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Abstract

Middle school students (n = 144) worked with an applet specially designed to

introduce the concept of function without using algebraic representations. The

purpose of the study was to examine whether the applet would help students

understand function as a relationship between a set of inputs and a set of out-

puts and to begin to develop a definition of function based on that relationship.

Results indicate that, by focusing on consistency of the outputs, the students,

at a rate of approximately 80%, are able to distinguish functions from nonfunc-

tions. Also, students showed some promise in recognizing constant functions

as functions, a known area of common misconceptions. Students' main con-

ceptual difficulty, likely caused by the context, was accepting nonintuitive out-

puts even if those outputs were consistent.
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The concept of function is considered to be one of the
most important underlying and unifying concepts of
mathematics (e.g., Leinhardt et al., 1990; Thompson &
Carlson, 2017). Students have experiences with functions,
or function behavior, from the very earliest grades, usually
through pattern exploration. The study of functions con-
tinues up to and through high school with a formal treat-
ment of functions as arbitrary mappings between sets.
Indeed, in the Common Core State Standards for Mathe-
matics, the function is given its own domain in Grades
9–12 (Common Core State Standards Initiative, 2010).

Much of the lack of depth of knowledge of the con-
cept can be attributed to the privileging of algebraic rep-
resentations (function as algebraic rule) or graphical
representations (function as graph that passes the verti-
cal line test) and a consequent lack of focus on the gen-
eral relationship, that is, a mapping between two sets
(see, e.g., Best & Bikner-Ahsbahs, 2017; Breidenbach
et al., 1992; Carlson, 1998; Thompson, 1994).

Novel representations of functions (e.g., dynagraphs,
arrow diagrams, and a vending machine model) (see,
e.g., Dubinsky & Wilson, 2013; McCulloch et al., 2022;
Sinclair et al., 2009) have shown some success in refining
conceptions of function for those with prior experience of
function. In this paper, we examine what students with
no prior experience of function might be able to learn
about the general relationship by using a non-algebraic,
nongeometric representation.

1 | RELATED LITERATURE

Before secondary school, opportunities for study of func-
tions are limited in scope (Best & Bikner-Ahsbahs, 2017;
Carlson & Oehrtman, 2005; Gueudet & Thomas, 2020;
Vinner & Dreyfus, 1989; Zan & Di Martino, 2020) and
focus mainly on pattern recognition and study of covary-
ing quantities, most often related to an underlying linear
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structure (Blanton et al., 2015; Ellis, 2011; Stephens
et al., 2017). For example, in Blanton et al. (2015), sixth-
grade students are given the task “People and Ears: The
relationship between the number of people and the total
number of ears on the people (assuming each person has
two ears)” (p. 520) to study the function type y = x + x
and “Age Difference: If Janice is 2 years younger than
Keisha, the relationship between Keisha's age and
Janice's age (Carraher et al., 2006)” (p. 521) to study the
function type y = x + 2. In other words, the functional
relationships typically encountered in elementary and
middle school years are designed to prepare the (mathe-
matical) ground for studying linear relationships (y = mx,
y = x + b, y = mx + b), that is, the subsequent privileging
of algebraic representations has its roots in the early in the
study of functions. This existence of this phenomenon is
also reported by Mesa (2004), in a study of 24 middle
grades textbooks from 15 countries where the preponder-
ance of algebraic representations in those textbooks was
noted. Leinhardt et al. (1990), in a meta-study of research
on function, note the difficulty for students in apprehend-
ing the modern, abstract definition of function depending,
as it does, on the mapping of one set of elements to
another, emphasizing the difference between function and
relation (many-to-one acceptable, one-to-many not accept-
able); whereas, the work on function in early grades builds
on the intuitive notion of a 1–1 correspondence and fur-
thermore, the historical development of function rested on
the study of covarying quantities.

Even in secondary school, functions are typically
introduced as very limited classes such as linear, qua-
dratic, and exponential, with attendant graphs and tables,
with the result that students regularly consider functions
to be mathematics objects solely defined by an algebraic
formula (e.g., Best & Bikner-Ahsbahs, 2017; Breidenbach
et al., 1992; Carlson, 1998) and have difficulty identifying
particular instantiations of functions (e.g., constant func-
tions) as functions (Bakar & Tall, 1991; Carlson, 1998;
Rasmussen, 2000). Instruction and curricular materials
often emphasize procedures and algebraic manipulations
when studying functions, and research shows that stu-
dents then have difficulty in understanding different repre-
sentations and different contexts for functions (Carlson &
Oehrtman, 2005; Cooney et al., 2010). At the heart of
many student difficulties is a shallow understanding of the
definition (Ayalon et al., 2017; Panaoura et al., 2017). Stu-
dents who have an algebraic view of function and who use
procedural techniques to identify functions and nonfunc-
tions (e.g., the vertical line test) struggle to comprehend
the notion of function as a general mapping between sets
(Carlson, 1998; Thompson, 1994).

Exposure to, and facility with, various representations
of functions, that is, “flexible use of functions… within

and between all kinds of representations and also between
different functions” (Best & Bikner-Ahsbahs, 2017, p. 877),
has been shown to be a critical component of a rich under-
standing of function (Best & Bikner-Ahsbahs, 2017;
Dubinsky & Wilson, 2013; Martínez-Planell & Trigueros
Gaisman, 2012). Researchers have found promising results
when using novel contexts and nonstandard representa-
tions of functions such as dynagraphs, arrow diagrams,
and directed graphs (Dubinsky & Wilson, 2013; Sinclair
et al., 2009). Our own previous research (McCulloch
et al., 2022), a study of preservice teachers working with a
specially designed applet with no algebraic representation,
showed that the applet was effective in initiating a series
of dilemmas in preservice teachers' conception of function.
The result was that the majority of the participants chan-
ged their conception of function in a positive direction.
Specifically, in that study, the participants wrote a defini-
tion of function before working with the applet and then
revised their definitions afterward. Using the applet helped
improve their definitions. Building on that study, which
involved preservice teachers who were already familiar
with the concept of function, we designed a new study to
introduce the concept of function to middle school stu-
dents who do not know the concept. The goal was to
examine the effect of a specially designed applet on middle
school students' ability to develop an understanding of the
concept of function.

Specifically, the research question is: what under-
standing of function can seventh-grade students, who
have not encountered the term function, develop through
using a specially designed applet (using a vending
machine) with no algebraic representations?

2 | METHODS

2.1 | Participants

The Introduction to Function applet was used in 15 sev-
enth-grade classrooms. These classrooms were across two
different states (one Northeastern state and one South-
eastern state) and five different teachers for a total of
144 students who engaged with the task. These students
engaged with the applet and worksheet for a single class
period toward the end of their seventh-grade year and
had not yet learned about the definition of function or
about function notation.

2.2 | Context

Previous research (McCulloch et al., 2022) has shown the
promise of a vending machine representation as a
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“cognitive root” (Tall et al., 2000) for the study of func-
tions with preservice teachers who were already familiar
with the concept of function. Thus, we designed a version
of the applet, Introduction to Function (https://tinyurl.
com/y2dramsb), as a mechanism for learners who have
never encountered the concept of a mathematical func-
tion and, therefore, do not associate the concept with any
particular representation to learn the basic elements of
function. The goal was for the students to learn that a
function is a relationship between a set of inputs that are
matched with a set of outputs in a consistent and, there-
fore, predictable manner, with each input matched to
exactly one output.

The context we provide for the learners is a vending
machine. There is a considerable amount of research on
the use of contexts in mathematical learning. Boaler
(1993) and Clarke and Helme (1998) argue that the con-
text of a mathematical task is not fixed but, rather, forms
the basis of an interactive, dynamic process as learners
work on the task. In other words, as van Oers (1998)
states, “what counts as context depends on how a situation
is interpreted in terms of activity to be carried out”
(p. 481). Our concern was to provide a model of function
that was not based in algebra and, while mindful of the
research on contexts, were encouraged by the research
study with the preservice teachers that the model provided
more affordances than limitations to student learning.

The Introduction to Function task is a GeoGebra book
that consists of seven pages and has an accompanying
worksheet. On the first two pages are two vending
machines, each of which consists of four buttons (Red
Cola, Diet Blue, Silver Mist, and Green Dew). When a
button is clicked, it produces none, one, or more than
one of the four different colored cans (red, blue, silver,
and green), which may or may not correspond to the
color of the button pressed (see Figure 1). The students
are told that the first machine on each page is an example
of something called a function, and the other is not a
function, with their task being to identify what is the dif-
ference between the behavior of the machines that make
one a function and the other not.

The machines on the first two pages work as follows
(Figure 2).

Note that Machines B and D are not functions
because one of the buttons when clicked, will produce a
random can (i.e., not always the same result). Note also
that in Machine C, the color of the output cannot corre-
spond to the input button pressed, but the nonmatching
can is consistently produced. After users work through
the first two pages, there should be a whole group discus-
sion led by an instructor in which users share their
thoughts on what machine behavior makes a function,
the goal being the consolidation of their ideas. The goal is
that, at the end of the discussion, students will agree that
what manifests in a machine that is a function is consis-
tent behavior. This goal was achieved in each instantia-
tion of the study, as evidenced by the video recording of
each class.

The next four pages of the GeoGebra book consist of
pairs of machines, with the students being told that one
of each pair is a function. In each case, there is a random
element in the nonfunction. The machines work as fol-
lows (Figure 3).

On the worksheet, students are asked to note whether
each machine is a function or not a function and how
they know. After they complete these pages, students are
given the prompt: “Using the terms ‘input’ and ‘output,’
write a definition for function based on your exploration
of the machines.” This activity then served as the basis of
a whole class discussion with the goal of agreeing on a
class definition of mathematical function.

2.3 | Data collection and analysis

Students worked in pairs (N = 72) to engage with the
applet on a laptop that screen captured their work. Data
collected were their worksheets, which included their
definitions, screen recordings while they worked on the
task, and audio recordings of their discussion while they
worked on the task. Owing to some technical issues,
there were 69 complete pairs of data. All data was coded

FIGURE 1 Screenshot of

introduction to function.
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by two researchers. Any disagreements were discussed
until any discrepancies were resolved.

In this study, we report our analysis in four stages:

i. Analysis of the worksheet responses to tally the cor-
rect or incorrect identification of functions/nonfunc-
tions; in terms of the identification of functions/
nonfunctions, for the pairs of machines E and F, G
and H, I and J, and K and L, since students were told
one was a function and one was not, it was possible
to simply count the classification. Of course, the per-
centages should mirror each other, that is, the num-
ber of “corrects” for Machine E should match the
number of “incorrects” for Machine F.

ii. Analysis of the students' justifications of their classi-
fications as written on the worksheets; the students'
written justifications for their machine classifications
were open coded using a constant comparative
method to look for themes (Creswell, 2014). In addi-
tion, some codes that had been developed in a previ-
ous project using a version of the applet with
preservice teachers (McCulloch et al., 2022) were

considered for their appropriateness to this data. The
final codes for students' justifications are shown in
Figure 4. Justification codes were not mutually
exclusive, as a justification could have been coded
based on inconsistency as well as using the context
of the vending machines.

iii. Analysis of the video/audio recordings to examine
why pairs of students were ever incorrect and, in
particular, “critical events” (Powell et al., 2003)
when they changed from correct to incorrect
(or vice versa) as they worked through the four
pages. After the tallying of correct/incorrect classi-
fications, approximately 80% of the students were
able to correctly identify functions, with their rea-
soning being consistency/predictability of outputs.
The next stage of the analysis focused on the
remaining 20% and consisted of going through
each video to find “critical events” in order to
understand why students were misidentifying
machines and, in particular, why they changed
from correct to incorrect identifications or vice
versa.

FIGURE 2 Machines A–D.

FIGURE 3 Machines E–L.
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iv. Analysis of the definitions written by the students as
a culmination of the activity. For the definitions we
coded for use of the terms input/output, focus, that
is, how students thought of the function, and atten-
tion to output (McCulloch et al., 2022). In terms of
input/output, each definition was read for the use
of those terms in the definition, for example,
“M49_M62 [i.e., participant 49 working with partic-
ipant 62]: No matter what input the output is the
same” and “M117_M118: A function is when you
get the same output.”

In terms of focus, each definition was coded regarding
whether the definition indicated a function was a relation-
ship (or mapping), an object, or neither. Therefore, if the
definition indicated that the function relates to the input
and output, then the definition was coded as a relationship.
For example, “M91_M96 The word function may mean
when you input something, even though you may not get
what you asked for, you will only get one type of it.” The
code “object” was used when the definition referred to a
function as something, such as a button or a machine.

Finally, definitions were coded according to whether
or not they attended to output. For this code, the defini-
tion needed to refer to an output having a pattern, being
the same, or being consistent. For example, “M54_M59:
Function is when you put in the input, and the output
will never change/will always be the same.”

3 | RESULTS

3.1 | Identification of the machines as
functions/nonfunctions

The percentage of correctly identified functions for the
first four pairs of machines was at least 80% and ranged

from 80.7% to 95.8%. Students' classification of the
machines is shown in Figure 5.

3.2 | Students' justification of functions
and nonfunctions

To better understand the ways in which students were
making sense of the machines, we analyzed their justifi-
cations for whether or not each machine was a function
or nonfunction. Some of the justifications were unclear,
but the majority were clear and were based on the lan-
guage of consistency. In particular, machines identified
as functions were described as consistent (e.g., Pair M15
and M23 on Machine I, “Green Dew always gives Diet
Blue”), and those identified as nonfunctions were
described as inconsistent (e.g., Pair M48 and M65 on
Machine K “Because Red Cola doesn't give out a consis-
tent can color.”). A tally of the justifications can be seen
in Figure 6.

An interesting slight outlier here is Machine F, which
was being compared to Machine E (see Figure 7) and
which 11 pairs of students justified as not a function
based on consistency.

As one student (M90) put it, Machine E is “more con-
sistent” than Machine F, which “randomizes things.” As
will be discussed in more detail in the video analysis
below, we see that it appears that these 11 pairs of

FIGURE 4 Justification codes.

FIGURE 5 Participants' correct identification of functions.
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students understood a machine as “inconsistent” if it
gave them a different color output from the input button
pressed, even if it did so consistently.

Examples of students' justifications based on inconsis-
tency are shown in Figure 8 below.

3.2.1 | Video and audio recordings: “Critical
events”

Recall that the percentage of correctly identified func-
tions for the first four pairs of machines was at least 80%.
Pairs of students who correctly identified all of the
Machines E–L (n = 49) did so in a similar manner, being
heard to say things like “E is not a function because it's
always random when you click Green. [On F] The Red
and Silver are inverted but this one's a function because
it always gives you the same result.” (Pair M18/M19).
“G is not a function because it's inconsistent… it's always
random. H is a function because it has a pattern and you
can rely on it.” (Pair M51/M52).

For those misidentifying machines, the principal rea-
son was that the students considered the machine to be
giving the “wrong” colors. The output can does not
match the button pressed. For example, Pair M162/163
are heard to say, “F is not a function because it gives you
the opposite colours.”

There were occasional instances of students getting
“better” as they worked through the four pages, that is,
misidentifying machines in the early pages but correctly
identifying them in later pages. The most common reason

for improvement is instructor intervention (n = 6),
that is, the instructor reminding students of the discus-
sion of consistency at the end of the work on Machines
A–D. The other notable reason for improvement (n = 3)
was students essentially “working it out” and deciding
that consistent “wrong” outputs were better than ran-
dom outputs.

3.3 | Definitions

One of the 72 pairs of students did not complete a defini-
tion on their worksheet. The remaining 71 definitions
were coded using the codebook. In terms of the use of
input/output, 62 out of 71 (87.3%) definitions used the
word input, and 65 out of 73 (89.0%) definitions used
the term output.

FIGURE 6 Characterizations of

students' justifications for each machine.

FIGURE 7 Machines E and F.

FIGURE 8 Examples of justifications based on attention to

inconsistency of outputs.
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In terms of focus, none of the participants described a
relationship between inputs and outputs explicitly as
a mapping between sets, and most definitions (43/71
[60.6%]) were coded as “neither object nor relationship.”
A large number of participants' definitions (27/71
[38.0%]) were coded as “object” since they made explicit
reference to the vending machine or the buttons of the
machine. For example, “Whenever you input into
the vending machine, you know the output, which makes
it reliable.”

4 | DISCUSSION

4.1 | Identification of the machines as
functions/nonfunctions

The percentage of correctly identified functions for the
first four pairs of machines was at least 80% and ranged
from 80.7% to 95.8%. At the first level of analysis, this
shows that broadly speaking, the pairs of students were
able to correctly identify which machines were functions.
Looking more closely at the incorrect answers for the first
four pairs of machines we see that it is often the same
pairs of students getting incorrect answers. A total of
10 of the 14 (71.4%) pairs of students who made a misi-
dentification of the E and F pair misidentified at least
one other machine, with 5 pairs misidentifying all of the
first four sets of machines except the G and H pairing.

4.1.1 | Constant function

The result for Machine L, with 80.0% of participants iden-
tifying it as a function, is a potentially significant result
since researchers have shown that students exhibit diffi-
culties identifying constant functions as functions
(e.g., Carlson, 1998; Rasmussen, 2000). The successful
pairs, when working on this machine, note that K red is
giving two random cans and, while some have some hesi-
tation when they get to Machine L (e.g., Pair M105/M110
discuss if both can be nonfunctions), they settle on
Machine K's randomness as “more important.” It might
be interesting to see if reversing the order of Machines K
and L would give more students hesitation with regard to
the constant function.

4.2 | Students' justification of functions
and nonfunctions

As is evident in the Machine F example above, the stu-
dents' justifications provide insight into their

misidentification of both functions and nonfunctions. For
example, looking at the 13 pairs of students that misiden-
tified Machine K (R ! random pair) as a function, it is
evident that they either did not test the machine enough
to see the random outputs that occurred when clicking
Red Cola (e.g., “every color is functional, red produces
two greens”), or they decided that since the rest of the
buttons were consistent it was “close enough.” For exam-
ple, one pair wrote “mostly consistent” and another
wrote “3 of the 4 functions correctly.” Furthermore, the
understanding that machines give a different output from
the button pressed, even if it does so consistently, per-
sisted for a number of pairs as they continued to work
through the machines. For example, Pair M17 and M20
said of machine J (R ! R, B ! B and random, S ! S,
G ! G “The Blue one gives two but the others work.”

It is notable that 80% of the student pairs used the
language of the machine context in their justifications
(see, e.g., Figure 8). This suggests that having a realistic
context in which to both think about and test their con-
jectures proved to be helpful in explaining their thinking
for many students and answers the research question
inasmuch as they developed a strong understanding
based on the notion of consistency of output (Figure 9).

4.3 | Video and audio recordings:
“Critical events”

As mentioned above, the students identifying the
machines correctly did so in a similar manner. The analy-
sis of the work of the students misidentifying machines
focuses on two questions:

i. Why were students misidentifying particular
machines as functions/nonfunctions? and

ii. Were there instances of students getting “better” or
“worse” as they worked through the four pages, that
is, misidentifying machines in the early pages but

FIGURE 9 Examples of justifications that use the context of a

vending machine.
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correctly identifying them in later pages (or vice
versa) and, if so, how and why were they able to
adjust their understanding?

4.3.1 | Machines E and F

Of the 69 pairs of students who completed the worksheet,
12 misidentified Machines E and F, saying that E
(G ! random) is a function and that F (R ! S, B ! G,
S ! R, G ! B) is not a function. While working on these
machines, successful Pairs can be heard saying things
like “Green Dew gave out random cans instead of one
consistent can” (Pair M66/M67).

Of the 12 pairs that were incorrect, all state, in
essence, that F is not a function because it is giving the
“wrong” colors, that is, the output can does not match
the button pressed. For example, possibly picking up on
the use of the word “random” in the class discussion that
came after the first two pages of the applet, but misinter-
preting it, Pair M76/M92 are heard to say “When I click
on Red it comes out Silver, when I click on Blue it comes
out Green, so random… it's going to be random.” Pair
M162/163 are heard to say “F is not a function because it
gives you the opposite colours.”

Interestingly, five pairs of students who see that the
Green button in Machine E gives random outputs still
consider Machine E to be a function because, as, for
example, Pair M145/M146 put it “In this one [E], it was
only green that was getting messed up but in this one
[F] every one is getting messed up.” Another version of
this interpretation came from Pair M80/M85 who say
“Machine E is a function because it gives out all or
mostly right colours. It got most all the colours right and
Machine F is not a function because it got all the colours
wrong.”

Finally, it is noteworthy that for two pairs, they did
not click on F's Green button enough to see the
randomness.

Overall, we can see here that for 11 of the 69 pairs of
students (c. 16%), after the class discussion about
Machines A–D, they have developed an understanding
that a machine with consistent outputs is not a function
if those outputs do not color match the button pressed. In
particular, for a group of students, consistent mismatch-
ing is “worse” behavior by the vending machine than
having one with several matches but one button with
completely unpredictable outcomes. This points to the
limitations of the context for some students. The
intention is for the vending machine to provide a non-
algebraic cognitive root for students to focus on the con-
cept of function. For some students, however, the context
is not metaphorical but, rather, is an actual machine with

which they are trying to interact, and they are frustrated
that it does not work the way they expect.

As we will see below, this idea that a machine where
the outputs do not match the buttons cannot be a func-
tion persists, for a number of pairs of students, through-
out the activity.

4.3.2 | Machines G and H

Of the 69 pairs, just 2 misidentified Machine G (all random)
as a function, with an additional pair saying that neither G
nor H (R ! B, B ! S, S ! R, G ! B) is a function. All
three pairs were pairs that had misidentified E and
F. Therefore, of the 11 pairs that misidentified Machines E
and F, 9 of them (c. 82%) correctly identified Machines G
and H, and 1 more Pair correctly identified G.

The first reason for improvement is instructor interven-
tion (n = 6). As mentioned above, instructors circulated as
students worked on the task. Here, for example, is the
exchange between Pair M31/M36 and an instructor:

Instructor (referring
to G):

Why is it not a function?

Student (clicking on
various cans but only
once each):

Red equals Blue, Blue
gives you Green, Green
gives Blue and Silver
will be Green. So it's not
a function.

Instructor: Ok, why not? Using
those words (‘random’
‘consistent’) [the
teacher] said.

Student: They're all random
Instructor: They're all random. Ok,

what about on H?
Student (clicking on
various cans but again
only once each):

Red equals Blue, Blue
equals Silver, Green
equals Red and Silver
equals Green.

Instructor: Ok, so
it's
not just that the colours
are messed up
it's
that when you try Red
*multiple* times that
it's
random. So have you
tried each button more
than once in a row?
Student clicks on some
buttons on Machine H.
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Instructor (noting
output):

So Red is *always* Blue.
So let's go back to G.

Student (clicking on
Red gets Red):

Red.

Instructor: Ok what happens the
next time you
press Red?
Student clicks and gets
various outputs after
clicking Red.

Instructor: So, is that consistent?
Student: No.
Instructor: So G is not your func-

tion because it's not con-
sistent. H is your
function. It's Ok that the
colours are messed up
but so long as Red
*always* gives Blue
that's Ok.

Student: Ok. That makes more
sense now.

Following interactions like the above six of the Pairs
who had misidentified E and F now correctly identified
G and H.

The second most common reason (n = 3) for a
change from E and F incorrect to G and H correct was
students essentially “working it out” and deciding that
consistent “wrong” outputs were better than random out-
puts. For example, when Pair M145/M146 who, as seen
above, had said about E and F, “In this one [E], it was
only green that was getting messed up but in this one
[F] every one is getting messed up” arrive at Machines G
and H they proceed as follows:

Starting on Machine G, they click once on each but-
ton and say that it is “messed up.” They then click once
on each button in H, and there is a hesitant pause. They
go back to G, click on Silver three times and get three dif-
ferent results. They then go back to H, click on Silver
three times, getting Green each time, and are heard to say,
“Hey, this one's more functional.” This student then, while
clicking on Machine G and getting random outputs, says to
his partner: “Look you get multiple sodas with each but-
ton.” They then write on their worksheet: “G is not func-
tional. Because when you click each color, each time you
click it, you get something different” and “H is Functional.
Because when you clicked a button, it might have given a
diff. color, but it was the same each time.”

The pairs of students (n = 3) who misidentified G
and/or H after misidentifying E and F maintained the
understanding they developed, that is, that if the outputs
do not match the button pressed, the machine is not a

function. For example, Pair M17/M20 are heard to say
that for Machine G, “Well, it's sometimes right,” but
Machine F, “it's always wrong.”

4.3.3 | Machines I and J

For Machines I (a function) (R ! Silver pair, B ! G,
S ! R, G ! B) and J (not a function) (R ! R, B ! B +

random, S ! S, and G ! G) the pairs (n = 3) who misi-
dentified Machines E–H continued to misidentify the
machines and for the same reason: the output colors do not
match the button pressed. Interestingly, this misidentifica-
tion persists even when it is clear from the video with audio
recordings that the students are seeing the random outputs
from machines they decide are functions, that is, a machine
with three matches and one random button is seen as pref-
erable to a machine with four “mismatches” even when
those “mismatches” are consistent.

Two pairs of students who misidentified E and F, but
correctly identified G and H, in each case without
instructor intervention, then reverted to misidentifying I
and J. In the case of Pair M145/M146, it became clear
that only one of the pair had “worked it out” in the case
of Machines G and H and his partner now convinced
him that the output should actually match the button
pressed and that this occurs more often for I. The student
who had said earlier, “Look you get multiple sodas with
each button” in correctly identifying G as a nonfunction,
clicks on Machine I enough to see consistency and on
Machine J enough to see the randomness in the second
can be outputted by Blue, however, his partner claims
that J is “more functional because only the Blue is
messed up.” After a lot of clicking on both machines, the
argument that more buttons are “messed up” on Machine
I than on Machine J holds sway. This example is interest-
ing in terms of the power that correct matching, as
opposed to consistent matching, holds for students. The
other reverting pair only clicks on J Blue once, so they do
not see the randomness, and it is not clear from their dis-
cussion why they decide J is a function.

Finally, for Machines I and J, three pairs of students
are “wrong” for the first time. In the case of two of those
pairs, they do not click on J Blue enough to really register
the randomness and adopt the thinking that the machine
where more outputs match inputs is “better.” For the
third pair, their thinking is not clear.

4.3.4 | Machines K and L

For Machines K (R ! random pair, B ! B, S ! S,
G ! G) and L (all go to Green), seven pairs of students
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either continue to misidentify (having started back on E
and F or become “wrong” later) and all for the same rea-
son, to wit, to be a function the output color must match
the button pressed and some occasional randomness is
acceptable. It should be noted that none of these pairs
experienced an instructor intervention.

It is interesting here that five pairs of students misi-
dentify Machines K and L, having correctly identified all
of Machines E–J, that is, they misidentify for the first
time when they encounter the constant function. In one
case (Pair M168/M169), they did not click on K enough
to see the randomness. For the remaining four pairs, they
did not like that Machine L only gave Green. “This gives
only Green: if I come up to this machine and ask for Red
Cola and I get Green Dew, I'm going to the county to
complain.” (Pair M70/M75). This pair and others argue
that Machine K is “better” because it gives all the colors.
Again, we see here that the real-world context seems to
actually interfere with students' ability to develop the
understanding we are looking for.

In terms of the research question, the understanding
that approximately 80% of the students developed was a
robust one based on consistency of behavior and outputs,
while for approximately 20% of the students, their under-
standing was based on how they literally expected the
vending machine behaved rather than the understanding
of the machine as a cognitive root that we had hoped for.

4.4 | Definitions

Recall that in terms of the use of input/output, 62 out of
71 (87.3%) definitions used the word input, and 65 out of
73 (89.0%) definitions used the term output. Of course,
the participants were asked to use these terms and, there-
fore, the result is not entirely surprising. Nevertheless,
the result is promising in terms of establishing sets of
inputs and outputs as a central aspect of the definition
of function.

Perhaps the most interesting aspect of the activity was
to examine the extent to which the participants would pay
due attention to the outputs from the machines. Analysis of
the definitions shows that 45 of 71 (61.6%) of the partici-
pants did pay attention to the output with definitions such
as “When you input something, the output always will stay
the same.” However, 14 of 71 (19.7%) of participants, while
paying attention to the output, made an incorrect statement
such as “Your input is your output and does not change.”

4.5 | The word “function”

One final result that emerged from the analysis of the
“critical events” was the students' understanding of the

word “function.” The participants in this study were cho-
sen precisely because they had not yet encountered the
word function in a mathematical context. When the task
was introduced, the students were told that we would be
talking about something called a function and were
reminded that they had not yet studied this mathematical
concept lest they be concerned about trying to remember
something from a previous mathematics class. As can be
seen above, the analysis of the video with audio of the stu-
dents working on the task showed that the most common
reason for students misidentifying machines as function/
nonfunctions was their understanding that the output color
should match the button pressed, seemingly looking for the
context to match their real-life experience. It was clear from
the language they used that a mismatch was an indication
to them that the machine was not working properly. On
many, many occasions, they used the non-mathematical
meaning of the word function and said things like “This
machine is not functioning,” “It's not functional,” “This
machine is more functional than the other.” Therefore, rely-
ing on their existing meaning for the word “function” may
have exacerbated, for some students, the challenge they had
with accepting an output that was different from the input
button, even if that output was consistent.

5 | CONCLUSION

The research question was: what understanding of func-
tion can seventh-grade students, who had not encoun-
tered the term function, develop through using a
specially designed applet (using a vending machine) with
no algebraic representations? Specifically, the applet was
designed to help them develop an understanding of a
function as a relationship between inputs and outputs
with some restrictions on the outputs. The nonstandard
representation of the Introduction to Function applet
served to introduce the concept of function without alge-
braic representations. With the focus on the consistency,
or otherwise, of the outputs, the participants were able to
correctly distinguish between functions and nonfunctions
at least 80% of the time. This suggests that the applet may
be a good way to introduce functions to middle school
students and may overcome some of the difficulties that
arise from traditional approaches in middle school
(Mesa, 2004). The main challenge to correct identification
of functions is the real-world context of a vending
machine, and the attendant challenge of accepting an
output can color that does not match the can color of the
input button perhaps exacerbated, somewhat ironically,
for some students, by the use of the word function. Some
limitations of the study may be that the results were over-
determined by the discussion after the first two pairs of
machines, followed by some instructor intervention as
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students worked on the task, and that the participants
might be seen to be simply playing a pattern recognition
“game” with the rule “random bad, not random good.”
Therefore, more study would be needed to establish if the
basic concept learned here transfers effectively to further
study of function. However, even within this study, more
than 60% used some appropriate language to describe the
nature of the output in their definitions of function. In
addition, contrary to a well-known misconception, partic-
ipants may be able to recognize a constant function as a
function. Finally, it should be noted that the purpose of
this activity was to set the scene for a class discussion
of their definitions with the goal of arriving at a shared
definition. The results of the study suggest that there is a
good foundation for that discussion.
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