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ARTICLE INFO ABSTRACT

Keywords: Surveillance of airborne viruses in crowded indoor spaces is crucial for managing outbreaks, as highlighted by
Surface-enhanced Raman spectroscopy the SARS-CoV-2 pandemic. However, the rapid and on-site detection of fast-mutating viruses, such as SARS-CoV-
SARS-CoV-2

2, in complex environmental backgrounds remains challenging. Our study introduces a machine learning (ML)-
driven surface-enhanced Raman spectroscopy (SERS) approach for detecting viruses within environmental dust
matrices. By decomposing intact virions into individual structural components via a Raman-background-free
lysis protocol and concentrating them into nanogap SERS hotspots, we significantly enhance the SERS signal
intensity and fingerprint information density from viral structural components. Utilizing Principal Component
Analysis (PCA), we establish a robust connection between the SERS data of these structural components and their
biological sequences, laying a solid foundation for virus detection through SERS. Furthermore, we demonstrate
reliable quantitative detection of SARS-CoV-2 using identified SARS-CoV-2 peaks at concentrations down to 102
pfu/ml through Gaussian Process Regression (GPR) and a digital SERS methodology. Finally, applying a Principal
Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm, we identify SARS-CoV-2, influenza A
virus, and Zika virus within an environmental dust background with over 86% accuracy. Therefore, our ML-

Rapid environmental virus monitoring
Machine learning

driven SERS approach holds promise for rapid environmental virus monitoring to manage future outbreaks.

1. Introduction

The recent SARS-CoV-2 pandemic has highlighted the challenge of
controlling the airborne spread of viruses in poorly ventilated indoor
spaces (Bazant and Bush, 2021; Morawska et al., 2020). Numerous in-
door “super-spreading events” have led to large SARS-CoV-2 outbreaks
(Miller et al., 2021; Shen et al., 2020). Consequently, there is an urgent
need for a rapid, low-cost, and field-deployable analytical method to
detect pathogenic viruses in aerosols or on surfaces within congested
indoor environments to help prevent and control nascent viral epidemics
as soon as possible (Rahmani et al., 2020; Wang et al., 2023; Yao et al.,
2021). Furthermore, a flexible detection technique capable of identi-
fying various mutant virus strains is essential, given the rapidly
mutating nature of viruses such as SARS-CoV-2 (Su et al., 2016).

Methods for directly detecting viruses can be categorized as targeted
and non-targeted approaches. Targeted methods are typically based on
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the detection of amplified viral nucleic acids or viral antigens (Abdel-
hamid and Badr, 2021; Peeling et al., 2022; Yiice et al., 2021). Nucleic
acid amplification strategies such as polymerase chain reaction (PCR)
have facilitated the highly sensitive detection of SARS-CoV-2 in envi-
ronmental samples (Liu et al., 2020; Rahmani et al., 2020; Santarpia
et al., 2020). However, they are unsuitable for rapid on-site monitoring
due to complex handling, specialized equipment, and expensive re-
agents. Several antigen detection methods have been developed for
SARS-CoV-2 detection, typically relying on receptors (e.g., nanobodies,
antibodies) to capture the target antigens, followed by their detection
via various transduction methods (e.g., electrical (Fathi-Hafshejani
etal., 2021; Seo et al., 2020), electrochemical (Eissa and Zourob, 2020),
optical (Pinals et al., 2021), plasmonic (Ahmadivand et al., 2020, 2021;
Park et al., 2022)). Antigen tests have demonstrated rapid, low-cost, and
on-site SARS-CoV-2 detection (Kevadiya et al., 2021), even in environ-
mental samples (Puthussery et al., 2023). However, these antigen tests,
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relying on predefined receptors, are inadequate for detecting mutant
viruses and suffer from reliability issues in complex backgrounds, such
as environmental matrices, due to non-specific interactions (Yao et al.,
2021). In contrast, non-targeted methods measure holistic molecular
fingerprints of viruses without receptors, enabling the surveillance of
mutant strains. Traditional non-targeted methods like mass spectrom-
etry (Liangou et al., 2021; Nachtigall et al., 2020) and nuclear magnetic
resonance (Bizkarguenaga et al., 2022) are unsuitable for rapid on-site
viral surveillance due to pretreatment steps and expensive equipment.
Raman spectroscopy, compatible with handheld instrumentation, holds
promise for rapid on-site detection of SARS-CoV-2 (Pezzotti et al., 2022).
However, the spontaneous Raman scattering process, due to a meager
quantum yield, lacks the sensitivity to detect low virus concentrations in
environmental samples.

To address these limitations, surface-enhanced Raman spectroscopy
(SERS) combines vibrational spectroscopy’s molecular fingerprint
specificity with plasmonic nanostructures’ hotspot sensitivity, offering
an ultrasensitive fingerprinting-based detection method (Garg et al.,
2022; Langer et al., 2019). Therefore, SERS has enabled the ultrasensi-
tive, non-targeted detection of various biomolecules, from small me-
tabolites to large proteins (Zong et al., 2018). Recently, numerous
studies have demonstrated the successful detection of SARS-CoV-2 in
human fluids (e.g., saliva) using non-targeted SERS assays (Paria et al.,
2022; Yang et al., 2022; Zhang et al., 2022). However, the application of
non-targeted SERS for identifying SARS-CoV-2 in environmental sam-
ples remains unexplored mainly because applying SERS to virus sur-
veillance in complex environmental matrices faces challenges. First, the
size disparity between viruses (50-150 nm diameter) and sub-10 nm
plasmonic nanogap hotspots restricts viral access to SERS-active zones,
restricting attainable molecular information and hampering SERS
detection sensitivity (Zhang et al., 2019). Second, identifying viruses in
complex environmental matrices is challenging due to molecular signal
interference from other biological components. Therefore, unsupervised
(Garg et al., 2023; Ringnér, 2008) or supervised (Morais et al., 2020)
machine learning (ML) methods are essential for conducting multivar-
iate analysis of high-dimensional SERS datasets. Last, a limited under-
standing of the contributions of viral constituents like spike proteins,
nucleocapsid proteins, and RNA to Raman spectra affects the reliability
of SERS data interpretation in complex settings.

In this study, we demonstrate the ultrasensitive SERS detection of
SARS-CoV-2 by decomposing viruses into their structural components
and condensing them into nanogap SERS hotspots within a compact
detection area comprising gold nanoparticle (NP) aggregates. We
meticulously analyze the contributions of specific protein and nucleic
acid constituents of SARS-CoV-2 to the SERS spectra of the decomposed
virus. Leveraging Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA), we demonstrate the capacity to pinpoint
and characterize viruses based on their unique protein and nucleic acid
profiles, thus forging a connection between label-free SERS data and
amino acid and nucleotide sequences. Furthermore, we devise a multi-
variate Gaussian Process Regression (GPR) model that accurately
quantifies SARS-CoV-2 concentrations from 10° to 10° pfu/mL. Lastly,
by employing PCA-LDA, we identify three enveloped pathogenic viruses,
SARS-CoV-2, influenza A virus, and Zika virus, amidst an environmental
dust matrix, achieving high classification accuracies. These findings
accentuate the capabilities of our approach as a rapid and precise tool
for environmental surveillance of viruses.

2. Materials and methods
2.1. Synthesis of colloidal gold nanoparticles (AuNPs)

AuNPs were prepared through a seed-mediated growth approach.
First, the AuNP seeds were synthesized by adding 3.88 mM NasCitrate to

100 mL of boiling 1 mM HAuClse3H,0 with vigorous stirring and
refluxing. The suspension was boiled for 15 min after the solution turned
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to wine red and then cooled at room temperature. To obtain the final
AuNPs, 820 pL of the above-prepared AuNP seeds and 440 pL of 38.8
mM NasCitrate were successively added to 100 mL of boiling 0.254 mM
HAuCl4e3H20 with vigorous stirring and refluxing for 30 min. After
cooling down to room temperature, AuNPs were obtained and stored at
4 °C for future use.

2.2. Viral lysis protocol

Text S7 contains the protocols for the propagation of SARS-CoV-2,
Zika virus, Influenza A virus, and Phi6. 100 pL of virus solutions were
mixed with 1 pL of sodium dodecyl sulfate (SDS) in 1.5 mL micro-
centrifuge tubes. The tubes were placed in an ultrasonic bath sonicator
(VEVOR ultrasonic cleaner, 40 kHz frequency) at 50 °C for 30 min.

2.3. SERS detection assay

Aluminum foil was surface silanized by vapor coating with
Tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane (TFOCS, Gelest
Inc) in a vacuum chamber (Sidorova et al., 2009). 3 pL of analyte
samples (e.g., lysed virus, structural proteins, RNA) and 6 pL of AuNPs
were pipetted onto the silanized aluminum foil and evaporated at room
temperature. For the SERS experiments, we used a confocal Raman
microscope (alpha 300 RSA+, Witec, Germany) under 785 nm laser
excitation (Xtra II, Toptica, Germany) using a 20x objective lens (5 mW
laser power and 2s integration time). A spectrometer (UHTS300, Witec,
Germany) containing a CCD camera (DU401A, Oxford Instruments, UK)
was used to detect the backscattered photons. Each scan was performed
over a 20 um * 20 um area consisting of 100 pixels.

2.4. SERS detection of SARS-CoV-2 structural proteins and RNA

SARS-CoV-2 S (SARS-CoV-2 Spike RBD (N487D) Protein), N (SARS-
CoV-2 Nucleocapsid (R203M, D377Y) Protein), and E (SARS-CoV-2
(2019-nCoV) envelope(CoV-E) protein) proteins were purchased from
Sino Biological. Aqueous solutions of the S, N, and E proteins were
prepared (10 pg/mL), and SERS measurements were performed as
described above. Viral RNA was extracted using the Qiagen QIAamp
Viral RNA Mini kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s protocol. The elution volume was 60 pL. SERS detection was
performed as described above. A negative control was prepared
following the same procedure without the virus. The concentrations
quantified on Qubit of extracted RNA from SARS-CoV-2, influenza A
virus, and Zika virus were 0.8 ng/pL, 1 ng/pL, and 1.6 ng/pL, respec-
tively. The three samples were diluted to a final concentration of 0.8 ng/
pL in the buffer from the negative control sample. SERS detection was
performed as described above.

2.5. SERS detection of SARS-CoV-2, Zika virus, and influenza A virus

To eliminate the effects of the cell supernatant background, the
following sample groups were created. A) Control: SARS-CoV-2 back-
ground + influenza A virus background + Zika virus background; B)
SARS-CoV-2 group: SARS-CoV-2 (10° pfu/mL) + influenza A virus
background + Zika virus background; C) Influenza A virus group:
influenza A virus(10° pfu/mL) + SARS-CoV-2 background + Zika virus
background, and D) Zika virus group: Zika virus (10° pfu/mL) + SARS-
CoV-2 background + influenza A virus background. Viral lysis and SERS
detection were performed as described above.

2.6. SERS detection of SARS-CoV-2, Zika virus, and influenza A virus in
environmental dust background

Dust was collected from a classroom HVAC filter by vacuuming and
was suspended in ultrapure water at a concentration of 5 mg/ml. This
stock was lysed using the protocol described above and passed through a
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0.22 um filter. It was diluted to a concentration of 1 mg/ml for the ex-
periments. The following sample groups were created again. A) Control:
SARS-CoV-2 background + influenza A virus background + Zika virus
background; B) SARS-CoV-2 group: SARS-CoV-2 (10° pfu/mL) + influ-
enza A virus background + Zika virus background; C) Influenza A virus
group: influenza A virus (10° pfu/mL) + SARS-CoV-2 background +
Zika virus background, and D) Zika virus group: Zika virus 10° pfu/mL)
+ SARS-CoV-2 background + influenza A virus background. 50 pL of the
virus sample groups were lysed using the protocol described above and
were mixed with 50 pL of the lysed dust solution. SERS detection was
performed as described above.

2.7. Multivariate analysis

Baseline correction and cosmic ray removal were performed using
Project v4.1 software. The spectra whose maximum peak values were
smaller than three times the noise level were discarded. The background
noise intensity was determined using recorded signals in the spectral
region at 2000 cm ! without molecular Raman peaks (Nam et al., 2022).
MATLAB was used for performing ERS calibration and data truncation.
Lastly, R was used for performing PCA and LDA (Garg et al., 2023). The
PCA-LDA classification results were obtained using the
leave-one-out-cross-validation method. The sensitivity and specificity
were calculated using the following expressions. Sensitivity = True
positives/(True positives + False negatives); Specificity = True neg-
atives/(True negatives + False positives). The multivariate GPR model
was trained using the regression learner application in Mathworks
MATLAB/SIMULINK (ver. R2022a). To validate the model, we con-
ducted 5-fold cross-validation. Feature selection was performed using
the Maximum Relevance Minimum Redundancy (MRMR) algorithm.

2.8. Digital SERS

The SERS maps at different SARS-CoV-2 concentrations were con-
verted into a binary format (0 or 1) based on whether the pixel’s in-
tensity exceeded a predefined threshold. The threshold was set as
average intensity plus three times the standard deviation (aver-
age+3SD) collected from a negative control sample, following the re-
ported protocol (Godoy et al., 2020). Each pixel of the digitized map was
multiplied by each corresponding pixel of the original SERS map, thus
generating a digital SERS map. The sum of the pixel intensities for each
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3. Results and discussion
3.1. SERS detection and multivariate analysis of lysed SARS-CoV-2

Fig. 1A outlines our streamlined approach for viral lysis and label-
free SERS measurements. Initially, we developed a Raman-
background-free viral lysis protocol to decompose viruses, ranging
from 50 to 150 nm in size, into structural components that can fit into
sub-10 nm plasmonic nanogap hotspots in Au NP aggregates. Next, the
lysed virus solution was mixed with Au NPs and deposited on a silane-
treated aluminum foil. The hydrophobic silane-treated aluminum foil
promotes analyte enrichment within a compact detection region of
~0.8 mm? area, yielding ultrasensitive SERS detection. Fig. S1 shows a
transmission electron microscopy (TEM) image of sub-5 nm hotspots
generated by Au NP aggregates capable of generating high SERS
enhancement factors (Ding et al., 2016). Finally, we captured the
label-free SERS spectra of the lysed virus components. We observed that
commercially available viral lysis buffers exhibit intense SERS signa-
tures due to molecular components with high Raman cross-section that
can cause spectral interference with the label-free SERS spectra of target
viral analytes. For example, Fig. 1B presents the SERS spectra of lysis
buffers used in a commercially available Flowflex antigen test and a
nucleic acid extraction kit (QIAamp RNA kit), displaying notable SERS
signatures. We observed that sodium dodecyl sulfate (SDS), an anionic
detergent capable of disrupting viral envelopes (Miura et al., 2011;
Thom et al., 2021), exhibits no discernible SERS peaks (Fig. 1B).
Consequently, we developed a Raman-background-free viral lysis pro-
tocol combining SDS-based chemical disruption of the viral envelope
with sonication and heat treatment. Sonication uses high-frequency
sound waves (40 kHz) to agitate and lyse the viruses, while elevated
temperatures (e.g., 50 °C) provide kinetic energy to accelerate the
physical and chemical lysis of viruses.

We optimized the viral lysis protocol using Phi6, a well-established
surrogate for enveloped pathogenic viruses (Aquino de Carvalho et al.,
2017; Fedorenko et al., 2020) (Text S1 and Figs. S3-5). We then applied
the developed lysis protocol to obtain the label-free SERS spectra of
lysed SARS-CoV-2 (Fig. 1C). Raman signal intensities were calibrated
using the electronic Raman scattering (ERS) internal standard across all
SERS measurements (Nam et al., 2020). Table S1 details the assigned
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Fig. 1. SERS detection and multivariate analysis of lysed SARS-CoV-2. (A) Schematic illustration of the key steps for SERS detection of lysed viruses. (B) Average
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molecular origins of the observed SERS peaks. The control SERS spec-
trum from uninfected cell supernatant reveals protein-related Raman
peaks at 620, 643, 997, and 1038 cm*. No significant changes in the
spectrum were observed after treating the cell supernatant with SDS,
sonication, and heat. In contrast to the control SERS spectra from the cell
supernatant, the SERS spectrum of 10° pfu/mL SARS-CoV-2 exhibits an
additional protein-related Raman peak at 880 cm™!, attributed to
tryptophan. Following treatment with SDS, heat, and sonication, we
noted a significant increase in the intensity of several Raman peaks
related to proteins (643, 880, 914, 997, 1038, 1121, and 1250 cm ™Y and
nucleic acids (732, 971, 1055 and 1180, 1280, 1320, and 1393 cm™}).

SARS-CoV-2 is comprised of spike (S), envelope (E), and membrane
(M) proteins that form the virion and an RNA genome bound by
nucleocapsid (N) proteins within the virion (Astuti, 2020; Wang et al.,
2020). During label-free SERS detection of intact SARS-CoV-2, only a
small portion of the S proteins, with a vertical size of approximately 5
nm, can access the sub-10 nm plasmonic nanogap hotspots. Conse-
quently, the dominant protein-related peak at 880 cm ™! in the SERS
spectrum of unlysed SARS-COV-2 likely originates from the S proteins
on the SARS-CoV-2 virion surface. When lysed, the viral structure is
dismantled, significantly increasing the accessibility for all virus struc-
tural components, both on the surface and inside the virion, to the
plasmonic nanogap hotspots in the Au NP aggregates (Fig. 52).

We implemented PCA, an unsupervised multivariate ML analysis
tool, to statistically identify the SERS peaks responsible for the differ-
ences among the various samples. The principal component (PC) score
scatter plot shows a significant overlap between the data points from
lysed and unlysed cell supernatant samples, while the SARS-CoV-2
samples are well separated (Fig. 1D). Compared to the cell superna-
tant samples that show negative PC1 and PC2 values, the SARS-CoV-2
samples are separately clustered with the unlysed SARS-CoV-2 sample
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exhibiting positive PC2 values and the lysed SARS-CoV-2 sample
exhibiting positive PC1 and PC2 values. Fig. 1E shows the loading
spectra for PC1 and PC2, revealing the contributions of different
vibrational modes to the differences between samples. The protein-
related Raman peak at 880 cm ™! positively contributes to PC2, signi-
fying that this peak primarily accounts for the differences between the
uninfected cell supernatant samples and unlysed SARS-CoV-2 samples.
Several Raman peaks from proteins (495, 530, 620, 643, 880, 914, 997,
1038,1121 and 1250 cm™ 1) and nucleic acids (971, 1055, 1180, 1280,
1320, and 1393 cm-1) positively contribute to PC1, statistically veri-
fying that these peaks increase significantly in the SARS-CoV-2 samples
after lysis.

3.2. SERS detection and multivariate analysis of SARS-CoV-2 structural
components

To fully comprehend the origins of the observed peaks, a SERS
database for SARS-CoV-2 components is vital. First, we obtained the
SERS spectra of S, N, and E proteins in SARS-CoV-2 (Fig. 2A, Text S3). A
strong peak at 880 cm ! in S proteins aligns with our hypothesis that the
untreated SARS-CoV-2 SERS peak at 880 cm ™ originates from S proteins
on the SARS-CoV-2 virion surface. Due to their different amino acid
compositions, the peak intensities corresponding to different vibrational
modes varied in S, N, and E proteins (Text S2). We implemented PCA to
extract the contributions of different Raman modes to the SERS spectra
of S, N, and E proteins. The PC score scatter plot demonstrates that the
SERS spectra data points from S, N, and E proteins are separated along
PC3 (Fig. 2C). The data points from S proteins exhibit positive PC3
values, while most data points from N proteins show negative PC3
values. The PC3 loading spectrum shows that the peaks from tyrosine
(643 cm_l) and tryptophan (880 and 1353 cm‘l) positively contribute
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Fig. 2. SERS detection and multivariate analysis of SARS-CoV-2 structural components. (A) Average ERS-calibrated SERS spectra of the spike (S), nucleocapsid
(N), and envelope (E) proteins in SARS-CoV-2. Note: blue, green, red, purple, and black lines indicate the known Raman peak positions for tyrosine, proline,
phenylalanine, tryptophan, and other proteins, respectively. (B) PC loadings derived from the PCA analysis of the SERS spectra of S, N, and E proteins in SARS-CoV-2.
(C) PCA and (D) PCA-LDA score scatter plots from S, N, and E proteins in SARS-CoV-2. (E) Average ERS-calibrated SERS spectra of extracted RNA from Zika virus,
influenza A virus, and SARS-CoV-2. Note: purple, black, and blue lines indicate the known Raman peak positions for RNA bases, RNA backbone, and RNA extraction
buffer, respectively. (F) PC loadings derived from the PCA analysis of the SERS spectra of extracted RNA from the Zika virus, influenza A virus, and SARS-CoV-2. (G)
PCA and (H) PCA-LDA score scatter plots for SERS spectra from extracted RNA of Zika virus, influenza A virus, and SARS-CoV-2. (I) Schematic illustration depicting
the structural components of SARS-CoV-2. (J) Average ERS-calibrated SERS spectra of lysed SARS-CoV-2 and those of SARS-CoV-2 structural components, including S
proteins, N proteins, E proteins, and extracted RNA. Note: green and red lines mark the known Raman peak positions for the proteins and nucleic acids, respectively.
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to PC3, indicating a significant contribution to S proteins, while the
peaks from proline (855 and 914 cm_l) negatively contribute to PC3,
revealing considerable contributions to N proteins (Fig. 2B). Amino acid
sequences confirmed higher tyrosine and lower proline percentages in S
protein compared to N protein (Fig. S6, Text S2). However, the PC score
scatter plot shows a significant overlap between the S, N, and E protein
data points (Fig. 2C). We employed supervised PCA-LDA methods to
classify the measured SERS spectra acquired from S, N, and E proteins
(Fig. 2D). The PCA-LDA model can segregate the S, N, and E groups with
an overall classification accuracy of 94.6% (Table S2). Thus, viral pro-
tein components can be identified based on their amino acid composi-
tion via multivariate analysis of label-free SERS datasets.

To investigate the feasibility of using SERS to identify different vi-
ruses, we obtained the SERS spectra of extracted RNA from SARS-CoV-2,
influenza A virus, and Zika virus (Fig. 2E). Compared to the blank
samples with peaks from the RNA extraction kit buffers, the extracted
RNA samples exhibit several additional peaks from the RNA backbone
and the four nucleotide bases: adenine, guanine, cytosine, and uracil
(Table S3). To extract the subtle differences between the SERS dataset of
extracted RNA from SARS-CoV-2, influenza A virus, and Zika virus, we
employed PCA. The PC1 and PC2 loadings display various features
corresponding to the RNA bases (619, 650, 732, 792, 917, 1055, 1130,
1180, 1234, 1280, 1397, 1456, and 1543 cm 1), indicating that the
different nucleotide base compositions significantly contribute to the
differences between the viral extracted RNA (Fig. 2F). While the PCA
score scatter plot reveals distinct clusters with substantial overlap be-
tween the three samples (Fig. 2G), the PCA-LDA model segregates the
three samples with a classification accuracy of 95.8% (Fig. 2H,
Table S4). Therefore, viruses can be identified based on their nucleotide
base composition differences via multivariate analysis of label-free SERS
datasets. Thus, our in-depth analysis of viral structural components
bridges the label-free SERS data to the amino acid and nucleotide se-
quences, establishing a robust foundation for SERS-based virus detection
in complex matrices.

To understand the origins of the SERS spectra of lysed SARS-CoV-2,
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we compared the SERS spectrum of lysed SARS-CoV-2 to the SERS
spectra of SARS-CoV-2 structural components (Fig. 2I). Indeed, the SERS
peaks in lysed SARS-CoV-2 are a combination of the peaks from SARS-
CoV-2 structural proteins and RNA (Fig. 2J), further validating that
the SERS peaks of lysed SARS-CoV-2 originate from SARS-CoV-2 struc-
tural components.

3.3. Quantification of SARS-CoV-2 using multivariate regression

We obtained the SERS spectra of lysed SARS-CoV-2 at concentrations
varying from 10% to 10° pfu/mL (Fig. 3A). The PC loading spectra
revealed substantial contributions from the SARS-CoV-2 protein and
RNA components to the separation (Fig. 3B), while PCA score scatter
plots demonstrated the distinction between the SERS spectra of different
SARS-CoV-2 concentrations from 102 to 10° pfu/mL (Fig. 3C). Although
PCA effectively discriminates between various SARS-CoV-2 concentra-
tions, it cannot provide quantitative predictions.

Numerous publications have demonstrated the dependable quanti-
tative detection of SARS-CoV-2 using targeted SERS probes with signals
from Raman reporter molecules (Cha et al., 2022; Park et al., 2022).
While some reports have also explored quantitative analysis through
non-targeted SERS methods, achieving reliable quantification has
proven to be a challenge due to the interference posed by background
components, including viral lysis buffers, viral inactivation solutions,
and viral transport media. Existing literature often reports the limit of
detection (LoD) by measuring the lowest detectable signals from the
most substantial observable peaks ((Huang et al., 2023; Zhang et al.,
2022)) or via multivariate regression using the entire spectrum ((Paria
et al., 2022; Yang et al., 2022)). However, these analyses may include
contributions from background components, leading to potentially
inaccurate results. Our methodology addresses these challenges by
combining Raman-background-free lysis, UV inactivation, and
PCA-enabled identification of SARS-CoV-2 peaks. Furthermore, peak
validation is achieved using a spectral library of SARS-CoV-2 structural
components, ensuring reliable quantitative analysis (Table S5).
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For reliable quantitive analysis, we developed a multivariate
nonparametric regression model to map SERS measurements into pre-
dicted SARS-CoV-2 concentrations between 10% and 10° pfu/mL. As
labeled in Figs. 3A and 17 SERS fingerprint peaks originating from
SARS-CoV-2 structural components (Figs. 1E and 2J) were utilized to
construct this regression model. Specifically, we employed GPR to create
the model using the combined SERS dataset from lysed SARS-CoV-2 at
concentrations between 102 and 10° pfu/mL. GPR is a nonparametric
regression method that uses kernel functions to measure pattern simi-
larity between the training and test datasets. Fig. 3D displays SARS-CoV-
2 concentration predictions based on the GPR model with a rational
quadratic kernel function. The GPR model exhibited strong agreement
between the predicted and actual concentration values between 10° and
10 pfu/mL, with an RMSE of 0.52 and an R? of 0.84. To determine the
LoD, we first employed the MRMR approach for wavenumber selection.
This method identifies the wavenumbers from the regression model with
the most correlation to SARS-CoV-2 concentrations and the least cor-
relation between themselves. We selected the top three wavenumbers
(997, 914, and 1320 em™) and performed a digital SERS analysis to
quantify the LoD. This digital SERS method can enable single molecule
SERS analysis by filtering out data points below a predefined threshold
and summing the remaining data points within the SERS maps at various
concentrations, facilitating quantitive analysis (Godoy et al., 2020; Nam
etal., 2021). Figs. S7A-C demonstrate the digital SERS maps at the three
chosen wavenumbers across various SARS-CoV-2 concentrations be-
tween 102 and 10° pfu/mL. These maps reveal pixel values exceeding
the threshold down to 102 pfu/mL. Figs. S7D-F illustrate the summed
pixel intensities across the maps at various concentrations. Our results
demonstrate a strong fit to the calibration curve, which was determined
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using a four-parameter sigmoidal fitting equation (R? = 0.99, 0.99, and
0.98 for 917,997, and 1320 cm_l, respectively). The LoD was estab-
lished at 10% pfu/ml highlighting the sensitivity of our approach
(Table S5).

3.4. Detection of pathogenic enveloped viruses in environmental dust
matrix

We conducted SERS measurements for three distinct pathogenic
enveloped viruses, including SARS-CoV-2, influenza A virus, and Zika
virus. Fig. 4A shows the SERS spectra for the lysed virus samples and the
control sample of uninfected cell supernatant (Text S5). Since identi-
fying virus types directly from the measured SERS spectra is challenging,
we explored whether different viruses could be identified using ML
multivariate analysis of their SERS spectral features. The PCA score plot
reveals distinct clusters from different groups, with a slight overlap
between control and virus samples likely due to their shared base media
(Fig. 4C). Specifically, the control cluster is separated from the three
virus clusters along PC1. The three virus clusters are separated along
PC2, with significant overlap between the two respiratory viruses, SARS-
CoV-2 and influenza A viruses. The PC1 and PC2 loadings show multiple
peaks from proteins (643, 828, 847, 880, and 997 cm ™) and nucleic
acids (732,971, 1055, and 1285 cm™!) that contribute to the variance in
the datasets, enabling clustering of the SERS datasets among different
viruses (Fig. 4B).

We employed supervised PCA-LDA for data classification. The PCA-
LDA model effectively segregates the different groups with classifica-
tion sensitivities of 93.5%, 98.5%, and 96.3% for SARS-CoV-2, Zika
virus, and influenza A virus, respectively (Fig. 4D, Table S6). The subtle
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Fig. 4. Detection of pathogenic enveloped viruses in environmental dust matrix. (A) Average ERS-calibrated SERS spectra of background cell supernatant and
enveloped pathogenic viruses, including SARS-CoV-2, influenza A virus, and Zika virus. The green and red lines indicate the established Raman peak positions for
proteins and nucleic acids, respectively. (B) PC loadings. (C) Scatter plot of PC scores. (D) Scatter plot of PCA-LDA scores, derived from the multivariate analysis of
the SERS spectra associated with background cell supernatant and enveloped pathogenic viruses such as SARS-CoV-2, influenza A virus, and Zika virus. (E) A
schematic representation outlines the critical steps in identifying enveloped pathogenic viruses within an environmental dust matrix through label-free SERS coupled
with machine learning. (F) Average ERS-calibrated SERS spectra for the environmental dust matrix amalgamated with background cell supernatant and enveloped
pathogenic viruses, which include SARS-CoV-2, influenza A virus, and Zika virus. (G) PC loadings derived from the unsupervised PCA analysis of the SERS spectra for
the environmental dust matrix combined with background cell supernatant and enveloped pathogenic viruses, such as SARS-CoV-2, influenza A virus, and Zika virus.
(H) Scatter plot of PC scores from the same unsupervised PCA analysis. (I) Scatter plot of PCA-LDA scores and (J) Confusion matrix from the supervised PCA-LDA
analysis of the SERS spectra concerning the environmental dust matrix amalgamated with background cell supernatant and enveloped pathogenic viruses, including

SARS-CoV-2, influenza A virus, and Zika virus.
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differences in the molecular fingerprints that enable accurate classifi-
cation of different viruses can originate from (i) the varying genomic and
proteomic compositions of the structural components of the different
viruses and (ii) the distinct immune responses of cells to infection from
different viruses. Furthermore, since environmental samples can contain
multiple airborne viruses simultaneously, this study has also demon-
strated the feasibility of using ML-empowered SERS to identify samples
containing both SARS-CoV-2 and influenza A virus with high accuracy
(Fig. S8 and Text S4).

To proactively forecast viral outbreaks, rapid and low-cost moni-
toring of airborne viruses is crucial in crowded indoor environments. Air
in these environments contains high concentrations of dust particles
(~0.0001 mg/L) with various biological components (e.g., dead skin,
hair, bacteria, viruses) (Oomen et al., 2008). Thus, identifying airborne
viruses in a dust matrix is essential to simulate real-life scenarios. We
collected dust samples from classroom air filters, diluted them to 1
mg/mL, and spiked them with pathogenic enveloped viruses (SAR-
S-CoV-2, influenza A virus, and Zika virus) at specific concentrations
(Fig. 4E). This dust matrix simulates components from ~10,000 L of air
sampled from crowded indoor spaces, eluted in 1 mL of solvent. The
spiked dust samples underwent lysis to decompose the viruses and
filtration to remove large dust particles. Label-free SERS measurements
and multivariate analysis were performed to identify the pathogenic
viruses in the dust matrix.

Fig. 4F presents the SERS spectra of different viruses in the envi-
ronmental dust matrix. The SERS spectrum of environmental dust ex-
hibits strong Raman peaks corresponding to nucleic acids, proteins, and
lipids from various biological constituents in the sample (Fig. S9 and
Text S$6). The SERS signatures of the cell supernatant and viruses spiked
in the environmental dust resemble the spectrum of the environmental
dust due to the high load of nucleic acid, protein, and lipid components
in the dust sample (Fig. 4F). The PCA score scatter plot in Fig. 4H reveals
distinct clusters from different viruses, primarily separated along PC2,
with substantial overlap between the SARS-CoV-2 and influenza A virus
samples. Again, the PC1 and PC2 loadings display various features
corresponding to virus-related proteins (643, 828, 847, 880, 997, 1121,
1250, and 1558 cm™ 1) and nucleic acids (732, 971, 1055, 1160, and
1320 cm™}) that significantly contribute to the differences between the
samples in the dust matrix (Fig. 4G).

For virus classification and identification, we implemented super-
vised PCA-LDA. The LDA score scatter plots reveal a clear separation
between the sample groups (Fig. 4I). From the confusion matrix in
Fig. 4J, the sensitivities for the classification of SARS-CoV-2, influenza A
virus, and Zika virus are 86.0%, 94.5%, and 89.5%, respectively.
Furthermore, the specificities for the classification of SARS-CoV-2,
influenza A virus, and Zika virus are 93.6%, 92.8%, and 98.4%,
respectively, indicating the selective identification of viruses amongst
complex environmental backgrounds.

4. Conclusions

We have demonstrated that by decomposing viruses and then
concentrating them into nanogap plasmonic hotspots, SERS-based virus
detection can be improved by increasing Raman signal intensity and
offering rich Raman fingerprint information. The label-free SERS
fingerprint information, which corresponds to virus-related proteomic
and genomic information, when combined with ML data analytics, en-
ables the identification of pathogenic viruses in complex environmental
backgrounds. We successfully identified three pathogenic viruses with
over 86% accuracy in an environmental dust background within 45 min.
Previous research has documented the presence of a SARS-CoV-2 load of
48,000 gene copies/m> (equivalent to approximately 0.048-4.8 pfu/m®>
(Klimstra et al., 2020; Lin et al., 2022)) in air samples collected using
personalized samplers (50L/minute) near COVID-19 patients in
negative-pressure hospital rooms (Santarpia et al., 2020). Another study
detected >0.013 pfu/m® of SARS-CoV-2 using high-flow rate samplers
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(150L/minute) in well-ventilated hospital areas with COVID-19 patients
(Ang et al., 2022). Consequently, our method, with a detection limit of
0.3 pfu/test (100 pfu/ml), holds the potential to identify airborne vi-
ruses in indoor spaces with sampled air volumes of approximately
10-20 m3. Such volumes can be effectively sampled within 1-2 h using
high-flow rate samplers (e.g., 150L/minute), underscoring the practi-
cality of our device for on-site environmental viral surveillance in indoor
settings. Nevertheless, further studies are required with spiked dust
samples and real sampled air to validate the translational utility of our
system.

Although our ML-boosted SERS fingerprinting approach can be a
valuable tool for the label-free screening of airborne viruses in indoor
spaces, targeted bioanalysis methods still play an essential role in the
absolute quantitative detection of positively screened viruses for eval-
uating their amount in the indoor environment. We envision that, when
combined with on-site air sampling, an integrated microfluidics system,
and a portable Raman spectrometer, the ML-boosted SERS finger-
printing approach can potentially enable rapid, on-site environmental
virus surveillance, ultimately improving the management of future viral
outbreaks.
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