Operations Research Forum (2024) 5:52
https://doi.org/10.1007/s43069-024-00332-w

RESEARCH

®

Check for
updates

Proposing a Computational Modeling Framework
for Generating Masonry Wall Units, Enhancing
the Information Within a BIM

Austin D. McClymonds? - Somayeh Asadi' - Robert M. Leicht?

Received: 9 March 2024 / Accepted: 21 May 2024 / Published online: 8 June 2024
© The Author(s) 2024

Abstract

In recent decades, the construction industry has undergone a technological shift
incorporating innovative technologies, such as robotics. However, information
requirements must be met to integrate robotics further. Currently, building informa-
tion models (BIM) contain substantial project information that can be leveraged for
robots to create construction tasks, but for some building systems, the level of devel-
opment (LOD) is inadequate to support these new requirements. Therefore, this
study proposes a framework to increase the LOD of building systems by considering
location information (X, Y, Z), orientation, material type, and component I.D. The
computational modeler, Dynamo, is leveraged to increase the model’s LOD, extract
information, and facilitate robotic task execution in the future. A case study is pre-
sented for multiple masonry room configurations developed in Autodesk Revit,
where masonry units are generated and placed into design locations based on the
geometry of the wall system. The case study used concrete masonry units (CMU)
and standard brick. The number of partial-sized and full-sized blocks for each con-
figuration was recorded, along with the computational time required to generate the
units. It was observed that room configurations with more openings had longer com-
putational times when compared to rooms constructed from the same material. After
running the script, the model is reviewed to ensure accuracy and prevent overlaps or
gaps in the model. The workflow provides insight into the methods used to interpret
model geometry and extract information.

Keywords Computational modeling - BIM - Robotic construction - Information
exchange - Masonry construction

This article is part of the Topical Collection on Math for SDG 9 - Industry, Innovation and
Infrastructure

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-024-00332-w&domain=pdf

52 Page2of21 Operations Research Forum (2024) 5:52

1 Introduction

Digitization in the construction industry is not a new concept, as building informa-
tion models (BIM) have been an essential source of project information. BIM, by
definition, is the digital representation of model characteristics of a building, serving
as a source of information throughout a project lifecycle [1]. In addition to digitiza-
tion, researchers are combining it with automation. Automation, or more specifically
robotics, has been the target of recent research in the construction industry. One study
reviewed efforts in the construction industry, documenting the various uses for con-
struction robots, ranging from bricklaying to tile-placing robots. Additionally, they
detailed unsolved technical problems, notably interoperability between different infor-
mation systems [2]. As a result, Construction 4.0 has been established with its ability
to combine factors of both automation and digitization [3], which has ushered in new
applications in artificial/virtual reality (AR/VR), cyber security, big data analytics,
laser scanning, automation, and robotics [4]. A recent study by McKinsey Institute
identified a direct link between the digitization of BIM and robotics as a technology
map. However, the bridge between BIM and robotics in construction lacks explora-
tion, suggesting improving interoperability [5]. Methods to bridge the gap between
BIM and construction robots require further exploration into the standard methods
and procedures. Therefore, this study seeks to explore the bridge between construction
robots and BIM further.

To facilitate BIM to robot construction, the level of development (LOD) of the
3-D model must be considered. According to BIMFourm, model LOD is defined as
the degree to which a component specification, geometry, and associated informa-
tion are detailed in the 3-D model of the project. Additionally, BIMFourm publishes
an open standard for LOD to increase a given project’s interoperability [6]. How-
ever, building systems are rarely modeled to the same LOD within the BIM model.
Wall systems are a prime example, where the LOD is represented as a simplistic
wall texture typically in two dimensions, while mechanical systems have most of
the individual components modeled. This results in models that require material and
geometric supplemental information to increase the LOD [7]. In general, additional
information to increase the LOD is provided from the project specifications,however,
the required information is derived from workers’ experience or rules of thumb that
are not recorded in the specifications or the model. Computational modeling pro-
vides a potential solution for adding supplemental model information by increas-
ing the LOD to overcome this challenge. Computational modeling is the process
of changing the shape of model geometry as soon as the dimension value is mod-
ified [8]. Software programs like Dynamo, Rhino, and AutoCAD 3D use genera-
tive design to leverage content libraries to generate new model content, promoting
model development. Additionally, modelers can be classified by how they modify
and interact with the model and are organized into three categories: modelers (based
on objects, limited access to parameters, programs include ArchiCAD and Revit),
semi-restricted modelers (greater freedom and can intervene on design operations,
programs include 3DS max and AutoCAD), and free modelers (complete freedom
and design capabilities, programs include Dynamo and Grasshopper) [9].

@ Springer

Operations Research Forum (2024) 5:52 Page3of21 52

This study aims to design and evaluate a framework for a computational mode-
ling process to increase the LOD of wall systems, specifically masonry walls, within
BIM based on model parameters, such as system geometry and materials. To achieve
this goal, free modeler programs are used for computational modeling to achieve
an LOD of 400, which contains information required to construct the building sys-
tem. The process employed by this study seeks to integrate supplemental informa-
tion sources, including material content libraries and technical specifications. Three
challenges have been identified in pursuing this goal: (1) interpretation of model
geometry and increasing LOD, (2) integrating external data sources and material
content libraries, and (3) information interoperability and standardization within the
model and among various programs [10, 11]. Two objectives were developed for
this study: first, to increase the LOD of a masonry wall system developed in a 3-D
model, and second, to provide the means to extract this information from the BIM
model to facilitate robotic construction. A case study using generative design meth-
ods was considered wall configurations modeled in Autodesk Revit to incorporate
the individual masonry units of the system, utilizing Dynamo. While the methods
used to develop the Dynamo script are specific to masonry wall systems and are
indented as proof of concept, similar approaches can be taken for additional build-
ing systems. The procedure presented in the study only generates the masonry units.
Future studies will seek to incorporate additional system components, such as mor-
tar joints and lintels.

2 Literature Review

Parametric modeling is not a recent innovation in the construction industry, with
early applications being tracked back to the 1990s with Autodesk Inventor and Bent-
leys MicroStation [12]. In more recent research, endeavors have further integrated
parametric modeling with technology, such as robotics. Methods exist to transfer
information from a BIM model, spreading across a broad application platform that
utilizes computational modeling. Kalkan Okur et al. [13] reviewed these applica-
tions and use cases and found that parametric modeling can facilitate design optimi-
zation, change model parameters, generate model content, convert CAD content, and
update models quickly across the entire project [13]. A typical use case of computa-
tional modeling is to facilitate design optimization. One example investigated a tool-
box approach for the relationship between design optimization and data science in
Grasshopper utilizing plugins and material content libraries. In this approach, they
determined the existing functionality of parametric design, which is the interpreta-
tion of model geometry (curves, surfaces, lines, and solids), interpreting to perform
a simulation, and mathematics to combine numerical design variables [14]. Another
use case associated with computational modeling is to transform and alter the geom-
etry in a model. In a study by McClymonds et al. [15], they defined a preliminary
information exchange process between a BIM model and a robot, finding the need
to increase the LOD to facilitate the transfer of information in robotic construc-
tion. The case study developed used a manual approach to increase a model LOD
but cited that third-party applications could automate this process [15]. However,

@ Springer

52 Page4of21 Operations Research Forum (2024) 5:52

challenges are associated with utilizing computational modeling to generate and
extract model content with third-party applications.

The first challenge concerns the interpretation of model geometry and increasing
LOD. Model geometry is the shape, structure, and interaction between systems in
the model. One study found that native features of Dynamo are insufficient to inter-
pret the geometry to increase a model to LOD 400, leveraging Python to interpret
geometry; however, little insight was given into the geometry process. Additionally,
they provided insight into the capabilities of computational modeling, which are the
ability to fill information on sheets, place families and components, import/export
models, and leverage Python [16]. Another study found that the BIM model may
not contain sufficient details or may be lost while undergoing information exchange,
specifically mentioning industry foundation class (IFC) schema and citing inter-
operability issues between project stakeholders [7]. Davtalab et al. [17] developed
custom software to extract model data supporting additive manufacturing, which
uses the BIM model as a data source. The model’s geometry was simplified into 2D
planes that indicated wall locations [17]. While this study did not directly involve
computational modeling, it investigated the information exchange for BIM to robotic
construction. It found that model geometry must be simplified for some use cases.

The second challenge for model content generation is integrating external data
sources and material content libraries. Zhang and Xing [18] defined the require-
ments of a material content library, stating that it serves as a centralized repository
for a product or material containing detailed information, including specifications,
manufacturer data, and other relevant information. Therefore, a predefined model can
be created in place of a generic component. In another study by Sharif and Gentry
(2015), they developed a material content library as a masonry construction database
consisting of blocks containing material properties, manufacturer, geometry, and tex-
tures. However, Sharif et al. [19] determined that generating custom units for areas
of complex geometry is beneficial for those locations. Locations for custom masonry
unit generation would be for partial-sized units or containing non-typical masonry
attributes [19]. Later, in a study done by Kim and Chin [20], they found that there
are typically two methods for developing material content libraries,the first model
was developed based on dimension and constraints providing detailed information for
a Revit Family, and the second model was reliant on the geometric description lan-
guage described by parameters and algorithms [20]. However, Venkatraj and Dixit
found in their study that the information contained within the material content library
is based on the specific use case, which influences model parameters and the overall
database [21]. Another study identified industry expertise and planning rules as input
into their modeling system to develop a workflow to generate floor tiles in an apart-
ment, locating areas that need to be cut to fit. They simplified their process from a
3D to a 2D model and used Grasshopper to generate the locations [22]. Notably, the
information in the material content library is based on the building system and will
require additional research on the methods to integrate it into the computational mod-
eling process for BIM to construction robots.

Additionally, while material content libraries are considered a primary external
data source, other sources must be included, such as topological/GPS data, weather
data, robot capabilities, logistical information, specifications, assembly data, and

@ Springer

Operations Research Forum (2024) 5:52 Page50f21 52

sequencing information [10, 11]. A study by Kim et al. [23] sought to integrate a
robot operating system (ROS) with BIM for robotic task planning for drywall
painting. A customized XML file was exported and used as the data source for the
sequencing information. It was used in a simulation rather than combined with the
BIM model [23]. However, the construction schedule must be integrated into the
process to aid with sequencing to improve this process. In another study, Karimi
et al. [24] investigated the ontology of data exchanges for robotic navigation utiliz-
ing a script developed with Dynamo to create semantic topological data in IFC files
to aid in robotic navigation and data collection. Notably, the methods employed to
integrate these external data sources vary, and each took the initiative to help with
standardization and address interoperability concerns.

The third challenge stems from interoperability issues and standardization, which
presents a considerable challenge in the construction industry, impacting the inte-
gration of innovative technology. In a study conducted by Ren and Zhang [7], they
focused on developing a framework to address interoperability issues while transfer-
ring information between an architectural and structural model [7]. In another study,
Tibaut et al. [25] found that interoperability must be considered in all construction
project phases to facilitate information exchanges better. However, formats like IFC
support simple models, resulting in missing information when the exchange occurs
[25]. Anane et al. [26] recently investigated interoperability related to computational
design driven by BIM to help bridge the gap between robotics and construction. They
found that current tools are insufficient for complex projects and inadequate for data
management,finding more work is required to improve the process [26]. Notably,
standards are being developed and maintained by BuildingSMART to support the IFC
schema, which is one of the adopted formats for exporting information [27]. However,
while efforts have been made to increase interoperability and standardization, the vari-
ation in approaches in the previous studies shows that more effort is required.

This section documented the challenges of previous studies, including the inter-
pretation of model geometry and LOD, integration of material content libraries and
external data sources, and interoperability issues between programs. Considering
the challenges described in this section, it becomes clear that while methods exist
to increase the LOD of models, more work is required to address the challenges
defined by this study. Interoperability is critical when transferring information
between a BIM model and a robot, especially when considering a system of lower
LOD. Therefore, this study develops a method that increases a model LOD of devel-
opment, limiting the areas where interoperability issues can occur. This study cre-
ates a method to address these challenges using computational modeling to increase
the LOD and extract information from a 3D model developed in Autodesk Revit.

3 Computational Modeling Framework
Computational modeling is a powerful tool that allows for rapid modifications to
a BIM by changing model parameters, such as an element’s size, shape, and prop-

erties. Additionally, by leveraging computational modeling, design accuracy and
efficiency can be improved, facilitating collaboration and communication among

@ Springer

52 Page6of21 Operations Research Forum (2024) 5:52

project stakeholders. However, building systems are not equally represented within
a BIM; some systems are more conceptual and have a low LOD, while others that
contain construction information have a higher LOD. To facilitate robotic construc-
tion and leverage the data, the LOD must be sufficient to support the construction
within a BIM. To this end, this study utilizes Dynamo as a computational modeler to
generate masonry units based on the geometry properties of a wall, thereby increas-
ing the LOD. A framework was developed in Fig. 1 that presents the method used by
computational modeling for data visualization within Revit and, eventually, facili-
tates robotic task creation by adding location and material information to the model.
While the entire process is depicted, this study focuses on the generation and extrac-
tion elements in the framework and does not use the information for robotic task
execution. This study extends a previous study that defined a system architecture for
BIM to robotic construction [10, 11].

The framework shown in Fig. 1 can be extrapolated further and divided into three
distinct phases, forming the phases shown in Fig. 2, which include (1) model setup,
(2) model development, and (3) information exchange. Phase one (i.e., model setup)
gathers the entire model and ensures it was developed correctly, enabling the script
to run as expected and determine the requirements for the process. The model is
reviewed manually to ensure it was developed to work with the script’s structure.
Phase two (i.e., model development) interprets the model geometry and places the
components into the design locations determined by analyzing the wall texture
shown in the original Revit model, and phase three (i.e., information exchange)
extracts and formats information from the model for a robot. The following three
sections provide further details about the inputs and outputs of each phase and the
development process. An example is used in the following section to help illustrate
the steps shown in Fig. 2.

Additionally, any task marked with an asterisk in Fig. 2 was done manually. Nota-
bly, this research primarily focused on automating the tasks listed in Phase 2. Not
all tasks shown in Fig. 2 were completed in this study, including format, sequence

Material Content Libraries (MCL) Plugins
I ’ I Format and Export Robotic Task Execution

RVT
3D BIM Computational Modeler
Data Visualization Provide Feedback
External Data Sources Python

Fig. 1 Computational modeling framework for BIM to robotic construction integration

@ Springer

Operations Research Forum (2024) 5:52 Page 7 of 21 52

Phase 1: Model Setup Phase 2: Model Developmen
Determine Extract and Import Extract
A;j'[“:;elf D Inspect Model* Model Interpret Model Material/ Material
o Requirements -l Geometry Component Parameters Delengme Full-
ize
Extract Wall/ ‘Component
Determine Opening Locations
Existing Setup Model Reference
WallMaterial [P] forCM. * Edges
Parameters —
Analyze Model Create
for Gaps ! Determine Size "N Component for Place All Rotate
Between of Gaps Gap and Components Components
* Manual Process Used Components Record (X.Y.Z)
Phase 3: Information Extraction *-----------------------—- I

p==Pp| Task Execution p==p Provide Report

for Accuracy* = =
Y Robot Component Sequence Data* *| Sequence File
Data i

Gather
Component : |
Inspect Model Parameters Export ;
t Format and 2 Export

Requirements H |

External Data) % =
Sources -
Robot Specifications Construction Method ~ Construction Specifications Project Constraints Material Content Libraries ~ Quality Confrol/Assurance

Fig.2 Computational modeling workflow to generate model content

data, and task execution. These tasks were not undertaken as they extended beyond
the scope of this study. The work presented by this workflow expands on the work
completed in a previous study [28].

Dynamo plugins were leveraged in this study to support the script’s develop-
ment. While this study primarily used the built-in nodes, Table 1 lists the plugins
used and summarizes their purpose. These packages and the creation of custom
nodes allowed for a more straightforward geometric interpretation of model geom-
etry and promoted the information extraction process. Additionally, using plugins
reduced the number of Python scripts needed to facilitate the generation of the
masonry units.

3.1 Phase One (Model Setup)

Model setup prepares the model to generate elements in phase two. For this study, an
8"x8"x16" (20.3 cmx20.3 cmx40.6 cm) CMU room was developed in Autodesk
Revit. The material of the wall is represented as a 2D texture and does not con-
tain the location or material information at a component level for individual wall

Table 1 Dynamo plugins used

Plugin Name Plugin Purposes

Clockwork List management and determining element locations.

Dynamo Iron Python 2.7 Convert the wall directions from a vector into an angle.

Modelical Extract the direction of the wall as vector.

RIE Interact with bounding boxes for door and window
openings.

Bimorph Nodes Run Python scripts.

@ Springer

52 Page8of21 Operations Research Forum (2024) 5:52

elements. The room configuration is shown in Fig. 3 and serves as the initial model
for each workflow phase where on left (A) is the 3-D representation and the right
(B) is the plan view.

Once the model is acquired, it is manually inspected to determine the supplemen-
tal information requirements. As stated, the wall material is represented as a texture
and, by BIMFourm LOD guidelines, is an LOD 200. However, to contain information
related to the construction process (i.e., component location and material information),
the model must be LOD 400. The existing material parameters are determined based on
the naming schema standard published by the National Concrete and Masonry Associa-
tion (NCMA, 2017) to determine the correct wall material. For this study, wall mate-
rials reference NCMA standards for naming convention; therefore, an example would
have an 8"X8"x 16" CMU listed as the wall material in Revit.

The last step for phase one is to ensure the model is configured correctly. First,
as observed during development, the method used for modeling the walls initially in
Revit affects the geometric interpretation of the wall, impacting component place-
ment. For instance, for this study, the walls were modeled with the location line set
to the finish face exterior. Additionally, to ensure that the masonry units are gener-
ated correctly at corners, Fig. 4 was developed, which demonstrates how each wall
must be modeled to facilitate the computational modeling process where each wall
intersects the previous one. The walls, organized in the order they were modeled, are
represented by a color: blue is wall one, orange is wall two, green is wall three, and
red is wall four. A circle represents a start location, while a triangle is the end loca-
tion. Identifying each wall’s start and end points is required to establish the criteria
for generating the individual wall components using the wall’s exterior edge as the
reference. For the computational modeling script to run correctly, it is crucial that
the next wall begins where the previous one ended, or it would result in overlapping
blocks. The start and end locations from the wall are used to determine the loca-
tions of the individual components for the first course. For the secondary course,
these blocks are offset at a distance equal to half the block’s length, resulting in

5-4" 5-4"
A
> . X TN] [
S l 7 o
[S
t
L——— | an~anananana
6-0" 5-4
7 # #
19'-0"
/. 7.3
d d

Fig.3 A — Left 3-D representation of room configuration. B — Right Dimensioned 2-D plan of room
configuration

@ Springer

Operations Research Forum (2024) 5:52 Page90f21 52

Fig.4 Reference edge start loca-

tions modeled VARARA | | DAY S
Wall 3 (180°)
Start Point ‘
né_: End Point A g
-~ s
~ ~
~N —]
2 g
Wall 1 (0°)
O > J | A4 /] O

a running bond pattern. Once the model setup is complete, phase two can begin.
It should be noted that developed models were designed for the Dynamo script. A
model obtained from an outside source must be manually reviewed and edited to
ensure the computational modeling script runs correctly.

3.2 Phase Two (Model Development)

Model development is phase two of the computational modeling process, which
imports components from the material content library; extracts material parameters,
such as the masonry unit’s length, width, and height; interprets geometry; and gener-
ates model content into their final locations. The first step of this phase is to gather
and input the walls into Dynamo; the following nodes allowed this to occur: “All
Elements of Category,” which was attached to the “Walls” node to gather all the ele-
ments quickly. However, these nodes can be switched to allow the user to select spe-
cific walls. To import material from the material content library, a custom node was
created in Python that interpreted the wall material and imported it into the model
from the material content library. Once the material is imported, its dimensional
parameters are extracted. The following paragraphs detail the geometric interpreta-
tion process for wall geometry shown in Fig. 5.

After determining the dimensional parameters of the wall material, the geom-
etry of the wall is interpreted, and reference lines for the horizontal exterior edge
are extracted. The start and end points for each reference edge, identified earlier in
Fig. 4, are represented as either a circle (start point) or a triangle (endpoint). A filter
removed reference lines that could cause units to overlap during component genera-
tion, such as the references above and below openings. Once the filtering is com-
pleted, the locations for each block are determined by first importing the full-sized
component from the material content library. Only full-sized blocks (8" x8"x 16"
CMU) are imported, while partial-sized units (length<16") are automatically

@ Springer

52 Page 100f 21 Operations Research Forum (2024) 5:52

Initial Model Reference Edges and Start Locations| Determine Full-Sized Block Locations
\ —
o /
S
LOD 200
Determine Partial-Sized Block Place and Orientate All Units in Revit Interpret Wall Openings

Locations

LOD 400

Fig.5 Process for interpreting model geometry for a masonry wall

generated and converted into a family. Therefore, the process for determining the
locations differs for generating full and partial-sized units.

Locations of full-sized units are determined prior to locating partial-sized units.
To determine the locations, points are arrayed from the start location of the refer-
ence edge at a distance equal to the block’s length, assuming the masonry unit’s
nominal size. The current iteration of the script does not generate mortar joints,
which requires additional revisions to incorporate. If a point is located and extends
beyond the reference edge or if the distance between the last point and the reference
edge endpoint is smaller than the length of the block, it is removed. Additionally, a
running bond pattern is represented in the model; therefore, the point location of the
alternating rows is offset by a distance equal to half a block length, which results
in two different row configurations in the wall. The script implemented a slider to
adjust the offset amount, changing the bond configuration. Therefore, points located
for the first course of blocks (blocks at ground level) are offset half a block length
and up the height of a block. Once points are determined, they are duplicated for the
remainder of the courses that construct the wall. The number of courses is depend-
ent on the height of the wall.

To determine the location of the partial blocks, gaps between the end point of the
reference edge and the endpoint of the nearest full-sized blocks are located. If a gap
is located, the length is measured from the reference edge endpoint to the endpoint
of the previous full-sized block in that course. Those points are recorded and trans-
lated along the z-axis at a distance equal to a block’s height, creating a rectangle that
is extruded by a full-sized block depth. The block is converted into a Revit generic
model, and parameters are created for its dimensions (length, width, and height),
and the partial-sized units are automatically generated in the identified locations.
Additionally, the full-sized units are generated at their identified point locations.
Once the partial-sized and full-sized units are generated in the BIM, they are ori-
entated based on the direction of the wall they construct. Regarding the robot, the
locations, orientations, and types of blocks would be used to generate robotic tasks
in future studies.

@ Springer

Operations Research Forum (2024) 5:52 Page110f21 52

A bounding box was created for each opening that intersects the wall, such as
window and door openings. All components generated within the opening’s bound-
ing box were compiled into a list. If a component intersects the opening, it is
removed from the model. However, if a full-sized element only partially intersected
the opening, it was replaced with the proper-sized partial block. The method for
determining the partial size follows the same protocol as the rest of the partial ele-
ments. Once all units are generated and orientated, information about material and
location parameters is extracted.

3.3 Phase Three (Information Extraction)

Information extraction is the final step, which extracts information from the Revit
model to facilitate robotic task creation. After generating the model content, the
model is manually inspected to determine whether the units were placed into the
proper design locations and ensure there are no overlapping units or gaps in the
walls. The blocks were generated over the original wall model for testing and veri-
fication to ensure they were placed within the geometry bounds. The original wall
was then removed, leaving the generated blocks in place.

After review, elements are compiled into a list, where information is exported
as a.CSV file, which includes coordinates (point location for full-sized and partial
CMU), orientation (rotation in degrees), type (i.e., 8" X 8" x 16" CMU), and identifi-
cation number (I.D.) The coordinates reference the block’s front left bottom corner
and are based on Revit’s localized system. Table 2 is a subsection of ten elements
showing the unformatted extracted information, which does not currently represent
the construction sequence. They are extracted in order of component I.D. Regarding
the rotation for this case, 0 degrees refers to the south wall, 90 degrees to the east
wall, 180 degrees to the north wall, and 270 to the west wall based on the script’s
configuration. The information extracted from the BIM can be used to create tasks

Table 2 Extracted location and material information for room configuration

Coordinates (Feet and Inches) Coordinates (Meters)
1D Type X Y Z X Y V4 Rotation
(Degrees)
12195453 8X8X12 20°-015/16" 39°-101/4” 1’-4*“ 6.12m 12.15m 04Im O
12195454 8X8X12 20°-015/16" 39°-101/4” 2°-8” 6.12m 12.15m 08l m O
12195469 8X8X8 24°-815/16” 23°-101/4" 1’-4" 754m 727m 041lm O
12195470 8X8X8 24°-815/16” 23°-101/4" 2°-8" 754m 727m 0.81lm O
12195492 8X8X4 38 -011/16” 23°-101/4” 2°-0” 11.60m 7.27m 0.6lm O
12195493 8X8X4 38 -011/16" 23°-101/4" 3 -4 11.60m 727m 1.02m O

12195503 8X8X16 37°-011/16" 40°-61/4” 0°-0" 1130m 1235m Om 180
12195504 8X8X16 35 -815/167 40’-61/4” 0°-0”7 1090m 1235m Om 180
12195708 8X8X16 19°-415/16" 40°-61/4" 0'-0" 592m 1235m Om 270
12195709 8X8X16 19°-415/167 39°-21/4> 0°-0" 592m 11.94m Om 270

@ Springer

52 Page 120f21 Operations Research Forum (2024) 5:52

A. Straight Wall B. Room — No Opening C. Room — Door Opening
D. Room — Door and E. Room — Door and two | F. Room — Door, Window,
Window Opening Window Opening and Intersection

Fig. 6 Initial room configurations

for the robot, such as progress detection, material delivery, or self-performing tasks.
However, the tasks conducted by the robot are heavily dependent on the robot.

4 Results

For this study, six different room/wall configurations were developed and modeled
in Autodesk Revit, presented in Fig. 6. This study will refer to them all as room con-
figurations from this point.

The room configurations were designed to slightly increase the model’s complex-
ity and evaluate the script’s ability to generate model content. For this study, the
simplest case is A, where only one wall is modeled, which then advances to a room
containing four walls. From there, additional openings or intersections are added
to the model to increase complexity further and evaluate the script. The computa-
tional modeling interpreted the wall geometry to generate the models above, which
were constructed out of 8”x 8" x 16” (20.3 cm x20.3 cm x40.6 cm) CMU. The wall
configuration was designed with a running bond pattern. The straight CMU wall
(Configuration A) was a control for this study as it was used as the primary con-
figuration for testing early script iterations and provided a baseline for comparison.
Room configuration B added three walls, creating a box. Room configuration C
added a door opening to the front wall, as early testing indicated that the additional
opening increased the computational intensity of the process. Room configurations
D and E introduced one and two window openings, respectively, to increase the

@ Springer

Operations Research Forum (2024) 5:52 Page 130f21 52

v 19'-0"5.79m Y v 19'-0" 579 m v
19'-0"5.79m
1 ‘] i ‘1
B
& E
2 %0
2 S
C 1 |- 2
SO Ed
2 ©
5'-4"1.63m
\
AvG 0" 1.83 I |
- 0" 1.83ml
A B C
19-0"5.79m 19-0" 5.79m , 19-0"5.79m
£ f ¢ y 3T IE3m 84T IS
" 5416 m §-4"254m /| ’[5.4 1.63m 8-4"254m /‘ i
7‘%%‘ & 7
- | L) T I D —
5
a
S
& =
g HE % &
a S| - = 3
a 2 % A
% | Y
Vo= :
= = >
5-4"1.63m S 16m
\
DT L A Sl R Bl | AL B

Fig.7 A-F Plan view of control room configurations with dimensions

computational intensity of the process further. Finally, room configuration F added a
wall to configuration D to show if additional walls are more computationally intense
when compared to openings.

Dimensions for each configuration are provided as a 2D plan in Fig. 7 (variable 1
— initial), where the height of each wall is 10 ft (3.048 m). The sill height of the win-
dow openings is 2’8" (0.81 m) and measures 4'8” (1.42 m) in height by 5’4" (1.62 m) in
length. All door openings are 5'4” (1.62 m) in length and 7'4” (2.23 m) in height. These
dimensions were chosen to align the openings with the bottom of a course of blocks.
Dimensions can vary from what was used in this study (length and width) and the num-
ber of openings. However, it was observed that the height of the wall should end on a full
course of blocks; otherwise, an additional row was generated.

Additional testing was conducted on each of the room configurations. First, the
wall length was increased (variable 2 — increased room size), and we doubled the
size of each wall to determine its impact on computational time. All window and
door openings remain constant in size. Second, the material that constructed the wall
was decreased in size (variable 3 — block size). For this variable, the CMU was
replaced with 2-5/8" x 4" x 8" (6.7 cmx 10.2 cm X 20.3 cm) standard brick and used
the dimensions for the initial configuration. The final variable was only applied to
configurations with an opening (C, D, E, F), where the wall length was doubled, and
the openings’ length was increased by 150%. The opening was extended an equal
amount on both sides. In total, there were 21 configurations to be run by the script.
Each variation was assigned a number: initial setup 1, increased wall length 2, block
size 3, and increased opening and wall length 4. The wall height was not varied
in this study; however, additional testing presented comparable results to varying
lengths. Therefore, only the variation in wall length is shown in this study.

@ Springer

52 Page 14 0of 21 Operations Research Forum (2024) 5:52

The computational modeling script was run for each room configuration and
variation, generating the masonry units into their design locations. All models
were designed in accordance with the framework developed by this study, which
allowed for the interpretation of model geometry. The script identified the locations
of partial-sized units and generated a generic model family in the Revit family for
each unit. The units were named based on the standardized naming convention for
masonry units, making them easily identifiable. To ensure that all blocks were gen-
erated within the bounds of the walls, the original wall was not removed automati-
cally, and the generated blocks were superimposed into the existing wall. The model
was manually inspected for overlap, gaps, and misplaced blocks. Once complete, the
original modeled walls were deleted. Figure 8 shows the result of running the com-
putational modeling scripts for each configuration and variation labeled by room
configuration letter and variation number.

Table 3 summarizes the results for each room configuration (A-E). The first
row lists the computational time, representing the time taken to generate all
units for a room configuration. Total full-sized blocks represent the amount of
8"x8"%x16" (20.3 cmx20.3 cmx40.6 cm) CMU or the amount 2-5/8"x4"x8"
(6.7 cmx10.2 cmx20.3 cm) standard bricks generated by the computational modeler.
Total partial-sized blocks are the summation of all partial-sized blocks generated. Addi-
tionally, a breakdown by length is provided for each partial-sized block. The dimensions
for height and depth are dependent on the wall material. For instance, CMU is 8" x8"
(20.3 cmx20.3 cm) while brick is 2-5/8"x4" (6.7 cmXx 10.2 cm)). The last row shows
the summation of all full- and partial-sized units for each room configuration, which was
verified against the total number of elements in Revit after generation. Additionally, the
table provides a reference name and symbol for each configuration; for example, the
straight wall is “A,” and the initial variable is “1.” Therefore, the first configuration is
labeled “A1,” which is represented as a red circle.

A B

e
NOD
e
>,

OO0

Fig. 8 Room configurations and variations post computational modeling — LOD 400

@ Springer

Operations Research Forum (2024) 5:52 Page 150f21 52

Table 3 Generated content for each room configuration

E. Room - Door F. Roo.m)
. 5 . B.Room-No C. Room - Door - Roon.l- Door " d Two Door, .\Vl.ndo\\‘
Variable Recorded Values A. Straight Wall . . and Window N Opening, and
Opening Opening . Window
Opening . Wall
Opening .
Referance Name/Symbol Al@® B1I@ c1@ D1} @ F1@®
Computational Time (Seconds) 28 72 100 150 148 157
Total Units Generated 225 780 747 735 699 843
1. Intial Full-sized Units Generated 203 750 702 674 630 761
Partial Sized Units Generated 22 30 45 61 69 82
12" Length Blocks 7 30 15 23 23 29
8" Length Blocks 7 0 15 15 23 36
4" Length Blocks 8 0 15 23 23 17
Referance Name/Symbol Jex 3 B2 [&X J D2¢ E2 FZ‘
Computational Time (Seconds) 35 91 143 162 169 174
Total Units Generated 435 1590 1557 1529 1505 1761
2. Increased N .
Room Size Full-sized Units Generated 420 1560 1497 1461 1429 1673
Partial Sized Units Generated 15 30 60 68 76 88
(Length Doubled)
= 12" Length Blocks 0 0 0 0 0 21
8" Length Blocks 15 30 60 68 76 58
4" Length Blocks 0 0 0 0 0 9
Referance Name/Symbol A3 A B3 A C3 A D3 A\ E3A F3A
Computational Time (Seconds) 98 290 298 391 361 622
3. Block Size Total Units Generated 1305 4770 4500 4320 4234 5074
(Standard Brick) Full-sized Units Generated 1260 4680 4374 4170 4062 4827
Partial Sized Units Generated 45 90 126 150 172 247
4" Length Blocks 45 90 126 150 172 247
Referance Name/Symbol caly D4 E4 @ F4
Computational Time (Seconds) 150 173 191 209
Total Units Generated 1533 1489 1467 1725
4. Increased Full-sized Units Generated 1473 1421 1369 1629
Room (Wall Partial Sized Units Generated 60 68 98 96
Length Double) 14" Length Blocks 0 0 9 0
and Opening Size 12" Length Blocks 0 0 8 29
(1.5 x window 10" Length Blocks 0 0 8 0
Length) 8" Length Blocks 60 68 36 50
6" Length Blocks 0 0 6 0
4" Length Blocks 0 0 8 17
2" Length Blocks 0 0 23 0

4.1 Discussion

Reviewing the results showed that increasing the overall number of elements
increases the computational time of the model. Figure 9 was developed to show the
trends between each variation of a wall configuration. In Fig. 9, each configuration
is denoted by a number and color, such as red for the straight wall (A) and green for
the room with a door, window, and wall intersection (F). In addition, each variable
was assigned a symbol, such as variable one, represented as a circle for the initial
configuration. At the same time, three is represented as a triangle representing the
block size. Therefore, an orange diamond would represent configuration C2 or the
room with a door opening with increased wall lengths. The same reference name
and symbols are used here in Table 3. The trendline was created in Microsoft Excel
using the least squares method to fit points based on the number of blocks generated
for each configuration compared to the computational time. Reviewing each wall
configuration shows that most data points are in close proximity to their respective
trendlines. For example, all variations for the straight wall configuration (A) appear
on the trendline. This also occurs for all data related to configuration C (C1 to C4).
Additionally, the smallest configuration, A1, had the masonry units generated in the
least amount of time, 28 s. The configuration that took the longest had the most
substantial number of overall units to place, which was F3 at 622 s. In addition, all
wall configurations constructed out of the brick took the most extended amount of
computational time in accordance with how the script was developed.

@ Springer

52 Page 16 0f 21 Operations Research Forum (2024) 5:52

Additionally, upon review of Table 3, a strong direct correlation between model
complexity and the number of elements appears when compared with computational
time. Figure 10 was developed to visualize the correlation between computational
time and model complexity using the symbols and reference names from Table 3
and Fig. 9.

Figure 10 presents all four variables, each showing a similar trend. This chart
shows that while increasing the overall number of elements impacts computational
time, it is not the only factor. The trends show that adding additional elements to
the model, such as an opening or an additional wall, increased model complexity
and computational time. This trend aligns with the methods used for interpreting the
model geometry that the computational modeler uses, as the script first places full-
sized units in openings, then in the following step, interprets the opening geometry
and deletes unnecessary blocks. Additionally, gaps are automatically measured, and
partial-sized units are generated around the permitter of the opening as required.
However, the results show that computational time is increased if more building
elements are generated for a room configuration. Additionally, there is an overlap
between the lines for variables 4 and 2 due to the similarities between the computa-
tional time and the total number of elements generated.

The method used by this study has limitations, which require further revisions
and iterations of the computational modeling script. The script successfully placed
all the masonry units for the room configurations developed by this study; how-
ever, they were designed and modeled to simplify the computational demands. The
script requires the upper and lower edges of the opening to coincide with the edge
of a course of blocks. Further refinement to the script would be required to manage
edges of openings that do not coincide with the edge of a course of block. Nota-
bly, testing all possible wall configurations in this study is impossible. However,

6000 e
S
Cc1 \.
5000 A e
/ a ' e
ya p = B2 | &
4000 Ve ole
g / mle
= / 5| A
2 3000 /, 3k
O // D3| A
T B A
P3| A
2000 N
o/ “|3
/, Trendline Color
1000 7 =4 = = E
&° B =D m=F
0 100 200 300 400 500 600 700

Computational Time (Seconds)

Fig. 9 Impact of increasing number of elements on computational time

@ Springer

Operations Research Forum (2024) 5:52 Page170f21 52

6000 .
%S;.bol
5000 4 19
A El (::)
s ale
F B| ¢
4000 ale
g > b
8 F; L 4
m Variable 3 ?T
5 3000 o|a
* =
) o
2000| Varablez 2 ;
¢ @ e
» &

/ & -4 Line Color

1000 - e

/ e
7 Variable 1
0 100 200 300 400 500 600 700

Computational Time (Seconds)

Fig. 10 Number of elements vs. computational time with increased model complexity

additional testing is ongoing to increase the script’s capabilities, allowing for addi-
tional wall shapes and sizes. Additionally, the script was developed to manage more
common bond patterns, such as running or stack bonds. In that case, the script must
be adjusted to oversee more complex bond patterns, such as Herringbone or English
Bond. Finally, the developed computational modeling script generated the masonry
units within the original wall, which was kept in place to ensure no blocks extended
beyond their bounds. Once verified, the original wall was removed. However, the
removal of the original wall can easily be automated.

Additionally, this system was developed for masonry wall systems and requires
adaptation for additional wall systems; therefore, the type of material is a limiting
factor. Each building system has its unique criteria for construction, which must be
considered to implement computational modeling. While the methods used to set
up the project and extract wall geometry are adaptable for other wall systems, the
process relies on the dimensions of the masonry units and the construction method.
Additionally, the components generated were dry-set and used nominal sizing. The
model should include mortar between the units to transition into a more realistic
representation, and additional tolerances and specifications must be integrated. The
current script was not developed to generate mortar, so the nominal size of the block
was considered a three-eighths-inch mortar joint.

However, with the content represented in the model, information can be extracted
and developed into tasks for the robot. As mentioned, the data is extracted in the
order of component I.D.; however, this does not represent the order in which the
wall was constructed. Therefore, the information required to create a construc-
tion task for the robot must be sequenced. The methods to automatically sequence
the extracted data into robotic construction tasks extend beyond the scope of this

@ Springer

52 Page 18 0f 21 Operations Research Forum (2024) 5:52

research and remain for future work. Additionally, once the information is extracted
and sequenced, it must be converted into tasks for the robot. The methods extend
beyond the scope of this study; however, they depend on the robotic system, and
the robot must be able to adapt to the tasks according to the dynamic nature of the
construction site. Also, regarding interoperability between the BIM and construction
robot, the required information format depends on the robotic system and task objec-
tive. The information required could vary based on the task; however, this study
identified a few constants, which include the location, orientation, material type, and
material I.D., which allows for quick identification of any component in the BIM.
Therefore, additional work is required to improve interoperability and standardiza-
tion to enable robotic task execution using information from a BIM.

Despite these limitations, the computational modeling script was run on mul-
tiple room configurations. All masonry units were placed correctly for each room
configuration, showing the viability of this method for increasing LOD. Notably,
the same computer configuration was used to develop the model and run the com-
putational modeling script, which utilized Windows 10 Pro edition, AMD Ryzen 7
3700x, 1 T.B. Samsung SSD, Nvidia GeForce GTX 1070 TI, and 64 G.B. Corsair
Vengeance Pro DDR4 3600 RAM. The specifications are noted as different systems
could result in variations in computational time. Finally, this study focused primar-
ily on utilizing Autodesk Revit and Dynamo and did not investigate additional BIM
authoring software such as Graphisoft Archicad or Bently Microstation. Additional
work is required to standardize all software platforms; however, this extends beyond
the scope of this study.

5 Conclusion

This study implemented computational modeling to generate masonry units based on
the geometry of a masonry room in the BIM to support the extraction of information
to create tasks for robotic construction. While this study did not develop the con-
struction tasks, it established the initial steps to generate the information required to
facilitate robotic construction in the future. Typically, a masonry wall is represented
as a texture in the model; however, utilizing computational modeling, the LOD of
the model was increased. As such, the model was enhanced to contain information
pertaining to the construction process, such as component location, type, I.D., and
orientation. However, to be considered LOD 400, additional components of the wall
system would need to be generated, such as lintels or mortar joints. To this end, a
framework was developed to present the process undertaken by Dynamo to gener-
ate model content, which was divided into three phases: (1) model setup, (2) model
development, and (3) information extraction. First, all information was generated
and contained within the original model, and only the information required to sup-
port the creation of tasks was extracted to reduce the loss of information. Second,
the computational modeling script accesses the material content library and imports
the correct family into the model based on the material’s name. This process could
be improved in future iterations of the script. The final challenge identified involved
the interpretation of model geometry and increasing the LOD, which was the study’s

@ Springer

Operations Research Forum (2024) 5:52 Page 190f21 52

primary objective. In addition, the computational modeling script developed in this
study is available on Git Hub [29].

Future work will further develop the computational modeling script to integrate
additional material content libraries and the potential for generating components of
additional wall systems. Additionally, there is the potential to integrate optimization
strategies into the process, such as having a worker review a plan and reduce the
amount of mortar in specific locations so a row of blocks would end at a window
opening. This process could be automated to generate and inform workers where
the mortar amount could be reduced to minimize the block cut required, providing
the opportunity to decrease material usage, lower cost, and reduce potential waste.
However, tolerances associated with the mortar joints must still be strictly followed
and incorporated. The outlook for utilizing computational modeling and generative
design with BIM to develop robotic construction tasks appears promising. In sum-
mary, this research indicates that using computational modeling to enhance the LOD
in BIM models is viable, and the capabilities aid in developing BIM models that are
more precise, intricate, and conducive.

Acknowledgements Thanks to Dr. Yuqing Hu for initial feedback on the development of the Dynamo script.

Author contributions AM: Conceptualization, data collection, methodology, data analysis, writing the
first draft. SA.: Conceptualization, data analysis, supervision, editing the draft. RL: Conceptualization,
data analysis, supervision, funding, editing the draft.

Funding This material is based on work supported by the National Science Foundation under Grant
1928626.

Data Availability The script used for the is available on Git Hub (Link in the previous paragraph).

Declarations
Competing interests The authors declare no competing interests.

Disclaimer Any opinions, findings, conclusions, or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

1. NBIMS (2015) National BIM Standard—United States® Version 3—3 Terms and Definitions.
https://www.nationalbimstandard.org/nbims-us-v3

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.nationalbimstandard.org/nbims-us-v3

52

Page 20 of 21 Operations Research Forum (2024) 5:52

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

Saidi KS, Bock T, Georgoulas C (2016) Robotics in construction. In B. Siciliano & O. Khatib
(Eds.), Springer handbook of robotics (pp. 1493—1520). Springer International Publishing. https://
doi.org/10.1007/978-3-319-32552-1_57

Lasi H, Fettke P, Kemper H-G, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng
6(4):239-242

Sawhney A, Riley M, Irizarry J (2020) Construction 4.0—an innovation platform for the built envi-
ronment. Routledge. https://doi.org/10.1201/9780429398100

Anane W, Iordanova I, Ouellet-Plamondon C (2022) Modular robotic prefabrication of discrete
aggregations driven by BIM and computational design. Procedia Computer Science 200:1103—
1112. https://doi.org/10.1016/j.procs.2022.01.310

Bedrick J, Ikerd W, Reinhardt J (2020) Level of development specification — BIM Forum. https://
bimforum.org/resource/level-of-development-specification/

Ren R, Zhang J (2021) A new framework to address BIM interoperability in the AEC domain from
technical and process dimensions. Advances in Civil Engineering 2021:¢8824613. https://doi.org/
10.1155/2021/8824613

Fu F (2018) Chapter Six—Design and analysis of complex structures. In F. Fu (Ed.), Design and
analysis of tall and complex structures (pp. 177-211). Butterworth-Heinemann. https://doi.org/10.
1016/B978-0-08-101018-1.00006-X

Girardet A, Boton C (2021) A parametric BIM approach to foster bridge project design and analysis.
Autom Constr 126:103679. https://doi.org/10.1016/j.autcon.2021.103679

McClymonds A, Asadi S, Leicht R (2023) Exploring the challenges of implementing parametric
modeling to support robotic construction. Annual Meeting Canadian Society of Civil Engineers.
https://par.nsf.gov/biblio/10466066-exploring-challenges-implementing-parametric-modeling-
support-robotic-construction

McClymonds A, Leicht R, Asadi S (2023) System architecture for supporting BIM to robotic con-
struction integration. In S. Walbridge, M. Nik-Bakht, K. T. W. Ng, M. Shome, M. S. Alam, A. el
Damatty, & G. Lovegrove (Eds.), Proceedings of the Canadian Society of Civil Engineering Annual
Conference 2021 (pp. 225-236). Springer Nature. https://doi.org/10.1007/978-981-19-0968-9_18
Wierzbicki M (2011, October 6) BIM — history and trends. CONVR 2011. https://www.researchgate.
net/publication/259390230

Kalkan Okur E, Okur F, Altunisik A (2018) Applications and usability of parametric modeling. J
Constr Eng Manag Innov 1. https://doi.org/10.31462/jcemi.2018.03139146

Brown NC, Jusiega V, Mueller CT (2020) Implementing data-driven parametric building design
with a flexible toolbox. Automation in Costruction 118:103252. https://doi.org/10.1016/j.autcon.
2020.103252

McClymonds A, Asadi S, Wagner A, Leicht RM (2022) Information exchange for supporting BIM
to robotic construction. 839-848. https://doi.org/10.1061/9780784483961.088

Monteiro A (2016, September 29) Visual programming language for creating BIM models with level
of development 400. 4th Bim International Conference. https://www.researchgate.net/publication/
310606700

Davtalab O, Kazemian A, Khoshnevis B (2018) Perspectives on a BIM-integrated software plat-
form for robotic construction through Contour Crafting. Autom Constr 89:13-23. https://doi.org/10.
1016/j.autcon.2018.01.006

Zhang J, Xing Z (2013) AN IFC-based semantic framework to support BIM content libraries. Pro-
ceedings of the 30th International Conference of IT in Construction (CIB W78) (pp. 8-11)

Sharif S, Gentry R, Eastman C, Elder J (2015, January 1) Masonry unit database development for
BIM-masonry. 12th North American Masonry Conference. https://www.researchgate.net/publication/
307213214

Kim B, Chin S (2016) Parametric library components for BIM-based curtain wall design automation
module. ISARC. Proceedings of the International Symposium on Automation and Robotics in Construc-
tion, 33, 1-6. https://www.proquest.com/docview/1823081919/abstract/4918451B7C114B2CPQ/1
Venkatraj V, Dixit MK (2022) Challenges in implementing data-driven approaches for building
life cycle energy assessment: a review. Renew Sustain Energy Rev 160:112327. https://doi.org/10.
1016/j.rser.2022.112327

Wu S, Zhang N, Xiang Y, Wu D, Qiao D, Luo X, Lu, W-Z (2022) Automated layout design
approach of floor tiles: based on building information modeling (BIM) via parametric design (P.D.)
platform. Buildings, 12(2), Article 2. https://doi.org/10.3390/buildings 12020250

Springer

https://doi.org/10.1007/978-3-319-32552-1_57
https://doi.org/10.1007/978-3-319-32552-1_57
https://doi.org/10.1201/9780429398100
https://doi.org/10.1016/j.procs.2022.01.310
https://bimforum.org/resource/level-of-development-specification/
https://bimforum.org/resource/level-of-development-specification/
https://doi.org/10.1155/2021/8824613
https://doi.org/10.1155/2021/8824613
https://doi.org/10.1016/B978-0-08-101018-1.00006-X
https://doi.org/10.1016/B978-0-08-101018-1.00006-X
https://doi.org/10.1016/j.autcon.2021.103679
https://par.nsf.gov/biblio/10466066-exploring-challenges-implementing-parametric-modeling-support-robotic-construction
https://par.nsf.gov/biblio/10466066-exploring-challenges-implementing-parametric-modeling-support-robotic-construction
https://doi.org/10.1007/978-981-19-0968-9_18
https://www.researchgate.net/publication/259390230
https://www.researchgate.net/publication/259390230
https://doi.org/10.31462/jcemi.2018.03139146
https://doi.org/10.1016/j.autcon.2020.103252
https://doi.org/10.1016/j.autcon.2020.103252
https://doi.org/10.1061/9780784483961.088
https://www.researchgate.net/publication/310606700
https://www.researchgate.net/publication/310606700
https://doi.org/10.1016/j.autcon.2018.01.006
https://doi.org/10.1016/j.autcon.2018.01.006
https://www.researchgate.net/publication/307213214
https://www.researchgate.net/publication/307213214
https://www.proquest.com/docview/1823081919/abstract/4918451B7C114B2CPQ/1
https://doi.org/10.1016/j.rser.2022.112327
https://doi.org/10.1016/j.rser.2022.112327
https://doi.org/10.3390/buildings12020250

Operations Research Forum (2024) 5:52 Page210f21 52

23.

24.

25.

26.

27.

28.

29.

Kim S, Peavy M, Huang P-C, Kim K (2021) Development of BIM-integrated construction robot
task planning and simulation system. Autom Constr 127:103720. https://doi.org/10.1016/j.autcon.
2021.103720

Karimi S, Iordanova I, St-Onge D (2021) An ontology-based approach to data exchanges for robot
navigation on construction sites. arXiv Preprint arXiv:2104.10239. https://doi.org/10.36680/j.itcon.
2021.029

Tibaut A, Rebolj D, Nekrep Perc M (2016) Interoperability requirements for automated manu-
facturing systems in construction. J Intell Manuf 27(1):251-262. https://doi.org/10.1007/
$10845-013-0862-7

Anane W, Iordanova I, Ouellet-Plamondon C (2023) Building information modeling (BIM) and
robotic manufacturing technological interoperability in construction — a cyclic systematic literature
review. Digital Manufacturing Technology 1-29. https://doi.org/10.37256/dmt.3120231856
Edirisinghe R, London K (2015) Comparative analysis of international and national level BIM
standardization efforts and BIM adoption. Proceedings of the 32nd CIB W78 Conference
McClymonds AD, Asadi S, Leicht RM (2024) Development of a parametric modeling method
for masonry wall systems to support robotic construction. 398—406. https://doi.org/10.1061/
9780784485231.048

McClymonds A (2023) Adm5535/computational-modeling-dynamo [Computer software]. https://
github.com/adm5535/Computational-Modeling-Dynamo (Original work published 2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Austin D. McClymonds? - Somayeh Asadi' - Robert M. Leicht?

DX

Somayeh Asadi
rkn3gr@virginia.edu; sxa51@psu.edu

Austin D. McClymonds
adm5535@psu.edu

Robert M. Leicht
rml@psu.edu

Department of Civil and Environmental Engineering, University of Virginia, Charlottesville,
VA, USA

The Pennsylvania State University, University Park, PA, USA

@ Springer

https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/10.1016/j.autcon.2021.103720
http://arxiv.org/abs/2104.10239
https://doi.org/10.36680/j.itcon.2021.029
https://doi.org/10.36680/j.itcon.2021.029
https://doi.org/10.1007/s10845-013-0862-7
https://doi.org/10.1007/s10845-013-0862-7
https://doi.org/10.37256/dmt.3120231856
https://doi.org/10.1061/9780784485231.048
https://doi.org/10.1061/9780784485231.048
https://github.com/adm5535/Computational-Modeling-Dynamo
https://github.com/adm5535/Computational-Modeling-Dynamo

	Proposing a Computational Modeling Framework for Generating Masonry Wall Units, Enhancing the Information Within a BIM
	Abstract
	1 Introduction
	2 Literature Review
	3 Computational Modeling Framework
	3.1 Phase One (Model Setup)
	3.2 Phase Two (Model Development)
	3.3 Phase Three (Information Extraction)

	4 Results
	4.1 Discussion

	5 Conclusion
	Acknowledgements
	References

