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ABSTRACT

Pyrenoid-based CO,-concentrating mechanisms (pCCMs) turbocharge photosynthesis by
saturating CO2 around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their
closer relationship to crops, hornworts could offer greater translational potential compared to the
green alga Chlamydomonas, the traditional model for studying pCCM. Here we report the first
thorough investigation of a hornwort pCCM using the emerging model Anthoceros agrestis. The
pyrenoids in A. agrestis exhibit liquid-like properties similar to Chlamydomonas, but differ by
lacking starch sheaths and being enclosed by multiple thylakoids. We found that the core pCCM
components in Chlamydomonas, including BST, LCIB, and CAH3, are conserved in A. agrestis
and likely have similar functions based on their subcellular localizations. Therefore, the
underlying chassis for concentrating CO2 might be shared between hornworts and
Chlamydomonas, and ancestral to land plants. Our study presents the first spatial model for
pCCM in a land plant, paving the way for future biochemical and genetic investigations.
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MAIN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the carbon-fixing enzyme, is the
gatekeeper for virtually all biologically available carbon. Despite its central importance in global
primary productivity, Rubisco is considered to have two major limitations: a low rate of activity
and poor specificity for carbon dioxide (COz) *. Photosynthetic organisms have largely
overcome the first of these limitations by simply making more of the enzyme, so much so that
Rubisco is considered to be the most abundant enzyme in the biosphere 2. Rubisco’s poor
specificity means that it can also react with oxygen (O-), resulting in photorespiration which
costs energy and leads to the net loss of fixed CO, 3*.

To reduce photorespiration, some plants have evolved systems to concentrate inorganic
carbon (Ci) around Rubisco (called CO2-concentrating mechanisms; CCM), either through
biophysical or biochemical means °. Biochemical CCMs (C4 or CAM photosynthesis) use
enzymatic pathways to concentrate carbon, either in vacuoles or in bundle sheath cells.
Biophysical CCMs, seen in cyanobacteria, algae, and hornworts, concentrate Ci in subcellular
compartments (pyrenoids or carboxysomes) where Rubisco is highly abundant °.

The model organism for studying pyrenoid-based CCM (pCCM) is the green alga
Chlamydomonas reinhardtii. Chlamydomonas pyrenoids are a liquid-like proteinaceous
compartment whose phase separation is mediated by the interaction of Rubisco and the linker
protein EPYC1 "®. In the algal pCCM, a series of Ci channels, such as LCI1, LCIA, and
bestrophin channels (BST), facilitate Ci transport from the extracellular space into specialized
thylakoid tubules '°. These tubules traverse pyrenoids and contain a specific carbonic
anhydrase (CA), CAH3. This CA catalyzes the conversion of bicarbonate (HCOz3’) into CO,,
which can freely diffuse out of the thylakoid tubules and into the pyrenoid. A starch sheath
surrounds pyrenoids and might function as a CO; diffusion barrier to enhance the efficiency of
the CCM "2, Another CA, LCIB, localizes around the gaps of the starch sheath to recapture
leaked CO- by converting it back to HCO3". Recent modeling work suggests that a minimally
functional pCCM requires the joint operation of BST, LCIB, and CAH3 (or the equivalent
thereof), in addition to a pyrenoid enclosed by diffusion barriers .

Installing a pCCM into crop plants may boost CO; fixation by as much as 60% *'*°.
However, transplanting an algal CCM into land plants is complicated by the fact that around one
billion years of evolution separate these lineages '°, over which time significant differences have
accumulated in chloroplast structure and protein sequences. On the other hand, hornworts, a
group of bryophytes (Fig. 1A,B), are the only known land plants with a pyrenoid or biophysical
CCM of any kind "', Hornwort pyrenoids are functionally analogous to algal pyrenoids, acting
as a locus of Rubisco accumulation, and the focal point of the pCCM '"'82°_ Characterizing the
land plant pCCM may provide significant translational advantages. However, virtually nothing is
known about the functional components enabling a pCCM in hornworts.

In this study, we characterized the morphology and physical properties of hornwort
pyrenoids, as well as proteins involved in the pCCM, using the emerging model hornwort
Anthoceros agrestis 2'-2*. Diffusion properties of fluorescently tagged proteins and live-cell
imaging indicate that A. agrestis pyrenoids are liquid-like, similar to the Chlamydomonas
pyrenoid. Putative CCM components for protein subcellular localization studies were selected
by leveraging both Rubisco co-immunoprecipitation (co-IP) and 41 genomes spanning plant and
algal diversity. We found that hornworts possess orthologs of several core pCCM components
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from Chlamydomonas, and provide evidence for shared functional roles. We thus infer that the
chassis for pCCM was present in the last common ancestor of land plants. Comparative
genomics and co-IP did not reveal any clear EPYC1 homolog or analog, implying that hornworts
might have adopted a different strategy for pyrenoid formation. Based on our findings, we
propose the first spatial model for a land plant pCCM, which is consistent with reaction-diffusion
modeling for a functional pCCM, and set the stage for future biochemical and genetic
investigation.

RESULTS

A. agrestis contains multiple pyrenoids that are not enclosed by starch sheaths

We first characterized the morphology of A. agrestis pyrenoids using transmission electron
microscopy (TEM). Compared to other hornwort species '"?°, A. agrestis pyrenoids are slightly
larger in size, with a diameter ranging from 500 nm to 5 um (Fig. 1c-e; Supplementary Fig. 1). A.
agrestis (and hornworts in general) have multiple pyrenoids per chloroplast, though the number
of which appears to be highly variable (Fig. 1¢,d; Supplementary Fig. 1). This pattern differs
from the singular pyrenoid found in most algal species including Chlamydomonas 2*. Further, we
found a clear lack of any kind of starch sheath surrounding the pyrenoids of A. agrestis (Fig.
1d,e), which in Chlamydomonas is believed to act as a critical diffusion barrier to prevent CO>
leakage "', While no starch sheath is present, A. agrestis has many layers of stacked
thylakoids wrapping around the pyrenoids (Fig. 1e; white arrowhead). Such stacked thylakoids
might be sufficient to prevent CO- leakage, as suggested by recent modeling of the
Chlamydomonas pCCM "3,

A. agrestis pyrenoids are liquid-like

While we have previously demonstrated that the pyrenoids of A. agrestis are the sites of
Rubisco accumulation 23, the physical properties of these organelles have not been
investigated. Chlamydomonas pyrenoids are known to be liquid-like in nature, whereas the
pyrenoids of the diatom Phaeodactylum tricornutum exhibit much less internal mixing ?°. To infer
the physical properties of A. agrestis pyrenoids, we applied the fluorescence recovery after
photobleaching (FRAP) technique on our stable transgenic line expressing Rubisco activase
(RCA) tagged with mVenus. RCA was previously shown to co-localize with Rubisco in A.
agrestis #°, and can thus be used as a pyrenoid marker. We found that the mVenus signal
exhibited a rapid recovery (t12 = 16.2 s) post photobleaching (Fig 1f,g). The unbleached region
equilibrates with the bleached region of the same pyrenoid within 60 s (Fig. 1f,g), suggesting
high levels of internal mixing. Furthermore, live cell imaging of dividing chloroplasts in the same
RCA::mVenus line demonstrated elongation of a pyrenoid as it is being pulled to one of the
daughter cells, again suggesting that A. agrestis pyrenoids are liquid-like (Fig. 1h, Movie S1).
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Figure 1. Morphology and physical property of pyrenoids in Anthoceros agrestis. (a) Hornworts are
the only land plants that have a pCCM. Compared to Chlamydomonas, hornworts and crop plants share
more common features in their chloroplast and Rubisco structures. (b) The model hornwort Anthoceros
agrestis in native habitat. (c) A. agrestis, like many other hornwort species, has a single chloroplast per cell.
(d) TEM image of an A. agrestis chloroplast with multiple pyrenoids, P. (e) A close-up view of a pyrenoid
from (D). The arrowhead points to a stack of thylakoid membranes encasing the pyrenoid. (f) FRAP of
hornwort pyrenoids labeled with RCA::mVenus. Photobleaching was targeted at the center of two selected
pyrenoids. (scale bar, 5 um.) (g) FRAP recovery curve. Error bars represent standard error of the mean
(SEM) and are shown as the green shaded area (n=6). (h) Time-lapse images during cell division, showing
signals of chlorophyll autofluorescence (blue) and RCA::mVenus fluorescence (green) over 75 mins. The
cell division plane is demarcated with white arrowheads. (scale bar, 5 ym.)

Photosystems | and Il are both in close proximity to pyrenoids

Given the tight association between thylakoids and pyrenoids in hornworts (Fig. 1d,e), we next
examined how thylakoids are distributed across the chloroplasts of A. agrestis, especially
whether there was differential localization of Photosystem | (PSI) and Photosystem Il (PSII)
relative to the pyrenoids. It is thought that in hornworts PSII localizes mainly to the grana, while
PSI has a more ubiquitous distribution including in the channel thylakoids 2°?°. The evidence
supporting this claim is, however, limited. To visualize PSI and PSII distribution, we transiently
expressed fluorescently tagged Photosystem | reaction center subunit VI (PSAH) and Oxygen-
evolving enhancer protein 2 (PSBP), respectively, in A. agrestis using a biolistics transformation
approach 2.
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In agreement with TEM images (Fig. 1d,e), confocal imaging of tagged PSAH and PSBP
showed a tight association between thylakoids and pyrenoids (Fig. 2a,b; Supplementary Fig. 2).
Pyrenoids are almost entirely enveloped by thylakoids (Fig. 2a,b), and both PSI and PSII
localize in the membranes directly adjacent to the pyrenoids (Fig. 2a,b, d,e). Consistent with
previous reports 2°, PSI is uniformly distributed across the thylakoid network in hornworts, so
much so that the signal is only absent in pyrenoid bodies (Fig. 2a; Supplementary Fig. 2).
Localization of PSII appears to be less uniform than PSI, with gaps as well as smaller regions of
much higher intensity, likely grana, scattered throughout the chloroplast (Fig. 2b; Supplementary
Fig. 2).
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Figure 2. Distribution of photosystems and BST channels on thylakoids of A. agrestis. (a)
Photosystem | (marked by PSAH::mVenus) and (b) photosystem Il (marked by PSBP::mVenus) are
distributed throughout the thylakoid network. (scale bar, 2 um.) (c) BST1::mVenus has elevated fluorescent
signals on the thylakoids immediately adjacent to pyrenoids. (scale bar, 5 um). The fluorescent intensities
of (d) PSAH::mVenus and (e) PSAH::mVenus decline along the transects going into pyrenoids (white lines
in a and b). (f) Quantification of elevated BST1::mVenus fluorescent signals around pyrenoids (white lines
in c). RCA::mScarlet was used as a pyrenoid marker. Error bars represent SEMs and are shown as shaded
areas in each curve (n =10, 11, and 7 for BST, PSII, and PSI, respectively).

Bestrophin channels localize to thylakoids adjacent to pyrenoids

A biophysical CCM in eukaryotes requires the presence of thylakoid membrane channels to
allow HCOs to enter the thylakoid lumen. In Chlamydomonas, a number of bestrophin channels
(BST) fill this role #’. There are four Chlamydomonas BST orthologs in the A. agrestis genome,
but only one, BST1, is expressed abundantly (Supplementary Table 1). Fluorescent protein
tagging indicated that BST1 in A. agrestis was distributed throughout the thylakoid network, but
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exhibited elevated fluorescence intensity immediately adjacent to the pyrenoids (Fig. 2c,f;
Supplementary Fig. 3). This pattern is in contrast to that of PSAH and PSBP, where the
fluorescence intensities continuously decline going into pyrenoids (Fig. 2d,e). The localization of
A. agrestis BST1 is similar to what was reported in Chlamydomonas #’, and implies that BST1
likely has the same function in hornworts, transporting HCO3™ to thylakoid lumen.

B-CA1 localizes to the cytoplasm

We next examined the localization of several carbonic anhydrases (CA) in A. agrestis. There
are three known CA families in land plants (a, B, and y), which catalyze the reversible hydration
of CO, to HCO3™ 8. While hornworts possess multiple CAs, we focused on three—B-CA1,
CAH3, and LCIB—that have high potential to influence pCCM. B-CA1 is the second most
abundant protein in plants after Rubisco and is typically located in the chloroplast stroma °.
However, the presence of a CA in the stroma, and specifically the pyrenoid matrix, in hornwort
chloroplasts would likely convert CO- into HCO3’, thus decreasing the availability of CO, for
Rubisco and short circuiting the pCCM. The B-CA1 in A. agrestis, unlike the orthologs in C3
plants, lacks a predicted chloroplast transit peptide. Fluorescently tagged A. agrestis 3-CA1
confirmed the cytoplasmic localization (Supplementary Fig. 4). This absence of a diffuse stromal
B-CAin A. agrestis is consistent with models of a pCCM ' and reinforces that the relocalization
of stromal CAs to cytoplasm is a key step toward engineering CCMs in crop plants *°.

CAH3 localizes to the space between pyrenoids

While a stroma-localized CA would prohibit pCCM function, treatment with a CA inhibitor
(ethoxzolamide) greatly decreased the rate of photosynthesis and significantly increased the
CO2 compensation point of hornworts, but not liverworts *', demonstrating that a CA is required
for hornwort pCCM. In Chlamydomonas, CAH3 is located in thylakoid tubules, which form a knot
in the center of the pyrenoid ***. Chlamydomonas CAH3 converts lumenal HCO3 to CO»,
allowing for diffusion of CO; across the thylakoids and into the pyrenoid space. We discovered
that the genomes of hornworts and some other bryophytes possess orthologs of the
Chlamydomonas CAH3 gene, while vascular plants appear to have lost it (Fig. 3A;
Supplementary Fig. 5). A. agrestis CAH3 is abundantly expressed, and retained not only the
three critical histidine residues at the active site *°, but also the lumenal transit peptide
(Supplementary Fig. 6, Supplementary Table 1). Importantly, we found that fluorescently tagged
A. agrestis CAH3 formed puncta localized to the periphery of pyrenoids, concentrated adjacent
(<500 nm) to the most interior side of the pyrenoids (Fig. 3b,c; Supplementary Fig. 6; see Movie
S2 for Z-stack). CAH3 thus appears to be at the center of the chloroplast and in the space
between pyrenoids. This localization pattern supports CAH3’s role in supplying CO- to the
surrounding pyrenoids in the hornwort pCCM.
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Figure 3. Pyrenoids are organized around CAH3 in Anthoceros agrestis. (a) Phylogeny of a-CA
including CAH3. Orthologs of Chlamydomonas CAH3 can be found in hornworts and other bryophytes
(shaded in green), but were lost in vascular plants. (b) CAH3::mVenus fluorescence intensity spikes at the
interior side of pyrenoids (white lines in c). Error bars represent SEMs and are shown as shaded areas in
each curve (n=10). (c) Example images of a cell co-transformed with CAH3::mVenus (green) and
RCA::mScarlet (magenta). Chlorophyll autofluorescence is shown in blue. White arrowhead points to the
central thylakoid knot. The Z-stack series can be found in Movie S2. (scale bar, 5 um.)

LCIB localizes to the chloroplast membrane

Another CA crucial to Chlamydomonas pCCM is LCIB *" which localizes to the periphery of
Chlamydomonas pyrenoids under low CO- conditions to recapture leaked CO; from pyrenoids
3_LCIB orthologs are present in hornworts with conserved residues for coordination of Zn?* ion
and catalysis 2'. Apart from hornworts, no LCIB homolog has been identified in other land plant
genomes 2'. This exclusive presence of LCIB in pyrenoid-bearing algae and hornworts suggests
that LCIB may have a role in hornwort pCCMs. We discovered that, unlike LCIB in
Chlamydomonas, fluorescently tagged A. agrestis LCIB did not localize to the immediate
pyrenoid periphery, but instead to the edge of the chloroplast (Supplementary Fig. 7). To
interrogate this pattern further, we co-localized LCIB::mVenus with mScarlet tagged TIC40,
which is a known component of the inner chloroplast membrane *°. The fluorescence of
LCIB::mVenus and TIC40::mScarlet clearly overlapped (Fig. 4), thus supporting that LCIB is
indeed membrane-bound.

There are several reasons why the membrane-localized LCIB in A. agrestis is logical. In
Chlamydomonas, LCIB localization to the starch sheath is likely mediated by its homolog LCIC
% Hornworts neither have starch sheaths nor LCIC, thus we would not expect to see a similar
localization of LCIB. Furthermore, if LCIB were to surround each pyrenoid in hornworts, it would
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likely rehydrate any CO- that had just been released by CAH3 (which are placed outside of
pyrenoids; Fig. 3c), thus short-circuiting the pCCM. This scenario would be impossible in
Chlamydomonas because CAH3 is localized in the thylakoid tubules embedded within a
pyrenoid. Indeed, previous reaction-diffusion modeling of a pCCM showed that when thylakoid
stacks are used as a diffusion barrier (as is the case of hornworts), LCIB localization to the
chloroplast envelope would be optimal. This is because localizing LCIB as far from pyrenoids as
possible minimizes “stealing” of CO- from the pyrenoid matrix and can still serve as the last line
of defense for CO, leakage '*. Furthermore, for any passively diffused CO» coming into the
chloroplast, membrane-localized LCIB would quickly convert it into HCO3™ before it can escape
back to the cytoplasm.

254

Figure 4. A. agrestis LCIB localizes to the chloroplast
membrane. Maximum intensity projection of A. agrestis
co-transformed with LCIB::mVenus (green) and
TIC40::mScarlet (magenta). Chlorophyli
autofluorescence is shown in blue. (scale bar, 5 um.)
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270
Co-immunoprecipitation and genome-scanning did not reveal putative linker proteins
Pyrenoids, which house Rubisco, are central to pCCM. Rubisco linker proteins that mediate
pyrenoid formation have been identified in the green algae Chlamydomonas (EPYC1) ” and
Chlorella sorokiniana (CsLinker) “°, as well as in the diatom Phaeodactylum tricornutum
(PYCO1) ?°. A putative linker was also proposed in the chlorarachniophyte alga Amorphochlora
amoebiformis *'. While there is little sequence similarity between these linker proteins, they
share certain physicochemical properties, and importantly, can all be pulled down using co-
immunoprecipitation (co-IP) with an anti-Rubisco antibody. To identify the possible Rubisco
linker in A. agrestis, we optimized the lysis of A. agrestis tissue and conducted co-IP using a
custom anti-Rubisco antibody with soluble proteins clarified from hornwort lysate
(Supplementary Fig. 8). From our proteomic analysis we found that both Rubisco large and
small subunits, as well as RCA were highly enriched in the immunoprecipitated fraction relative
to the control where no antibodies were applied (Supplementary Fig. 9). Gene ontology terms
relating to chloroplast, photosynthesis, and thylakoid membranes were significantly
overrepresented in the immunoprecipitated sample, likely reflecting the tight association
between pyrenoids and thylakoids (Supplementary Fig. 10). Together, these data suggest that
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our co-IP approach was successful in enriching the bait (i.e. Rubisco) and its prey proteins (i.e.
potential interactors).

Of the proteins significantly enriched by Rubisco co-IP, we searched for ones with
similar physicochemical properties to other known Rubisco linker proteins. Namely, the
candidate protein needs to: (1) be highly expressed, (2) be rich in repeat motif sequences, (3)
be highly disordered, and (4) have a high isoelectric point (see Methods for detail). Only one
protein was found (AnagrOXF.S1G403800.t11) possessing promising characteristics as a linker
protein, which we named Putative Pyrenoid Protein 1 (PPP1). In addition to having an oscillating
disorder profile, a chloroplast transit peptide, and high enrichment in the co-IP fraction, PPP1
has similarity to Structural Maintenance of Chromosomes (SMC) proteins (Supplementary Fig.
11). We found that fluorescently tagged PPP1 did not localize to the pyrenoid, but instead to the
stroma (Supplementary Fig. 11). Interestingly, in some instances its localization became more
concentrated in a region central to the chloroplast (Supplementary Fig. 11), reminiscent of the
CAH3 localization pattern (Fig. 3). In any case, it is clear that PPP1 is not a Rubisco linker
protein. Despite that our co-IP experiment found no evidence for a canonical linker in A.
agrestis, we cannot rule out the possibility that one exists which has evaded our notice.
Therefore, we broadened our search to include the entire predicted proteome of A. agrestis,
using the same screening criteria as before. Only one candidate protein, PPP2
(AnagrOXF.S4G428300.t2), was found meeting these criteria. Compared to the known Rubisco
linkers (EPYC1, CsLinker, and PYCO1), the repeats of PPP2 were much more irregular and
spaced erratically across the protein sequence (Supplementary Fig. 12). Using fluorescent
protein tagging, we showed that PPC2 did not localize to the pyrenoid, but instead to the spaces
between pyrenoid subunits (Supplementary Fig. 12). Similar to PPP1, no evidence supports
PPP2 being a linker protein for A. agrestis Rubisco. Our results thus point to a possibility that A.
agrestis might employ a different mode of pyrenoid condensation from what has been reported
from algae.

A. agrestis pyrenoids contain proteins involved in Rubisco assembly and Calvin-Benson-
Bassham cycle

While the Rubisco linker in A. agrestis remains elusive, we found other proteins of interest that
were enriched by immunoprecipitation. For example, Rubisco assembly factors (Raf1, Cpn60a,
Cpn60pB) showed significant enrichment by co-IP (Supplementary Fig. 9). We tested the
localization of Cpn60B, a chaperonin required for Rubisco folding *>*? by fluorescent protein-
tagging, and found Cpn60B::mVenus to be clearly pyrenoid-localized (Fig. 5a, Supplementary
Fig 13). To further explore if Rubisco biogenesis might occur within pyrenoids, we tagged
another Rubisco assembly factor, RbcX2 **. While RbcX2 was not co-immunoprecipitated, it is
also localized to the pyrenoids (Fig. Sb, Supplementary Fig 13).

Another protein enriched by co-IP was glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Chloroplastic GAPDH catalyzes the reductive step of the Calvin-Benson-Bassham
(CBB) cycle and is composed of A and B subunits, both of which were significantly enriched in
the immunoprecipitated fraction (Supplementary Fig. 9). To examine if GAPDH is a pyrenoid
component, we fluorescently tagged the B subunit (GapB) and confirmed its pyrenoid
localization (Fig. 5C, Supplementary Fig 14). It is possible that the CBB cycle (or part of it) takes
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place in pyrenoids to limit the diffusion time of CBB cycle intermediates. Contrastingly, in
Chlamydomonas, CBB enzymes are localized to the periphery of the pyrenoid *°.

Based on our results, it is plausible that A. agrestis pyrenoids are an inclusive
compartment, where multiple cellular processes revolving around Rubisco take place. Future
studies systematically tagging Rubisco assembly and CBB cycle proteins are needed to further
test this hypothesis.

336
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‘ Figure 5. A. agrestis Rubisco assembly and
| CCB cycle proteins localize to pyrenoids.
Example images of cells expressing either (a)
Cpn60::mVenus, (b) RbcX2:mVenus, or (c)
GapB::mVenus tagged with mVenus (green).
RCA::mScarlet was co-transformed to mark
pyrenoids (magenta). The merged images also
included chlorophyll autofluorescence (blue).
(scale bar, 2 or 5 ym.)
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DISCUSSIONS

A working model for a hornwort pCCM

Our current evidence suggests a model (Fig. 6) for the hornwort pCCM that bears similarity to
the algal pCCM yet with some key differences. First, since hornworts largely do not exist in an
aqueous environment (where CO- diffusion is severely limited), we suspect that periplasmic
CAs and active HCOg3™ transporters such as LCI1/HLA are not essential. Likewise, despite
retaining the LCIB-BST-CAH3 chassis, hornworts do not have an ortholog to LCIA, the
hypothesized HCO3™ channel in Chlamydomonas. Given this, we hypothesize that the hornwort
CCM likely operates under a “passive”, LCIB-dependent mode as described by Fei et al .
Once CO- passively diffuses across the chloroplast membrane it is rapidly converted to HCO3
by membrane-localized LCIB, trapping it in the stroma. In the stroma, HCO3™ can enter the
thylakoid space via BST1, where a concentration gradient drives it towards the pyrenoid
adjacent thylakoids enriched in CAH3. There, CAH3 catalyzes the dehydration of HCOs5',
creating a CO- enriched environment for the nearby pyrenoids. Leakage of CO, from the
pyrenoid matrix is hindered by the highly reticulated thylakoid network, and any escaped CO;
could be recaptured by LCIB at the chloroplast membrane. While we cannot rule out the
presence of active Ci transport, the condition to drive an efficient pPCCM is met based on the

10
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localizations of LCIB, BST, and CAH3, thylakoid-enclosed pyrenoids, as well as the reaction-
diffusion model by Fei et al *°.

The spatial model we presented here provides a framework for future hypothesis-driven
research. Although protein localization alone does not provide the full proof for a protein’s
function, currently no reverse genetics method has been successfully developed in A. agrestis.
Future work investigating carbon assimilation efficiency of selective gene knockdown or
knockout mutants, as well as biochemical in vitro characterizations will be crucial to confirm or
revise our model.
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The first land plants likely had the chassis for a biophysical CCM

Operating an effective biophysical CCM requires the strategic placement of Ci channels and
CAs. It is striking that some of these key components (LCIB, BST, and CAH3) characterized in
Chlamydomonas have orthologs in hornworts and likely play similar roles in their respective
pCCM. ltis difficult, if not impossible, to determine whether hornwort pCCMs represent an
ancestral trait or an independent origin. In either case, however, the presence of the LCIB-BST-
CAH3 chassis in hornworts suggests that the underlying chassis to concentrate CO, was
present in the last common ancestor of land plants. Considering that various algae possess
biophysical CCMs even in the absence of pyrenoids 6™, it is not impossible that the earliest
land plants could have operated a functional CCM.

We propose two scenarios that could result in hornworts being the only land plants
having a pCCM. In one, pyrenoids were de novo evolved in hornworts on top of the LCIB-BST-
CAH3 chassis already in place. The loss of LCIB and CAH3 in other plant lineages rendered the
evolution of pyrenoids less advantageous. The supposed absence of a canonical Rubisco linker
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for pyrenoid formation in A. agrestis lends support for the separate origins of pyrenoids.
Alternatively, pyrenoids could be ancestral to land plants, but were subsequently lost once in
setaphytes (mosses and liverworts) and another time in vascular plants. In this scenario
hornworts did not independently evolve pyrenoids, but rather retained them as a plesiomorphic
trait.

Implications for the repeated evolution of pyrenoids within hornworts

Within hornworts, pyrenoids have been lost and gained multiple times across the phylogeny .
Interestingly, LCIB, BST, and CAH3are present in all the sequenced hornwort species, even in
those lacking pyrenoids °'. Considering that pyrenoid-absent species have CO, compensation
points which are intermediate between liverworts and pyrenoid-containing hornworts *2, a
baseline biophysical CCM probably exists among most hornworts and the strength of this CCM
could be accentuated by the presence of a pyrenoid. The universal presence of this LCIB-BST-
CAH3 chassis could explain the repeated gains of pyrenoids as it might have predisposed the
evolution of pyrenoids. The specific localization of CAs and Ci channels is also likely the first
step to the evolution of a fully functional pCCM, rather than pyrenoid formation itself.

Hornworts provide a blueprint for engineering a biophysical CCM in land plants
Significant strides have been made in transplanting parts of the algal CCM to Arabidopsis in
recent years. For example, by introducing EPYC1, SAGA1, and SAGA2 proto-pyrenoids with
starch sheaths have been successfully built in Arabidopsis *>**. However, the entire algal CCM
module has yet to be integrated into flowering plants. Our investigation into the hornwort system
demonstrates that some components of the algal pPCCM may not be required in land plants.
First, a starch sheath around pyrenoids may not be necessary as thylakoid stacks could provide
a sufficient CO- diffusion barrier (Fig. 1). Second, if hornworts indeed operate a “passive”
pCCM, then our work provides the first empirical evidence for its feasibility '*. In a passive
pCCM, the proper localization of a minimal set of carbonic anhydrases (e.g. LCIB and CAH3)
and thylakoid localized Ci channels (e.g. BST) may be sufficient to concentrate CO, without the
need for active Ci transport to the chloroplast '*. Importantly, recent modeling suggested that
introducing active HCOs™ transporters to build pCCMs in land plants is only viable if chloroplast
membrane permeability to CO; is low *°. The passive pCCM of hornworts would not encounter
this challenge and could be potentially simpler to engineer. Taken together, hornworts provide
an alternative blueprint to design a future pCCM.
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METHODS

Anthoceros agrestis cultures

Anthoceros agrestis axenic cultures were maintained on A. agrestis gametophyte growth
medium (AG medium °¢) supplemented with 0.2% sucrose following the protocol described in
Lafferty et al 2. The growth conditions included a temperature of 22°C, a 16/8 h light/dark cycle,
and light intensity ranging from 6 to 25 pmol/m?/s. Warm white and cool white light was emitted
by Ecolux XL Starcoat F32T8 XL SP30 ECO fluorescent bulbs and F32T8 XL SP41 ECO bulbs,
respectively (General Electric, USA). A total of 3-6 g of fresh thallus tissue was homogenized
and prepared for transformation as described in Lafferty et al . The homogenate was filtered
using a 100 pM cell strainer (MTC Bio, USA), and the thallus tissue was washed with sterile
deionized water and plated on AG medium supplemented with 2% sucrose.

Transmission electron microscopy

Plant materials were processed for transmission electron microscopy following the published
protocol ¥, with some modifications. Pure cultures were fixed in 3% glutaraldehyde, 1%
formaldehyde, and 0.75% tannic acid in 0.05 M Na-cacodylate buffer, pH 7, for 3-4 h at room
temperature. After several rinses in Sorensen’s 0.1 M buffer, the samples were post-fixed in 2%
osmium tetroxide, dehydrated in an ethanol series and embedded in Spurr’s resin for 24 h. Thin
sections were cut with a diamond knife, stained with methanolic uranyl acetate for 15 min
followed by Reynolds’ lead citrate for 10 min, and observed with a Hitachi H-7100 transmission
electron microscope at the Imaging-Microscopy Platform of the IBIS, Université Laval.

Construction of fluorescently tagged protein expression cassettes

Constructs were designed and built using the OpenPlant toolkit °®. All genes of interest were
driven by the same constitutive promoter (A. agrestis native Elongation factor 1 alpha (Ef1q)
promoter) and Nos terminator (OP-053). Coding sequences of target genes were synthesized
by Twist Biosciences with synonymous substitutions made where necessary to remove internal
Bsal or Sapl Type Il restriction cut sites or to reduce repetitive nucleotide sequences if required
for synthesis. Assembly reactions were performed by a one-pot mixture that consists of Type Il
restriction enzymes with T4 DNA ligase (NEB, USA) as described in Sauret-Gueto et al. 8. Heat
shock transformation with NEB® 5-alpha Competent Escherichia coli was used to regenerate
ligated products on the respective Luria Broth agar plates with either kanamycin or
streptomycin. Colony PCR was performed with KOD One™ PCR Master Mix (Toyobo) to screen
colonies before recovering plasmids with a 5 mL overnight culture and miniprep (QlAgen).
Whole plasmid sequencing (Eurofin Genomics, USA) was performed as a final validation. To
prepare plasmids for biolistic mediated transformation, a total of 50 ml E. coli culture was grown
overnight at 37 °C. The plasmid DNA was extracted using the PureYield™ Plasmid Midiprep
system (Promega, USA), followed by vacuum concentration in a SpeedVac Concentrator
(Thermofisher Scientific, USA) to obtain DNA concentrations of 1 ug/uL.

Transient expression of fluorescently tagged proteins in A. agrestis

To obtain transient expression of fluorescently tagged proteins in A. agrestis, we performed
biolistic mediated transformation using DNA/gold particle mixture preparations and the particle
Delivery system PDS-1000/He (Bio-Rad, USA) as described in Lafferty et al %, with a target
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distance of 14 cm and a burst pressure of 450 psi, under a vacuum of 28 inHg. The bombarded
tissue was left to recover for 3-10 days, under standard culturing conditions as described above,
before imaging.

Confocal imaging

Imaging was performed using Zeiss LSM710, Leica TCS SP5 Laser Scanning Confocal
Microscope, or Leica Stellaris 5 confocal microscope. Proteins tagged with mVenus were
excited with a 514 nm laser line with an emission band of 524/551 nm. Chlorophyll
autofluorescence and proteins tagged with mScarlet were excited with a 561 nm laser line, with
emission bands of 658/699 and 579/609 nm, respectively. Each FRAP experiment started with
four initial scans before bleaching the region of interest (ROI). Circular ROIs with a 1.3 um
diameter were exposed eight times at 20% intensity of the 514 nm laser, before allowing
recovery for 160 cycles (66 seconds) with laser power attenuated at 0.5% intensity. Replicates
were collected by photobleaching individual pyrenoids within a cell. Subsequent analysis was
conducted using the FRAP wizard in Leica Application Suite Advanced Fluorescence and data
was plotted in R. Intensity profiles for all tagged proteins were collected by using the line tool to
transect regions of interest (e.g. pyrenoid boundaries, chloroplast boundaries) and then plotting
the intensity profile in Fiji °°. These intensity profiles were then exported for subsequent
analyses and plot generation in R.

Homology-based approach to identify candidate CCM proteins

To identify candidate CCM genes in hornworts we used Orthofinder v2.5.4 on a broad sampling
of plant and algal genomes (Supplemental Table 2), including 11 species of hornworts °', to
generate orthogroups. We then selected orthogroups containing key Chlamydomonas CCM
genes (Supplemental Table 1). Because orthogroups can sometimes represent large gene
families, to infer the direct orthologues in hornworts, phylogenetic reconstruction using IQ-TREE
0 was performed to identify the hornwort sequences in the same subfamily as the
Chlamydomonas genes of interest. From these, we selected A. agrestis genes which showed
high expression levels using the RNA-seq data from Li et al ?'. In cases where there were
multiple orthologues present in A. agrestis, we selected the gene with the highest expression. In
addition to CCM genes, we choose Photosystem | reaction center subunit VI (PSAH) and
Oxygen-evolving enhancer protein 2 (PSBP) as Photosystem | and Photosystem |l markers,
respectively, to compare the distribution of photosystems and to visualize thylakoids.

Targeted bioinformatic search for a Rubisco linker protein

A targeted search for potential linker proteins was conducted in a manner similar to, but less
stringent than described in Mackinder et al /. Genomic sequences of two A. agrestis strains '
were first screened for tandem repeats using Xstream °'. Default parameters were used with the
following exceptions: Minimum Period: 20; Maximum Period: 100; Minimum Copy # 2; and
Minimum tandem repeat Domain: 40. Proteins which passed this screen were then analyzed for:
1) a high isoelectric point (>8) using Expasy 2, 2) a high proportion of disordered sequence
using the PONDR server (>50%) 3. From this screen, lowly expressed genes were filtered
based upon their corresponding RNA transcript abundance (transcript per million <10) %'
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Optimizing lysis of A. agrestis thallus

To derive soluble proteins from A. agrestis thallus, we experimented the lysis of A. agrestis by
testing four different buffers: buffer A (20 mM HEPES pH 7.0, 50 mM NaCl, 12.5% v/v glycerol),
buffer B (Buffer A with 2% v/v Triton X-100), buffer C (20 mM CAPS pH 11.0, 50 mM NaCl,
12.5% vlv glycerol), and buffer D (Buffer C supplemented with 2% v/v Triton X-100). For each
lysis, 5 g of A. agrestis tissue were harvested from liquid cultures in the AG medium *¢. The
biomass was frozen with liquid N2 and crushed to find powder with a mortar and pestle. A total
of 5 mL of either test buffer supplemented with 1 mM phenylmethylsulfonyl fluoride and one
protease inhibitor tablet (Roche) was then to resuspend the fine powder. The suspension was
lysed with a French pressure cell press (American Instrument Company, USA) at 1000 PSI.
Polyvinylpolypyrrolidone (PVPP, 2%) was added to the French pressed lysate and the mixture
was sieved through four layers of Miracloth, pre-wetted with the respective test buffer. The
filtrate was centrifuged (21,000 g for 45 min at 4 °C) to separate pellet and supernatant
fractions. The supernatant fraction was further filtered through a 0.22 ym syringe filter. Both
fractions were analyzed on SDS-PAGE and western blot using 8-16% Mini-PROTEAN® TGX™
Precast Protein Gels (Bio-Rad). For immunoblotting of Rubisco, a polyclonal antibody was
raised in rabbits against the A. agrestis Rubisco large subunit C-terminus peptide
EVWKEIKFVFETIDTL and affinity purified (Life Technologies, USA).

Co-immunoprecipitation of Rubisco

A total of 100 pL Protein A resin (Dynabeads, Invitrogen) was aliquoted into 1.5 mL
microcentrifuge tubes and washed thrice with buffer C (20 mM CAPS pH 11.0, 50 mM NacCl,
12.5% v/v glycerol) with a magnetic rack. Next, the resin was incubated with 7.5 ug/mL anti-
Rubisco on a rotator (2 h/4°C) and washed twice with buffer C. Controls were performed by not
priming the resin with anti-Rubisco antibodies. A total of 750 yL soluble lysate was then added
to anti-Rubisco bound resin and incubated on a rotator overnight (~18 h/4 °C) and washed
thrice with buffer C. Protein elution was carried out by adding 80 uL of 2.5X SDS loading buffer,
without 2-Mercaptoethanol. Eluted proteins were separated from the Dynabeads and 2-
Mercaptoethanol was added to a final concentration of 100 mM, proteins were then boiled (95
°C/5 min) and shipped for LC-MS/MS analysis. The co-IP and control experiments each had five
technical replicates.

Proteomic analysis

LC-MS/MS analysis was performed at the Environmental Molecular Sciences Laboratory in
Pacific Northwest National Laboratory. Samples were processed using Filter Aided Sample
Preparation (FASP) ® by adding 400 pl of 8 M urea to 30K molecular weight cut off (MWCO)
FASP spin columns along with 40 ul of the sample in SDS BME buffer and centrifuged at 14,000
g for 20 min. Urea washes were repeated three additional times followed by the addition 400 pl
of 50 mM ammonium bicarbonate, pH 8.0 and two repeated centrifugation for 20 min. The
columns were then placed into clean and labeled collection tubes. The digestion solution was
made by dissolving 5 ug trypsin in 75 yL 50 mM ammonium bicarbonate solution which was
added to each sample. The samples were then incubated for 3 h at 37 °C with 600 rpm shaking
on a thermomixer with a ThermoTop (Eppendorf, Hamburg, Germany) to reduce condensation
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into the caps of collection tubes. The resultant peptides were then centrifuged through the filter
and into the collection tube by centrifuging at 14,000 g for 15 mins. The peptides were
concentrated to ~30 yL using a vacuum concentrator. Final peptide concentrations were
determined using a bicinchoninic acid (BCA) assay (Thermo Scientific, Waltham, MA USA) and
each sample was prepared at 0.1 pg/ul for MS analysis

Digested protein samples were analyzed using an Orbitrap Eclipse Tribrid MS (Thermo
Scientific) outfitted with a high field asymmetric waveform ion mobility spectrometry (FAIMS)
interface, using data-dependent acquisition mode. Peptides were ionized using a voltage of 2.4
kV and with an ion transfer tube temperature at 300 °C. Data acquisition time was 2 hr following
a 20 min delay to avoid dead time between injection and elution of peptides. A proprietary
method for transferring identification based on FAIMS filtering was used to fractionate ionized
peptides by the FAIMSpro interface using a 3-Compensation Voltage (3-CV); -45, -60, -75 V
method. Fractionated ions with a mass range 400-1800 m/z were scanned with Orbitrap at
120,000 resolution with an injection time (IT) of 50 ms and an automatic gain control (AGC)
target of 4e5. Cycle times of 1.0 s were used for the 3-CV method. Precursor ions with
intensities > 1e4 were fragmented with an isolation window of 0.7 by 30% higher-energy
collisional dissociation energy and scanned with an AGC target of 1e* as well as an IT of 35 ms.

Raw data files were referenced to A. agrestis nuclear encoded and chloroplast encoded
proteins ?', and peptide abundances were extracted from the raw spectra using MASIC °° and
log2 transformed to remove skewness in distribution of measured abundances. Transformed
abundance values were then normalized using the mean central tendency method implemented
in InfernoR °¢. Normalized peptide abundances were de-logged, summed, transformed (log2),
and normalized again in InfernoR to produce normalized abundances for the protein level roll-
up. Proteins which were missing in more than one replicate of the conditions (control or anti-
RbcL) were filtered from the final analysis to limit the imputation of too many missing values.
Left-censored missing values were imputed using the Minimum Probability method with the
default parameters. Differential enrichment analysis was conducted using the DEP Bioconductor
package version 1.27.0 °” with a p value cutoff of 0.05. Plots were generated using ggplot2
(version 3.5.1). Gene ontology (GO) enrichment analysis was carried out using the GO
Enrichment module of TBtools °® with goslim_plant selected. Background file was set as the
entire A. agrestis proteome and proteins found to be significantly enriched by
coimmunoprecipitation were chosen as the selection set. The resulting table was then used to
generate an enrichment barplot.
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