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A B S T R A C T   

Surveillance of airborne viruses in crowded indoor spaces is crucial for managing outbreaks, as highlighted by 
the SARS-CoV-2 pandemic. However, the rapid and on-site detection of fast-mutating viruses, such as SARS-CoV- 
2, in complex environmental backgrounds remains challenging. Our study introduces a machine learning (ML)- 
driven surface-enhanced Raman spectroscopy (SERS) approach for detecting viruses within environmental dust 
matrices. By decomposing intact virions into individual structural components via a Raman-background-free 
lysis protocol and concentrating them into nanogap SERS hotspots, we significantly enhance the SERS signal 
intensity and fingerprint information density from viral structural components. Utilizing Principal Component 
Analysis (PCA), we establish a robust connection between the SERS data of these structural components and their 
biological sequences, laying a solid foundation for virus detection through SERS. Furthermore, we demonstrate 
reliable quantitative detection of SARS-CoV-2 using identified SARS-CoV-2 peaks at concentrations down to 102 

pfu/ml through Gaussian Process Regression (GPR) and a digital SERS methodology. Finally, applying a Principal 
Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm, we identify SARS-CoV-2, influenza A 
virus, and Zika virus within an environmental dust background with over 86% accuracy. Therefore, our ML- 
driven SERS approach holds promise for rapid environmental virus monitoring to manage future outbreaks.   

1. Introduction 

The recent SARS-CoV-2 pandemic has highlighted the challenge of 
controlling the airborne spread of viruses in poorly ventilated indoor 
spaces (Bazant and Bush, 2021; Morawska et al., 2020). Numerous in
door “super-spreading events” have led to large SARS-CoV-2 outbreaks 
(Miller et al., 2021; Shen et al., 2020). Consequently, there is an urgent 
need for a rapid, low-cost, and field-deployable analytical method to 
detect pathogenic viruses in aerosols or on surfaces within congested 
indoor environments to help prevent and control nascent viral epidemics 
as soon as possible (Rahmani et al., 2020; Wang et al., 2023; Yao et al., 
2021). Furthermore, a flexible detection technique capable of identi
fying various mutant virus strains is essential, given the rapidly 
mutating nature of viruses such as SARS-CoV-2 (Su et al., 2016). 

Methods for directly detecting viruses can be categorized as targeted 
and non-targeted approaches. Targeted methods are typically based on 

the detection of amplified viral nucleic acids or viral antigens (Abdel
hamid and Badr, 2021; Peeling et al., 2022; Yüce et al., 2021). Nucleic 
acid amplification strategies such as polymerase chain reaction (PCR) 
have facilitated the highly sensitive detection of SARS-CoV-2 in envi
ronmental samples (Liu et al., 2020; Rahmani et al., 2020; Santarpia 
et al., 2020). However, they are unsuitable for rapid on-site monitoring 
due to complex handling, specialized equipment, and expensive re
agents. Several antigen detection methods have been developed for 
SARS-CoV-2 detection, typically relying on receptors (e.g., nanobodies, 
antibodies) to capture the target antigens, followed by their detection 
via various transduction methods (e.g., electrical (Fathi-Hafshejani 
et al., 2021; Seo et al., 2020), electrochemical (Eissa and Zourob, 2020), 
optical (Pinals et al., 2021), plasmonic (Ahmadivand et al., 2020, 2021; 
Park et al., 2022)). Antigen tests have demonstrated rapid, low-cost, and 
on-site SARS-CoV-2 detection (Kevadiya et al., 2021), even in environ
mental samples (Puthussery et al., 2023). However, these antigen tests, 
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relying on predefined receptors, are inadequate for detecting mutant 
viruses and suffer from reliability issues in complex backgrounds, such 
as environmental matrices, due to non-specific interactions (Yao et al., 
2021). In contrast, non-targeted methods measure holistic molecular 
fingerprints of viruses without receptors, enabling the surveillance of 
mutant strains. Traditional non-targeted methods like mass spectrom
etry (Liangou et al., 2021; Nachtigall et al., 2020) and nuclear magnetic 
resonance (Bizkarguenaga et al., 2022) are unsuitable for rapid on-site 
viral surveillance due to pretreatment steps and expensive equipment. 
Raman spectroscopy, compatible with handheld instrumentation, holds 
promise for rapid on-site detection of SARS-CoV-2 (Pezzotti et al., 2022). 
However, the spontaneous Raman scattering process, due to a meager 
quantum yield, lacks the sensitivity to detect low virus concentrations in 
environmental samples. 

To address these limitations, surface-enhanced Raman spectroscopy 
(SERS) combines vibrational spectroscopy’s molecular fingerprint 
specificity with plasmonic nanostructures’ hotspot sensitivity, offering 
an ultrasensitive fingerprinting-based detection method (Garg et al., 
2022; Langer et al., 2019). Therefore, SERS has enabled the ultrasensi
tive, non-targeted detection of various biomolecules, from small me
tabolites to large proteins (Zong et al., 2018). Recently, numerous 
studies have demonstrated the successful detection of SARS-CoV-2 in 
human fluids (e.g., saliva) using non-targeted SERS assays (Paria et al., 
2022; Yang et al., 2022; Zhang et al., 2022). However, the application of 
non-targeted SERS for identifying SARS-CoV-2 in environmental sam
ples remains unexplored mainly because applying SERS to virus sur
veillance in complex environmental matrices faces challenges. First, the 
size disparity between viruses (50–150 nm diameter) and sub-10 nm 
plasmonic nanogap hotspots restricts viral access to SERS-active zones, 
restricting attainable molecular information and hampering SERS 
detection sensitivity (Zhang et al., 2019). Second, identifying viruses in 
complex environmental matrices is challenging due to molecular signal 
interference from other biological components. Therefore, unsupervised 
(Garg et al., 2023; Ringnér, 2008) or supervised (Morais et al., 2020) 
machine learning (ML) methods are essential for conducting multivar
iate analysis of high-dimensional SERS datasets. Last, a limited under
standing of the contributions of viral constituents like spike proteins, 
nucleocapsid proteins, and RNA to Raman spectra affects the reliability 
of SERS data interpretation in complex settings. 

In this study, we demonstrate the ultrasensitive SERS detection of 
SARS-CoV-2 by decomposing viruses into their structural components 
and condensing them into nanogap SERS hotspots within a compact 
detection area comprising gold nanoparticle (NP) aggregates. We 
meticulously analyze the contributions of specific protein and nucleic 
acid constituents of SARS-CoV-2 to the SERS spectra of the decomposed 
virus. Leveraging Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA), we demonstrate the capacity to pinpoint 
and characterize viruses based on their unique protein and nucleic acid 
profiles, thus forging a connection between label-free SERS data and 
amino acid and nucleotide sequences. Furthermore, we devise a multi
variate Gaussian Process Regression (GPR) model that accurately 
quantifies SARS-CoV-2 concentrations from 103 to 106 pfu/mL. Lastly, 
by employing PCA-LDA, we identify three enveloped pathogenic viruses, 
SARS-CoV-2, influenza A virus, and Zika virus, amidst an environmental 
dust matrix, achieving high classification accuracies. These findings 
accentuate the capabilities of our approach as a rapid and precise tool 
for environmental surveillance of viruses. 

2. Materials and methods 

2.1. Synthesis of colloidal gold nanoparticles (AuNPs) 

AuNPs were prepared through a seed-mediated growth approach. 
First, the AuNP seeds were synthesized by adding 3.88 mM Na3Citrate to 
100 mL of boiling 1 mM HAuCl4•3H2O with vigorous stirring and 
refluxing. The suspension was boiled for 15 min after the solution turned 

to wine red and then cooled at room temperature. To obtain the final 
AuNPs, 820 μL of the above-prepared AuNP seeds and 440 μL of 38.8 
mM Na3Citrate were successively added to 100 mL of boiling 0.254 mM 
HAuCl4•3H2O with vigorous stirring and refluxing for 30 min. After 
cooling down to room temperature, AuNPs were obtained and stored at 
4 ◦C for future use. 

2.2. Viral lysis protocol 

Text S7 contains the protocols for the propagation of SARS-CoV-2, 
Zika virus, Influenza A virus, and Phi6. 100 μL of virus solutions were 
mixed with 1 μL of sodium dodecyl sulfate (SDS) in 1.5 mL micro
centrifuge tubes. The tubes were placed in an ultrasonic bath sonicator 
(VEVOR ultrasonic cleaner, 40 kHz frequency) at 50 ◦C for 30 min. 

2.3. SERS detection assay 

Aluminum foil was surface silanized by vapor coating with 
Tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane (TFOCS, Gelest 
Inc) in a vacuum chamber (Sidorova et al., 2009). 3 μL of analyte 
samples (e.g., lysed virus, structural proteins, RNA) and 6 μL of AuNPs 
were pipetted onto the silanized aluminum foil and evaporated at room 
temperature. For the SERS experiments, we used a confocal Raman 
microscope (alpha 300 RSA+, WItec, Germany) under 785 nm laser 
excitation (Xtra II, Toptica, Germany) using a 20x objective lens (5 mW 
laser power and 2s integration time). A spectrometer (UHTS300, Witec, 
Germany) containing a CCD camera (DU401A, Oxford Instruments, UK) 
was used to detect the backscattered photons. Each scan was performed 
over a 20 um * 20 um area consisting of 100 pixels. 

2.4. SERS detection of SARS-CoV-2 structural proteins and RNA 

SARS-CoV-2 S (SARS-CoV-2 Spike RBD (N487D) Protein), N (SARS- 
CoV-2 Nucleocapsid (R203M, D377Y) Protein), and E (SARS-CoV-2 
(2019-nCoV) envelope(CoV-E) protein) proteins were purchased from 
Sino Biological. Aqueous solutions of the S, N, and E proteins were 
prepared (10 μg/mL), and SERS measurements were performed as 
described above. Viral RNA was extracted using the Qiagen QIAamp 
Viral RNA Mini kit (Qiagen, Hilden, Germany) according to the manu
facturer’s protocol. The elution volume was 60 μL. SERS detection was 
performed as described above. A negative control was prepared 
following the same procedure without the virus. The concentrations 
quantified on Qubit of extracted RNA from SARS-CoV-2, influenza A 
virus, and Zika virus were 0.8 ng/μL, 1 ng/μL, and 1.6 ng/μL, respec
tively. The three samples were diluted to a final concentration of 0.8 ng/ 
μL in the buffer from the negative control sample. SERS detection was 
performed as described above. 

2.5. SERS detection of SARS-CoV-2, Zika virus, and influenza A virus 

To eliminate the effects of the cell supernatant background, the 
following sample groups were created. A) Control: SARS-CoV-2 back
ground + influenza A virus background + Zika virus background; B) 
SARS-CoV-2 group: SARS-CoV-2 (105 pfu/mL) + influenza A virus 
background + Zika virus background; C) Influenza A virus group: 
influenza A virus(105 pfu/mL) + SARS-CoV-2 background + Zika virus 
background, and D) Zika virus group: Zika virus (105 pfu/mL) + SARS- 
CoV-2 background + influenza A virus background. Viral lysis and SERS 
detection were performed as described above. 

2.6. SERS detection of SARS-CoV-2, Zika virus, and influenza A virus in 
environmental dust background 

Dust was collected from a classroom HVAC filter by vacuuming and 
was suspended in ultrapure water at a concentration of 5 mg/ml. This 
stock was lysed using the protocol described above and passed through a 
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0.22 um filter. It was diluted to a concentration of 1 mg/ml for the ex
periments. The following sample groups were created again. A) Control: 
SARS-CoV-2 background + influenza A virus background + Zika virus 
background; B) SARS-CoV-2 group: SARS-CoV-2 (105 pfu/mL) + influ
enza A virus background + Zika virus background; C) Influenza A virus 
group: influenza A virus (105 pfu/mL) + SARS-CoV-2 background +

Zika virus background, and D) Zika virus group: Zika virus (105 pfu/mL) 
+ SARS-CoV-2 background + influenza A virus background. 50 μL of the 
virus sample groups were lysed using the protocol described above and 
were mixed with 50 μL of the lysed dust solution. SERS detection was 
performed as described above. 

2.7. Multivariate analysis 

Baseline correction and cosmic ray removal were performed using 
Project v4.1 software. The spectra whose maximum peak values were 
smaller than three times the noise level were discarded. The background 
noise intensity was determined using recorded signals in the spectral 
region at 2000 cm−1 without molecular Raman peaks (Nam et al., 2022). 
MATLAB was used for performing ERS calibration and data truncation. 
Lastly, R was used for performing PCA and LDA (Garg et al., 2023). The 
PCA-LDA classification results were obtained using the 
leave-one-out-cross-validation method. The sensitivity and specificity 
were calculated using the following expressions. Sensitivity = True 
positives/(True positives + False negatives); Specificity = True neg
atives/(True negatives + False positives). The multivariate GPR model 
was trained using the regression learner application in Mathworks 
MATLAB/SIMULINK (ver. R2022a). To validate the model, we con
ducted 5-fold cross-validation. Feature selection was performed using 
the Maximum Relevance Minimum Redundancy (MRMR) algorithm. 

2.8. Digital SERS 

The SERS maps at different SARS-CoV-2 concentrations were con
verted into a binary format (0 or 1) based on whether the pixel’s in
tensity exceeded a predefined threshold. The threshold was set as 
average intensity plus three times the standard deviation (aver
age+3SD) collected from a negative control sample, following the re
ported protocol (Godoy et al., 2020). Each pixel of the digitized map was 
multiplied by each corresponding pixel of the original SERS map, thus 
generating a digital SERS map. The sum of the pixel intensities for each 

map at various concentrations was used for quantification. 

3. Results and discussion 

3.1. SERS detection and multivariate analysis of lysed SARS-CoV-2 

Fig. 1A outlines our streamlined approach for viral lysis and label- 
free SERS measurements. Initially, we developed a Raman- 
background-free viral lysis protocol to decompose viruses, ranging 
from 50 to 150 nm in size, into structural components that can fit into 
sub-10 nm plasmonic nanogap hotspots in Au NP aggregates. Next, the 
lysed virus solution was mixed with Au NPs and deposited on a silane- 
treated aluminum foil. The hydrophobic silane-treated aluminum foil 
promotes analyte enrichment within a compact detection region of 
~0.8 mm2 area, yielding ultrasensitive SERS detection. Fig. S1 shows a 
transmission electron microscopy (TEM) image of sub-5 nm hotspots 
generated by Au NP aggregates capable of generating high SERS 
enhancement factors (Ding et al., 2016). Finally, we captured the 
label-free SERS spectra of the lysed virus components. We observed that 
commercially available viral lysis buffers exhibit intense SERS signa
tures due to molecular components with high Raman cross-section that 
can cause spectral interference with the label-free SERS spectra of target 
viral analytes. For example, Fig. 1B presents the SERS spectra of lysis 
buffers used in a commercially available Flowflex antigen test and a 
nucleic acid extraction kit (QIAamp RNA kit), displaying notable SERS 
signatures. We observed that sodium dodecyl sulfate (SDS), an anionic 
detergent capable of disrupting viral envelopes (Miura et al., 2011; 
Thom et al., 2021), exhibits no discernible SERS peaks (Fig. 1B). 
Consequently, we developed a Raman-background-free viral lysis pro
tocol combining SDS-based chemical disruption of the viral envelope 
with sonication and heat treatment. Sonication uses high-frequency 
sound waves (40 kHz) to agitate and lyse the viruses, while elevated 
temperatures (e.g., 50 ◦C) provide kinetic energy to accelerate the 
physical and chemical lysis of viruses. 

We optimized the viral lysis protocol using Phi6, a well-established 
surrogate for enveloped pathogenic viruses (Aquino de Carvalho et al., 
2017; Fedorenko et al., 2020) (Text S1 and Figs. S3–5). We then applied 
the developed lysis protocol to obtain the label-free SERS spectra of 
lysed SARS-CoV-2 (Fig. 1C). Raman signal intensities were calibrated 
using the electronic Raman scattering (ERS) internal standard across all 
SERS measurements (Nam et al., 2020). Table S1 details the assigned 

Fig. 1. SERS detection and multivariate analysis of lysed SARS-CoV-2. (A) Schematic illustration of the key steps for SERS detection of lysed viruses. (B) Average 
ERS-calibrated SERS spectra from several viral lysis buffer solutions. (C) Average ERS-calibrated SERS spectra of uninfected cell supernatant and SARS-CoV-2 without 
treatment and after treatment with heat, sonication, and SDS. Note: green lines and red lines mark the known positions of the protein peaks and nucleic acid peaks, 
respectively. (D) PC score scatter plot and (E) PC loadings from the PCA analysis of the SERS spectra from uninfected cell supernatant and SARS-CoV-2 (treated 
and untreated). 
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molecular origins of the observed SERS peaks. The control SERS spec
trum from uninfected cell supernatant reveals protein-related Raman 
peaks at 620, 643, 997, and 1038 cm−1. No significant changes in the 
spectrum were observed after treating the cell supernatant with SDS, 
sonication, and heat. In contrast to the control SERS spectra from the cell 
supernatant, the SERS spectrum of 106 pfu/mL SARS-CoV-2 exhibits an 
additional protein-related Raman peak at 880 cm−1, attributed to 
tryptophan. Following treatment with SDS, heat, and sonication, we 
noted a significant increase in the intensity of several Raman peaks 
related to proteins (643, 880, 914, 997, 1038, 1121, and 1250 cm−1) and 
nucleic acids (732, 971, 1055 and 1180, 1280, 1320, and 1393 cm−1). 

SARS-CoV-2 is comprised of spike (S), envelope (E), and membrane 
(M) proteins that form the virion and an RNA genome bound by 
nucleocapsid (N) proteins within the virion (Astuti, 2020; Wang et al., 
2020). During label-free SERS detection of intact SARS-CoV-2, only a 
small portion of the S proteins, with a vertical size of approximately 5 
nm, can access the sub-10 nm plasmonic nanogap hotspots. Conse
quently, the dominant protein-related peak at 880 cm−1 in the SERS 
spectrum of unlysed SARS-COV-2 likely originates from the S proteins 
on the SARS-CoV-2 virion surface. When lysed, the viral structure is 
dismantled, significantly increasing the accessibility for all virus struc
tural components, both on the surface and inside the virion, to the 
plasmonic nanogap hotspots in the Au NP aggregates (Fig. S2). 

We implemented PCA, an unsupervised multivariate ML analysis 
tool, to statistically identify the SERS peaks responsible for the differ
ences among the various samples. The principal component (PC) score 
scatter plot shows a significant overlap between the data points from 
lysed and unlysed cell supernatant samples, while the SARS-CoV-2 
samples are well separated (Fig. 1D). Compared to the cell superna
tant samples that show negative PC1 and PC2 values, the SARS-CoV-2 
samples are separately clustered with the unlysed SARS-CoV-2 sample 

exhibiting positive PC2 values and the lysed SARS-CoV-2 sample 
exhibiting positive PC1 and PC2 values. Fig. 1E shows the loading 
spectra for PC1 and PC2, revealing the contributions of different 
vibrational modes to the differences between samples. The protein- 
related Raman peak at 880 cm−1 positively contributes to PC2, signi
fying that this peak primarily accounts for the differences between the 
uninfected cell supernatant samples and unlysed SARS-CoV-2 samples. 
Several Raman peaks from proteins (495, 530, 620, 643, 880, 914, 997, 
1038,1121 and 1250 cm−1) and nucleic acids (971, 1055, 1180, 1280, 
1320, and 1393 cm-1) positively contribute to PC1, statistically veri
fying that these peaks increase significantly in the SARS-CoV-2 samples 
after lysis. 

3.2. SERS detection and multivariate analysis of SARS-CoV-2 structural 
components 

To fully comprehend the origins of the observed peaks, a SERS 
database for SARS-CoV-2 components is vital. First, we obtained the 
SERS spectra of S, N, and E proteins in SARS-CoV-2 (Fig. 2A, Text S3). A 
strong peak at 880 cm−1 in S proteins aligns with our hypothesis that the 
untreated SARS-CoV-2 SERS peak at 880 cm−1 originates from S proteins 
on the SARS-CoV-2 virion surface. Due to their different amino acid 
compositions, the peak intensities corresponding to different vibrational 
modes varied in S, N, and E proteins (Text S2). We implemented PCA to 
extract the contributions of different Raman modes to the SERS spectra 
of S, N, and E proteins. The PC score scatter plot demonstrates that the 
SERS spectra data points from S, N, and E proteins are separated along 
PC3 (Fig. 2C). The data points from S proteins exhibit positive PC3 
values, while most data points from N proteins show negative PC3 
values. The PC3 loading spectrum shows that the peaks from tyrosine 
(643 cm−1) and tryptophan (880 and 1353 cm−1) positively contribute 

Fig. 2. SERS detection and multivariate analysis of SARS-CoV-2 structural components. (A) Average ERS-calibrated SERS spectra of the spike (S), nucleocapsid 
(N), and envelope (E) proteins in SARS-CoV-2. Note: blue, green, red, purple, and black lines indicate the known Raman peak positions for tyrosine, proline, 
phenylalanine, tryptophan, and other proteins, respectively. (B) PC loadings derived from the PCA analysis of the SERS spectra of S, N, and E proteins in SARS-CoV-2. 
(C) PCA and (D) PCA-LDA score scatter plots from S, N, and E proteins in SARS-CoV-2. (E) Average ERS-calibrated SERS spectra of extracted RNA from Zika virus, 
influenza A virus, and SARS-CoV-2. Note: purple, black, and blue lines indicate the known Raman peak positions for RNA bases, RNA backbone, and RNA extraction 
buffer, respectively. (F) PC loadings derived from the PCA analysis of the SERS spectra of extracted RNA from the Zika virus, influenza A virus, and SARS-CoV-2. (G) 
PCA and (H) PCA-LDA score scatter plots for SERS spectra from extracted RNA of Zika virus, influenza A virus, and SARS-CoV-2. (I) Schematic illustration depicting 
the structural components of SARS-CoV-2. (J) Average ERS-calibrated SERS spectra of lysed SARS-CoV-2 and those of SARS-CoV-2 structural components, including S 
proteins, N proteins, E proteins, and extracted RNA. Note: green and red lines mark the known Raman peak positions for the proteins and nucleic acids, respectively. 
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to PC3, indicating a significant contribution to S proteins, while the 
peaks from proline (855 and 914 cm−1) negatively contribute to PC3, 
revealing considerable contributions to N proteins (Fig. 2B). Amino acid 
sequences confirmed higher tyrosine and lower proline percentages in S 
protein compared to N protein (Fig. S6, Text S2). However, the PC score 
scatter plot shows a significant overlap between the S, N, and E protein 
data points (Fig. 2C). We employed supervised PCA-LDA methods to 
classify the measured SERS spectra acquired from S, N, and E proteins 
(Fig. 2D). The PCA-LDA model can segregate the S, N, and E groups with 
an overall classification accuracy of 94.6% (Table S2). Thus, viral pro
tein components can be identified based on their amino acid composi
tion via multivariate analysis of label-free SERS datasets. 

To investigate the feasibility of using SERS to identify different vi
ruses, we obtained the SERS spectra of extracted RNA from SARS-CoV-2, 
influenza A virus, and Zika virus (Fig. 2E). Compared to the blank 
samples with peaks from the RNA extraction kit buffers, the extracted 
RNA samples exhibit several additional peaks from the RNA backbone 
and the four nucleotide bases: adenine, guanine, cytosine, and uracil 
(Table S3). To extract the subtle differences between the SERS dataset of 
extracted RNA from SARS-CoV-2, influenza A virus, and Zika virus, we 
employed PCA. The PC1 and PC2 loadings display various features 
corresponding to the RNA bases (619, 650, 732, 792, 917, 1055, 1130, 
1180, 1234, 1280, 1397, 1456, and 1543 cm−1), indicating that the 
different nucleotide base compositions significantly contribute to the 
differences between the viral extracted RNA (Fig. 2F). While the PCA 
score scatter plot reveals distinct clusters with substantial overlap be
tween the three samples (Fig. 2G), the PCA-LDA model segregates the 
three samples with a classification accuracy of 95.8% (Fig. 2H, 
Table S4). Therefore, viruses can be identified based on their nucleotide 
base composition differences via multivariate analysis of label-free SERS 
datasets. Thus, our in-depth analysis of viral structural components 
bridges the label-free SERS data to the amino acid and nucleotide se
quences, establishing a robust foundation for SERS-based virus detection 
in complex matrices. 

To understand the origins of the SERS spectra of lysed SARS-CoV-2, 

we compared the SERS spectrum of lysed SARS-CoV-2 to the SERS 
spectra of SARS-CoV-2 structural components (Fig. 2I). Indeed, the SERS 
peaks in lysed SARS-CoV-2 are a combination of the peaks from SARS- 
CoV-2 structural proteins and RNA (Fig. 2J), further validating that 
the SERS peaks of lysed SARS-CoV-2 originate from SARS-CoV-2 struc
tural components. 

3.3. Quantification of SARS-CoV-2 using multivariate regression 

We obtained the SERS spectra of lysed SARS-CoV-2 at concentrations 
varying from 102 to 106 pfu/mL (Fig. 3A). The PC loading spectra 
revealed substantial contributions from the SARS-CoV-2 protein and 
RNA components to the separation (Fig. 3B), while PCA score scatter 
plots demonstrated the distinction between the SERS spectra of different 
SARS-CoV-2 concentrations from 102 to 106 pfu/mL (Fig. 3C). Although 
PCA effectively discriminates between various SARS-CoV-2 concentra
tions, it cannot provide quantitative predictions. 

Numerous publications have demonstrated the dependable quanti
tative detection of SARS-CoV-2 using targeted SERS probes with signals 
from Raman reporter molecules (Cha et al., 2022; Park et al., 2022). 
While some reports have also explored quantitative analysis through 
non-targeted SERS methods, achieving reliable quantification has 
proven to be a challenge due to the interference posed by background 
components, including viral lysis buffers, viral inactivation solutions, 
and viral transport media. Existing literature often reports the limit of 
detection (LoD) by measuring the lowest detectable signals from the 
most substantial observable peaks ((Huang et al., 2023; Zhang et al., 
2022)) or via multivariate regression using the entire spectrum ((Paria 
et al., 2022; Yang et al., 2022)). However, these analyses may include 
contributions from background components, leading to potentially 
inaccurate results. Our methodology addresses these challenges by 
combining Raman-background-free lysis, UV inactivation, and 
PCA-enabled identification of SARS-CoV-2 peaks. Furthermore, peak 
validation is achieved using a spectral library of SARS-CoV-2 structural 
components, ensuring reliable quantitative analysis (Table S5). 

Fig. 3. Quantification of SARS-CoV-2 via multivariate regression. (A) Average ERS-calibrated SERS spectra of lysed SARS-CoV-2, with concentrations spanning 
102-106 pfu/mL. Note: the green and red lines represent established Raman peak positions for proteins and nucleic acids, respectively. (B) PC loadings. (C) Scatter 
plot of PC scores, based on PCA analysis of the SERS spectra from lysed SARS-CoV-2, with concentrations ranging from 102 and 106 pfu/mL. (D) Prediction of SARS- 
CoV-2 concentration between 103 and 106 pfu/mL, using a GPR model featuring a rational quadratic kernel function (error bars represent standard deviation). 
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For reliable quantitive analysis, we developed a multivariate 
nonparametric regression model to map SERS measurements into pre
dicted SARS-CoV-2 concentrations between 103 and 106 pfu/mL. As 
labeled in Figs. 3A and 17 SERS fingerprint peaks originating from 
SARS-CoV-2 structural components (Figs. 1E and 2J) were utilized to 
construct this regression model. Specifically, we employed GPR to create 
the model using the combined SERS dataset from lysed SARS-CoV-2 at 
concentrations between 102 and 106 pfu/mL. GPR is a nonparametric 
regression method that uses kernel functions to measure pattern simi
larity between the training and test datasets. Fig. 3D displays SARS-CoV- 
2 concentration predictions based on the GPR model with a rational 
quadratic kernel function. The GPR model exhibited strong agreement 
between the predicted and actual concentration values between 103 and 
106 pfu/mL, with an RMSE of 0.52 and an R2 of 0.84. To determine the 
LoD, we first employed the MRMR approach for wavenumber selection. 
This method identifies the wavenumbers from the regression model with 
the most correlation to SARS-CoV-2 concentrations and the least cor
relation between themselves. We selected the top three wavenumbers 
(997, 914, and 1320 cm−1) and performed a digital SERS analysis to 
quantify the LoD. This digital SERS method can enable single molecule 
SERS analysis by filtering out data points below a predefined threshold 
and summing the remaining data points within the SERS maps at various 
concentrations, facilitating quantitive analysis (Godoy et al., 2020; Nam 
et al., 2021). Figs. S7A–C demonstrate the digital SERS maps at the three 
chosen wavenumbers across various SARS-CoV-2 concentrations be
tween 102 and 106 pfu/mL. These maps reveal pixel values exceeding 
the threshold down to 102 pfu/mL. Figs. S7D–F illustrate the summed 
pixel intensities across the maps at various concentrations. Our results 
demonstrate a strong fit to the calibration curve, which was determined 

using a four-parameter sigmoidal fitting equation (R2 = 0.99, 0.99, and 
0.98 for 917,997, and 1320 cm−1, respectively). The LoD was estab
lished at 102 pfu/ml highlighting the sensitivity of our approach 
(Table S5). 

3.4. Detection of pathogenic enveloped viruses in environmental dust 
matrix 

We conducted SERS measurements for three distinct pathogenic 
enveloped viruses, including SARS-CoV-2, influenza A virus, and Zika 
virus. Fig. 4A shows the SERS spectra for the lysed virus samples and the 
control sample of uninfected cell supernatant (Text S5). Since identi
fying virus types directly from the measured SERS spectra is challenging, 
we explored whether different viruses could be identified using ML 
multivariate analysis of their SERS spectral features. The PCA score plot 
reveals distinct clusters from different groups, with a slight overlap 
between control and virus samples likely due to their shared base media 
(Fig. 4C). Specifically, the control cluster is separated from the three 
virus clusters along PC1. The three virus clusters are separated along 
PC2, with significant overlap between the two respiratory viruses, SARS- 
CoV-2 and influenza A viruses. The PC1 and PC2 loadings show multiple 
peaks from proteins (643, 828, 847, 880, and 997 cm−1) and nucleic 
acids (732, 971, 1055, and 1285 cm−1) that contribute to the variance in 
the datasets, enabling clustering of the SERS datasets among different 
viruses (Fig. 4B). 

We employed supervised PCA-LDA for data classification. The PCA- 
LDA model effectively segregates the different groups with classifica
tion sensitivities of 93.5%, 98.5%, and 96.3% for SARS-CoV-2, Zika 
virus, and influenza A virus, respectively (Fig. 4D, Table S6). The subtle 

Fig. 4. Detection of pathogenic enveloped viruses in environmental dust matrix. (A) Average ERS-calibrated SERS spectra of background cell supernatant and 
enveloped pathogenic viruses, including SARS-CoV-2, influenza A virus, and Zika virus. The green and red lines indicate the established Raman peak positions for 
proteins and nucleic acids, respectively. (B) PC loadings. (C) Scatter plot of PC scores. (D) Scatter plot of PCA-LDA scores, derived from the multivariate analysis of 
the SERS spectra associated with background cell supernatant and enveloped pathogenic viruses such as SARS-CoV-2, influenza A virus, and Zika virus. (E) A 
schematic representation outlines the critical steps in identifying enveloped pathogenic viruses within an environmental dust matrix through label-free SERS coupled 
with machine learning. (F) Average ERS-calibrated SERS spectra for the environmental dust matrix amalgamated with background cell supernatant and enveloped 
pathogenic viruses, which include SARS-CoV-2, influenza A virus, and Zika virus. (G) PC loadings derived from the unsupervised PCA analysis of the SERS spectra for 
the environmental dust matrix combined with background cell supernatant and enveloped pathogenic viruses, such as SARS-CoV-2, influenza A virus, and Zika virus. 
(H) Scatter plot of PC scores from the same unsupervised PCA analysis. (I) Scatter plot of PCA-LDA scores and (J) Confusion matrix from the supervised PCA-LDA 
analysis of the SERS spectra concerning the environmental dust matrix amalgamated with background cell supernatant and enveloped pathogenic viruses, including 
SARS-CoV-2, influenza A virus, and Zika virus. 
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differences in the molecular fingerprints that enable accurate classifi
cation of different viruses can originate from (i) the varying genomic and 
proteomic compositions of the structural components of the different 
viruses and (ii) the distinct immune responses of cells to infection from 
different viruses. Furthermore, since environmental samples can contain 
multiple airborne viruses simultaneously, this study has also demon
strated the feasibility of using ML-empowered SERS to identify samples 
containing both SARS-CoV-2 and influenza A virus with high accuracy 
(Fig. S8 and Text S4). 

To proactively forecast viral outbreaks, rapid and low-cost moni
toring of airborne viruses is crucial in crowded indoor environments. Air 
in these environments contains high concentrations of dust particles 
(~0.0001 mg/L) with various biological components (e.g., dead skin, 
hair, bacteria, viruses) (Oomen et al., 2008). Thus, identifying airborne 
viruses in a dust matrix is essential to simulate real-life scenarios. We 
collected dust samples from classroom air filters, diluted them to 1 
mg/mL, and spiked them with pathogenic enveloped viruses (SAR
S-CoV-2, influenza A virus, and Zika virus) at specific concentrations 
(Fig. 4E). This dust matrix simulates components from ~10,000 L of air 
sampled from crowded indoor spaces, eluted in 1 mL of solvent. The 
spiked dust samples underwent lysis to decompose the viruses and 
filtration to remove large dust particles. Label-free SERS measurements 
and multivariate analysis were performed to identify the pathogenic 
viruses in the dust matrix. 

Fig. 4F presents the SERS spectra of different viruses in the envi
ronmental dust matrix. The SERS spectrum of environmental dust ex
hibits strong Raman peaks corresponding to nucleic acids, proteins, and 
lipids from various biological constituents in the sample (Fig. S9 and 
Text S6). The SERS signatures of the cell supernatant and viruses spiked 
in the environmental dust resemble the spectrum of the environmental 
dust due to the high load of nucleic acid, protein, and lipid components 
in the dust sample (Fig. 4F). The PCA score scatter plot in Fig. 4H reveals 
distinct clusters from different viruses, primarily separated along PC2, 
with substantial overlap between the SARS-CoV-2 and influenza A virus 
samples. Again, the PC1 and PC2 loadings display various features 
corresponding to virus-related proteins (643, 828, 847, 880, 997, 1121, 
1250, and 1558 cm−1) and nucleic acids (732, 971, 1055, 1160, and 
1320 cm−1) that significantly contribute to the differences between the 
samples in the dust matrix (Fig. 4G). 

For virus classification and identification, we implemented super
vised PCA-LDA. The LDA score scatter plots reveal a clear separation 
between the sample groups (Fig. 4I). From the confusion matrix in 
Fig. 4J, the sensitivities for the classification of SARS-CoV-2, influenza A 
virus, and Zika virus are 86.0%, 94.5%, and 89.5%, respectively. 
Furthermore, the specificities for the classification of SARS-CoV-2, 
influenza A virus, and Zika virus are 93.6%, 92.8%, and 98.4%, 
respectively, indicating the selective identification of viruses amongst 
complex environmental backgrounds. 

4. Conclusions 

We have demonstrated that by decomposing viruses and then 
concentrating them into nanogap plasmonic hotspots, SERS-based virus 
detection can be improved by increasing Raman signal intensity and 
offering rich Raman fingerprint information. The label-free SERS 
fingerprint information, which corresponds to virus-related proteomic 
and genomic information, when combined with ML data analytics, en
ables the identification of pathogenic viruses in complex environmental 
backgrounds. We successfully identified three pathogenic viruses with 
over 86% accuracy in an environmental dust background within 45 min. 
Previous research has documented the presence of a SARS-CoV-2 load of 
48,000 gene copies/m3 (equivalent to approximately 0.048–4.8 pfu/m3 

(Klimstra et al., 2020; Lin et al., 2022)) in air samples collected using 
personalized samplers (50L/minute) near COVID-19 patients in 
negative-pressure hospital rooms (Santarpia et al., 2020). Another study 
detected >0.013 pfu/m3 of SARS-CoV-2 using high-flow rate samplers 

(150L/minute) in well-ventilated hospital areas with COVID-19 patients 
(Ang et al., 2022). Consequently, our method, with a detection limit of 
0.3 pfu/test (100 pfu/ml), holds the potential to identify airborne vi
ruses in indoor spaces with sampled air volumes of approximately 
10–20 m3. Such volumes can be effectively sampled within 1–2 h using 
high-flow rate samplers (e.g., 150L/minute), underscoring the practi
cality of our device for on-site environmental viral surveillance in indoor 
settings. Nevertheless, further studies are required with spiked dust 
samples and real sampled air to validate the translational utility of our 
system. 

Although our ML-boosted SERS fingerprinting approach can be a 
valuable tool for the label-free screening of airborne viruses in indoor 
spaces, targeted bioanalysis methods still play an essential role in the 
absolute quantitative detection of positively screened viruses for eval
uating their amount in the indoor environment. We envision that, when 
combined with on-site air sampling, an integrated microfluidics system, 
and a portable Raman spectrometer, the ML-boosted SERS finger
printing approach can potentially enable rapid, on-site environmental 
virus surveillance, ultimately improving the management of future viral 
outbreaks. 

CRediT authorship contribution statement 

Aditya Garg: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Writing – original draft, Writing – review & 
editing, Project administration, Software, Validation, Visualization. 
Seth Hawks: Data curation, Formal analysis, Writing – original draft. 
Jin Pan: Data curation, Investigation, Methodology. Wei Wang: 
Investigation, Methodology. Nisha Duggal: Methodology, Supervision, 
Investigation, Resources. Linsey C. Marr: Funding acquisition, Meth
odology, Project administration, Resources, Supervision. Peter Vikes
land: Conceptualization, Funding acquisition, Methodology, 
Supervision, Writing – original draft. Wei Zhou: Conceptualization, 
Formal analysis, Funding acquisition, Investigation, Methodology, 
Project administration, Supervision, Writing – original draft, Writing – 
review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was supported by Wellcome Leap Inc (A5M3XP5X), by the 
US National Science Foundation grants OISE-1545756, CBET-2029911, 
and CBET-2231807. Laboratory and instrumentation support were 
provided by NanoEarth—a node of the NSF-supported NNCI (NSF award 
number #1542100). Additional support was provided by the Sustain
able Nanotechnology Interdisciplinary Graduate Program (VTSuN 
IGEP), funded by Virginia Tech. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bios.2023.115946. 

References 

Abdelhamid, H.N., Badr, G., 2021. Nanotechnol.Environ. Eng. 6, 1–26. 

A. Garg et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.bios.2023.115946
https://doi.org/10.1016/j.bios.2023.115946
http://refhub.elsevier.com/S0956-5663(23)00888-6/sref1


Biosensors and Bioelectronics 247 (2024) 115946

8

Ahmadivand, A., Gerislioglu, B., Ahuja, R., Mishra, Y.K., 2020. Mater. Today 32, 
108–130. 

Ahmadivand, A., Gerislioglu, B., Ramezani, Z., Kaushik, A., Manickam, P., Ghoreishi, S. 
A., 2021. Biosens. Bioelectron. 177, 112971. 

Ang, A.X., Luhung, I., Ahidjo, B.A., Drautz-Moses, D.I., Tambyah, P.A., Mok, C.K., Lau, K. 
J., Tham, S.M., Chu, J.J.H., Allen, D.M., 2022. Indoor Air 32 (1), e12930. 

Aquino de Carvalho, N., Stachler, E.N., Cimabue, N., Bibby, K., 2017. Environ. Sci. 
Technol. 51 (15), 8692–8700. 

Astuti, I., 2020. Diabetes & metabolic syndrome. Clin. Res. Rev. 14 (4), 407–412. 
Bazant, M.Z., Bush, J.W., 2021. Proc. Natl. Acad. Sci. USA 118 (17), e2018995118. 
Bizkarguenaga, M., Bruzzone, C., Gil-Redondo, R., SanJuan, I., Martin-Ruiz, I., 

Barriales, D., Palacios, A., Pasco, S.T., González-Valle, B., Laín, A., 2022. NMR 
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