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ABSTRACT
Adjusting batch sizes and adaptively tuning other hyperparameters
can signi�cantly speed up deep neural network (DNN) training.
Despite the ubiquity of heterogeneous clusters, existing adaptive
DNN training techniques solely consider homogeneous environ-
ments. Optimizing distributed DNN training over heterogeneous
clusters is technically challenging, and directly adapting existing
techniques results in low utilization and poor performance. To
solve this problem, we introduce Cannikin – a novel data-parallel
distributed training system. Cannikin achieves e�cient and near
optimal performance by accurately modeling the optimal system
performance and predicting adaptive batch size training metrics
for DNNs in heterogeneous clusters. We implemented Cannikin in
PyTorch and conducted experiments over 16 GPUs in Chameleon.
Empirical results show that Cannikin reduces DNN training in
heterogeneous clusters by up to 52% compared to the state-of-art
adaptive training system and up to 85% compared to native PyTorch
DistributedDataParallel.
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1 INTRODUCTION
With the explosive increase of deep learning (DL) applications in
�elds such as image classi�cation [12, 27], natural language pro-
cessing [46, 53], and recommender systems [18, 59], the demand
for deep neural network (DNN) training resources is doubling ev-
ery six months [49]. In order to achieve e�cient DNN training,
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practitioners rely on accelerators [24, 36, 60], hyper-parameter tun-
ing [33], and distributed training [3, 30]. Meanwhile, the short
hardware update cycle results in newly released accelerators that
signi�cantly outperform previous models within a short time [47].
Table 1 shows the evolution of NVIDIA data center GPUs released
in recent years. Each new �agship model is over two times faster
than the preceding �agship data center GPU. When companies
and research institutes upgrade their machine learning systems,
newly released GPUs are installed before older models retire, so
homogeneous environments cannot always be guaranteed when
running distributed training jobs. Specialized methods are required
to enhance the utilization of computing resources and speed up
DNN model training in heterogeneous environments.

Table 1: Evolution of NVIDIA data center GPUs

Model Year Archit. CUDA Memory FP16
Cores (GB) (TFLOPS)

Tesla P100 2016 Pascal 3584 16 21.2
Tesla V100 2017 Volta 5120 16/32 31.4

A100 2020 Ampere 6912 40/80 77.97
H100 2022 Hopper 16896 80 204.9

Previous work on specialized distributed training for heteroge-
neous environments focuses on two major schemes: data paral-
lelism [30, 48] and model parallelism [40, 50]. For data-parallelism
heterogeneous distributed training systems, HetSeq [15] manually
tunes the local mini batch size for each node to balance workloads,
while LB-BSP [8] and DLB [55] improve performance by iteratively
tuning the workloads assigned to each worker based on the com-
puting time of each node. On the other hand, BlueConnect [10]
boosts data-parallelism distributed training by optimizing commu-
nication. Existing data-parallelism systems do not jointly consider
the computing and communication models for heterogeneous clus-
ters, resulting in suboptimal performance. Model-parallelism sys-
tems [17, 40] pipeline the DNN model in heterogeneous clusters,
which is near optimal for resource utilizationwith �ne-tuning. How-
ever, model parallelism requires a speci�c con�guration of each
node in a cluster, thus limiting scalability. Furthermore, existing
model-parallelism and data-parallelism methods cannot manage
the sudden changes of resources that occur in clusters with dynamic
resource allocation [43, 45].

Another e�cient DNN training method, adaptive batch size
training, tunes hyper-parameters such as batch size and learning
rate during training, signi�cantly speeding up convergence. Pre-
vious work [13, 32, 33, 45] focuses on adaptive batch size training
in homogeneous environments. These approaches continuously
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monitor system metrics and optimize the batch size according to
their adaption policies. However, the adaptive batch size metrics,
algorithms, and adaption policies are all designed for homogeneous
environments. Directly adopting existingmethods in heterogeneous
clusters will cause a large margin of error for adaptive batch size
training metrics measurement and prediction. To the best of our
knowledge, no specialized adaptive training system for heteroge-
neous environments has been developed so far.

There are three main challenges in designing an automatic near-
optimal training system. First, each node has a di�erent perfor-
mance model in heterogeneous clusters, which causes complexity
in predicting the optimal performance and the corresponding clus-
ter con�guration. The system overhead will signi�cantly a�ect the
training performance for larger clusters. Second, considering data
parallelism distributed training in heterogeneous clusters, given a
new total batch size to the cluster in the adaptive batch size train-
ing, the optimal con�guration of each node will change. Given the
total batch size, previous work [8, 55] iteratively tunes each node’s
con�guration to approach the optimal performance, which is in-
e�cient in adaptive batch size training. Third, in heterogeneous
data parallelism training systems, di�erent local batch sizes are as-
signed to di�erent GPUs. This introduces challenges in accurately
modeling gradient noise [33] across the heterogeneous clusters.

Based on these insights and challenges, we study the perfor-
mance model of data-parallel distributed training for heterogeneous
GPU clusters and propose the optimal performance OptPerf. For
the prediction of OptPerf and the corresponding con�guration, we
design Cannikin, an e�cient near-optimal data-parallel distributed
training system. Taking both computing and communication mod-
els into consideration, Cannikin has accurate modeling and predic-
tion of the performance models for DL in heterogeneous clusters.
With the cluster performance model learned online, Cannikin can
predict OptPerf and con�guration with low overhead when the
cluster is given a new total batch size. Cannikin optimizes the mea-
surement of system parameters using inverse variance weighting of
di�erent observations from each node in the cluster. We also prove
that in heterogeneous clusters, we can correctly model adaptive
batch size training metrics, just like systems [33, 45] designed for
homogeneous clusters. While developed for single DNN training,
Cannikin can be readily integrated with adaptive batch size training
engines [32, 45] and dynamic resource allocation schedulers [43, 45]
for multiple jobs. The main contributions of this paper are:

• We are the �rst to consider adaptive batch sizes data paral-
lelism DNN training in heterogeneous clusters.

• We deduce and predict the optimal performance, denoted as
OptPerf, along with its corresponding con�guration and the
optimal total and local batch sizes during DNN training in
heterogeneous clusters.

• We design Cannikin that can be easily integrated with the
state-of-the-art adaptive batch size training systems to train
the DNN models in heterogeneous clusters optimally.

• We evaluate the performance of Cannikin in two heteroge-
neous clusters using multiple popular DNN models. Results
highlight that Cannikin reduces DNN training by up to 52%
and 85% in heterogeneous clusters compared toAdaptDL [45]
and PyTorch DistributedDataParallel (DDP) [30].

2 BACKGROUND
2.1 Adaptive Batch Size Training
A deep learning model usually consists of millions to trillions of
parameters [5, 19, 51], requiring a long time for training. The se-
lection of hyperparameters, such as batch size in di�erent conver-
gence phases, signi�cantly impacts training e�ciency. Recent work
on adaptive batch size training [13, 32, 33, 45] greatly speeds up
deep learning model training by dynamically tuning hyperparame-
ters such as batch size and learning rate according to the gradient
noise [33], data throughput, and other customized metrics.

To determine the most statistically e�cient batch size for a train-
ing iteration, McCandlish et al. [33] propose the gradient noise scale
(GNS), an estimation of the signal-to-noise ratio of the stochastic
gradient. This metric can be used to predict the most statistically
e�cient batch size during training. When the gradient noise is low,
a small batch size can achieve a great contribution to the conver-
gence. When the gradient noise is large, the error of the gradient
estimated by a small batch would be signi�cant. In this situation, a
larger batch size could reduce the training time with little reduction
of statistical e�ciency.

However, the optimal convergence progress is not guaranteed
by using the most statistically e�cient batch size because the most
statistically e�cient batch size often comes with relatively low
data throughput. Pollux [45] introduces goodput, the product of the
system throughput and statistical e�ciency modeled by the GNS.
Goodput optimizes training by balancing the trade-o� between
data throughput and statistical e�ciency.

2.2 Distributed DNN Training
DNN training is computing-intensive [57]. Distributed deep learn-
ing accelerates DNN model training with multiple GPUs by either
using model parallelism or data parallelism.
Model parallelism Model parallelism is a technique that dis-
tributes the DNN training across multiple nodes by splitting the
DNN model itself. In heterogeneous clusters, model parallelism
improves the throughput by splitting DNN models according to
each node’s computing and communication status, hence reducing
the straggler e�ect. Model parallelism usually incorporates pipeline
parallelism to improve the system throughput further.

However, adaptive batch-size training is challenging with model
parallelism. The changing global batch size during training could
a�ect the optimal model partition. Furthermore, adaptive batch size
training requires the GNS [33] to update the batch size. In a model
parallel setup, the model is split across multiple devices, and each
device computes gradients only for its portion of the model. This
can make it challenging to estimate the GNS in the typical way.
This paper focuses on data-parallelism distributed learning. Each
GPU contains the full DNN model but uses di�erent data samples.
Data parallelism In data-parallelism distributed training, node 8
�rst trains its local mini batch by forward and backward passes for
the local gradient estimation. Node 8’s local gradient 68 is:

68 =
1
18

18�1’
9=0

r\!G 9 (\ ), (1)
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where \ is the vector of DNNweights, 18 is node 8’s local mini-batch
size, G 9 is a sample in local mini batch, and ! is the loss function.

Upon the completion of the local gradient estimation, node 8 will
aggregate its own gradient with all the local gradients calculated
by other nodes in the cluster to get the gradient of the total batch
(full batch of the DNN model):

6 =
1
#

#�1’
8=0

68 , (2)

where N is the count of total nodes (GPUs) that train the model.
Finally, each node will use the averaged gradient to update the
weight parameters w for the next batch. In a DNN training system,
the gradient averaging can be handled using backends such as
NCCL [37], MPI [1], and Gloo [21], etc. Data parallelism is suitable
for estimating GNS, as it facilitates the collection and aggregation
of gradients across multiple mini-batches processed in parallel.

3 THE OptPerf OF GPU CLUSTERS
To improve the performance of a cluster, �rst we need to know the
optimal performance the cluster can achieve. In this section, we
de�ne and deduce the optimal performance OptPerf of a heteroge-
neous GPU cluster using the metrics collected from each GPU in a
general case.

3.1 The De�nition of OptPerf

Table 2: The notation table of OptPerf

Notation De�nition

⌫ The global batch size of DNN training
18 The local batch size of node 8
= Total number of GPUs within the cluster
N The set of GPUs in the cluster
C
18
8 batch processing time without gradient synchronization
A8 Ratio of local batch size to the global batch size of node 8
r List of local batch size ratio of all GPUs in N
) Batch processing time

C82><?DC4 The batch computing time
08 Parameter updating, data loading, and forward propagation time
%8 The backpropagation time of a batch

)2><< The gradient synchronization time of a batch
)D The last gradient bucket synchronization time
)> The gradient synchronization time for all the other gradient buckets
W Ratio of �rst bucket computing time to total backpropagation time

syncStart The �rst bucket’s ready-for-synchronization point

For data-parallelism distributed training with a given batch size
⌫, OptPerf is the optimal batch processing time a heterogeneous
GPU cluster can achieve by ideally tuning each node’s local mini-
batch size. Consider heterogeneous GPU Cluster � with a set of
nodes N , |N | = =, note that the parameters are de�ned in Table 2.
Due to heterogeneity, we assume there exist nodes 8 < 9 that
C18 < C19 with the same1. The localmini batch sizes satisfy

Õ
82N 18 =

⌫. In this paper, we only consider synchronized data-parallelism
distributed training, meaning all nodes synchronize their gradient
after each batch. For this method, fast nodes in the cluster always
wait for the stragglers to �nish local gradient estimation, hence the
batch processing time ) = <0G{C100 , C111 , . . . , C1=�1=�1 }. We can infer
that there exists an optimal local mini batch size ratio ropt that

minimizes the batch processing time ) . We de�ne the minimized
batch processing time to be OptPerf. To determine OptPerf and
ropt for heterogeneous cluster � with total batch size ⌫, we model
the performance of GPUs in the cluster as a function of ) , ⌫, and r.

3.2 Performance Modeling
When considering the performance model of a heterogeneous clus-
ter, rather than simultaneously modeling the performance of het-
erogeneous nodes, we can instead model the performance of each
GPU separately and then combine all the GPU performance models
to determine the cluster’s performance. In data parallel distributed
training, the batch processing time comprises the computing time
for local gradient estimation and the communication time for gra-
dient synchronization across nodes.

3.2.1 Computing Time. The batch computing time can be sepa-
rated into data loading, forward propagation, backward propaga-
tion and parameter updating. For any node 8 , C82><?DC4 is a linear
function of local batch size 18 [31, 45]. Furthermore, the parameter
updating time remains constant regardless of variations in the local
batch size. In contrast, data loading time, forward propagation time,
and backpropagation time exhibit a linear relationship with 18 . So
for all nodes in Cluster �, the computing time can be expressed as:

C82><?DC4 = 08 + %8 , 88 2 N ,

08 = @818 + B8 , 88 2 N ,

%8 = :818 +<8 , 88 2 N ,

(3)

@8 , B8 , :8 , and<8 are coe�cients related to GPU types and DL jobs.
Note that within a heterogeneous GPU cluster, di�erent GPU mod-
els exhibit varying pairs of@8 and B8 , as well as :8 and<8 , even when
performing the same DL job. If cluster � has = di�erent types of
GPUs, there are = di�erent pairs of linear functions corresponding
to each type of GPUs.

3.2.2 Gradient Synchronization Time. We focus on the ring All-
reduce mechanism [41] adopted by Pytorch DistributedDataParal-
lel [30]. Ring All-reduce is a synchronized communication method
that starts the gradient synchronization when all nodes are ready
to synchronize and ends the synchronization when all nodes �nish
the gradient synchronization. )2><< is dependent on model size
(size of gradient parameters) and network status. In the scenario
that the network and allocated resources are stable in a hetero-
geneous cluster, even though each node’s network performance
varies, )2><< is a learnable constant when we train the same job
with di�erent batch sizes.

3.2.3 Computing and Communication Overlap. Modern distributed
training frameworks [30, 48] support the overlap between gradient
computing and synchronization by separating the locally-computed
gradients into buckets [30]. Rather than synchronizing after all
nodes �nish computing the full gradient at the end of backpropa-
gation, each gradient bucket starts synchronization when all nodes
�nish computing the gradient of the same bucket. In batch process-
ing, only the last bucket cannot overlap its synchronization with
its gradient computation. So Cluster �’s per batch gradient syn-
chronization time )2><< is the sum of )D , the last gradient bucket
synchronization time, and )> , the gradient synchronization time
for all the other gradient buckets: )2><< = )> +)D .
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For all nodes in Cluster �, the gradient size (model size) is deter-
mined when training starts. Di�erent types of GPUs have the same
gradient computing procedure [2]. Even though the local batch
size of each node is di�erent, the gradient bucket will be ready for
synchronization at a �xed proportion of each node’s backpropaga-
tion time %8 . We can infer that the starting point of the gradient
synchronization of node 8 is:

syncStart8 = 08 + W%8 , (4)

where the overlap ratio W is the ratio of the �rst bucket computing
time to the total backpropagation time. The �rst bucket computing
time is the period from the start point of the backward pass to
the �rst bucket ready for synchronization point. The �rst bucket
computing cannot be overlapped with the gradient synchronization.

Although varying 18 changes %8 , )2><< is a �xed, learnable con-
stant. So the computing and communication overlap pattern di�ers
when the local mini batch size varies. The �rst gradient bucket’s
ready-for-synchronization point is determined by the computing
time along with W , which is a constant that can be accurately mea-
sured through all the nodes in the cluster. The following buckets’
synchronization can be blocked by the previous buckets’ synchro-
nization. To eliminate the e�ect of measurement error and system
overhead, we only measure syncStart and assume all buckets’ com-
puting time and communication time are evenly distributed in the
rest of the gradient computing time and communication time. There
are two possible overlap patterns of computing and communication.

FPDLPUGPU 0 Transaction

GPU 0 Computing

GPU 0 Communication

Time

Fixed Time

𝑇𝑜

BP

𝑇𝑢

BP

𝑇𝑜

Figure 1: A node running in the computing-bottleneck sit-
uation. PU, DL, FP, and BP are the parameter update, data
loading, forward propagation, and backpropagation.

When computing is the bottleneck. Figure 1 shows a computing-
bottleneck node. The dashed lines show the buckets’ ready-for-
synchronization points. When (1�W)%8 � )> , node 8’s bottleneck is
the gradient computation. In this case, the gradient synchronization
of each bucket �nishes before the next gradient bucket is ready for
synchronization, so )> fully overlaps with the gradient computing.
The total processing time of one batch for node 8 in cluster � is:

) = C82><?DC4 +)D . (5)

When communication is the bottleneck. Figure 2 shows the
communication-bottleneck pattern. If (1 � W)%8 < )> , node 8’s
bottleneck is the gradient communication. Although the un�nished
bucket synchronization won’t block gradient computing (due to the
All-reduce mechanism), the synchronization of previous un�nished

FPDLPUGPU 0 Transaction

GPU 0 Computing

GPU 0 Communication

Time

Fixed Time

𝑇𝑜

BP

𝑇𝑢

BP

Figure 2: A communication-bottleneck node.

buckets will block the synchronization of the following bucket. In
this situation, the total processing time of one batch for node 8 is:

) = syncStart8 +)2><< . (6)

3.3 Expression of OptPerf
To predict OptPerf for heterogeneous clusters, with learned per-
formance models of all GPUs, �rst we deduce cluster �’s batch
processing time ) . In cluster �,

) = max
⇢
max
82N

{C82><?DC4 +)D },max
82N

{syncStart8 +)2><<}
�
. (7)

Since each node’s bottleneck is unknown, minimizing ) is a mixed
integer linear programming problem. Rather than solve an NP-hard
problem, we instead provide the criteria for di�erent situations to
achieve OptPerf.

When optimizing the performance of Cluster �, the batch pro-
cessing time )8 of stragglers during training can be reduced by
adjusting the local mini batch sizes for all nodes. Intuitively, the clus-
ter’s fast nodes should be assigned larger local mini batches, while
the stragglers should have smaller batches. With the computing
and communication overlap patterns of each node in Section 3.2.3,
we �rst look into two special scenarios.
All nodes are computing-bottleneck. Since (1 � W)%8 � )> ,
88 2 N , all the nodes’ performance models are Equation (5). OptPerf
is achieved when all nodes in cluster � have the same computing
time C2><?DC4 . The proof is in Appendix A.1.
All nodes are communication-bottleneck. If (1 � W)%8 < )> ,
88 2 N , all nodes’ performance models are Equation (6). OptPerf
will be achieved when all nodes start the �rst gradient bucket
synchronization at the same time. The proof is in Appendix A.2.
The general case. In the general case, some nodes’ bottlenecks
are computing while others’ are communication (see Figure 3). The
computing-bottleneck nodes’ performance models follow Equa-
tion (5), and the communication-bottleneck nodes’ performance
models follow Equation (6).OptPerf is achievedwhen all computing-
bottleneck nodes have the same computing time C2><?DC4 and all
communication-bottleneck nodes start the �rst bucket synchroniza-
tion simultaneously. Moreover, the computing and communication
bottleneck nodes simultaneously get ready for the last bucket syn-
chronization. The proof is located in Appendix A.3. With OptPerf,
we can determine the optimal performance of a heterogeneous
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cluster with di�erent batch sizes using the parameters measured
and learned during training.

4 SYSTEM DESIGN OF CANNIKIN
In this section, we give details on the work�ow of Cannikin and
describe how Cannikin con�gures the cluster before the start of
each epoch, optimizes the measurement of learnable parameters,
guarantees the gradient quality, and how Cannikin integrates with
existing adaptive batch size training systems.

4.1 Work�ow of Cannikin
Cannikin optimizes the goodput [45] for each training epoch, which
is the product of the system throughput and its corresponding con-
vergence e�ciency. We search for OptPerf to optimize the system
throughput for heterogeneous GPUs in Section 4.2 and Section 4.3
and deduce the GNS for heterogeneous GPUs to predict the con-
vergence e�ciency in Section 4.4.

Figure 4 shows the overview of the work�ow of Cannikin. In
a heterogeneous environment, after a user submits a training Job
� to the dynamic resource job scheduler, the job scheduler allo-
cates a number of (possibly heterogeneous) GPUs to form Cluster
� to initialize Job � . Before the start of each epoch, the adaptive
batch size engine enumerates the total batch size candidates from
the batch size range [45]. The optimizer uses performance models
learned by the analyzer to predict OptPerf with its corresponding
total batch size and ropt for the next training epoch, then loads each
node’s local mini batch based on ropt and starts the next training
epoch. During the training epoch, each node continually collects
performance metrics and learns the performance models locally.
After each training epoch, the analyzer gathers the updated perfor-
mance models of all nodes. Figure 5 shows the batch size of each
node during the training of CIFAR-10. During the training, the local
batch size of each GPU will increase during training due to the in-
crease in global batch size. However, ropt varies with di�erent global
batch sizes because the bottleneck changes from communication to
computing with the increase of local batch size.

GPU 0 Communication

Time 

FT BP

GPU 0 Computing

FT

𝑇𝑜

BP

𝑇𝑢

𝑇𝑜 𝑇𝑢wait

FT BP

𝑇𝑜 𝑇𝑢

FT

𝑇𝑜

BP

𝑇𝑢

wait

GPU 1 Communication

GPU 1 Computing

GPU 2 Communication

GPU 2 Computing

GPU 3 Communication

GPU 3 Computing

Figure 3: An example of the general case, where GPU 0 and
GPU 1 are communication-bottleneck, GPU 2 and GPU 3 are
computing-bottleneck. FT is the abbreviation of �xed time.

Figure 4: The overall work�ow of Cannikin.
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Figure 5: Global batch size and local batch size of each node
during CIFAR-10 training.

4.2 OptPerf Optimizer
Cannikin continuously learns the computing and communication
models for all nodes during the training process. Despite having
performance models for all nodes, the overlap state of each node in
the cluster remains unknown as it is contingent on the total batch
size. For example, a larger total batch size can lead to more nodes
experiencing computational bottlenecks. To address this challenge,
we have developed a novel search algorithm to unveil the overlap
state for all nodes across the cluster.
Determine the overlap state. Given an enumerated total batch
size, Cannikin uses Algorithm 1 to determine the overlap state, then
predict OptPerf with ropt for each node.

If all nodes are computing or communication-bottleneck, we
can use Check 1 and Check 2 to verify. However, when nodes are
mixed-bottleneck, the overhead of the enumeration method to de-
termine each node’s overlap pattern is relatively high. Algorithm 1
addresses this issue in the following steps: If node 8 is a computing
(communication) bottleneck node in check 1 and check 2, then
node 8 is also a computing (communication) bottleneck node in the
mixed-bottleneck situation. For all other outliers that have di�erent
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Algorithm 1: Overlap state and OptPerf con�guration

Input: Total batch size ⌫ =
Õ=�1
8=0 18 .

Given: W,)> ,)D , {08 ,:8 ,<8 }, 8 = 0, 1, . . . ,= � 1.
ù Overlap ratio, two parts of communication time,
computing coe�cients.

/*Check 1: All nodes are computing-bottleneck*/
Solve C2><?DC4 = C02><?DC4 = C12><?DC4 = · · · = C=�12><?DC4 .
if 8(1 � W)%8 � )> then

/*If all nodes are computing-bottleneck. */
OptPerf = C2><?DC4 +)D ;
return OptPerf, 18 , 8 = 0, 1, . . . ,= � 1.
break

/*Check 2: If nodes are communication-bottleneck.*/
Solve syncStart = syncStart0 = · · · = syncStart=�1 .
if 8(1 � W)%8 < )> then

/*All nodes are communication-bottleneck.*/
OptPerf = syncStart +)2><< ;
return OptPerf ,18 , 8 = 0, 1, . . . ,= � 1.
break

/*The nodes are mixed-bottleneck.*/
while (9 syncStart8 >
syncStart0) _ (9 C2><?DC4 > C 02><?DC4 ) do

/*Search the overlap state.*/
beg = outlier<8= ;
end = outlier<0G ;
C= (beg+end)/2;
/*Node 0 to Node ⇠ � 1 are computing-bottleneck, Node
⇠ to Node = � 1 are comm-bottleneck.*/
Solve )2><1 = C 02><?DC4 = syncStart0 +)> .

OptPerf = )2><1 +)D .
return OptPerf ,18 , 8 = 0, 1, . . . ,= � 1.

overlap patterns in check 1 and check 2, we use a binary-search-
like algorithm to determine the computing and communication
bottleneck nodes. We rank all the intermediate nodes in increasing
order based on the �xed processing time and then set a hypothetical
bottleneck boundary node that separates the computing-bottleneck
and communication-bottleneck nodes. For any overlap state, the
mixed-bottleneck OptPerf solver from Section 3.3 will indicate
(8 syncStart syncStart0) ^(8 C2><?DC4  C 02><?DC4 ) if the overlap
pattern is correct. Thus we can iteratively set the middle element
to be the boundary node until we �nd the correct overlap pattern.

Since the time complexity of checks 1 and 2 is atmost$
�
(= + 1)3

�
while solving linear equations [6] and the time complexity of the
mixed-bottleneck search algorithm is at most$ (log=), Algorithm 1
is$

�
(= + 1)3 log=

�
. In Section 4.5, we improve the time complexity

of Algorithm 1 to $
�
(= + 1)3

�
.

Approaching OptPerf when no available performance mod-
els. As the computation time scales linearly with the local batch
size of each GPU, deriving the computing time models 08 , %8 to 18
necessitates the execution of at least two distinct local batch sizes
per GPU. Consequently, during the initial two epochs, there will be
no available performance model to predict OptPerf. In this scenario,
we employ the inverse proportion of the sample computation time
for each node to determine their respective local batch sizes for the

next epoch. Assume the per sample computing time of node 8 at the

previous epoch is C8B0<?;4 =
C82><?DC4

182DAA4=C
, where 182DAA4=C is the local

batch size of node 8 in the previous epoch. The local batch size of
node 8 for the next epoch can be expressed as:

18=4GC =

Õ
82N C8B0<?;4

C8
B0<?;4

(
’
82N

Õ
82N C8B0<?;4

C8
B0<?;4

)�1⌫, (8)

where ⌫ is the total batch size for the upcoming epoch. With this
method, each node can experiment with various local mini-batch
sizes necessary for performance model learning, and Cannikin
iteratively approaches OptPerf when no available performance
models. Note that the primary purpose of this method is to adjust
each node’s local batch size for performance model learning, rather
than relying on the less e�cient iterative method to �nd OptPerf.
Once the performance models are established, they are employed
to predict OptPerf before each epoch.

4.3 Optimized Gradient Aggregation
In homogeneous environments, the cluster can aggregate the local
gradient of each node via averaging. This procedure guarantees
each training sample has an identical weight in the global gradient
after synchronization. However, local gradient averaging cannot be
utilized for adaptive local batch training in heterogeneous clusters
due to the variety of local batch sizes. Simply averaging each node’s
local gradient results in over-representation of training samples
from smaller local batches in the global gradient. To address this
problem, LB-BSP [8] introduced proportional-weighted gradient
aggregation. By weighting each local gradient proportionally to
the local batch size, samples assigned to di�erent nodes have iden-
tical weights in the global gradient. Cannikin computes the global
gradient 6 using:

6 =
’
82N

A868 , (9)

where 68 is the local gradient in Equation (1) and A8 is the local mini
batch ratio of node 8 . For i.i.d. data, 6 is equivalent to the averaged
gradients in homogeneous environments.

4.4 Gradient Noise Scale in Heterogeneous
Environment

Adaptive batch size training uses the gradient noise scale (GNS) [33]
to model the convergence e�ciency (statistical e�ciency). The GNS,
B=>8B4 , measures how large the gradient is compared to its variance:
B=>8B4 = tr(⌃)/|⌧ |2, where ⌃ is the covariance matrix and⌧ is the
noiseless true gradient. Since tr(⌃) and |⌧ |2 are not available in
practice, standard methods instead rely on good estimators of these
two quantities. Previous work has only considered how to estimate
tr(⌃) and |⌧ |2 (and thus B=>8B4 ) in homogeneous clusters.

To compute the GNS, we �rst construct local estimates G8 and
S8 of |⌧ |2 and tr(⌃) for each node 8:

G8 =
1

⌫ � 18
(⌫ |6|2 � 18 |68 |2), S8 =

18⌫

⌫ � 18
( |68 |2 � |6|2) (10)

where the estimates incorporate local and global gradient informa-
tion. For any batch of size 1, the expected gradient norm E[|64BC |2]
satis�es the equality E[|64BC |2] = |⌧ |2 + 1

1 tr(⌃) [33]. Using this
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equation, we can prove that G8 and S8 are unbiased estimators of
|⌧ |2 and tr(⌃), respectively. Aggregating the local estimates G8 and
S8 across all nodes can provide high quality, unbiased estimates of
|⌧ |2 and tr(⌃) that have improved, lower variance. The variance of
these estimators is crucial since the standard ratio estimator used
for the GNS is inherently biased [33].

In homogeneous clusters, it is optimal to separately aggregate
G8 and S8 via averaging. However, in Lemma B.1, we prove that
the variance of both G8 and S8 depend on the local mini batch
size. Furthermore, the local estimates of tr(⌃) and |⌧ |2 for di�erent
nodes are correlated via dependence on |6|2. As a result, aggregating
G8 and S8 is more challenging for heterogeneous clusters. The
following theorem states the optimal weighted combination of the
local estimators, with the proof located in Appendix B.

T������ 4.1. G =
Õ
82N FG

8 G8 and S =
Õ
82N FS

8 S8 are mini-
mum variance, unbiased linear estimators of |⌧ |2 and tr(⌃) when:

wG =
1)��1

G
1)��1

G 1
, wS =

1)��1
S

1)��1
S 1

, (11)

where 1 is an =-dimensional column vector of ones and both �G and
�S are = ⇥ = matrices with respective entries 0G (8, 9) and 0S (8, 9):

0G (8, 8) =
⌫ + 218
⌫2 � ⌫18

, 0G (8, 9) =
⌫2 � 128 � 129

⌫(⌫ � 18 ) (⌫ � 1 9 )
for 8 < 9

0S (8, 8) =
⌫18

⌫ � 18
, 0S (8, 9) =

181 9 (⌫ � 18 � 1 9 )
(⌫ � 18 ) (⌫ � 1 9 )

for 8 < 9

Cannikin delivers a novel method to estimate the GNS B=>8B4
in heterogeneous clusters. First, each node estimates the sum of
the variances of the individual gradient components and the global
norm of the gradient using (10). We optimally aggregate the lo-
cal estimates G8 and S8 using (11), and then take the ratio of the
resulting terms to get the global GNS B=>8B4 = S/G. Despite the
added challenge of heterogeneity, Figure 6 shows Cannikin’s con-
vergence is comparable to the homogeneous baseline AdaptDL with
the same training epochs, which means the larger batch size chosen
by Cannikin won’t harm the convergence e�ciency.
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Figure 6: (a) the batch size of each epoch for CIFAR10 training.
(b) the accuracy of each epoch. (c) the accuracy of time.

4.5 Implementation
Cannikin is implemented as a PyTorch library based onAdaptDL [45]
that can be imported into DNN training scripts. Cannikin intro-
duces the HeteroDataLoader class, which unevenly loads local

mini batches to each node based on the OptPerf prediction. Can-
nikin is open-sourced at GitHub https://github.com/chengyinie/
hetero_adaptdl. The implementation of Cannikin addresses the
following concerns to improve e�ciency.
Parameter learning. During each epoch, Cannikin collects the
backpropagation time (%8 ) and the total data loading time, opti-
mization steps, and forward propagation(08 ) for each local batch
size. With the collected data from two epochs using di�erent lo-
cal mini-batch sizes, each node can construct the computing time
model to the local mini batch size by solving linear equations. In the
subsequent epochs, more local batch sizes allow for the re�nement
of the computation time model, making it increasingly accurate.

When it comes to learning the communication time ()2><<) and
W , it’s important to note that )2><< and W remain constant across
di�erent local and batch sizes. Cannikin collects the overlap ratio (W )
and communication times ()> and )D ) for each node in the cluster.
We proceed to optimize the learning of W and )2><< as follows.
Total batch size selection. Although the search algorithm e�-
ciently �nds the overlap pattern, the overhead can be signi�cant
if we determine the overlap pattern for each total batch size can-
didate determined by the adaptive batch size engine [45] before
every epoch. Cannikin instead calculates OptPerf8=8C for all batch
size candidates after the initial epoch. In the upcoming epochs,
since OptPerf is unrelated to the training progress, Cannikin uses
OptPerf8=8C and the updated GNS to choose the total batch size. Then
Cannikin determines OptPerf along with ropt according to the up-
dated performance metrics. If the overlap pattern has changed from
the initial pattern, Cannikin will start over to determine the pattern
for each candidate again to choose the total batch size. Otherwise
Cannikin will update OptPerf8=8C for the corresponding total batch
size candidate. With this strategy, in most epochs Cannikin only
needs to determine OptPerf for one total batch size.
Overlap state searching. In the initialization epoch, Cannikin goes
through all the total batch size candidates and calculates OptPerf
for each candidate. When the total batch size increases, more cluster
nodes will be computing-bottleneck nodes. Hence in the total batch
size enumeration from small to large in sequence, the search starting
point of an enumerated candidate is the overlap pattern of the
previous one. In following epochs, the search starting point of an
enumerated candidate is its overlap state in OptPerf8=8C .

5 EVALUATION
We evaluate the e�ectiveness of Cannikin in optimal distributed
DNN training using convergence time, batch processing time, pre-
diction accuracy, and system overhead. Key results are as follows:

• Cannikin reduced the overall convergence time by up to 85%
and 52% in heterogeneous clusters compared with PyTorch
and the adaptive batch size training system AdaptDL.

• Compared to the state-of-art data parallel distributed train-
ing strategies for heterogeneous clusters, Cannikin reduces
the batch processing time by up to 18%.

• Cannikin predictedOptPerf for heterogeneous clusterswithin
7% error with low overhead less than 4%.
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5.1 Experimental Setup
Testbed. We conduct our experiments in two di�erent clusters:
cluster� and cluster ⌫. Cluster� is a heterogeneous 3-node cluster
with di�erent types of NVIDIA GPUs speci�ed in Table 3. Cluster
⌫ is a heterogeneous 10-server cluster consisting of 16 GPUs, as
detailed in the Table 4. Note that in Cluster ⌫, each GPU is a node
for data-parallelism distributed DL training.

Table 3: Hardware speci�cation of cluster A in evaluation

Node Node GPU GPU Main CPUtype count model Count Memory

a5000 1 RTX A5000 1 32GB i9-10980XE
a4000 1 RTX A4000 1 32GB Xeon W-2255
p4000 1 Quadro P4000 1 32GB Xeon W-2102

Table 4: Hardware speci�cation of cluster B in evaluation

Node Node GPU GPU Main CPUtype count model Count Memory

a100 1 A100 4 512GB Xeon Plati. 8380*2
v100 1 V100 4 128GB Xeon Gold 6230*2
rtx 8 RTX6000 1 192GB Xeon Gold 6126*2

Workloads. Evaluated workloads are listed in Table 5. The range of
batch sizes is determined by each GPU’s memory; the initial batch
size is relatively small [45] and con�gured by users. We adopt the
canonical setting for each training task for the optimizer, learning
rate scaler, and targetmetrics choices, with the philosophy of testing
di�erent models and optimizers on applications of various sizes.
Baselines.We evaluate Cannikin by comparing it with the state-
of-art adaptive batch size training system, data-parallelism hetero-
geneous distributed DL training system, and PyTorch DDP:

• AdaptDL [45]: The state-of-the-art adapted distributed DNN
training system for homogeneous clusters.

• LB-BSP [8]: LB-BSP is a data-parallelism distributed training
system for heterogeneous GPU clusters, which recurrently
tune each node’s local mini batch size for e�cient model
training. We set step size � = 5 in our experiments, which is
identical to the original paper.

• HetPipe[40]: HetPipe is a distributed training system for
heterogeneous GPU clusters, which integrates the pipelined
model parallelism and data parallelism.

• PyTorch DistributedDataParallel [30]: Pytorch DDP is one
of the most e�cient distributed training libraries for homo-
geneous clusters.

5.2 Performance with Heterogeneous GPUs
5.2.1 Overall convergence performance. We compared Cannikin
with the baselines in cluster ⌫ for the overall convergence perfor-
mance evaluation. Figure 7 shows the convergence processes of
example tasks Cifar10 and Imagenet training in cluster ⌫. Due to
the weighted gradient aggregation, each gradient descent step of
Cannikin is equivalent to the homogeneous gradient descent given
the same total batch size. This equivalence guarantees that the

convergence is not compromised. With this precondition, Cannikin
achieves a convergence speed up from throughput improvement
and the improved prediction of optimal total batch size in heteroge-
neous clusters, thus increasing the adaptive training system’s good-
put. Our results show Cannikin reduces the convergence time by
52% and 29% for CIFAR-10 and ImageNet compared with AdaptDL.
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Figure 7: Convergence process of ResNet-18 on CIFAR-10
(left) and ResNet-50 on ImageNet (right).
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Figure 8: Normalized convergence time of all training tasks.

The normalized overall convergence time for each evaluated
workload is depicted in Figure 8. For PyTorch DDP, which trains
deep learning models with �xed total batch size and distributes
local batch sizes evenly across heterogeneous clusters, the speedup
achieved by Cannikin is primarily attributed to its optimized pre-
diction of total/local batch sizes during training. Unlike PyTorch
DDP, which uses �xed batch sizes, AdaptDL evenly distributes local
batch sizes across the cluster and predicts the optimal total batch
size in homogeneous environments. In the context of AdaptDL,
the speedup observed with Cannikin results from the optimized
selection of local batch sizes to maximize the utilization of hetero-
geneous GPUs and the improved prediction of total batch sizes in
heterogeneous environments. LB-BSP iteratively tunes local batch
sizes for each GPU within heterogeneous clusters which improves
the utilization of the heterogeneous GPUs. However, LB-BSP only
supports the DL training with a �xed total batch size, and LB-BSP
doesn’t consider the communication and communication overlap.
The speedup with Cannikin compared to LB-BSP primarily arises
from the faster determination of the optimal local batch sizes consid-
ering communication and computing overlap and optimized total
batch size selection during training. The results indicate Cannikin
signi�cantly enhances the overall convergence time to achieve the
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Table 5: The models, datasets information of Cannikin’s evaluation.

Task Dataset Model Size Optimizer LR scaler B0 Target

Image Classi�cation ImageNet [12] ResNet-50 [19] 25.6M SGD Adascale 100 75% Top1 acc.
Image Classi�cation CIFAR-10 [27] ResNet-18 [19] 11M SGD Adascale 64 94% Top1 acc.
Speech Recognition LibriSpeech [39] DeepSpeech2 [4] 52M SGD Adascale 12 WER = 40.0%
Question Answering SQuAD [46] BERT [14] 110M AdamW Square-Root 9 F1 = 88%
Recommendation MovieLens [18] NeuMF [20] 5.2M Adam Square-Root 64 Hit rate = 69%

target accuracy, with improvements of up to 85%, 52%, and 82%
compared to PyTorch DDP, AdaptDL, and LB-BSP respectively.

5.2.2 Batch processing time for heterogeneous clusters. We evaluate
Cannikin using two methodologies for batch processing time. The
�rst is the �xed total batch size training, i.e., classical DNN training.
The second is the adaptive batch size situation when the total batch
size varies in each training epoch. Since AdaptDL’s batch processing
time in heterogeneous clusters is equivalent to Pytorch DDP, we
don’t consider AdaptDL in this section.
With �xed batch size.We �x the total batch size of the cluster and
each node’s optimal local mini batch size ratio ropt . Figure 9 shows
an example of Cannikin and LB-BSP training ResNet-50 with Ima-
geNet in cluster �. Given the total batch size of 128, Cannikin and
LB-BSP initialize training by evenly assigning local batch size for
each node. Cannikin approach OptPerf as early as the third epoch,
because Cannikin requires two epochs to learn the performance
models discussed in Section 4.2. However, LB-BSP requires more
than ten epochs to reach its best performance.
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Figure 9: ClusterA’s batch size processing timewhen training
ImageNet from evenly assigned local mini batch size initial-
ization given �xed total batch size 128.

Assume Cannikin and each compared method have reached their
best batch processing time for the given batch size. Figure 10 shows
OptPerf of cluster ⌫ compared with the baselines. We can observe
that OptPerf is at most 18% faster compared with LB-BSP, and up
to 53% faster than the Pytorch DDP. Note that when the batch
size is large enough, all nodes become computing bottleneck. The
OptPerf will be achieved when all nodes have the same computing
time )2><?DC4 . The performance of LB-BSP will approach OptPerf
because, asymptotically, the two have the same target that all nodes
have the same )2><?DC4 .

With adaptive batch size. Since only data-parallelism distributed
systems are sensitive to batch size changes, we evaluate Cannikin
with LB-BSP for the adaptive batch size situation. Assuming Can-
nikin and LB-BSP have already achieved their best performance for
the previous batch size, now given a new batch size that is 10% of
the total batch size range larger than the previous one, the batch
processing time of LS-BSP will become sub-optimal because the
ropt has changed. In the meantime, Cannikin can still accurately
predict the OptPerf for the newly assigned batch size, just like the
�xed batch size situation. Figure 10 shows the batch processing
time of LS-BSP in cluster ⌫ for adaptive batch size training.

5.3 OptPerf Prediction
In cluster�, we evaluate the prediction ofOptPerf with and without
inverse variance weighting in measurement compared to the man-
ually tuned OptPerf. Results show that without inverse variance
weighting, the maximum error of OptPerf prediction can reach up
to 21%. With the inverse variance weighting method introduced in
Section 4.5, Cannikin’s prediction of OptPerf in small and medium
models like NeuMF, ResNet-18, and ResNet-50 have a maximum 3%
error. For larger models like BERT and DeepSpeech2, larger model
sizes lead to more gradient buckets to synchronize, which increases
the probability of contingency in gradient synchronization, so the
maximum error in the prediction of OptPerf is 7% in the batch
size range. However, Cannikin trains with varying batch sizes, so
the maximum 7% error of the OptPerf prediction is only used in a
fraction of the entire training process.

5.4 Overhead and Scalability of Cannikin
Table 6 shows the overhead of Cannikin for each task we deployed
in the large-scale test cluster ⌫. The overhead encompasses the time
required to evaluate each candidate’s total batch size alongside its
corresponding OptPerf, as well as the con�guration time for each
node’s local batch size and local training data index. For all the
medium and large applications, the con�guring time for OptPerf of
Cannikin before each epoch is much less than 1% of the total epoch
training time across all candidate batch sizes in the range speci�ed
by [45], which is insigni�cant for the entire training process. For
small applications like CIFAR-10 and MovieLens, the overhead of
Cannikin will reach up to 9% and 12% when the system runs with
batch sizes around the upper limit of the batch size range. However,
during training, the system will use the batch sizes near the upper
limit only when the model almost converges. The period of time
used for batch sizes near the upper limit for training is a minority
part of training time. Considering the entire training progress, the
overheads of CIFAR-10 and MovieLens are 2.7% and 3.9%.
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Figure 10: Each evaluation task’s normalized batch processing time to the total batch size.

Table 6: The overhead analysis of Cannikin.

Dataset Model Max Overall
Overhead Overhead

ImageNet ResNet-50 ⌧ 1% ⌧ 1%
LibriSpeech DeepSpeech2 ⌧ 1% ⌧ 1%
SQuAD BERT ⌧ 1% ⌧ 1%
CIFAR-10 ResNet-18 9% 2.7%
MovieLens NeuMF 12% 3.9%

6 DISCUSSION
Impact of varying heterogeneity degree. The performance im-
provement compared with the baseline depends on the hetero-
geneity of the cluster. Generally speaking, a cluster with more
heterogeneity will bene�t more from Cannikin. In homogeneous
clusters, Cannikin’s performance is identical to AdaptDL. In Cluster
⌫, the fastest GPU, A100, is about 3.42 times faster compared with
RTX6000, which is the slowest GPU. The degree of heterogeneity
we evaluated in this paper generally exists in today’s computing
platform. As shown in Table 1, after two years, the H100 GPU is
faster than A100 by more than 4 times.

To provide a theoretical understanding of the potential perfor-
mance improvement in a heterogeneous cluster, we can frame the
problem as a load-balancing optimization. Consider a scenario
where worker A is N times faster than worker B. If both work-
ers are assigned the same amount of work, there is a clear ine�-
ciency. However, the overall throughput improves if we allocate
N times more work to worker A. The theoretical upper bound on
this improvement is given by the ratio 2

#+1 . This result demon-
strates that optimal task distribution in heterogeneous clusters can
signi�cantly enhance performance, especially as the gap between
hardware capabilities widens.
Potentials with Sharing-caused heterogeneity. The heterogene-
ity can arise not only from hardware di�erences but also from re-
source sharing. Recent studies [52, 54] introduced GPU-sharing
mechanisms that enable the sharing of a single GPU’s resources
among multiple instances. In this context, even when the same

GPU type is present within a cluster, the resources available at each
node can still exhibit heterogeneity during distributed training.

We create Cluster⇠ , a 16-node homogeneous cluster in Chameleon
Cloud [25]. Each node is equipped with one NVIDIA RTX6000 GPU.
We use the container’s constraint to construct the heterogeneous
environment. We adopt docker containers [34] for cluster ⇠ to con-
�gure the heterogeneous environment. In each node, we start two
docker containers. The �rst container runs Cannikin distributed
training workloads, and the second docker container runs a local
dummy GPU workload to share the same GPU’s computing power
and memory with Cannikin. To tune each node’s computing power,
we manually adjust the local dummy GPU workload’s batch size to
change the computing power and memory of Cannikin workloads.

The results indicate that Cannikin’s performance in Cluster ⇠
aligns with that of Cluster � and ⌫. This brief experiment demon-
strates the potential of Cannikin in addressing heterogeneity in-
duced by resource sharing.

Adapt to schedulers for heterogeneous clusters. Existing dy-
namic resource allocating schedulers [43, 45, 58] only support the
scheduling of homogeneous clusters. Sia [22] is a scheduler with
heterogeneity awareness. However, the resources allocated for each
job are still homogeneous for each job. Cannikin supports job sched-
ulers that allocate a heterogeneous cluster for each job, which can
signi�cantly increase resource utilization and �exibility.

7 OTHER RELATEDWORK
Performance modeling of DNN training. The importance of
performance modeling in deep neural network training has been
shown in recent research work. Paleo [44] proposed the DNN train-
ingmodel by studying the operator topology. Clockwork [16] model
the GPU runtime with tracing. The All-reduce communication be-
tween nodes is studied and modeled [42]. For the cloud-based DNN
training [31], the accurate performance modeling and prediction
signi�cantly increase the training e�ciency. From the scheduler
perspective, an accurate DNN performance modeling [28, 35, 43, 45]
increases the resource utilization and improves the fairness of mul-
tiple jobs execution.
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Accelerating ML on heterogeneous environments. Most previ-
ous work about ML acceleration for heterogeneous clusters is on
the scheduler level for multiple jobs, like Hare [9], EasyScale [29]
dynamically assigned workers to scale distributed training for het-
erogeneous GPUs, Gandiva [7], GPUlet [11]. However, looking into
the single job level for the schedulers, the training strategy is still
homogeneous. For job-level optimization on heterogeneous clusters,
SnuHPL [26] improved the training in a heterogeneous HPC system
by optimizing the data distribution for a given cluster con�guration.
BytePS [23] accelerated DNN training by leveraging CPU resources.
However, BytePS focuses on the heterogeneity between CPU/GPU
and improves the communication mechanism of all-reduce and
the parameter server. Cannikin is a job-level-optimized system de-
signed for heterogeneous GPU clusters. It automatically explores
and determines the optimal local batch sizes assigned to each GPU
and total batch sizes. HeteroG [56] proposed operation-level hy-
brid parallelism to deploy the DNN training model to heteroge-
neous GPUs, Hetpipe [40] integrated pipelined model parallelism
with data parallelism in heterogeneous clusters; however, they only
considered �xed batch size training, whereas adaptive batch size
training signi�cantly improves DNN training performance.

8 CONCLUSION
In this paper, we introduced OptPerf, the optimal batch processing
time for data-parallel DNN training in heterogeneous clusters, to
reduce the impact of stragglers. We design Cannikin, a scalable,
near-optimal distributed training system that leverages OptPerf to
handle GPU heterogeneity. Cannikin is the �rst adaptive distributed
training system for heterogeneous clusters with near-optimal per-
formance and high scalability by overcoming challenges such as
optimal scenario determination andmetrics measurement caused by
heterogeneity. Cannikin outperforms the state-of-the-art systems
for diverse workloads in real heterogeneous clusters.
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A PROOF OF OPTIMALITY CONDITIONS
A.1 Compute-Bottleneck Scenario

P����. When computing is the bottleneck for all nodes, the total
processing time of one batch for the cluster is max82N{C82><?DC4 +
)D }. Since )D is the same across all nodes, we can just consider
max82N{08 + :818 +<8 }. We need:

min `

s.t. 08 + :818 +<8 � `  0, 88 2 N

⌫ �
’
82N

18 = 0.

This optimization problem has corresponding Lagrangian:

!(`, b, _,a) = ` +
’
82N

_8 (08 + :818 +<8 � `) + a
 
⌫ �

’
82N

18

!

Using the complimentary slackness conditions, we can solve and
get _8 = (1/:8 ) (

Õ
82N 1/:8 )�1. The Karush-Kuhn-Tucker (KKT)

conditions state that the optimal solution `⇤ to this problem must
satisfy _8 (08 + :818 + <8 � `⇤) = 0. Since _8 is strictly positive,
08 + :818 +<8 = `⇤,88 2 N so C82><?DC4 = C 92><?DC4 ,88, 9 2 N . É

A.2 Communication-Bottleneck Scenario
P����. When communication is the bottleneck for all nodes, the

total processing time of one batch ismax82N{B~=2(C0AC8 +)2><<}.
Since )2><< is the same across all nodes, we can just consider
max82N{08 + W (:818 +<8 )}. Using the same technique as in the
previous proof, we now get that for the optimal solution `⇤, 08 +
W (:818 +<8 ) = `⇤,88 2 N . É

A.3 General Optimal Scenario
P����. LetN1 be the set of computation-bottleneck nodes inN

and N2 be the set of communication-bottleneck nodes. We need:

min `

s.t. 08 + :818 +<8 � `  0, 88 2 N1

08 + W (:818 +<8 ) +)> � `  0, 88 2 N2

⌫ �
’
82N

18 = 0.

If we construct the Lagrangian for this problem, we see that by
solving the complimentary slackness equations, the coe�cients _8
are strictly positive for all 8 . Thus the optimal solution `⇤ satis�es
08 +:818 +<8 = `⇤ for 8 2 N1 and satis�es 08 +W (:818 +<8 ) +)> = `⇤

for 8 2 N2, giving the desired result. É

B THE GNS IN HETEROGENEOUS CLUSTERS
Proof of Theorem 4.1.

P����. Since G8 is an unbiased estimator of |⌧ |2, G is an unbi-
ased estimator when

Õ
82N FG

8 = 1. Furthermore G is the mini-
mum variance, unbiased linear estimator when w minimizes the
quadratic form of ⌃(G8 ), where ⌃(G8 ) is the correlation matrix of
the estimators G8 . Using Lagrange multipliers, we get:

wG =
1) ⌃(G8 )�1
1) ⌃(G8 )�11

Similarly, we get that S is the unbiased linear estimator of tr(⌃):

wS =
1) ⌃(S8 )�1
1) ⌃(S8 )�11

where ⌃(S8 ) is the covariance matrix of the estimators S8 .
To compute wG , we require ⌃(G8 ). By de�nition, the matrix’s

diagonal elements are Var(G8 ) and the o�-diagonal elements are
Cov(G8 ,G9 ) for 8 < 9 . Lemma B.1 gives us Var(G8 ) and Lemma B.2
gives us Cov(G8 ,G9 ). Since all terms of ⌃(G8 ) have a common factor
of 4|⌧ |2tr(⌃), this factor will cancel forwG , so we can equivalently
solve for wG using the matrix �G instead of ⌃(G8 ), where:

0G (8, 8) =
⌫ + 218
⌫2 � ⌫18

, 0G (8, 9) =
⌫2 � 128 � 129

⌫(⌫ � 18 ) (⌫ � 1 9 )
for 8 < 9

We can use a similar argument for S with Lemmas B.4 and B.3,
where rather than using ⌃(S8 ) we can use the matrix �G with
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entries:

0S (8, 8) =
⌫18

⌫ � 18
, 0S (8, 9) =

181 9 (⌫ � 18 � 1 9 )
(⌫ � 18 ) (⌫ � 1 9 )

for 8 < 9

É

L���� B.1. The estimators G8 and S8 have variances:

Var(G8 ) = 4|⌧ |2tr(⌃)
✓
⌫ + 218
⌫2 � ⌫18

◆

Var(S8 ) = 4|⌧ |2tr(⌃)
✓

⌫18
⌫ � 18

◆

where tr(⌃) is the sum of the variances of the individual gradient
components and |⌧ |2 is the global norm of the gradient.

P����. First we compute the variance of G8 :

Var(G8 ) = Var( ⌫

⌫ � 18
|6|2 � 18

⌫ � 18
|68 |2) =

(1)
=

✓
⌫

⌫ � 18

◆2
Var( |6|2) +

✓
18

⌫ � 18

◆2
Var( |68 |2)�

�2
✓

⌫

⌫ � 18

◆ ✓
18

⌫ � 18

◆
Cov( |6|2, |68 |2) =

(2)
=

⌫ + 18
(⌫ � 18 )2

⇣
4|⌧ |2tr(⌃)

⌘
� 2⌫18

(⌫ � 18 )2
· 418 |⌧ |2tr(⌃)

⌫2
=

= 4|⌧ |2tr(⌃)
✓
⌫ + 218
⌫2 � ⌫18

◆

where (1) follows from the variance of sums of random variables,
(2) follows from Lemma B.4 and Lemma B.5. We can similarly
compute the variance of S8 :

Var(S8 ) = Var( 18⌫

⌫ � 18
|68 |2 �

18⌫

⌫ � 18
|6|2) =

(1)
=

✓
18⌫

⌫ � 18

◆2 ⇣
Var( |68 |2) + Var( |6|2) � 2Cov( |6|2, |68 |2)

⌘
=

(2)
= 4|⌧ |2tr(⌃)

✓
18⌫

⌫ � 18

◆2 ✓
1
18

+ 1
⌫
� 218

⌫

◆
=

= 4|⌧ |2tr(⌃)
✓

⌫18
⌫ � 18

◆

where again (1) follows from the variance of sums of random
variables, (2) follows from Lemma B.4 and Lemma B.5. É

L���� B.2. The estimators G8 and G9 have covariance:

Cov(G8 ,G9 ) = 4|⌧ |2tr(⌃)
⌫2 � 128 � 129

⌫(⌫ � 18 ) (⌫ � 18 )
P����. Using the de�nition of G8 and G9 :

Cov(G8 , G9 ) = Cov
✓
⌫ |6 |2 � 18 |68 |2

⌫ � 18
,
⌫ |6 |2 � 1 9 |69 |2

⌫ � 1 9

◆
=

(1)
=

⌫2Var( |6 |2 )
(⌫ � 18 ) (⌫ � 1 9 )

� ⌫18Cov( |6 |2, |68 |2 )
(⌫ � 18 ) (⌫ � 1 9 )

�
⌫1 9Cov( |6 |2, |69 |2 )
(⌫ � 18 ) (⌫ � 1 9 )

=

(2)
=

4 |⌧ |2tr(⌃)
(⌫ � 18 ) (⌫ � 1 9 )

 
1
⌫

�
128
⌫

�
129
⌫

!

where (1) follows from the covariance of linear combinations of random
variables and the independence of68 and69 , and (2) follows from Lemma B.4
and Lemma B.5. É

L���� B.3. The estimators S8 and S9 have covariance:

Cov(S8 ,S9 ) = 4|⌧ |2tr(⌃)
181 9 (⌫ � 18 � 1 9 )
(⌫ � 18 ) (⌫ � 1 9 )

P����. Using the de�nition of S8 and S9 :

Cov(S8 , S9 ) = Cov
✓

⌫18
⌫ � 18

( |68 |2 � |6 |2 ),
⌫1 9

⌫ � 1 9
( |69 |2 � |6 |2 )

◆
=

(1)
=

⌫2181 9

(⌫ � 18 ) (⌫ � 1 9 )
⇣
Var( |6 |2 ) � Cov( |6 |2, |68 |2 ) � Cov( |6 |2, |68 |2 )

⌘
=

(2)
=

4 |⌧ |2tr(⌃)⌫2181 9

(⌫ � 18 ) (⌫ � 1 9 )

✓
1
⌫

� 18
⌫2 �

1 9

⌫2

◆

where (1) follows from the covariance of linear combinations of random
variables and the independence of68 and69 , and (2) follows from Lemma B.4
and Lemma B.5. É

L���� B.4. For any estimated gradient 64BC with corresponding
batch size 1, the variance of the gradient norm satis�es:

Var( |64BC |2) ⇡
4|⌧ |2tr(⌃)

1

P����. Error propagation using Taylor’s rule [38] (also known
as the delta method) gives us the approximation:

Var( |64BC |2) ⇡ 4E[|64BC |]2Var( |64BC |) = 4|⌧ |2 · 1
1
tr(⌃)

É

L���� B.5. For local gradient 68 at node 8 with batch size 18 and
global gradient 6 with batch size ⌫ and computed using Eq (9), the
covariance of the two gradient norms is:

Cov( |6|2, |68 |2) =
418 |⌧ |2tr(⌃)

⌫2

P����. The global gradient norm |6|2 can be written in terms
of 68 and non-68 components:

|6|2 =
128
⌫2

|68 |2 +
1
⌫2

’
9818

(r\!G 9 (\ ))2

Rewriting the covariance using this expression:

cov( |6|2, |68 |2) = cov(
128
⌫2

|68 |2 +
1
⌫2

’
9818

(r\!G 9 (\ ))2, |68 |2) =

(1)
=

128
⌫2

cov( |68 |2, |68 |2) +
1
⌫
cov(

’
9818

(r\!G 9 (\ ))2, |68 |2) =

(2)
=

128
⌫2

Var( |68 |2)
(3)
=

128
⌫2

· 4|⌧ |2tr(⌃)
18

=
418 |⌧ |2tr(⌃)

⌫2

where (1) follows from the covariance of linear combinations of
random variables, (2) follows from the variance-covariance rela-
tionship and the independence of 68 and 6 9 for 8 < 9 and (3) follows
from Lemma B.4. É
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