avoid dead time between injection and elution of peptides. A proprietary
604 method for transferring identification based on FAIMS filtering was used to fractionate ionized
605 peptides by the FAIMSpro interface using a 3-Compensation Voltage (3-CV); -45, -60, -75 V
606 method. Fractionated ions with a mass range 400-1800 m/z were scanned with Orbitrap at
607 120,000 resolution with an injection time (IT) of 50 ms and an automatic gain control (AGC)
608 target of 4e5. Cycle times of 1.0 s were used for the 3-CV method. Precursor ions with
609 intensities > 1e4 were fragmented with an isolation window of 0.7 by 30% higher-energy
610 collisional dissociation energy and scanned with an AGC target of 1e4 as well as an IT of 35 ms.

611 Raw data files were referenced to *A. agrestis* nuclear encoded and chloroplast encoded
612 proteins ²¹, and peptide abundances were extracted from the raw spectra using MASiC ⁶⁵ and
613 log2 transformed to remove skewness in distribution of measured abundances. Transformed
614 abundance values were then normalized using the mean central tendency method implemented
615 in InfernoR ⁶⁶. Normalized peptide abundances were de-logged, summed, transformed (log2),
616 and normalized again in InfernoR to produce normalized abundances for the protein level roll-
617 up. Proteins which were missing in more than one replicate of the conditions (control or anti-
618 RbcL) were filtered from the final analysis to limit the imputation of too many missing values.
619 Left-censored missing values were imputed using the Minimum Probability method with the
620 default parameters. Differential enrichment analysis was conducted using the DEP Bioconductor
621 package version 1.27.0 ⁶⁷ with a p value cutoff of 0.05. Plots were generated using ggplot2
622 (version 3.5.1). Gene ontology (GO) enrichment analysis was carried out using the GO
623 Enrichment module of TBtools ⁶⁸ with *goslim_plant* selected. Background file was set as the
624 entire *A. agrestis* proteome and proteins found to be significantly enriched by
625 coimmunoprecipitation were chosen as the selection set. The resulting table was then used to
626 generate an enrichment barplot.

627
628
629
630
631
632
633
634
635
636
637

638 **ACKNOWLEDGEMENTS**
639 This work is supported by National Science Foundation MCB-2213841 to F.-W.L. and MCB-
640 2213840 to L.H.G, Environmental Molecular Sciences Laboratory User Grant to F.-W.L., Triad
641 Foundation Grant to F.-W.L., and Schmittau-Novak Graduate Student Grant to T.A.R. We thank
642 Aleksandra Skirycz, Kathryn Eshenour, Amber Hotto, and David Stern for providing access to
643 tools and reagents to establish preliminary lysis and co-IP experiments, Rebecca Key for the
644 hornwort illustration, Carrie Nicora and Nikola Tolic from Environmental Molecular Sciences
645 Laboratory in Pacific Northwest National Laboratory for technical assistance with mass
646 spectrometry processing, the Plant Cell Imaging Center at Boyce Thompson Institute and
647 Mamta Srivastava for technical assistance to confocal imaging with Leica TCS SP5 Laser
648 Scanning Confocal Microscope, Adrienne Roeder for providing access to Zeiss LSM710 and
649 Leica Stellaris 5 confocal microscope, the York Physics of Pyrenoids research community for
650 feedback, and Li and Gunn lab members for discussions.

651
652 **AUTHOR CONTRIBUTIONS**
653 T.A.R., L.H.G., and F.-W.L conceived the project. T.A.R. made the gene constructs and carried
654 out confocal imaging. T.A.R., D.L., and X.X. performed hornwort transformation. Z.G.O.
655 designed the Rubisco antibody and optimized the lysis of hornwort thallus. T.A.R. and Z.G.O.
656 performed co-immunoprecipitation. J.C.A.V. performed transmission electron microscopy.
657 T.A.R., Z.G.O., L.H.G. and F.-W.L. analyzed the data. T.A.R. and F.-W.L. wrote the manuscript
658 with contributions and comments from all authors. L.H.G. and F.-W.L. secured the funding and
659 supervised the project.

660
661 **CONFLICT OF INTEREST**
662 None declared.

663
664 **REFERENCES**
665 1. Bar-On, Y. M. & Milo, R. The global mass and average rate of rubisco. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 4738–4743 (2019).
666 2. Ellis, R. J. The most abundant protein in the world. *Trends Biochem. Sci.* **4**, 241–244 (1979).
667 3. Leegood, R. C. A welcome diversion from photorespiration. *Nat. Biotechnol.* **25**, 539–540 (2007).
668 4. Long, S. P., Zhu, X.-G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis
669 increase crop yields? *Plant Cell Environ.* **29**, 315–330 (2006).
670 5. Griffiths, H., Meyer, M. T. & Rickaby, R. E. M. Overcoming adversity through diversity:
671 aquatic carbon concentrating mechanisms. *J. Exp. Bot.* **68**, 3689–3695 (2017).
672 6. Badger, M. R. & Price, G. D. CO₂ concentrating mechanisms in cyanobacteria: molecular
673 components, their diversity and evolution. *J. Exp. Bot.* **54**, 609–622 (2003).
674 7. Mackinder, L. C. M. *et al.* A repeat protein links Rubisco to form the eukaryotic carbon-
675 concentrating organelle. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 5958–5963 (2016).
676 8. Freeman Rosenzweig, E. S. *et al.* The eukaryotic CO₂-concentrating organelle is liquid-like
677 and exhibits dynamic reorganization. *Cell* **171**, 148–162.e19 (2017).
678 9. Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar, O. The phase separation
679 underlying the pyrenoid-based microalgal Rubisco supercharger. *Nat. Commun.* **9**, 5076
680 (2018).
681
682
683

684 10. He, S., Crans, V. L. & Jonikas, M. C. The pyrenoid: the eukaryotic CO₂-concentrating
685 organelle. *Plant Cell* **35**, 3236–3259 (2023).

686 11. Ramazanov, Z. *et al.* The induction of the CO₂-concentrating mechanism is correlated with
687 the formation of the starch sheath around the pyrenoid of *Chlamydomonas reinhardtii*.
688 *Planta* **195**, (1994).

689 12. Itakura, A. K. *et al.* A Rubisco-binding protein is required for normal pyrenoid number and
690 starch sheath morphology in *Chlamydomonas reinhardtii*. *Proc. Natl. Acad. Sci. U. S. A.*
691 **116**, 18445–18454 (2019).

692 13. Fei, C., Wilson, A. T., Mangan, N. M., Wingreen, N. S. & Jonikas, M. C. Modelling the
693 pyrenoid-based CO₂-concentrating mechanism provides insights into its operating
694 principles and a roadmap for its engineering into crops. *Nature Plants* **8**, 583–595 (2022).

695 14. McGrath, J. M. & Long, S. P. Can the cyanobacterial carbon-concentrating mechanism
696 increase photosynthesis in crop species? A theoretical analysis. *Plant Physiol.* **164**, 2247–
697 2261 (2014).

698 15. Yin, X. & Struik, P. C. Can increased leaf photosynthesis be converted into higher crop
699 mass production? A simulation study for rice using the crop model GECROS. *J. Exp. Bot.*
700 **68**, 2345–2360 (2017).

701 16. Irisarri, I. *et al.* Unexpected cryptic species among streptophyte algae most distant to land
702 plants. *Proceedings of the Royal Society B* **288**, 20212168 (2021).

703 17. Vaughn, K. C., Campbell, E. O., Hasegawa, J., Owen, H. A. & Renzaglia, K. S. The
704 pyrenoid is the site of ribulose 1, 5-bisphosphate carboxylase/oxygenase accumulation in
705 the hornwort (Bryophyta: Anthocerotae) chloroplast. *Protoplasma* **156**, 117–129 (1990).

706 18. Smith, E. & Griffiths, H. A pyrenoid-based carbon-concentrating mechanism is present in
707 terrestrial bryophytes of the class Anthocerotae. *Planta* **200**, (1996).

708 19. Li, F.-W., Villarreal Aguilar, J. C. & Szövényi, P. Hornworts: An overlooked window into
709 carbon-concentrating mechanisms. *Trends Plant Sci.* **22**, 275–277 (2017).

710 20. Vaughn, K. C. *et al.* The anthocerote chloroplast: a review. *New Phytol.* **120**, 169–190
711 (1992).

712 21. Li, F.-W. *et al.* Anthoceros genomes illuminate the origin of land plants and the unique
713 biology of hornworts. *Nat Plants* **6**, 259–272 (2020).

714 22. Szövényi, P. *et al.* Establishment of *Anthoceros agrestis* as a model species for studying
715 the biology of hornworts. *BMC Plant Biol.* **15**, 98 (2015).

716 23. Lafferty, D. J. *et al.* Biolistics-mediated transformation of hornworts and its application to
717 study pyrenoid protein localization. *J. Exp. Bot.* *erae243* (2024).

718 24. Barrett, J., Gurr, P. & Mackinder, L. C. M. Pyrenoids: CO₂-fixing phase separated liquid
719 organelles. *Biochim. Biophys. Acta Mol. Cell Res.* **1868**, 118949 (2021).

720 25. Oh, Z. G. *et al.* A linker protein from a red-type pyrenoid phase separates with Rubisco via
721 oligomerizing sticker motifs. *Proc. Natl. Acad. Sci. U. S. A.* **120**, e2304833120 (2023).

722 26. Burr, F. A. Phylogenetic Transitions in the Chloroplasts of the Anthocerota. I. The
723 Number and Ultrastructure of the Mature Plastids. *Am. J. Bot.* **57**, 97–110 (1970).

724 27. Mukherjee, A. *et al.* Thylakoid localized bestrophin-like proteins are essential for the CO₂
725 concentrating mechanism of *Chlamydomonas reinhardtii*. *Proceedings of the National
726 Academy of Sciences* **116**, 16915–16920 (2019).

727 28. Ignatova, L., Rudenko, N., Zhurikova, E., Borisova-Mubarakshina, M. & Ivanov, B. Carbonic
728 Anhydrases in Photosynthesizing Cells of C3 Higher Plants. *Metabolites* **9**, 73 (2019).

729 29. Badger, M. R. & Price, G. D. The role of carbonic anhydrase in photosynthesis. *Annu. Rev.
730 Plant Physiol. Plant Mol. Biol.* **45**, 369–392 (1994).

731 30. Jethva, J. *et al.* Realisation of a key step in the evolution of C4 photosynthesis in rice by
732 genome editing. *bioRxiv* 2024.05.21.595093 (2024).

733 31. Smith, E. C. & Griffiths, H. The role of carbonic anhydrase in photosynthesis and the
734 activity of the carbon-concentrating-mechanism in bryophytes of the class Anthocerotae.

735 *New Phytol.* **145**, 29–37 (2000).

736 32. Markelova, A. G., Sinetova, M. P., Kupriyanova, E. V. & Pronina, N. A. Distribution and
737 functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the
738 chloroplast and pyrenoid of *Chlamydomonas reinhardtii*. *Russ. J. Plant Physiol.* **56**, 761
739 (2009).

740 33. Sinetova, M. A., Kupriyanova, E. V., Markelova, A. G., Allakhverdiev, S. I. & Pronina, N. A.
741 Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of
742 pyrenoid of *Chlamydomonas reinhardtii*. *Biochim. Biophys. Acta* **1817**, 1248–1255 (2012).

743 34. Mitra, M. *et al.* The carbonic anhydrase gene families of *Chlamydomonas reinhardtii*. *Can.*
744 *J. Bot.* **83**, 780–795 (2005).

745 35. Terentyev, V. V. & Shukshina, A. K. CAH3 from *Chlamydomonas reinhardtii*: Unique
746 Carbonic Anhydrase of the Thylakoid Lumen. *Cells* **13**, 109 (2024).

747 36. Wang, Y. & Spalding, M. H. LCIB in the *Chlamydomonas* CO₂-concentrating mechanism.
748 *Photosynth. Res.* **121**, 185–192 (2014).

749 37. Jin, S. *et al.* Structural insights into the LCIB protein family reveals a new group of β -
750 carbonic anhydrases. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 14716–14721 (2016).

751 38. Yamano, T., Toyokawa, C., Shimamura, D., Matsuoka, T. & Fukuzawa, H. CO₂-dependent
752 migration and relocation of LCIB, a pyrenoid-peripheral protein in *Chlamydomonas*
753 *reinhardtii*. *Plant Physiol.* **188**, 1081–1094 (2021).

754 39. Chou, M.-L. *et al.* Tic40, a membrane-anchored co-chaperone homolog in the chloroplast
755 protein translocon. *EMBO J.* **22**, 2970–2980 (2003).

756 40. Barrett, J. *et al.* A promiscuous mechanism to phase separate eukaryotic carbon fixation in
757 the green lineage. *bioRxiv* 2024.04.09.588658 (2024).

758 41. Moromizato, R. *et al.* Pyrenoid proteomics reveals independent evolution of the CO₂-
759 concentrating organelle in chlorarachniophytes. *Proc. Natl. Acad. Sci. U. S. A.* **121**,
760 e2318542121 (2024).

761 42. Aigner, H. *et al.* Plant RuBisCo assembly in *E. coli* with five chloroplast chaperones
762 including BSD2. *Science* **358**, 1272–1278 (2017).

763 43. Feiz, L. *et al.* Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is
764 required for holoenzyme assembly in maize. *Plant Cell* **24**, 3435–3446 (2012).

765 44. Saschenbrecker, S. *et al.* Structure and function of RbcX, an assembly chaperone for
766 hexadecameric Rubisco. *Cell* **129**, 1189–1200 (2007).

767 45. Wang, L. *et al.* A chloroplast protein atlas reveals punctate structures and spatial
768 organization of biosynthetic pathways. *Cell* **186**, 3499–3518.e14 (2023).

769 46. Badger, M. R. *et al.* The diversity and coevolution of Rubisco, plastids, pyrenoids, and
770 chloroplast-based CO₂-concentrating mechanisms in algae. *Can. J. Bot.* **76**, 1052–1071
771 (1998).

772 47. Kevekordes, K. *et al.* Inorganic carbon acquisition by eight species of *Caulerpa*
773 (Caulerpaceae, Chlorophyta). *Phycologia* **45**, 442–449 (2006).

774 48. Gee, C. W. & Niyogi, K. K. The carbonic anhydrase CAH1 is an essential component of the
775 carbon-concentrating mechanism in *Nannochloropsis oceanica*. *Proc. Natl. Acad. Sci. U. S.*
776 *A.* **114**, 4537–4542 (2017).

777 49. Steensma, A. K., Shachar-Hill, Y. & Walker, B. J. Correction to: The carbon-concentrating
778 mechanism of the extremophilic red microalga *Cyanidioschyzon merolae*. *Photosynth. Res.*
779 **158**, 203 (2023).

780 50. Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, carbon-concentrating structures,
781 evolved and were lost at least five times during the last 100 million years. *Proc. Natl. Acad.*
782 *Sci. U. S. A.* **109**, 18873–18878 (2012).

783 51. Schafran, P. *et al.* Pan-phylum genomes of hornworts revealed conserved autosomes but
784 dynamic accessory and sex chromosomes. *Nat Plants* in review (2024).

785 52. Hanson, D., John Andrews, T. & Badger, M. R. Variability of the pyrenoid-based CO₂

concentrating mechanism in hornworts (Anthocerotophyta). *Funct. Plant Biol.* **29**, 407–416 (2002).

53. Atkinson, N., Mao, Y., Chan, K. X. & McCormick, A. J. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. *Nat. Commun.* **11**, 6303 (2020).

54. Atkinson, N., Stringer, R., Mitchell, S. R., Seung, D. & McCormick, A. J. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in *Arabidopsis* chloroplasts. *Proc. Natl. Acad. Sci. U. S. A.* **121**, e2311013121 (2024).

55. Kaste, J. A. M., Walker, B. J. & Shachar-Hill, Y. Reaction-diffusion modeling provides insights into biophysical carbon concentrating mechanisms in land plants. *Plant Physiol.* **kiae324** (2024).

56. Gunadi, A., Li, F.-W. & Van Eck, J. Accelerating gametophytic growth in the model hornwort *Anthoceros agrestis*. *Appl. Plant Sci.* **10**, e11460 (2022).

57. Villarreal, J. C., Duckett, J. G. & Pressel, S. Morphology, ultrastructure and phylogenetic affinities of the single-island endemic *Anthoceros cristatus* Steph. (Ascension Island). *J. Bryol.* **39**, 226–234 (2017).

58. Sauret-Gueto, S. *et al.* Systematic tools for reprogramming plant gene expression in a simple model, *Marchantia polymorpha*. *ACS Synth. Biol.* **9**, 864–882 (2020).

59. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682 (2012).

60. Minh, B. Q. *et al.* IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* **37**, 1530–1534 (2020).

61. Newman, A. M. & Cooper, J. B. XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. *BMC Bioinformatics* **8**, 382 (2007).

62. Gasteiger, E. *et al.* ExPASy: The proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Res.* **31**, 3784–3788 (2003).

63. Romero, P. *et al.* Sequence complexity of disordered protein. *Proteins* **42**, 38–48 (2001).

64. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. *Nat. Methods* **6**, 359–362 (2009).

65. Monroe, M. E., Shaw, J. L., Daly, D. S., Adkins, J. N. & Smith, R. D. MASiC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS/(MS) features. *Comput. Biol. Chem.* **32**, 215–217 (2008).

66. Polpitiya, A. D. *et al.* DAnTE: a statistical tool for quantitative analysis of -omics data. *Bioinformatics* **24**, 1556–1558 (2008).

67. Zhang, X. *et al.* Proteome-wide identification of ubiquitin interactions using UbIA-MS. *Nat. Protoc.* **13**, 530–550 (2018).

68. Chen, C. *et al.* TBtools: An integrative toolkit developed for interactive analyses of big biological data. *Mol. Plant* **13**, 1194–1202 (2020).