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Abstract
In recent decades, the construction industry has undergone a technological shift 
incorporating innovative technologies, such as robotics. However, information 
requirements must be met to integrate robotics further. Currently, building informa-
tion models (BIM) contain substantial project information that can be leveraged for 
robots to create construction tasks, but for some building systems, the level of devel-
opment (LOD) is inadequate to support these new requirements. Therefore, this 
study proposes a framework to increase the LOD of building systems by considering 
location information (X, Y, Z), orientation, material type, and component I.D. The 
computational modeler, Dynamo, is leveraged to increase the model’s LOD, extract 
information, and facilitate robotic task execution in the future. A case study is pre-
sented for multiple masonry room configurations developed in Autodesk Revit, 
where masonry units are generated and placed into design locations based on the 
geometry of the wall system. The case study used concrete masonry units (CMU) 
and standard brick. The number of partial-sized and full-sized blocks for each con-
figuration was recorded, along with the computational time required to generate the 
units. It was observed that room configurations with more openings had longer com-
putational times when compared to rooms constructed from the same material. After 
running the script, the model is reviewed to ensure accuracy and prevent overlaps or 
gaps in the model. The workflow provides insight into the methods used to interpret 
model geometry and extract information.

Keywords  Computational modeling · BIM · Robotic construction · Information 
exchange · Masonry construction
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1  Introduction

Digitization in the construction industry is not a new concept, as building informa-
tion models (BIM) have been an essential source of project information. BIM, by 
definition, is the digital representation of model characteristics of a building, serving 
as a source of information throughout a project lifecycle [1]. In addition to digitiza-
tion, researchers are combining it with automation. Automation, or more specifically 
robotics, has been the target of recent research in the construction industry. One study 
reviewed efforts in the construction industry, documenting the various uses for con-
struction robots, ranging from bricklaying to tile-placing robots. Additionally, they 
detailed unsolved technical problems, notably interoperability between different infor-
mation systems [2]. As a result, Construction 4.0 has been established with its ability 
to combine factors of both automation and digitization [3], which has ushered in new 
applications in artificial/virtual reality (AR/VR), cyber security, big data analytics, 
laser scanning, automation, and robotics [4]. A recent study by McKinsey Institute 
identified a direct link between the digitization of BIM and robotics as a technology 
map. However, the bridge between BIM and robotics in construction lacks explora-
tion, suggesting improving interoperability [5]. Methods to bridge the gap between 
BIM and construction robots require further exploration into the standard methods 
and procedures. Therefore, this study seeks to explore the bridge between construction 
robots and BIM further.

To facilitate BIM to robot construction, the level of development (LOD) of the 
3-D model must be considered. According to BIMFourm, model LOD is defined as 
the degree to which a component specification, geometry, and associated informa-
tion are detailed in the 3-D model of the project. Additionally, BIMFourm publishes 
an open standard for LOD to increase a given project’s interoperability [6]. How-
ever, building systems are rarely modeled to the same LOD within the BIM model. 
Wall systems are a prime example, where the LOD is represented as a simplistic 
wall texture typically in two dimensions, while mechanical systems have most of 
the individual components modeled. This results in models that require material and 
geometric supplemental information to increase the LOD [7]. In general, additional 
information to increase the LOD is provided from the project specifications,however, 
the required information is derived from workers’ experience or rules of thumb that 
are not recorded in the specifications or the model. Computational modeling pro-
vides a potential solution for adding supplemental model information by increas-
ing the LOD to overcome this challenge. Computational modeling is the process 
of changing the shape of model geometry as soon as the dimension value is mod-
ified [8]. Software programs like Dynamo, Rhino, and AutoCAD 3D use genera-
tive design to leverage content libraries to generate new model content, promoting 
model development. Additionally, modelers can be classified by how they modify 
and interact with the model and are organized into three categories: modelers (based 
on objects, limited access to parameters, programs include ArchiCAD and Revit), 
semi-restricted modelers (greater freedom and can intervene on design operations, 
programs include 3DS max and AutoCAD), and free modelers (complete freedom 
and design capabilities, programs include Dynamo and Grasshopper) [9].
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This study aims to design and evaluate a framework for a computational mode-
ling process to increase the LOD of wall systems, specifically masonry walls, within 
BIM based on model parameters, such as system geometry and materials. To achieve 
this goal, free modeler programs are used for computational modeling to achieve 
an LOD of 400, which contains information required to construct the building sys-
tem. The process employed by this study seeks to integrate supplemental informa-
tion sources, including material content libraries and technical specifications. Three 
challenges have been identified in pursuing this goal: (1) interpretation of model 
geometry and increasing LOD, (2) integrating external data sources and material 
content libraries, and (3) information interoperability and standardization within the 
model and among various programs [10, 11]. Two objectives were developed for 
this study: first, to increase the LOD of a masonry wall system developed in a 3-D 
model, and second, to provide the means to extract this information from the BIM 
model to facilitate robotic construction. A case study using generative design meth-
ods was considered wall configurations modeled in Autodesk Revit to incorporate 
the individual masonry units of the system, utilizing Dynamo. While the methods 
used to develop the Dynamo script are specific to masonry wall systems and are 
indented as proof of concept, similar approaches can be taken for additional build-
ing systems. The procedure presented in the study only generates the masonry units. 
Future studies will seek to incorporate additional system components, such as mor-
tar joints and lintels.

2 � Literature Review

Parametric modeling is not a recent innovation in the construction industry, with 
early applications being tracked back to the 1990s with Autodesk Inventor and Bent-
leys MicroStation [12]. In more recent research, endeavors have further integrated 
parametric modeling with technology, such as robotics. Methods exist to transfer 
information from a BIM model, spreading across a broad application platform that 
utilizes computational modeling. Kalkan Okur et  al. [13] reviewed these applica-
tions and use cases and found that parametric modeling can facilitate design optimi-
zation, change model parameters, generate model content, convert CAD content, and 
update models quickly across the entire project [13]. A typical use case of computa-
tional modeling is to facilitate design optimization. One example investigated a tool-
box approach for the relationship between design optimization and data science in 
Grasshopper utilizing plugins and material content libraries. In this approach, they 
determined the existing functionality of parametric design, which is the interpreta-
tion of model geometry (curves, surfaces, lines, and solids), interpreting to perform 
a simulation, and mathematics to combine numerical design variables [14]. Another 
use case associated with computational modeling is to transform and alter the geom-
etry in a model. In a study by McClymonds et al. [15], they defined a preliminary 
information exchange process between a BIM model and a robot, finding the need 
to increase the LOD to facilitate the transfer of information in robotic construc-
tion. The case study developed used a manual approach to increase a model LOD 
but cited that third-party applications could automate this process [15]. However, 
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challenges are associated with utilizing computational modeling to generate and 
extract model content with third-party applications.

The first challenge concerns the interpretation of model geometry and increasing 
LOD. Model geometry is the shape, structure, and interaction between systems in 
the model. One study found that native features of Dynamo are insufficient to inter-
pret the geometry to increase a model to LOD 400, leveraging Python to interpret 
geometry; however, little insight was given into the geometry process. Additionally, 
they provided insight into the capabilities of computational modeling, which are the 
ability to fill information on sheets, place families and components, import/export 
models, and leverage Python [16]. Another study found that the BIM model may 
not contain sufficient details or may be lost while undergoing information exchange, 
specifically mentioning industry foundation class (IFC) schema and citing inter-
operability issues between project stakeholders [7]. Davtalab et al. [17] developed 
custom software to extract model data supporting additive manufacturing, which 
uses the BIM model as a data source. The model’s geometry was simplified into 2D 
planes that indicated wall locations [17]. While this study did not directly involve 
computational modeling, it investigated the information exchange for BIM to robotic 
construction. It found that model geometry must be simplified for some use cases.

The second challenge for model content generation is integrating external data 
sources and material content libraries. Zhang and Xing [18] defined the require-
ments of a material content library, stating that it serves as a centralized repository 
for a product or material containing detailed information, including specifications, 
manufacturer data, and other relevant information. Therefore, a predefined model can 
be created in place of a generic component. In another study by Sharif and Gentry 
(2015), they developed a material content library as a masonry construction database 
consisting of blocks containing material properties, manufacturer, geometry, and tex-
tures. However, Sharif et al. [19] determined that generating custom units for areas 
of complex geometry is beneficial for those locations. Locations for custom masonry 
unit generation would be for partial-sized units or containing non-typical masonry 
attributes [19]. Later, in a study done by Kim and Chin [20], they found that there 
are typically two methods for developing material content libraries,the first model 
was developed based on dimension and constraints providing detailed information for 
a Revit Family, and the second model was reliant on the geometric description lan-
guage described by parameters and algorithms [20]. However, Venkatraj and Dixit 
found in their study that the information contained within the material content library 
is based on the specific use case, which influences model parameters and the overall 
database [21]. Another study identified industry expertise and planning rules as input 
into their modeling system to develop a workflow to generate floor tiles in an apart-
ment, locating areas that need to be cut to fit. They simplified their process from a 
3D to a 2D model and used Grasshopper to generate the locations [22]. Notably, the 
information in the material content library is based on the building system and will 
require additional research on the methods to integrate it into the computational mod-
eling process for BIM to construction robots.

Additionally, while material content libraries are considered a primary external 
data source, other sources must be included, such as topological/GPS data, weather 
data, robot capabilities, logistical information, specifications, assembly data, and 
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sequencing information [10, 11]. A study by Kim et al. [23] sought to integrate a 
robot operating system (ROS) with BIM for robotic task planning for drywall 
painting. A customized XML file was exported and used as the data source for the 
sequencing information. It was used in a simulation rather than combined with the 
BIM model [23]. However, the construction schedule must be integrated into the 
process to aid with sequencing to improve this process. In another study, Karimi 
et al. [24] investigated the ontology of data exchanges for robotic navigation utiliz-
ing a script developed with Dynamo to create semantic topological data in IFC files 
to aid in robotic navigation and data collection. Notably, the methods employed to 
integrate these external data sources vary, and each took the initiative to help with 
standardization and address interoperability concerns.

The third challenge stems from interoperability issues and standardization, which 
presents a considerable challenge in the construction industry, impacting the inte-
gration of innovative technology. In a study conducted by Ren and Zhang [7], they 
focused on developing a framework to address interoperability issues while transfer-
ring information between an architectural and structural model [7]. In another study, 
Tibaut et  al. [25] found that interoperability must be considered in all construction 
project phases to facilitate information exchanges better. However, formats like IFC 
support simple models, resulting in missing information when the exchange occurs 
[25]. Anane et al. [26] recently investigated interoperability related to computational 
design driven by BIM to help bridge the gap between robotics and construction. They 
found that current tools are insufficient for complex projects and inadequate for data 
management,finding more work is required to improve the process [26]. Notably, 
standards are being developed and maintained by BuildingSMART to support the IFC 
schema, which is one of the adopted formats for exporting information [27]. However, 
while efforts have been made to increase interoperability and standardization, the vari-
ation in approaches in the previous studies shows that more effort is required.

This section documented the challenges of previous studies, including the inter-
pretation of model geometry and LOD, integration of material content libraries and 
external data sources, and interoperability issues between programs. Considering 
the challenges described in this section, it becomes clear that while methods exist 
to increase the LOD of models, more work is required to address the challenges 
defined by this study. Interoperability is critical when transferring information 
between a BIM model and a robot, especially when considering a system of lower 
LOD. Therefore, this study develops a method that increases a model LOD of devel-
opment, limiting the areas where interoperability issues can occur. This study cre-
ates a method to address these challenges using computational modeling to increase 
the LOD and extract information from a 3D model developed in Autodesk Revit.

3 � Computational Modeling Framework

Computational modeling is a powerful tool that allows for rapid modifications to 
a BIM by changing model parameters, such as an element’s size, shape, and prop-
erties. Additionally, by leveraging computational modeling, design accuracy and 
efficiency can be improved, facilitating collaboration and communication among 
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project stakeholders. However, building systems are not equally represented within 
a BIM; some systems are more conceptual and have a low LOD, while others that 
contain construction information have a higher LOD. To facilitate robotic construc-
tion and leverage the data, the LOD must be sufficient to support the construction 
within a BIM. To this end, this study utilizes Dynamo as a computational modeler to 
generate masonry units based on the geometry properties of a wall, thereby increas-
ing the LOD. A framework was developed in Fig. 1 that presents the method used by 
computational modeling for data visualization within Revit and, eventually, facili-
tates robotic task creation by adding location and material information to the model. 
While the entire process is depicted, this study focuses on the generation and extrac-
tion elements in the framework and does not use the information for robotic task 
execution. This study extends a previous study that defined a system architecture for 
BIM to robotic construction [10, 11].

The framework shown in Fig. 1 can be extrapolated further and divided into three 
distinct phases, forming the phases shown in Fig. 2, which include (1) model setup, 
(2) model development, and (3) information exchange. Phase one (i.e., model setup) 
gathers the entire model and ensures it was developed correctly, enabling the script 
to run as expected and determine the requirements for the process. The model is 
reviewed manually to ensure it was developed to work with the script’s structure. 
Phase two (i.e., model development) interprets the model geometry and places the 
components into the design locations determined by analyzing the wall texture 
shown in the original Revit model, and phase three (i.e., information exchange) 
extracts and formats information from the model for a robot. The following three 
sections provide further details about the inputs and outputs of each phase and the 
development process. An example is used in the following section to help illustrate 
the steps shown in Fig. 2.

Additionally, any task marked with an asterisk in Fig. 2 was done manually. Nota-
bly, this research primarily focused on automating the tasks listed in Phase 2. Not 
all tasks shown in Fig. 2 were completed in this study, including format, sequence 

Fig. 1   Computational modeling framework for BIM to robotic construction integration
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data, and task execution. These tasks were not undertaken as they extended beyond 
the scope of this study. The work presented by this workflow expands on the work 
completed in a previous study [28].

 Dynamo plugins were leveraged in this study to support the script’s develop-
ment. While this study primarily used the built-in nodes, Table 1 lists the plugins 
used and summarizes their purpose. These packages and the creation of custom 
nodes allowed for a more straightforward geometric interpretation of model geom-
etry and promoted the information extraction process. Additionally, using plugins 
reduced the number of Python scripts needed to facilitate the generation of the 
masonry units.

3.1 � Phase One (Model Setup)

Model setup prepares the model to generate elements in phase two. For this study, an 
8″ × 8″ × 16″ (20.3 cm × 20.3 cm × 40.6 cm) CMU room was developed in Autodesk 
Revit. The material of the wall is represented as a 2D texture and does not con-
tain the location or material information at a component level for individual wall 

Fig. 2   Computational modeling workflow to generate model content

Table 1   Dynamo plugins used

Plugin Name Plugin Purposes

Clockwork List management and determining element locations.
Dynamo Iron Python 2.7 Convert the wall directions from a vector into an angle.
Modelical Extract the direction of the wall as vector.
RIE Interact with bounding boxes for door and window 

openings.
Bimorph Nodes Run Python scripts.
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elements. The room configuration is shown in Fig. 3 and serves as the initial model 
for each workflow phase where on left (A) is the 3-D representation and the right 
(B) is the plan view.

Once the model is acquired, it is manually inspected to determine the supplemen-
tal information requirements. As stated, the wall material is represented as a texture 
and, by BIMFourm LOD guidelines, is an LOD 200. However, to contain information 
related to the construction process (i.e., component location and material information), 
the model must be LOD 400. The existing material parameters are determined based on 
the naming schema standard published by the National Concrete and Masonry Associa-
tion (NCMA, 2017) to determine the correct wall material. For this study, wall mate-
rials reference NCMA standards for naming convention; therefore, an example would 
have an 8″ × 8″ × 16″ CMU listed as the wall material in Revit.

The last step for phase one is to ensure the model is configured correctly. First, 
as observed during development, the method used for modeling the walls initially in 
Revit affects the geometric interpretation of the wall, impacting component place-
ment. For instance, for this study, the walls were modeled with the location line set 
to the finish face exterior. Additionally, to ensure that the masonry units are gener-
ated correctly at corners, Fig. 4 was developed, which demonstrates how each wall 
must be modeled to facilitate the computational modeling process where each wall 
intersects the previous one. The walls, organized in the order they were modeled, are 
represented by a color: blue is wall one, orange is wall two, green is wall three, and 
red is wall four. A circle represents a start location, while a triangle is the end loca-
tion. Identifying each wall’s start and end points is required to establish the criteria 
for generating the individual wall components using the wall’s exterior edge as the 
reference. For the computational modeling script to run correctly, it is crucial that 
the next wall begins where the previous one ended, or it would result in overlapping 
blocks. The start and end locations from the wall are used to determine the loca-
tions of the individual components for the first course. For the secondary course, 
these blocks are offset at a distance equal to half the block’s length, resulting in 

Fig. 3   A — Left 3-D representation of room configuration. B — Right Dimensioned 2-D plan of room 
configuration
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a running bond pattern. Once the model setup is complete, phase two can begin. 
It should be noted that developed models were designed for the Dynamo script. A 
model obtained from an outside source must be manually reviewed and edited to 
ensure the computational modeling script runs correctly.

3.2 � Phase Two (Model Development)

Model development is phase two of the computational modeling process, which 
imports components from the material content library; extracts material parameters, 
such as the masonry unit’s length, width, and height; interprets geometry; and gener-
ates model content into their final locations. The first step of this phase is to gather 
and input the walls into Dynamo; the following nodes allowed this to occur: “All 
Elements of Category,” which was attached to the “Walls” node to gather all the ele-
ments quickly. However, these nodes can be switched to allow the user to select spe-
cific walls. To import material from the material content library, a custom node was 
created in Python that interpreted the wall material and imported it into the model 
from the material content library. Once the material is imported, its dimensional 
parameters are extracted. The following paragraphs detail the geometric interpreta-
tion process for wall geometry shown in Fig. 5.

After determining the dimensional parameters of the wall material, the geom-
etry of the wall is interpreted, and reference lines for the horizontal exterior edge 
are extracted. The start and end points for each reference edge, identified earlier in 
Fig. 4, are represented as either a circle (start point) or a triangle (endpoint). A filter 
removed reference lines that could cause units to overlap during component genera-
tion, such as the references above and below openings. Once the filtering is com-
pleted, the locations for each block are determined by first importing the full-sized 
component from the material content library. Only full-sized blocks (8″ × 8″ × 16″ 
CMU) are imported, while partial-sized units (length < 16″) are automatically 

Fig. 4   Reference edge start loca-
tions modeled
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generated and converted into a family. Therefore, the process for determining the 
locations differs for generating full and partial-sized units.

Locations of full-sized units are determined prior to locating partial-sized units. 
To determine the locations, points are arrayed from the start location of the refer-
ence edge at a distance equal to the block’s length, assuming the masonry unit’s 
nominal size. The current iteration of the script does not generate mortar joints, 
which requires additional revisions to incorporate. If a point is located and extends 
beyond the reference edge or if the distance between the last point and the reference 
edge endpoint is smaller than the length of the block, it is removed. Additionally, a 
running bond pattern is represented in the model; therefore, the point location of the 
alternating rows is offset by a distance equal to half a block length, which results 
in two different row configurations in the wall. The script implemented a slider to 
adjust the offset amount, changing the bond configuration. Therefore, points located 
for the first course of blocks (blocks at ground level) are offset half a block length 
and up the height of a block. Once points are determined, they are duplicated for the 
remainder of the courses that construct the wall. The number of courses is depend-
ent on the height of the wall.

To determine the location of the partial blocks, gaps between the end point of the 
reference edge and the endpoint of the nearest full-sized blocks are located. If a gap 
is located, the length is measured from the reference edge endpoint to the endpoint 
of the previous full-sized block in that course. Those points are recorded and trans-
lated along the z-axis at a distance equal to a block’s height, creating a rectangle that 
is extruded by a full-sized block depth. The block is converted into a Revit generic 
model, and parameters are created for its dimensions (length, width, and height), 
and the partial-sized units are automatically generated in the identified locations. 
Additionally, the full-sized units are generated at their identified point locations. 
Once the partial-sized and full-sized units are generated in the BIM, they are ori-
entated based on the direction of the wall they construct. Regarding the robot, the 
locations, orientations, and types of blocks would be used to generate robotic tasks 
in future studies.

Fig. 5   Process for interpreting model geometry for a masonry wall
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A bounding box was created for each opening that intersects the wall, such as 
window and door openings. All components generated within the opening’s bound-
ing box were compiled into a list. If a component intersects the opening, it is 
removed from the model. However, if a full-sized element only partially intersected 
the opening, it was replaced with the proper-sized partial block. The method for 
determining the partial size follows the same protocol as the rest of the partial ele-
ments. Once all units are generated and orientated, information about material and 
location parameters is extracted.

3.3 � Phase Three (Information Extraction)

Information extraction is the final step, which extracts information from the Revit 
model to facilitate robotic task creation. After generating the model content, the 
model is manually inspected to determine whether the units were placed into the 
proper design locations and ensure there are no overlapping units or gaps in the 
walls. The blocks were generated over the original wall model for testing and veri-
fication to ensure they were placed within the geometry bounds. The original wall 
was then removed, leaving the generated blocks in place.

After review, elements are compiled into a list, where information is exported 
as a.CSV file, which includes coordinates (point location for full-sized and partial 
CMU), orientation (rotation in degrees), type (i.e., 8″ × 8″ × 16″ CMU), and identifi-
cation number (I.D.) The coordinates reference the block’s front left bottom corner 
and are based on Revit’s localized system. Table 2 is a subsection of ten elements 
showing the unformatted extracted information, which does not currently represent 
the construction sequence. They are extracted in order of component I.D. Regarding 
the rotation for this case, 0 degrees refers to the south wall, 90 degrees to the east 
wall, 180 degrees to the north wall, and 270 to the west wall based on the script’s 
configuration. The information extracted from the BIM can be used to create tasks 

Table 2   Extracted location and material information for room configuration

Coordinates (Feet and Inches) Coordinates (Meters)

I.D Type X Y Z X Y Z Rotation 
(Degrees)

12195453 8X8X12 20’ – 0 15/16” 39’ – 10 1/4” 1’ – 4 “ 6. 12 m 12.15 m 0.41 m 0
12195454 8X8X12 20’ – 0 15/16” 39’ – 10 1/4” 2’ – 8” 6. 12 m 12.15 m 0.81 m 0
12195469 8X8X8 24’ – 8 15/16” 23’ – 10 1/4” 1’ – 4” 7.54 m 7.27 m 0.41 m 0
12195470 8X8X8 24’ – 8 15/16” 23’ – 10 1/4” 2’ – 8” 7.54 m 7.27 m 0.81 m 0
12195492 8X8X4 38’ – 0 11/16” 23’ – 10 1/4” 2’ – 0” 11.60 m 7.27 m 0.61 m 0
12195493 8X8X4 38’ – 0 11/16” 23’ – 10 1/4” 3’ – 4” 11.60 m 7.27 m 1.02 m 0
12195503 8X8X16 37’ – 0 11/16” 40’ – 6 1/4” 0’ – 0” 11.30 m 12.35 m 0 m 180
12195504 8X8X16 35’ – 8 15/16” 40’ – 6 1/4” 0’ – 0” 10.90 m 12.35 m 0 m 180
12195708 8X8X16 19’ – 4 15/16” 40’ – 6 1/4” 0’ – 0” 5.92 m 12.35 m 0 m 270
12195709 8X8X16 19’ – 4 15/16” 39’ – 2 1/4” 0’ – 0” 5.92 m 11.94 m 0 m 270
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for the robot, such as progress detection, material delivery, or self-performing tasks. 
However, the tasks conducted by the robot are heavily dependent on the robot.

4 � Results

For this study, six different room/wall configurations were developed and modeled 
in Autodesk Revit, presented in Fig. 6. This study will refer to them all as room con-
figurations from this point.

The room configurations were designed to slightly increase the model’s complex-
ity and evaluate the script’s ability to generate model content. For this study, the 
simplest case is A, where only one wall is modeled, which then advances to a room 
containing four walls. From there, additional openings or intersections are added 
to the model to increase complexity further and evaluate the script. The computa-
tional modeling interpreted the wall geometry to generate the models above, which 
were constructed out of 8″ × 8″ × 16″ (20.3 cm × 20.3 cm × 40.6 cm) CMU. The wall 
configuration was designed with a running bond pattern. The straight CMU wall 
(Configuration A) was a control for this study as it was used as the primary con-
figuration for testing early script iterations and provided a baseline for comparison. 
Room configuration B added three walls, creating a box. Room configuration C 
added a door opening to the front wall, as early testing indicated that the additional 
opening increased the computational intensity of the process. Room configurations 
D and E introduced one and two window openings, respectively, to increase the 

Fig. 6   Initial room configurations
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computational intensity of the process further. Finally, room configuration F added a 
wall to configuration D to show if additional walls are more computationally intense 
when compared to openings.

Dimensions for each configuration are provided as a 2D plan in Fig. 7 (variable 1 
— initial), where the height of each wall is 10 ft (3.048 m). The sill height of the win-
dow openings is 2′8″ (0.81 m) and measures 4′8″ (1.42 m) in height by 5′4″ (1.62 m) in 
length. All door openings are 5′4″ (1.62 m) in length and 7′4″ (2.23 m) in height. These 
dimensions were chosen to align the openings with the bottom of a course of blocks. 
Dimensions can vary from what was used in this study (length and width) and the num-
ber of openings. However, it was observed that the height of the wall should end on a full 
course of blocks; otherwise, an additional row was generated.

Additional testing was conducted on each of the room configurations. First, the 
wall length was increased (variable 2 — increased room size), and we doubled the 
size of each wall to determine its impact on computational time. All window and 
door openings remain constant in size. Second, the material that constructed the wall 
was decreased in size (variable 3 — block size). For this variable, the CMU was 
replaced with 2–5/8″ × 4″ × 8″ (6.7 cm × 10.2 cm × 20.3 cm) standard brick and used 
the dimensions for the initial configuration. The final variable was only applied to 
configurations with an opening (C, D, E, F), where the wall length was doubled, and 
the openings’ length was increased by 150%. The opening was extended an equal 
amount on both sides. In total, there were 21 configurations to be run by the script. 
Each variation was assigned a number: initial setup 1, increased wall length 2, block 
size 3, and increased opening and wall length 4. The wall height was not varied 
in this study; however, additional testing presented comparable results to varying 
lengths. Therefore, only the variation in wall length is shown in this study.

Fig. 7   A–F Plan view of control room configurations with dimensions
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The computational modeling script was run for each room configuration and 
variation, generating the masonry units into their design locations. All models 
were designed in accordance with the framework developed by this study, which 
allowed for the interpretation of model geometry. The script identified the locations 
of partial-sized units and generated a generic model family in the Revit family for 
each unit. The units were named based on the standardized naming convention for 
masonry units, making them easily identifiable. To ensure that all blocks were gen-
erated within the bounds of the walls, the original wall was not removed automati-
cally, and the generated blocks were superimposed into the existing wall. The model 
was manually inspected for overlap, gaps, and misplaced blocks. Once complete, the 
original modeled walls were deleted. Figure 8 shows the result of running the com-
putational modeling scripts for each configuration and variation labeled by room 
configuration letter and variation number.

Table  3 summarizes the results for each room configuration (A–E). The first 
row lists the computational time, representing the time taken to generate all 
units for a room configuration. Total full-sized blocks represent the amount of 
8″ × 8″ × 16″ (20.3  cm × 20.3  cm × 40.6  cm) CMU or the amount 2–5/8″ × 4″ × 8″ 
(6.7 cm × 10.2 cm × 20.3 cm) standard bricks generated by the computational modeler. 
Total partial-sized blocks are the summation of all partial-sized blocks generated. Addi-
tionally, a breakdown by length is provided for each partial-sized block. The dimensions 
for height and depth are dependent on the wall material. For instance, CMU is 8″ × 8″ 
(20.3 cm × 20.3 cm) while brick is 2–5/8″ × 4″ (6.7 cm × 10.2 cm)). The last row shows 
the summation of all full- and partial-sized units for each room configuration, which was 
verified against the total number of elements in Revit after generation. Additionally, the 
table provides a reference name and symbol for each configuration; for example, the 
straight wall is “A,” and the initial variable is “1.” Therefore, the first configuration is 
labeled “A1,” which is represented as a red circle.

Fig. 8   Room configurations and variations post computational modeling — LOD 400
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4.1 � Discussion

Reviewing the results showed that increasing the overall number of elements 
increases the computational time of the model. Figure 9 was developed to show the 
trends between each variation of a wall configuration. In Fig. 9, each configuration 
is denoted by a number and color, such as red for the straight wall (A) and green for 
the room with a door, window, and wall intersection (F). In addition, each variable 
was assigned a symbol, such as variable one, represented as a circle for the initial 
configuration. At the same time, three is represented as a triangle representing the 
block size. Therefore, an orange diamond would represent configuration C2 or the 
room with a door opening with increased wall lengths. The same reference name 
and symbols are used here in Table 3. The trendline was created in Microsoft Excel 
using the least squares method to fit points based on the number of blocks generated 
for each configuration compared to the computational time. Reviewing each wall 
configuration shows that most data points are in close proximity to their respective 
trendlines. For example, all variations for the straight wall configuration (A) appear 
on the trendline. This also occurs for all data related to configuration C (C1 to C4). 
Additionally, the smallest configuration, A1, had the masonry units generated in the 
least amount of time, 28  s. The configuration that took the longest had the most 
substantial number of overall units to place, which was F3 at 622 s. In addition, all 
wall configurations constructed out of the brick took the most extended amount of 
computational time in accordance with how the script was developed.

Table 3   Generated content for each room configuration
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Additionally, upon review of Table 3, a strong direct correlation between model 
complexity and the number of elements appears when compared with computational 
time. Figure 10 was developed to visualize the correlation between computational 
time and model complexity using the symbols and reference names from Table 3 
and Fig. 9.

Figure  10 presents all four variables, each showing a similar trend. This chart 
shows that while increasing the overall number of elements impacts computational 
time, it is not the only factor. The trends show that adding additional elements to 
the model, such as an opening or an additional wall, increased model complexity 
and computational time. This trend aligns with the methods used for interpreting the 
model geometry that the computational modeler uses, as the script first places full-
sized units in openings, then in the following step, interprets the opening geometry 
and deletes unnecessary blocks. Additionally, gaps are automatically measured, and 
partial-sized units are generated around the permitter of the opening as required. 
However, the results show that computational time is increased if more building 
elements are generated for a room configuration. Additionally, there is an overlap 
between the lines for variables 4 and 2 due to the similarities between the computa-
tional time and the total number of elements generated.

The method used by this study has limitations, which require further revisions 
and iterations of the computational modeling script. The script successfully placed 
all the masonry units for the room configurations developed by this study; how-
ever, they were designed and modeled to simplify the computational demands. The 
script requires the upper and lower edges of the opening to coincide with the edge 
of a course of blocks. Further refinement to the script would be required to manage 
edges of openings that do not coincide with the edge of a course of block. Nota-
bly, testing all possible wall configurations in this study is impossible. However, 

Fig. 9   Impact of increasing number of elements on computational time
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additional testing is ongoing to increase the script’s capabilities, allowing for addi-
tional wall shapes and sizes. Additionally, the script was developed to manage more 
common bond patterns, such as running or stack bonds. In that case, the script must 
be adjusted to oversee more complex bond patterns, such as Herringbone or English 
Bond. Finally, the developed computational modeling script generated the masonry 
units within the original wall, which was kept in place to ensure no blocks extended 
beyond their bounds. Once verified, the original wall was removed. However, the 
removal of the original wall can easily be automated.

Additionally, this system was developed for masonry wall systems and requires 
adaptation for additional wall systems; therefore, the type of material is a limiting 
factor. Each building system has its unique criteria for construction, which must be 
considered to implement computational modeling. While the methods used to set 
up the project and extract wall geometry are adaptable for other wall systems, the 
process relies on the dimensions of the masonry units and the construction method. 
Additionally, the components generated were dry-set and used nominal sizing. The 
model should include mortar between the units to transition into a more realistic 
representation, and additional tolerances and specifications must be integrated. The 
current script was not developed to generate mortar, so the nominal size of the block 
was considered a three-eighths-inch mortar joint.

However, with the content represented in the model, information can be extracted 
and developed into tasks for the robot. As mentioned, the data is extracted in the 
order of component I.D.; however, this does not represent the order in which the 
wall was constructed. Therefore, the information required to create a construc-
tion task for the robot must be sequenced. The methods to automatically sequence 
the extracted data into robotic construction tasks extend beyond the scope of this 

Fig. 10   Number of elements vs. computational time with increased model complexity
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research and remain for future work. Additionally, once the information is extracted 
and sequenced, it must be converted into tasks for the robot. The methods extend 
beyond the scope of this study; however, they depend on the robotic system, and 
the robot must be able to adapt to the tasks according to the dynamic nature of the 
construction site. Also, regarding interoperability between the BIM and construction 
robot, the required information format depends on the robotic system and task objec-
tive. The information required could vary based on the task; however, this study 
identified a few constants, which include the location, orientation, material type, and 
material I.D., which allows for quick identification of any component in the BIM. 
Therefore, additional work is required to improve interoperability and standardiza-
tion to enable robotic task execution using information from a BIM.

Despite these limitations, the computational modeling script was run on mul-
tiple room configurations. All masonry units were placed correctly for each room 
configuration, showing the viability of this method for increasing LOD. Notably, 
the same computer configuration was used to develop the model and run the com-
putational modeling script, which utilized Windows 10 Pro edition, AMD Ryzen 7 
3700x, 1 T.B. Samsung SSD, Nvidia GeForce GTX 1070 TI, and 64 G.B. Corsair 
Vengeance Pro DDR4 3600 RAM. The specifications are noted as different systems 
could result in variations in computational time. Finally, this study focused primar-
ily on utilizing Autodesk Revit and Dynamo and did not investigate additional BIM 
authoring software such as Graphisoft Archicad or Bently Microstation. Additional 
work is required to standardize all software platforms; however, this extends beyond 
the scope of this study.

5 � Conclusion

This study implemented computational modeling to generate masonry units based on 
the geometry of a masonry room in the BIM to support the extraction of information 
to create tasks for robotic construction. While this study did not develop the con-
struction tasks, it established the initial steps to generate the information required to 
facilitate robotic construction in the future. Typically, a masonry wall is represented 
as a texture in the model; however, utilizing computational modeling, the LOD of 
the model was increased. As such, the model was enhanced to contain information 
pertaining to the construction process, such as component location, type, I.D., and 
orientation. However, to be considered LOD 400, additional components of the wall 
system would need to be generated, such as lintels or mortar joints. To this end, a 
framework was developed to present the process undertaken by Dynamo to gener-
ate model content, which was divided into three phases: (1) model setup, (2) model 
development, and (3) information extraction. First, all information was generated 
and contained within the original model, and only the information required to sup-
port the creation of tasks was extracted to reduce the loss of information. Second, 
the computational modeling script accesses the material content library and imports 
the correct family into the model based on the material’s name. This process could 
be improved in future iterations of the script. The final challenge identified involved 
the interpretation of model geometry and increasing the LOD, which was the study’s 
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primary objective. In addition, the computational modeling script developed in this 
study is available on Git Hub [29].

Future work will further develop the computational modeling script to integrate 
additional material content libraries and the potential for generating components of 
additional wall systems. Additionally, there is the potential to integrate optimization 
strategies into the process, such as having a worker review a plan and reduce the 
amount of mortar in specific locations so a row of blocks would end at a window 
opening. This process could be automated to generate and inform workers where 
the mortar amount could be reduced to minimize the block cut required, providing 
the opportunity to decrease material usage, lower cost, and reduce potential waste. 
However, tolerances associated with the mortar joints must still be strictly followed 
and incorporated. The outlook for utilizing computational modeling and generative 
design with BIM to develop robotic construction tasks appears promising. In sum-
mary, this research indicates that using computational modeling to enhance the LOD 
in BIM models is viable, and the capabilities aid in developing BIM models that are 
more precise, intricate, and conducive.
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